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Abstract The steady and oscillatory dynamics of binary fluids contained in slots

heated by the side is studied by using continuation methods, and stability analysis.

The bifurcation points on the branches of solutions are determined with precision

by calculating their spectra for a large range of Rayleigh numbers. It will be seen

that continuation and stability methods are a powerful tool to analyze the origin of

the hydrodynamic instabilities leading to steady and time periodic flows, and their

dynamics. The role played by the shear stresses of the steady field, and the solutal

and thermal buoyancies, at the onset of the oscillations is studied by means of the

energy equation of the perturbations. With the parameters used, it is found that the

shear is always the main responsible for the instabilities, and that the work done by

the two buoyancies can even help to stabilize the fluid. The results also show that

binary mixtures of Prandtl number order one, like pure gases, present multiple stable

periodic flows coexisting in the same range of parameters, since several unstable

leading multipliers remain attached to the unit circle and go back into it. However,

at lower Prandtl numbers only the first branch of periodic orbits bifurcating directly

from the steady state is found to be stable, because some of the unstable multipliers

of the other branches quickly increase their modulus and never re-enter the unit

circle.
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1 Introduction

1.1 Double-diffusive convection in slots

The thermal convection in rectangular cavities with horizontal heating has received

great attention in the past. Among other industrial applications it is worth mention-

ing the growth of single liquid crystals [30], convective motions must be damped in

order to maintain the melt as steady as possible, and to avoid the growth of pertur-

bations leading to transitions to time dependent flows [55]. The knowledge of the

properties of the thermosolutal convection in a wide range of Prandtl numbers is

also important for getting an optimal performance of the thermoacoustic engines,

since the thermal penetration depth is an important factor to take into account in

the design of this type of engines. In fact, the best working gases are mixtures

of helium and xenon that can reach low Prantl numbers and the highest ratio of

specific heats at pressures lower than 4.5 MPa [52]. Other examples are the de-

sign of large-scale laser systems in order to minimize the optical distortion due to

buoyancy-driven flows [13], and the optimal heating or cooling and isolation of

buildings. Despite its importance the number of articles devoted to double-diffusive

convection in tall cavities is not as large as that for pure fluids. See for instance

Refs. [120, 62, 125, 115, 63, 39, 92, 122, 49, 77], among many others, that study

the 2D-approximation. A good review of the state of knowledge in infinite vertical

layers, and in three-dimensional convection up to 2010, can be found in the book

of M. Lappa [61]. In addition, some new contributions devoted to study the transi-

tion to chaos of the three-dimensional convection between two vertical plates have

recently appeared [34, 33].

The onset of steady convection of pure fluids of moderate Prandtl number

(Pr ≈ 1) in tall slots gives rise to a global circulation with hot fluid rising near the

heated side, and the internal core remains almost stably stratified. The instability of

this state gives rise to trains of waves travelling by the boundary layer, from the mid-

dle of the domain to the lids, where they diffuse [125, 122, 123, 77]. Several stable

waves of this type coexist at different intervals of the Rayleigh number, Ra, be-

cause the unstable Floquet multipliers remain attached to the unit circle, becoming

stable at successive Hopf bifurcations before increasing their modulus definitively.

The period of the oscillations is of order 10−3 in thermal units (d2/κ). At low Pr

the behavior of the flows is completely different. The velocity field of the steady

solutions consists of a vertical alignment of vortices turning in the same direction,

whose number depends on the length of the box [98]. The changes of the steady and

time periodic flows by using Pr as continuation parameter was analyzed in Ref. [98]

for a slot of Γ = 8. It was found that for 0.2 < Pr < 0.3 the time periodic flows

are slow internal oscillations due to the shear, consistent of transients between the

global circulation and the formation of the vortices. These oscillations have periods

two orders of magnitude higher than those of the travelling waves. At even lower

values of Pr ≤ 0.1 secondary vortices appear between the main. At low Ra the work

done by the buoyancy force can even help to stabilize the steady flows.
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Continuation methods and stability analysis are used in this work to study the

behavior of the steady and time periodic flows of binary mixtures contained in a

rectangular slot of aspect ratio Γ = 8, heated by the side, and with adiabatic lids.

The parameter is defined as Γ = h/d, h and d being the height and width of the

box, respectively. Double-diffusive convection with Soret effect, and the two buoy-

ancy forces not in balance, is considered. This effect measures the generation of

concentration gradients due to the temperature gradients. As far as we know, this

general case, has not been studied before. The power of the continuation methods

will be used to analyze the oscillatory instabilities, and the periodic flows and their

bifurcations, either under a physical point of view, or as a dynamical system. Con-

tinuation methods have important advantages versus time-dependent simulations for

these types of regimes. The critical parameters corresponding to the threshold are

only affected by the truncation error. They are obtained faster than if they are de-

duced from the transients of the time integrations, specially when oscillatory flows

are involved. Another advantage is that the computation of unstable branches of or-

bits allows to understand more easily the transients among branches, and the origin

of the stable quasiperiodic flows found by time evolution [93, 33, 77].

Since the experimental work of J. Lee et al. [64] in moderate aspect ratio boxes,

doubly diffusive convection was studied numerically by several authors with dif-

ferent boundary conditions for the temperature and the concentration, and non-slip

sides. N. Tsitverblit [109] studied numerically the origin and structure of the multi-

ple steady solutions existent for several values of the salinity Rayleigh number, with

salted water of Prandlt number Pr = 6.7 as convecting fluid. He showed that they

exist as a result of nondegenerate hysteresis points and isolas of asymmetric solu-

tions forming as Ra is increased. A complete study of the convection when a lateral

temperature gradient is applied to a motionless liquid layer, which is stably strati-

fied through a constant vertical salinity gradient, was carried out in Ref. [56]. They

focussed their objectives in determining the large scale effects that double-diffusive

layered structures have on the vertical transport of fluid constituents.

By enforcing equal and opposite thermal and solutal buoyancy forces (buoyancy

number N =−1) K. Ghorayeb and A. Mojtabi demonstrated that there exist a trivial

equilibrium solution, initially linearly stable if the vertical derivatives of the temper-

ature and concentration gradients are imposed to vanish at the lids [41], as it happens

for instance in a periodic vertical layer. They calculated the steady states bifurcated

from the trivial one for gaseous mixtures of Pr = 1 and Lewis number Le > 1. Their

investigations showed that the onset of double diffusive convection corresponds to

a transcritical bifurcation point, and that the result is weakly dependent on Le.

The same two-dimensional problem with the constraint N = −1 was studied in

Refs. [124, 6, 7, 68] with vertical periodic boundary conditions. In the first paper,

the calculations of S. Xin et al. showed that, with the preceding parameters of the

above paragraph and constant temperature and concentration at the sides, the on-

set of convection corresponds to a subcritical pitchfork bifurcation. The branch of

the steady solutions loses stability to waves traveling in the vertical direction via

a supercritical drift pitchfork bifurcation. The calculation of the branches of this

steady solutions by A. Bergeon and E. Knobloch [6, 7] showed the presence of spa-
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tially localized states that the authors linked with the phenomenon of homoclinic

snaking. Recently, the same problem, with no net vertical mass flux and Robin

boundary conditions for the concentration at the sides, was revisited in Ref. [68].

As in the preceding works, steady localized states organized in ’snakes-and-ladders’

were found. In addition, a family of travelling pulses disconnected from all the other

known states was obtained. However, waves travelling up or down a sidewall, like

in the general case, were obtained by relaxing the balance of horizontal gradients.

Secondary bifurcations from these states give rise to spatially modulated travelling

states, and to spatially localized travelling pulses. Localized states were also found

in Ref. [5] in a three-dimensional box. In this case, two snaking branches of sym-

metric steady solutions, bifurcating simultaneously from the trivial state, undergo

secondary symmetry breaking bifurcations generating secondary snaking branches

of localized states.

1.2 Continuation methods for partial differential equations

The study of numerical models in Fluid Mechanics consisted during many years,

after the first high speed digital computers became available, in writing and running

time evolution codes to explore the dynamics of the resulting discretized systems of

partial differential equations (PDEs). Even the computation of steady solutions was

performed by letting the system evolve, passing a transient, to reach the equilibria.

This was forced by the small size of the computers memories, which prevented

in many cases the use of algorithms to solve nonlinear systems of equations. The

landmarking and still very good introductory book by P.J. Roache [85] presents

the state of the art at that time. Only linear systems of equations are mentioned

there, obtained after the discretization by means of finite differences of the stream

function equation or in the context of implicit time integration methods. They were

solved by direct methods in case of tridiagonal systems or by highly efficient block

methods, tensor product methods, Fourier series methods, etc. A review of what

was available at that time for this purpose can be found in Ref. [27]. These methods

were considered, at that time, to require large storage. Iterative Richardson, Jacobi,

Gauss-Seidel, or alternate directions methods were also used and preferred due to

the low storage required.

The application of continuation methods in large-scale systems, to study the de-

pendence of equilibria with parameters, started very probably in the field of struc-

tural mechanics with the name of the method of incremental loads [84]. A one-

parameter dependent increasing load was the continuation parameter to reach the

final deformation state starting from the unloaded trivial case. The non-linearity

comes in this case not necessarily from the constitutive laws, but from the geometry

of the structure when the displacements cannot be considered to be very small. Ex-

amples of non-trivial curves of solutions with folds can be obtained in the case of

shallow domes [121].
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In the case of Fluid Mechanics, an early example of the application of continu-

ation methods can be found in Ref. [73] after, but close in time to, the pioneering

work by H.B. Keller on the pseudo-arclength method [53]. They studied the Taylor

vortices in the Couette-Taylor system, a classical problem consisting in the study of

the flow between two coaxial rotating cylinders. There are contributions by several

authors to this problem using continuation methods [22, 2], using an initial version

of AUTO [23] in the first case. A.K. Cliffe [14, 15] not only computed the depen-

dence of Taylor vortices on the Reynolds number of the inner cylinder, but also

tracked saddle-node and pitchfork bifurcations curves, and detected the presence of

cusp points. He used the finite elements (FEM) library ENTWIFE, he contributed

to develop. This is, as far as we know, the first direct computation of bifurcation loci

in a Fluid Mechanics problem.

In all the above mentioned cases the calculations were possible thanks to the

sparse structure of the matrices of the linear systems, which allowed using adapted

direct solvers. New linear solvers as GMRES and BiCGStab, based on Krylov

subspaces [90, 106], allowed the study of larger systems, and using also spectral

or pseudo-spectral methods. Inexact Newton-Krylov matrix-free methods [20, 80]

have been used to find steady states and traveling waves, and subspace iteration or

Arnoldi’s methods to study their stability [71, 4, 9, 74, 111, 69, 10, 82, 116, 31, 93].

In the latter case the Krylov subspaces generated during the GMRES iterations can

be recycled to obtain information on the stability [37]. Preconditioning is usually

needed to overcome the difficulty in achieving fast convergence of these iterative

methods when computing equilibria [88, 97].

There are, at least, three freely available software packages for the computation

of equilibria of PDEs which allow tracking them and, in the first case, also loci of

their generic codimension-one bifurcations. LOCA [91] is a general-purpose pack-

age, included in the C++ Trilinos huge library. It is intended for large-scale systems

using all the parallelizing tools provided within the Trilinos solvers. Oomph-lib [48]

is also a C++ object-oriented, open-source finite-element library for the simulation

of multiphysical problems. The Matlab code pde2path [112] is mainly for one and

two-dimensional problems since it is based on the FEM toolbox pdetoolbox.

More time was needed to see the first attempts to compute other types of in-

variant objects in an efficient and systematic way. In the case of periodic orbits,

the monodromy matrix is no longer sparse, no matter the method used to discretize

the system of PDEs. Therefore matrix-free methods are mandatory in the case of

large-scale systems. Newton-Picard algorithms were implemented to compute them

giving rise to the package PDECONT [70], used also in Ref. [108] for the flow in

a lid-driven cavity. The algorithm was based on a previous idea consisting in re-

moving the growth along the unstable directions of an equilibrium during a time

integration [105]. Broyden’s method was used in Ref. [79] in the study of chemical

reactors, and Newton-Krylov techniques were first introduced in Refs. [99, 100].

This latter method has become the standard used by several authors in different ap-

plications due to its simplicity and efficiency [114, 28, 42, 82, 117, 118, 45, 36, 77].

An extension of pde2path for the continuation of cycles, by using collocation in time

as in AUTO, has been very recently developed. The same technique was also used,
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by coupling the generic continuation package Coco [18] to the FEM library COM-

SOL [17], to study cycles of periodically forced nonlinear models of a beam [32].

An improved algorithm for the continuation of periodic orbits, using multiple

shooting and parallelism, was presented in Ref. [95], and applied in Ref. [117] to

study acoustic resonances in a thermoacoustic system. The equations of the multiple

shooting were solved by Newton-Krylov methods, but it was seen that a direct ap-

plication, with each partial shoot computed in a different processor, did not provide

any substantial speedup. To achieve a linear speedup some kind of preconditioning

for the linear systems had to be used. It was shown how this could be done from the

information on the stability of nearby periodic orbits. This information is usually

available from the continuation and bifurcation analysis, since the stability is com-

puted frequently. Therefore the preconditioner can be obtained at a low extra cost.

This idea of using the information on the stability to accelerate the convergence was

the key ingredient of the variants of the Picard iteration described in Ref. [105], for

equilibria, and in Ref. [70] for the computation of periodic orbits.

More sophisticated computations of invariant objects came later. Newton-Krylov

methods for computing invariant tori for large-scale applications were first consid-

ered in Ref. [101]. An improved parallel algorithm appeared in Ref. [96]. The idea

was to compute a single point on the surface of the two-dimensional torus, or a set

of points approximating an arc of the invariant curve on a Poincaré section. The

computation of segments of two-dimensional unstable manifolds of periodic orbits

was developed in Ref. [113]. The idea was solving a boundary-value problem, in-

troduced in Ref. [57] following the ideas presented in Ref. [58], to compute stable

or unstable manifolds of vector fields.

The computation of loci of bifurcations of equilibria in Fluid Mechanics [15] has

already been mentioned. The theory on the extended systems used to follow bifur-

cations of steady states of low-dimensional systems is well developed and can be

found, among others, in Refs. [103, 75, 46, 119, 86, 16, 44]. The bordered systems

for periodic orbits, based on boundary value problems, are analyzed in Ref. [25].

In this latter case piecewise collocation in time is used instead of shooting methods

together with adapted direct linear solvers. The continuation of codimension-one

bifurcations of periodic orbits for high-dimensional systems using Newton-Krylov

techniques has been developed only recently [76]. It requires integrating up to sec-

ond order variational equations, but it was shown that for Navier-Stokes equations

they do not differ much from the original because only quadratic non-linear terms

are present. The thermal convection of a mixture of two fluids in a two-dimensional

rectangular box was used as test problem. A non-trivial diagram of periodic orbits

was first deployed, by varying only a parameter (the Rayleigh number), and some of

the bifurcations found on the main branch of cycles were followed by adding a sec-

ond parameter (the Prandtl number). Several codimension-two points were found.

It was also shown how the boundaries of resonance regions (Arnold’s tongues) can

also be continued.

The bibliography on generic continuation methods is very extensive. Their de-

velopment can be followed in Refs. [19, 59, 83, 54, 1, 104, 60, 44, 24, 18]. Some

relevant references, in the case of recent applications to large-scale problems, are
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[50, 16, 26, 51, 21, 97]. They are always implemented as predictor-corrector meth-

ods. A first approximation is first obtained by extrapolation from previous points

along the curve of solutions, which is corrected by any variant of Newton’s method.

As far as know, the only attempt to improve this methodology is described in Ref. [3]

were the PAMPAC algorithm is described. It is a parallel method for adapting

the step length employing several predictor-corrector sequences of different step

lengths, computed concurrently. The algorithm permits intermediate results of cor-

rection sequences that have not yet converged to seed new predictions, generating a

tree of corrections which branches are spawned or pruned according to the speed of

convergence of Newton’s method, using a sophisticated algorithm.

In the remaining of the paper, after the introduction, the equations are derived

in Sect. 2, and their numerical treatment by Newton-Krylov methods is discussed

in Sect. 3, which also includes the checking of the codes. Sect. 4 contains a brief

comparison of the steady solutions and time periodic orbits bifurcated and their

stability, of a pure fluid and a gaseous binary mixture of the same Pr = 0.683. In

Sect. 5 a detailed study of the behavior of the steady and periodic flows bifurcated

from the first, for four different binary mixtures of Pr < 1 is undertaken. It includes

an analysis of the energetic balances leading to the oscillations. The paper finishes

in Sect.6 with the conclusions obtained from the results.

2 Mathematical formulation

The dynamics of binary mixtures filling a slot, Ω , of width d, height h, and aspect

ratio Γ = h/d = 8 is studied. The boundaries are taken non-slip, the vertical sides

are maintained at uniform temperatures, and the top and bottom are enforced to be

insulating. No mass flux through the boundaries is considered. The fluid is subject to

a vertical gravity, g=−gj, j being the unit vector pointing upwards. The Boussinesq

approximation of the mass, momentum and energy equations is extended to that of

the concentration for the denser component of the mixture. Accordingly, the density

in the buoyancy force is taken as

ρ = ρ
(

1−α(T −T )+β (C−C)
)

, (1)

α and β being the thermal and the solutal expansion coefficients, respectively, mea-

sured at the temperature of reference T and concentration C to which the density is

ρ . They are defined as

α =−
1

ρ

(

∂ρ

∂T

)

T=T

and β =
1

ρ

(

∂ρ

∂C

)

C=C

. (2)

The equations are nondimensionalized by taking d, the difference of tempera-

ture between the left and the right sides of Ω , ∆T , and d2/κ , κ being the thermal

diffusivity, as units of longitude, temperature and time, respectively. In addition,

the concentration will be rescaled with −KT ∆T/T , in order to help decoupling the
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boundary condition of the concentration. In the preceding expression KT is the ther-

mal diffusion ratio.

Liquid mixtures of 3He-4He that, according to Ref. [107], have Pr = 0.707 and

Le = 0.076, of Fe-Si at high temperature and pressure that, based on data extracted

from Ref. [81], have Pr = 0.046 and Le < 0.01, and a mixture of Pr = 0.1 and

Le < 0.05, taken ad hoc to cover a more complete range of parameters, will be

studied. In addition, a gaseous mixture of Ar-CO2 of Pr= 0.683 and Le= 1.085 will

be also analyzed. It is known that in gaseous mixtures the Dufour effect could be

relevant [47]. However, for the values of the parameters of the gas mixture selected,

Liu and Ahlers showed in Ref [67] that, even with a Dufour coefficient as large as

37.83, the Dufour effect is very small, because, in fact, it depends on products of the

parameters. Then the Dufour term will be excluded from the formulation, and only

the Soret term will be taken into account.

In non-dimensional units Ω = [0,1]× [0,Γ ]. Let x and y be the horizontal and

vertical coordinates, respectively. The system is written by splitting the nondimen-

sional temperature and concentration into a linear x-dependent function and their

perturbation Θ or Σ as

T (x,y, t) = (1− x)+Θ(x,y, t) and (3)

C(x,y, t) =−(1− x)−Σ(x,y, t), (4)

in order of having homogeneous boundary conditions on the vertical walls. Then

the system that describes the problem is

∇∇∇ ·v = 0, (5)

(∂t + v ·∇∇∇)v =−∇∇∇Π +Pr∆v−RaPr[(1+Se)(x−Θ)−Seη] j, (6)

(∂t + v ·∇∇∇)Θ = ∆Θ + vx, (7)

(∂t + v ·∇∇∇)η = Le∆η −∆Θ , (8)

where η = Σ −Θ , v = (vx,vy) is the velocity field, and Π contains terms coming

from the dependence of ρ on T and C, and on the splitting of these magnitudes. The

problem depends on four physical parameters, the Rayleigh, Ra, Prandtl, Pr, and

Lewis, Le, numbers, and the separation ratio, Se. They are defined as

Ra =
αg∆Td3

νκ
, Pr =

ν

κ
, Se =

β KT

αT
, Le =

D

κ
, (9)

ν being the kinematic viscosity, and D the solutal diffusion coefficient. The Rayleigh

number will be used as control parameter in the continuation of the branches of

solutions.

The boundary conditions considered can be written as



Stationary flows and periodic dynamics of binary mixtures in tall laterally heated slots 9

v = 000 on ∂Ω , (10)

Θ = 0 on x = 0,1 and ∂yΘ = 0 on y = 0,Γ , (11)

∂nη = 0 on ∂Ω , (12)

where ∂Ω means the contour of the domain, and ∂n the normal derivative to any

side.

Equations (5)-(12) are rewritten in terms of a stream function, ψ , related with the

velocity field by v = (∂yψ ,−∂xψ). They become

∂t∆ψ − J(ψ ,∆ψ) =Pr∆ 2ψ +RaPr[(1+Se)(1− ∂xΘ)−Se∂xη)], (13)

∂tΘ − J(ψ ,Θ) =∆Θ + ∂yψ , (14)

∂tη − J(ψ ,η) =Le∆η −∆Θ , (15)

with J( f ,g) = ∂x f ∂yg− ∂y f ∂xg, and the boundary conditions for ψ translate into

ψ = ∂nψ = 0 on ∂Ω . (16)

In this way the incompressibility condition is identically fulfilled, and the number

of unknowns is reduced.

Equations (13)-(15) together with boundary conditions (16), (11) and (12) are

Z2-equivariant, i.e. they remain invariant under the change

(t,x,y,ψ ,Θ ,η)→ (t,1− x,Γ − y,ψ ,−Θ ,−η). (17)

3 Numerical methods

To obtain the numerical solutions, the functions ψ , Θ and η were approximated by

a pseudo-spectral collocation method on a mesh of nx×ny Gauss-Lobatto points. To

discretize the system, the spatial operators are transformed into matrices operating

on the values of the functions at the collocation mesh points. Their actions are calcu-

lated by means of matrix-matrix products using a high-performance implementation

of the DGEMM subroutine of the BLAS library (see [43]). The stiff system of ordi-

nary differential equations (ODEs), obtained after the spatial discretization, is inte-

grated by means of fifth order semi-implicit backward-differentiation-extrapolation

formulas as described, for instance, in Ref. [35].

The branches of stationary and periodic solutions were calculated by using con-

tinuation methods for large-scale dissipative systems, based on the Newton-Krylov

techniques proposed, among others, in Refs. [11, 29, 99, 100, 76]. These techniques

are summarized in the following paragraphs and subsections.

Consider a general large-scale system of nonlinear equations, depending on a

parameter p,

H(z, p) = 0, (z, p) ∈ V ⊂ R
m ×R, (18)
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z

σz00

(σ z, )=0p

,σp)

Fig. 1 Scheme of the pseudo-arclength condition taken during the continuation process.

obtained by discretizing a system of PDEs. Several methods are available to track

the dependence of its solutions with the parameter p. The pseudo-arclength continu-

ation method is described here. Assume that a curve of solutions and corresponding

parameters is written as a function (z(s), p(s)) of the arclength s. Then, given an

initial solution (z(0), p(0)), advancing along the curve can be accomplished by the

combination of two stages, a predictor step in which an initial guess to a new point

on the curve is computed by extrapolation from the previous solutions (see Fig. 1),

and a corrector step in which the prediction is refined. In order to determine simul-

taneously a unique pair (z, p), the equation

σ(z, p) = 〈σz,z− z0〉+σp(p− p0) = 0 (19)

is added to the system (18), (z0, p0) and (σz,σp) being the predictions of the

new point and the tangent to the curve of solutions, respectively. The hyperplane

σ(z, p) = 0 will cut it transversely if the prediction is not far away from the previ-

ous point. This algorithm allows passing turning points if they are present. Therefore

the system that determines a unique solution, (z, p), is

H(z, p) = 0,

σ(z, p) = 0.

These nonlinear systems are usually solved by Newton’s method. Starting from

the initial prediction (z0, p0) a sequence of approximations

(zi+1, pi+1) = (zi, pi)+ (∆zi,∆ pi),

are computed, where (∆zi,∆ pi) satisfies the linear system

(

DzH(zi, pi) DpH(zi, pi)
σ⊤

z σp

)(

∆zi

∆ p

)

=

(

−H(zi, pi)
−σ(zi, pi)

)

. (20)

The way this linear system is solved depends on the size and spatial discretiza-

tion of the initial PDE. For low-dimensional systems direct solvers based on the

LU decomposition are used. In high-dimensional cases obtained after finite dif-

ferences, elements or volumes it is still possible to use sparse direct solvers (see
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for instance [38]). When the size is very large or in the case of non-sparse matri-

ces, iterative methods are mandatory. The combination of Newton’s method with

iterative solvers is known as inexact Newton’s methods. If the linear solvers are

based on Krylov subspaces (GMRES(m), BiCGStab, FOM, TFQMR, etc., see for

instance [89]) they are also called Newton-Krylov methods. The term matrix-free

methods is also used when the linear solvers only require the user to provide prod-

ucts by the matrix of the system, without any explicit manipulation of its elements.

GMRES(m) was used in this work. These methods do not need to be convergent for

an arbitrary system, and they hardly do when looking for equilibria of discretizations

of systems of parabolic PDEs. It is necessary then to use preconditioners to im-

prove the convergence. In the case of discretizations by finite differences, volumes

or elements, the use of incomplete LU decompositions usually provides efficient

preconditioners, because of the sparsity of the matrices involved (see [88, 74, 94]

for instance). For spectral discretizations of incompressible fluid problems, the use

of the Stokes operator as preconditioner was suggested in Ref. [110] and has been

used by several authors. When a pseudo-spectral method is employed, using pre-

conditioners based on discretizations by finite differences or finite elements, on the

same mesh, is a possibility (see [12]). Some iterative linear solvers require the ac-

tion by the transpose of the operator. In most applications implemented using spec-

tral methods neither the matrix of the operator nor the action by its transpose is

available, although the adjoint operator has been explicitly discretized, for instance,

to study energy transient growth rates [8], or to compute the coefficients of normal

forms [102].

In the context of periodic orbits, other iterations based on Newton-Picard [70]

and Broyden [78] algorithms have also been proposed in the past.

To study the stability of equilibria or periodic orbits it is necessary to compute the

eigenvalues of maximum real part of the Jacobian at the equilibria, or the multipliers

of maximum modulus of the periodic orbits. Methods based on variants of the power

method are always used for high-dimensional systems. They provide the eigenval-

ues of maximum modulus of a given linear operator, for which only its action is

required. There are mainly two options, subspace or Arnoldi’s methods [87, 72].

The implementation in the ARPACK package [65, 66] of the latter was used here.

In the case of periodic orbits the relevant multipliers of maximum modulus are ex-

actly those obtained by these methods. For equlibria it is necessary to apply matrix

transformations. For instance, to extract the eigenvalues of largest real part of a ma-

trix A, those of maximum modulus of (A−sI)−1 can be found, s being a shift, which

can be real or complex. If µ is an eigenvalue of large modulus of (A− sI)−1 then

λ = 1/(µ − s) is an eigenvalues of A close to s. If λ is supposed to have a small

imaginary part, then s can be real and close to zero. If the imaginary part can be

large s must be complex, and it might be necessary to use several values of s to

avoid missing eigenvalues. Other transformations are possible which do not require

solving complex systems of linear equations (see [72] for a description of Cayley’s

transformation and additional information). Since we had to integrate the variational

equations for the computation of periodic orbits, an exponential transformation was

used to study the stability of the equilibria (see below).
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3.1 Periodic orbits

Let

ẏ = f (y, p), (y, p) ∈ U ⊂ R
n ×R, (21)

be a large-scale set of ODEs, which depends on a single parameter p. For the current

problem y = (ψi j,Θi j,ηi j) is the vector containing the values of the stream function

ψ , the perturbation of the temperatureΘ and the function η at the collocation points,

the parameter p is Ra, and (21) is the system (13)-(16), (11), (12) after discretization.

Let ϕ(t,x, p) be the solution of (21) with initial condition x at t = 0 for a fixed p. It

satisfies

Dtϕ(t,x, p) = f (ϕ(t,x, p), p), and ϕ(0,x, p) = x ∀p.

A point on a periodic orbit of the system is a solution of the system given by

h(τ,x, p)≡ x−ϕ(τ,x, p) = 0, (22)

g(x, p) = 0, (23)

σ(τ,x, p) = 0, (24)

where g(x, p) = 0 is a phase condition to select a unique point on the orbit. A

Poincaré condition was used here, i.e., the equation of a hyperplane, g(x, p) =
〈vπ ,x − x∗〉 = 0, normal to a previously computed cycle. In the formula vπ =
f (x∗, p∗), (x∗, p∗) being the last computed solution of the system during the contin-

uation process. It could also be a physical condition able to select, locally, a unique

point on each orbit. Equations (22) and (23) define a system H(z, p) = 0 as that of

Eq. (18), with m = n+ 1 and z = (τ,x), to which continuation methods are applied.

Curves (τ(s),x(s), p(s)) are then obtained containing points on periodic orbits, their

periods, and their corresponding parameter.

The pseudo-arclength condition now reads as

σ(τ,x, p) = στ (τ − τ0)+ 〈σx,x− x0〉+σp(p− p0) = 0, (25)

which includes the period, and where, as before, (τ0,x0, p0) is the extrapolated pre-

diction during the continuation process, and (στ ,σx,σp) is an approximation of the

tangent to the curve of solutions. This equation is usually computed inside any

generic continuation code, so an user must only supply the evaluation of the left

hand side of the two first equations of system (22)-(24). The latter can also be man-

aged by the continuation code if it is the Poincaré condition.

Newton’s iteration becomes now

(τi+1,xi+1, pi+1) = (τi,xi, pi)+ (∆τi,∆xi,∆ pi),

where (∆τi,∆xi,∆ pi) is obtained by solving the linear system
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



Dτ h(τi,xi, pi) Dxh(τi,xi, pi) Dph(τi,xi, pi)
0 Dxg(xi, pi) Dpg(xi, pi)

στ σ⊤
x σp









∆τi

∆xi

∆ pi



=





−h(τi,xi, pi)
−g(xi, pi)

−σ(τi,xi, pi)



 . (26)

It must be stressed that even if the case of spatial discretizations by methods

giving rise to a sparse Jacobian Dy f (y, p), the matrix in Eq. (26) is not sparse and

therefore it is not possible to apply tailored LU decompositions to solve the system

(see [99] for an explanation). Each iteration of a matrix-free linear solver requires

only the action of the Jacobian on vectors. One could try to approximate them by

finite differences, but to enhance the convergence it is much better to compute the

products of the form

δx−Dtϕ(τ,x, p)δτ −Dxϕ(τ,x, p)δx−Dpϕ(τ,x, p)δ p, (27)

Dxg(x, p)δx+Dpg(x, p)δ p, (28)

for an arbitrary (δτ,δx,δ p), by using the same spatial and temporal discretization

as for the original system. Finite differences can be used just to check the right

calculation of the action by the Jacobian in complicated two- and three-dimensional

problems.

The evaluation of the product (28) is straightforward, and the second term

of (27) is Dtϕ(τ,x, p)δτ = f (y(τ), p)δτ , with y(τ) = ϕ(τ,x, p). The matrix product

Dxϕ(τ,x, p)δx+Dpϕ(τ,x, p)δ p can be computed by integrating a first variational

equation.

Let us suppose that x and p are fixed, and let us name y(t) = ϕ(t,x, p) and y1(t) =
Dxϕ(t,x, p)δx+Dpϕ(t,x, p)δ p, then y1 satisfies

ẏ1 = Dy f (y, p)y1 +Dp f (y, p)δ p and y1(0) = δx,

because ϕ(0,x, p) = x. Consequently, by integrating a time τ the system

ẏ = f (y, p)

ẏ1 = Dy f (y, p)y1 +Dp f (y, p)δ p

with initial conditions y(0)= x, y1(0)= δx, the sum Dxϕ(τ,x, p)δx+Dpϕ(τ,x, p)δ p=
y1(τ) is obtained.

Taking into account that Ra will be used as continuation parameter, the action

of (Dτ h(τ,x, p), Dxh(τ,x, p) Dph(τ,x, p)) on (δτ,δx,δ p) is obtained from the first

variational equations of system (13-15), which for (ψ1,Θ1,η1) and δRa are

∂t∆ψ1 − J(ψ ,∆ψ1)− J(ψ1,∆ψ) =Pr∆ 2ψ1 −RaPr[(1+Se)(∂xΘ1)+Se∂xη1)]+

+ δRaPr[(1+Se)(1− ∂xΘ)−Se∂xη)], (29)

∂tΘ1 − J(ψ ,Θ1)− J(ψ1,Θ) =∆Θ1 + ∂yψ1, (30)

∂tη1 − J(ψ ,η1)− J(ψ1,η) =Le∆η1 −∆Θ1, (31)

with boundary conditions
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ψ1 = ∂nψ1 = 0 on ∂Ω . (32)

Θ1 = 0 on x = 0,1 and ∂yΘ1 = 0 on y = 0,Γ , (33)

∂nη1 = 0 on ∂Ω . (34)

3.2 Fixed Points

Equilibria can be computed by the continuation methods described at the beginning

of this section, applied to the equation f (x, p) = 0. As stated before, this requires

good preconditioners to accelerate the convergence of the linear solvers. They can

also be obtained with the above procedure for periodic orbits. This was done, for

simplicity, in the computations of the present work. If x is an equilibrium then it

also solves the equation x − ϕ(τ,x, p) = 0 for any τ , which can be chosen as a

characteristic known time (of the order of the period of the periodic orbits for the

convection problem, for instance). Therefore it is no longer an unknown of the prob-

lem, the phase condition (23) is not needed, and the τ derivatives do not appear in

the action by the Jacobian (27). The advantages, compared with the continuation

methods for equilibria described for instance in Refs. [88, 29, 71], are that the same

code can be used for solving cycles and steady states, and that the requirement of

preconditioners is avoided. The main disadvantage is that the method is, in general,

more expensive.

3.3 Stability of the periodic orbits

The leading Floquet multipliers of a periodic orbit of Eq. (21), of which a point x

and its period T are known for a parameter p, were computed as the leading eigen-

values (largest modulus) of the linear map u → Dxϕ(T,x, p)u, by using the package

ARPACK, which, as stated before, only requires the action of the operator on vectors

to provide the eigenvalues of maximum modulus. The matrix product was computed

by integrating a first variational equation. If

y(t) = ϕ(t,x, p) (35)

y1(t) = Dxϕ(t,x, p)u, (36)

then y1 satisfies ẏ1 =Dy f (y, p)y1, with initial condition y1(0)= u, because ϕ(0,x, p)=
x. By integrating the system

ẏ = f (y, p) (37)

ẏ1 = Dy f (y, p)y1 (38)

a time T, with initial conditions y(0)= x, and y1(0) = u, the product Dxϕ(T,x, p)u=
y1(T ) is ready to be supplied to ARPACK. The number of multipliers used to study
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the stability might depend on the branch of periodic orbits studied. The larger the

number of unstable multipliers, the larger the number required to have at least an

stable one. In the present study it was between 16 and 26. In some cases 22 of them

were unstable.

3.4 Stability of the fixed points

The leading eigenvalues λ (largest real part) of Dy f (x, p) for a fixed point x and

parameter p, of the system (21) were computed as the logarithms of the leading

eigenvalues µ = exp(τλ ) (largest modulus) of the map u → exp(τDy f (x, p))u, by

means of the ARPACK package, as before. This is an exponential transform, which

maps the eigenvalues λ of Dy f (x, p) of largest real part to those of largest modulus

of exp(τDy f (x, p)).
In this case, since y(t)≡ x, and then the matrix Dy f (x, p) is constant, the solution

of the system ẏ1 = Dy f (x, p)y1, with initial condition y1(0) = u is

y1(t) = exp(tDy f (x, p))u. (39)

The matrix product exp(τDy f (x, p))u = y1(τ) can therefore be computed by inte-

grating only the first variational equation for a time τ . The integration time τ has to

be selected large enough to clearly separate the transformed µ to have a fast conver-

gence of the Arnoldi’s methods, but as short as possible to reduce the computational

cost of the integration. The same holds when the equilibria are computed as roots of

x−ϕ(τ,x, p) = 0.

3.5 Numerical tests

To check the reliability of the results and the resolution needed for the calculations,

the gaseous mixture of Pr = 0.683, Le = 1.085, Se = −0.08 was mainly used. The

stability of the basic branch of steady solutions, and of the first branch of periodic

orbits bifurcated from it was computed with three meshes. Table 1 shows either

three eigenvalues, λi, or three multipliers, µi, with i = 1,3,5, when both types of

solutions are already unstable. It can be seen that a mesh of nx × ny = 40× 140 is

sufficient in the interval of Ra considered to have errors less than 0.5% in the values

of the eigenvalues and multipliers, and that the order of the bifurcations is preserved.

Some additional calculations were done for the very low parameters Pr = 0.046,

Le = 0.01, Se =−0.01 with the two finest meshes. It was, checked that the order of

the modes that become successively unstable is the same when the number of points

is increased, and that at Ra = 1.975168× 103, which corresponds to the critical

Rayleigh number, Rac, where the basic branch of steady solutions loses stability,

the relative error of the critical frequency, ωc, is less than 0.08%. Moreover, the



16 Juan Sánchez Umbrı́a and Marta Net

Table 1 Comparison of the real and imaginary parts of the first, third and five couples of leading

eigenvalues λ i, i = 1,3,5 or multipliers µ i, i = 1,3,5, for a steady solution (SS) or a periodic orbit

(PO) of the first branch, respectively. The parameters are Ra = 5× 105, Pr = 0.683, Le = 1.085,

Se =−0.08.

nx ×ny Type ℜ(λ 1) ℑ(λ 1) ℜ(λ 3) ℑ(λ 3) ℜ(λ 5) ℑ(λ 5)
32×128 SS 27.40457 ±982.4450 20.53312 ±908.5767 7.575618 ±1208.3935

40×140 SS 27.40626 ±982.4565 20.53183 ±908.5863 7.603457 ±1208.4059

48×152 SS 27.40630 ±982.4566 20.53173 ±908.5864 7.604181 ±1208.4052

ℜ(µ1) ℑ(µ1) ℜ(µ3) ℑ(µ3) ℜ(µ5) ℑ(µ5)
32×128 PO −0.1340321 ±1.082737 0.3377894 ±1.016788 −0.8906506 ±0.5174372

40×140 PO −0.1337884 ±1.082762 0.3379647 ±1.016684 −0.8905498 ±0.5176271

48×152 PO −0.1331952 ±1.082919 0.3385430 ±1.016476 −0.8903549 ±0.5180980

relative errors of the real and imaginary parts of the third pair of eigenvalues of the

spectrum are 0.8% and 0.07%, respectively. Consequently, a grid of (40,140) points

was used for any value of Pr.

4 Gaseous mixtures. Comparison with pure gases

4.1 Steady flows and their stability

In contrast to the studies with buoyancy number N = −1, as soon as the fluid is

heated from the side a non-trivial steady velocity field appears in the domain. The

dynamics and stability of this basic steady flow of a pure fluid of Pr = 0.683 (PF),

and the binary mixture (BM) of the parameters of the preceding section, are com-

pared here. As for the pure gaseous fluids (see [77]), the convection in the mixture

starts as a single stationary vortex filling the domain, and giving rise to a temperature

gradient with comparable horizontal and vertical components close to the center of

the slot. The fluid goes up near the hot side and down at the cold, developing vertical

boundary layers. This basic flow, like that of the PF, is center-symmetric, i.e.,

(ψ ,Θ ,η)(t,1− x,Γ − y) = (ψ ,−Θ ,−η)(t,x,y), (40)

which implies

(vx,vy)(t,1− x,Γ − y) =−(vx,vy)(t,x,y). (41)

In general, an eigenfunction or a solution fulfilling these relations will be named

symmetric. Otherwise, if

(ψ ,Θ ,η)(t,1− x,Γ − y) = (−ψ ,Θ ,η)(t,x,y), (42)

(43)
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Fig. 2 Comparison of a) the averaged heat flux, and b) the kinetic energy versus the Rayleigh

number of the basic steady branches of solutions and their stability for a pure fluid (PF) of Pr =
0.683 (black online), and a gaseous binary mixture (BM) of the same Pr and Le = 1.085 and

Se =−0.08 (red online). Solid lines mean stable solutions, and dashed lines unstable.

which implies

(vx,vy)(t,1− x,Γ − y) = (vx,vy)(t,x,y), (44)

(45)

it will be called antisymmetric. The symmetries of the eigenfunctions at the bifur-

cation points of the steady solutions determine the dynamics of the periodic flows.

Figure 2 shows the averaged heat flux through the vertical side calculated at x = 1

and the kinetic energy for both fluids. They are defined as

∂xT =
1

Γ

∫ Γ

0
∂xT dy, and K =

1

2Ω

∫

Ω
v ·vdΩ . (46)

Online, red lines refer to the mixture, and, from now on, solid lines will indicate

stable solutions, and dashed unstable.

For Pr = 0.683, the steady flows lose stability through Hopf bifurcations. The

double-diffusive flow becomes unstable at lower Ra, and at the onset of the oscilla-

tory convection the period increases around 4%. The pure fluid does it at the critical

Rayleigh number Rac = 3.279674× 105 with critical period Tc = 7.6920× 10−3

while the mixture does it at Rac = 3.107694×105 with period Tc = 7.9511×10−3.

Six Hopf bifurcations giving rise to stable segments on five branches of POs

were found, up to Rac = 5× 105, on the branch of SSs of the PF. This result is in

agreement with that found in Ref. [77] for Pr= 0.71. The bifurcation points, Rai
c, i=

1,6, together with the frequencies at the beginning of the oscillations, ω i
c, are given

in Table 2. The critical points were calculated by inverse polynomial interpolation

of degrees ranging from three to ten. Concerning to the mixture, the results are

shown in Table 3. From the comparison, one can state that the third and fourth

bifurcations maintain the tendency of the first one, i.e., the mixture has lower Rai
c

and ω i
c. However, the sixth of the PF has an anomalous low frequency, like that of
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Table 2 Critical Rayleigh number, Rai
c, i = 1,6, and frequency, ω i

c, of the first six bifurcations

found on the branch of steady solutions of a pure fluid of Pr = 0.683 up to 5×105.

Ra1
c ω1

c Ra2
c ω2

c Ra3
c ω3

c

327 967.45 816.84 329 034.81 879.78 352 428.41 972.62

Ra4
c ω4

c Ra5
c ω5

c Ra6
c ω6

c

388 712.51 1085.11 433 986.87 1212.66 486 017.92 1056.29

the second and the fifth of the BM. This characteristic will be analyzed in Sect. 4.2.

On the other hand, the second, fourth and sixth eigenfunctions of the PF, and the

Table 3 Critical Rayleigh number, Rai
c, i = 1,6, and frequency, ω i

c, of the first six bifurcations

found on the branch of steady solutions of the mixture up to 5×105 . The parameters are Pr= 0.683,

Le = 1.085, Se =−0.08.

Ra1
c ω1

c Ra2
c ω2

c Ra3
c ω3

c

310 769.39 790.23 311 887.12 730.34 331 453.40 877.09

Ra4
c ω4

c Ra5
c ω5

c Ra6
c ω6

c

370 140.18 989.10 373 860.45 726.84 430 463.10 1131.35

second, third and sixth of the BM are symmetric, and the bifurcations give rise

to the appearance of POs that also maintain the symmetry at any time (F-cycles).

In contrast, the first, third and fifth eigenfunctions of the PF, and the first, fourth

and fifth of the BM break it, although the eigenfunctions and, consequently, the

bifurcated branches of POs retain the following spatio-temporal symmetry

(ψ ,Θ ,η)(t,1− x,Γ − y) = (ψ ,−Θ ,−η)(t +T/2,x,y), (47)

which means

(vx,vy)(t,1− x,Γ − y) =−(vx,vy)(t +T/2,x,y). (48)

Therefore, the POs arising at these bifurcation points are symmetric cycles (S-

cycles). Advancing half a period in time is equivalent to applying the transforma-

tion (40). This property allows to halve the computational cost of the time integra-

tion during the continuation process, and to almost halve the time needed to obtain

these branches.

A comparison of the steady velocity field and the contour plots of the temperature

of both fluids reveals that the double diffusion together with the Soret effect does

not change the main behavior of the gaseous mixtures of negative separation ratio

of order 10−2. It becomes determined mainly by Pr.
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4.2 Periodic orbits and their stability

The branches of POs and their spectra for the PF and the BM have been calculated

from the bifurcation points up to Ra = 5× 105, or up to the points where the mul-

tipliers detach definitively from the unit circle (this will be the procedure along the

present study). In this case, the bifurcations found are of Neimark-Sacker type. Ei-

ther in the PF or in the BM, only the first branch of periodic solutions is stable from

the bifurcation point where they arise. Each of the following has, initially, a pair of

complex-conjugate multipliers outside the unit circle more than the preceding. This

means, for instance, that the fifth has, at its origin, four pairs of unstable multipliers.

However, from the second to the fifth branch for the PF and to the fourth for the

BM, they are very close to the unit circle, and when Ra is increased they move back

into it, stabilizing the cycles.

Table 4 contains the stability interval of each of the POs found. In the Table

Ras
c means the critical Rayleigh number where the orbits stabilize, and Rad

c where

they destabilize. The corresponding periods are Ts and Td , respectively. The third

branch of POs of the pure fluid stabilizes at Rac = 3.6076× 105 with period T =
6.3790× 10−3, and loses stability at Rac = 4.341× 105 with period T = 5.683×
10−3 when the first pair of leading multipliers getting into the unit circle gets out.

The modulus of the same multipliers decrease again stabilizing the branch of POs at

Rac = 4.504×105 with period T = 5.560×10−3. Finally, the POs become unstable

at Rac = 5.1549× 105 with period T = 5.2090× 10−3. Something similar happens

with the second branch of the BM. It gains stability at Rac = 3.2221× 105 with

period T= 8.469×10−3, and loses it at Rac = 3.2941×105 with period T= 8.380×
10−3. The short stability interval is due to the only pair of multipliers that initially

has modulus larger than one. It gets into the unit circle, and quickly moves out.

The branch regains stability at Rac = 4.0477× 105 with period T = 7.6245× 10−3

when the same multipliers become stable. Finally another different pair cross the

unit circle at Rac = 4.1703× 105 with period T = 7.5275× 10−3 and destabilizes

the orbit. A plausible explanation of the origin of the short interval of stability of the

second branch of POs of the BM will be given later. The sixth branch of the pure

fluid, and the fifth of the mixture never gain stability in the interval considered.

The movies of the time evolution of the POs of the BM show that for Pr = 0.683

the boundary layers are much more stable than for the pure fluid of Pr= 0.71 studied

in Ref. [77] (see below).

5 Binary mixtures

5.1 Steady solutions and their instability

The basic branches of SSs of the four BMs mentioned in Sect. 2 are shown in Fig. 3.

It shows the averaged heat flux through the vertical section x = 1, and the kinetic
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Table 4 Critical Rayleigh number and period bounding the interval of stability of the branches of

periodic orbits bifurcated from the steady state in a pure fluid and a binary mixture, both of Pr =
0.683. The superscripts s and d mean stabilize and destabilize, respectively. The other parameters

of the mixture are Le = 1.085, Se =−0.08.

Branch Type 10−5Ras
c 103Tc

s 10−5Rad
c 103Tc

d

1 PF 3.2797 7.6920 3.3322 7.6311

2 PF 3.2934 7.1383 3.7804 6.6369

3 PF 3.6076 6.3790 4.341 5.683

3 PF 4.504 5.560 5.1549 5.2090

4 PF 4.0708 5.6377 4.4724 5.3024

5 PF 4.6619 4.9567 4.7729 4.8812

1 BM 3.1077 7.9511 4.3588 6.788

2 BM 3.2221 8.469 3.2941 8.380

2 BM 4.0477 7.6245 4.1703 7.5275

3 BM 3.4517 7.0209 4.6043 6.1247

4 BM 4.0776 6.0501 4.7073 5.6319

energy, K, versus Ra. The upper figures correspond to mixtures of Pr ≈ 0.7. The

main difference between them is the Lewis number. The liquid (Pr = 0.707, Le =
0.076, Se =−0.098) destabilizes before than the gas (Pr = 0.683, Le = 1.085, Se =
−0.08), at Rac = 2.780481×105 with frequency ωc = 715.1441, despite its slightly

higher Pr (see figure caption). Although Figs. 3a and 3b correspond to two very

different fluids, there are not important differences in the values of the heat flux,

and only K is slightly higher for gases. The lower Figs. 3c) and 3d) show the same

plots for mixtures of Pr = 0.1, Le = 0.05 and Se = −0.05, and Pr = 0.046, Le =
0.01 and Se = −0.01. In this case, the mean values increase their difference when

Ra is increased. The mixture of Pr = 0.1 loses stability at a Hopf bifurcation at

Rac = 6.158415× 103 with frequency ωc = 18.33334, and that of Pr = 0.046, at

Rac = 1.975168× 103 with frequency ωc = 4.366489.

As said before, the contour plots of the steady flows of the mixtures of Pr O(1)
show the global circulation of the pure fluids, with tongues of cold (dense) fluid,

placed near the heated side, penetrating into the hottest (lightest), located in the left

and upper parts of the slot, and vice versa, at the other side, tongues of hot (light)

fluid extend to the region of coldest (densest) fluid (see Fig. 4a-d). The concentration

near the center remains almost uniform, mainly for the liquid mixture.

For low Pr fluids the global circulation breaks down (see Fig. 4e-h), and a central

and two upper and lower vortices appear in the Γ = 8 slot when the flows are stable.

The hot (cold) fluid is dragged by the vortices to the center of the box in their upper

(lower) part, but keeping a remnant of a x-linear temperature stratification. However

the concentration behave completely different. The three vortices confine the fluid

maintaining the highest concentration at the bottom, and the lowest at the top of

the box. At very low Pr the concentration remains much more uniform, and wider

tongues of light (dense) fluid go down (up), connecting with the neighbor vortex.
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Fig. 3 Averaged heat flux and kinetic energy, K versus the Rayleigh number of steady branches of

solutions and their stability. In a) and b) for Pr = 0.683, Le = 1.085, Se =−0.08 and Pr = 0.707,

Le = 0.076, Se = −0.098, and in c) and d) for Pr = 0.1, Le = 0.05, Se = −0.05 and Pr = 0.046,

Le = 0.01, Se =−0.01.

To evaluate the physical mechanisms contributing to the instability of the SSs,

giving rise to time periodic oscillations, the total work done by the possible sources

of instability, and the viscous dissipation, are calculated from the mechanical en-

ergy equation of the perturbations, as in Ref. [49]. In addition, local values of these

magnitudes are also computed for the four mixtures of Fig. 3 at the first bifurcation

points. The energy equation for the eigenfunction at a Hopf bifurcation can be ob-

tained from the Navier-Stokes equation written in terms of the velocity field v, the

full temperature, T , and concentration C

(∂t + v ·∇∇∇)v =−∇∇∇π +Pr∆v+RaPrT j+RaPrSeCj, (49)

by splitting the velocity field as v = v0 + v′, the modified pressure as π = π0 +π ′,

the temperature as T = T0 + T ′, and the concentration as C = C0 +C′, where

(v0,π0,T0,C0) are the velocity, pressure, temperature and concentration fields of

the SS and (v′,π ′,T ′,C′) their perturbations. By adding the dot product of the lin-

earization of Eq. (49) about v0 times v′∗ to its conjugated, it turns out that the kinetic

energy equation of the perturbation is
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a) b) c) d) e) f) g) h) 

Fig. 4 Velocity field overlapped to the contour plots of a stable steady solution of a) and c) the tem-

perature and b) and d) the concentration for Ra = 2.7×105, Pr = 0.683, Le = 1.085, Se =−0.08

and Ra = 2.6353× 105 , Pr = 0.707, Le = 0.076, Se = −0.098, and of e) and g) the temperature

and f) and h) the concentration for Ra = 3.4009 × 103, Pr = 0.1, Le = 0.05, Se = −0.05, and

Ra = 1.8142×103 , Pr = 0.046, Le = 0.01, Se =−0.01, respectively. Dark (light) grey means low

(high) temperature and concentration, except at the left side where the temperature is the highest

(online, red (blue) means high (low) temperature and concentration).

∂t(v
′ ·v′∗/2) = ℜ( − v′∗ · (v0 ·∇∇∇)v′− v′∗ · (v′ ·∇∇∇)v0 − v′∗ ·∇∇∇π ′+Prv′∗ ·∆v′

+v′∗ ·RaPrT ′j+ v′∗ ·RaPrSeC′j
)

, (50)

which is a real equation. In the case of real eigenvalues v′∗ = v′, and the equation is

also valid.

If the perturbation v′(r, t) = (v′1(r),v
′
2(r))exp((λ + iω)t) corresponds to an

eigenfunction, the left hand side of Eq. (50) gives its growth rate λ . At the bifurca-

tion points (λ = 0), and with non-slip boundary conditions, the spatial average of

this equation is just a balance between the rate of kinetic energy generated by the

shear of the steady field,

Ksh = ℜ

(

−

∫

Ω
v′∗i v′j

∂vi

∂x j

dΩ

)

, (51)

by the work done by the thermal buoyancy per unit time,

KbT = ℜ

(

RaPr

∫

Ω
v′∗i T ′δi2 dΩ

)

, (52)

by that done by the solutal buoyancy,



Stationary flows and periodic dynamics of binary mixtures in tall laterally heated slots 23

KbC = ℜ

(

RaPrSe

∫

Ω
v′∗i C′δi2 dΩ

)

, (53)

and the rate of energy dissipated by viscosity,

Kds = ℜ

(

−2Pr

∫

Ω
e′∗i je

′
i j dΩ

)

, (54)

because the rate of change of the total kinetic energy

K =

(

∫

Ω

1

2
v′∗i v′idΩ

)

, (55)

of the periodic perturbations is zero, and the preassure term of Eq. (50), and the

term comming from the advection of the perturbation by the steady field can be

written in flux-divergence form. Consequently, they represent spatial transport and

globally neither can generate nor dissipate kinetic energy. In Eqs. (51)-(53) vi are the

components of the velocity of the steady field at the bifurcation points, v′i, T ′, and C′

those of the critical eigenfunction, and * means complex conjugation. In Eq. (54),

e′i j means the strain rate tensor of the perturbation. Above but near a critical point,

λ > 0 and the terms will be out of balance. However, if one of them is much larger

than the rest at the onset, and almost in balance with the diffusion term, the relative

weight of the terms of Eq. (50) would not differ very much from that at the transition.

Consequently, this leading term will be the responsible for the instability.

When working with the mechanical energy equation one has to take into account

that the term of Eq. (50) containing the laplacian does not give locally the energy

dissipated by viscosity because it can be split into a transport term and the true

viscous dissipation term. On the other hand, notice that Eq. (50) depends on the

solution of a linearized problem, and then the results are resolution dependent be-

cause the norm of the eigenvectors does. However the normalized values Ksh/Kds,

KbT/Kds and KbC/Kds giving the percentage of the rate of kinetic energy generated

or dissipated are independent of the grid.

Table 5 contains the values given by Eqs. (51-54) for the first six bifurcations

found on the branch of SSs of the mixture of Pr = 0.683. The total work done by the

solutal buoyancy, KbC, contributes to the stabilization of the fluid and that done by

the thermal buoyancy, KbT , to the destabilization, although both in a low percentage

in front of the viscous dissipation, Kds, and of the generation of kinetic energy by

shear, Ksh. The best ratio corresponds to the kinetic energy generated by the thermal

buoyancy at the fifth bifurcation, which corresponds to a 11% of the total. Table 5

also shows that there are two types of balances. The first, third, fourth and sixth have

an increase of Ksh, and a decrease of KbT and of the dissipation due to KbC when

Ra increases. In the second and fifth bifurcations Ksh decreases with Ra, while KbT

and the absolute value of KbC increase. Moreover, the values of Ksh are lower than

for the other bifurcations, and those of KbT and the dissipation due to KbC higher.

By inspecting the local values of these magnitudes for the two types of balances

the qualitative differences are not significant. The surface and contour plots of the
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Table 5 Rate of kinetic energy generated by the shear of the SSs, Ksh, and by the buoyancy forces,

KbT and KbC , and dissipated, Kds, by the perturbations at the bifurcation points. The parameters

are Pr = 0.683, Se =−0.08, Le = 1.085. A means antisymmetric eigenfunction, and S symmetric.

Notice that at the transition the four terms are in balance.

N bif. Symmetry 10−5Rac Ksh KbT KbC Kds

1 A 3.10769 22.35355 1.100092 -0.153183 -23.30045

2 S 3.11887 18.78545 1.333486 -0.182650 -19.93629

3 S 3.31453 26.25428 1.021661 -0.132786 -27.14315

4 A 3.70140 30.93177 1.001029 -0.116418 -31.81638

5 A 3.73860 15.45759 1.863884 -0.268702 -17.05277

6 S 4.30463 36.92729 0.948408 -0.105350 -37.77034
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Fig. 5 Surface and contour plots of the rate of generation of kinetic energy by shear, Ksh, thermal

buoyancy, KbT , solutal buoyancy, KbC , and rate of energy dissipated by viscosity, Kds, at the first

Hopf bifurcation for Ra = 3.10769× 105, Pr = 0.683, Se = −0.08, Le = 1.085. The horizontal

axes are not at the same scale to see the details better.

energy terms at the first and second bifurcations resemble those of Fig. 5, which

correspond to the first. The generation and dissipation of K takes place, mainly,

near the upper left and lower right corners of the slot. However, while the viscous

dissipation happens in the boundary layers, K is generated in an elongated interior

layer separated from the sides of the slot by a dissipation zone. The contribution of

the concentration to stabilize the fluid takes place just where the mechanical energy

by shear and by thermal buoyancy is produced, and vice versa. In this case there

is also a smaller creation of net positive K parallel to the top and bottom sides.

The fluid in the body of the box remains unperturbed. However, it will be seen that

the two different balances have important consequences on the stability of the POs

bifurcated from the SSs.
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Table 6 Idem Table 5 for Pr = 0.707, Se =−0.098, Le = 0.076.

N bif. Symmetry 10−5Rac Ksh KbT KbC Kds

1 S 2.78048 20.63761 1.184208 0.371983 -22.19379

2 A 2.79227 24.11443 1.018217 0.465282 -25.59792

3 S 3.01721 28.13520 1.027475 0.482663 -29.64532

4 A 3.26018 32.75240 0.984464 0.534142 -34.27098

5 A 3.57044 38.38525 0.842410 0.632888 -39.86051

6 A 3.96416 45.24046 0.588907 0.788476 -46.61781
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Fig. 6 Idem Fig. 5 for Ra = 2.78048×105 , Pr = 0.707, Se =−0.098, Le = 0.076.

Table 6 shows the energy balance for the BM of Pr = 0.707. In this case the

three terms contribute to the instability with an increasing weight of the generation

of K by shear and by the solutal buoyancy, and a decreasing of that of the thermal

buoyancy, by increasing the order of the bifurcation. However the percentage of

positive work done by the buoyancies is lower than before. It barely exceeds the 7%

at the first bifurcation. The surface plots of Ksh, KbT , KbC and Kds of Fig. 6 resemble

very much those of Fig. 5, the main difference coming from that of KbC. Now the

production and dissipation of energy takes place locally in the same zone as that of

KbT , and in addition the fluid of the lower left part of the domain, and that of the

upper right part remain almost unperturbed.

Table 7 gives the balance of energies for the BM of Pr = 0.1. The lack of a clear

pattern reflects very well the different types of instabilities found. The first is a Hopf

bifurcation giving rise to the only branch of stable POs bifurcated from the SS. As

can be seen the three terms contribute to the instability for any of the six bifurcations,

and, for the first, the sum of the work done by both buoyancies arrives to 21% of

the total, although KbC is one order of magnitude lesser than KbT . The third and

sixth bifurcations are of saddle-node type because of the double fold of Fig. 3c. In
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Table 7 Idem Table 5, but with 10−2KbC , for Pr = 0.1, Se =−0.05, Le = 0.05.

N bif. Symmetry 10−3Rac Ksh KbT 10−2KbC Kds

1 S 6.158414 0.350650 0.090591 0.256005 -0.443803

2 A 23.60057 1.530737 0.453646 1.082218 -1.996949

3 S 24.13063 1.000072 0.256315 0.746396 -1.267125

4 A 23.80020 1.465969 0.455562 1.374090 -1.939601

5 S 22.52853 1.035993 0.101941 0.597505 -1.144304

6 S 21.25583 1.181268 0.035765 0.623779 -1.223271
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Fig. 7 Idem Fig. 5 for Ra = 6.15841×103 , Pr = 0.1, Se =−0.05, Le = 0.05.

these bifurcations the percentage of K generated by the buoyancies decreases when

Ra is decreased, but that of the shear increases by 18%. The second, fourth and five

are Hopf bifurcations. The first two have the highest and similar ratios of energy

supplied by the work done by the buoyancy forces, arriving to near 24%. They are

similar because, as it will be seen, they give rise to a close branch of POs, starting

before the first turning point and finishing after it. The fifth is a Hopf bifurcation

between the two saddle-nodes. In this case the instability is due to the shear in 91%.

The surface plots of the rate of energies of Fig. 7 show that the main maxima

are located in the middle of the slot around the central vortex of Figs. 4e,f. There

is also a small contribution around the lateral vortices. The dissipation of energy

occurs again in the boundary layer near the generation of K. A few isolated local

extrema start to appear near the center for this low Pr. As for the binary mixtures of

Pr = O(1) the production and dissipation of energy is constrained to very narrow

layers.

Figure 8 shows that, at the second bifurcation, the origin of the instability is much

more localized in the central vortex, with a fraction of Ksh penetrating to the interior

of the vortex. Consequently, there is also some dissipation in this zone. The upper
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Fig. 8 Idem Fig. 7 at the second bifurcation, Ra = 2.36006×104 .

and lower parts of the slot remain unperturbed. At the fifth bifurcation the generation

of instability (not shown in a figure) takes place around all the vortices of Figs. 4e,f,

with some dissipation between them, although the most important part occurs in the

boundary layers, along the sides. However the thermal buoyancy force acts primary

around the central vortex. In contrast, a small input of positive K due to the solutal

buoyancy affects also the surroundings of the other two vortices.

Table 8 contains the same information as the preceding tables for the binary

mixture of Pr = 0.046, which corresponds to a liquid metal. As for Pr = 0.1, the

three terms contribute to the instability of the steady state, but the balance of kinetic

energies is different for each of the four bifurcations considered. However, in any

case the work done by the solutal buoyancy is around a 0.06%, the smallest of the

mixtures studied. The first bifurcation, with the lowest relative KbT , near 0.5%, is the

only one giving rise to a stable PO in the range of Ra considered. Its period, initially

T = 1.4390, almost triples that of the other unstable POs. At the other bifurcations

the energy supplied by the shear of the steady field is reduced.

To analyze the origin of such differences, the surface and contour plots of the

energies entering in the first two balances are shown in Figs. 9 and 10. The first

shows that for this low Pr the generation and dissipation of energy extends along the

slot for any of the terms of Eq. (50), with the extrema concentrated again around the

vortices. The dissipation of energy is more important near the absolute maxima of

the shear, i.e. in (x,y)≈ (0,4) and (x,y)≈ (1,4). The location of the maxima at the

second bifurcation is completely different from the preceding cases. Although the

perturbation extends along the slot, Ksh, KbT and KbC have the absolute maxima near

its upper and lower sides. The dissipation behaves as usual, it is concentrated in the

lateral boundary layer adjacent to the maxima with two thin interior layers. The third

bifurcation (not illustrated) gives rise perturbations with the characteristics shown
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Table 8 Idem Table 5, but with 10−2KbT and 10−4KbC, for Pr = 0.046, Se =−0.01, Le = 0.01.

N bif. Symmetry 10−3Rac Ksh 10−2KbT 10−4KbC Kds

1 A 1.975168 0.246070 0.114012 1.491760 -0.247364

2 S 2.833397 0.193500 2.279006 0.813263 -0.216388

3 A 3.050286 0.203243 2.121481 0.991435 -0.224573

4 S 3.491323 0.260762 3.096843 1.811358 -0.292092
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Fig. 9 Idem Fig. 5 for Ra = 1.97517×103 , Pr = 0.046, Se =−0.01, Le = 0.01.

in Fig. 10, but with a flatter central part. Finally, the surface plots of the fourth

(neither shown) displays most of the variation of the kinetic energy close to the

center of the box, as the first, along two slim bands located at y ≈ 3.5 and y ≈ 4.5.

The perturbations outside this region are much less important.

As a summary of the bifurcations analyzed, either of Hopf or real type, it is

possible to state that the main source of the instabilities is the shear of the steady

field. The work done by the thermal and solutal buoyancies is at most the 25% of

the total contribution, and the work done by the solutal buoyancy can even help the

viscous dissipation to stabilize the fluid in gases, although in a small percentage. The

perturbations of the steady field are predominantly located in thin layers around the

vortices, and the dissipation in the lateral boundary layers. Moreover, no relation has

been found between the symmetries of the perturbations, and their energy balances

and positions in the slot. The location of the generation of kinetic energy determines

the features of the oscillations.

A. Y. Gelfgat and S. Molokov studied in Ref. [40] the instability at Hopf bi-

furcations in a quasi-two-dimensional convection problem, derived from a three-

dimensional laterally heated box in a strong magnetic field normal to the main cir-

culation, under another point of view. They stated that the averaged complex ki-

netic energy equation, namely that obtained by integrating over the volume the dot
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Fig. 10 Idem Fig. 9 at the second bifurcation, Ra = 2.83339×103.

product of the complex eigenvalue equation at the bifurcation times the conjugated

eigenfunction, cannot be directly used to this purpose because the averaged com-

plex transport terms do not vanish, as happens for real perturbations. By using the

Helmholtz decomposition they first separated, if necessary, the potential part of each

term of the momentum equation (which globally does not transfer energy to the per-

turbation) from the divergent-free part. Then, they compared the imaginary and pure

real parts of the dot products of the latter with the eigenfunctions, in order to find out

which contour plots of the divergent-free parts looked like those of the eigenfunc-

tions. In this way they determined which term was responsible for the oscillations,

and showed that the terms coming from the transport of momentum by the steady

field were important when the perturbations grow up in the boundary layers. For

instabilities developing in the bulk of the fluid this term is much less important than

the shear production.

In the preceding analysis the surface plots of the shear and the buoyancies might

include the potential parts, but as can be seen in the contour plots of Figs. 11a-d,

showing the kinetic energy of the perturbations, their maxima are located where the

rate of production (or dissipation) of this energy by shear takes place. Consequently,

in this case, it has not been necessary to extract the divergence-free term to compare

with the eigenfunction. The first two plots correspond to a boundary layer instability,

and must be compared with the first plot of Figs. 5 and 6, and the two other to the

bulk instabilities showed in the first plot of Figs. 7 and 9.
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a) b) c) d) 

Fig. 11 Contour plots of the kinetic energy, K, of the eigenfunction at the points where the steady

branches lose stability for a) Pr = 0.683, Se = −0.08, Le = 1.085 at Rac = 3.10769 × 105, b)

Pr = 0.707, Se = −0.098, Le = 0.076 at Rac = 2.78048 × 105, c) Pr = 0.1, Se = −0.05, Le =
0.05 at Rac = 6.15841× 103 , and d) Pr = 0.046, Se = −0.01, Le = 0.01 at Ra = 1.97517×103.

The background means K = 0, and the dark grey spots are the maxima of K (online, red means

maximum K and blue K = 0).

5.2 Periodic orbits and their stability

In order to study the result of the above instabilities, the branches and stability of

the periodic orbits arising at the bifurcation points of the steady states have been

calculated following the methods described in Sect. 3.

5.2.1 Moderate Prandtl numbers

In the case of the binary mixtures of Pr = O(1) the time averaged kinetic energy

and heat flux of the POs almost overlap that of the corresponding steady flow shown

in Figs. 3a and 3b. Then, the bifurcation diagram of POs is illustrated by means of

their period versus Ra. The leftmost point of each curve lays on the curves of the

SSs.

Figure 12a shows the periods of the POs of the mixture of Pr= 0.683, Le= 1.085

and Se =−0.08. In agreement with the two types of balances found in Table 5, the

POs of branches labelled as 2 and 5 have two differences with respect to the others.

Their periods are longer, and the branches are more unstable. These properties can

be attributed to the decrease of Ksh at these bifurcations, mentioned before. The
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Fig. 12 Period of the branches of periodic orbits versus Ra for a) Pr = 0.683, Se = −0.08, Le =
1.085, and b) Pr = 0.707, Se =−0.098, Le = 0.076.

details on the intervals of stability of the branches of POs are included in Table 4

(BM).

Figure 12b displays the period of the branches of POs for a liquid of Pr = 0.707,

Le = 0.076 and Se =−0.098. In agreement with the results of Sect. 5.1, the period

of the POs is of the same order as that of the POs of Pr = 0.683 that have a very

different Le and similar Se. Then it seems that what determines T is Pr. Although

it cannot be appreciated in the figure the first branch is stable at the beginning, but

very soon loses stability. On the contrary, the POs of the second branch are initially

unstable, but becomes stable quickly. Now the branches of POs regain stability con-

secutively by the mechanism explained until Ksh doubles that of the first branch. The

double line at the end of branch 4 is due to a turning point found for Ra > 8× 105.

As happens in the convection of pure fluids of Pr ≈ 0.7 there are multiple branches

of POs coexisting in the same range of parameters ([122, 77], among others). More-

over, the multistability phenomena is also present, with two, three, and even four

(see for instance Fig.12a at Ra = 4.14×105) stable POs in some intervals of Ra, all

of them bifurcating from the same branch of steady solutions.

Snapshots of the time evolution of the velocity field, overlapped to the contour

plots of the full temperature are shown in the upper row of Fig. 13 for a stable PO

of the first bifurcated branch for the mixture of Pr = 0.683. The lower row depicts

the concentration. This solution is an S-cycle, so snapshots, like for instance the

third and the eighth, separated T/2 fulfill relations (47)-(48). By comparing the

contour plots with Figs. 4a and 4b it is clear that the perturbation affects mainly

the left upper and right lower parts of the slot where most of the kinetic energy

is generated (see Fig 5). Instead of the waves propagating by the boundary layer

described, for instance, in Ref. [77], in this case the perturbation manifests as a

pumping of tongues of cold fluid up, and of hot fluid down, near the left and right

boundary layers, respectively. The stratification of the fluid is weak. Sheets of high

(low) concentration go up (down) by the heated (cold) side. The central part of the

slot remains almost quiescent and homogeneous.
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Fig. 13 Snapshots of the velocity field (arrows) superposed to the contour plots of the full temper-

ature (upper row) and the concentration (lower row) in a period of a stable PO of the first branch.

The snapshots are taken at t = 0, T/10, T/5, 3T/10, 2T/5, T/2, 3T/5, 7T/10, 4T/5, 9T/10, T .

The parameters are Ra = 4.06017×105 and Pr = 0.683, Se =−0.08, Le = 1.085.

The dynamics of the periodic orbits of the binary mixture of Pr = 0.707 is sim-

ilar to that shown in Fig. 13 for the temperature. The concentration remains almost

homogeneous in the center of the box, as in Fig. 4d, but spots of high (low) con-

centration are able to rise (fall) dragged by the velocity field and to turn at the top

(bottom) of the slot before diffusing into the hotter (colder) fluid. This fact is prob-



Stationary flows and periodic dynamics of binary mixtures in tall laterally heated slots 33

0 1 2 3 4 5

10
-4

Ra

1

1.5

2

2.5

3

A
ve

ra
ge

d 
he

at
 f

lu
x

a)

SS

OPs

0 1 2 3 4 5

10
-4

Ra

0

1

2

3

4

5

6

7

10
-2

K

b)

SS

OPs

20 21 22 23 24 25 26

10
-3

Ra

24

26

28

30

32

34

10
-1

K

c)

SS

OPs

38 39 40 41 42 43 44

10
-3

Ra

2.45

2.5

2.55

2.6

A
ve

ra
ge

d 
he

at
 f

lu
x

d)

SS

OPs

Fig. 14 a) and b) Averaged heat flux and kinetic energy versus de Rayleigh number of branches of

periodic solutions and their stability for Pr = 0.1, Le = 0.05, Se =−0.05. c) and d) are details of

b) and a), respectively.

ably related with the positive work done by the solutal buoyancy in the corners of

the slot. The boundary layers of both binary mixtures are more stable than those

of a pure fluid of Pr = 0.71. The results are coherent because the instability for the

mixtures of Pr = 0.683 and Pr = 0.707 takes place in the same zone, and both have,

near the upper left and lower right corners, a zone of negative Ksh and KbT (see

Figs. 5 and 6) that dissipate energy and help the viscous dissipation to stabilize the

boundary layer. Then, it is probably that, for the parameters chosen, a narrower slot

is needed to have clear trains of waves travelling along the boundary layer.

5.2.2 Low Prandtl numbers

The dynamics of the binary mixtures of low Pr has nothing to do with those of

moderate Pr because the velocity field keeps a three vortex arrangement along the

full period. Fig. 14 shows the bifurcation diagram of POs for the mixture of Pr= 0.1,

Le = 0.05 and Se =−0.05. The averaged heat flux versus Ra is shown in Figs. 14a,

and 14d, and the mean kinetic energy in Figs. 14b, and 14c. Figures 14c and 14d

are details of the former. The onset of the oscillations increases both quantities. This

feature is understood by observing the dynamics of the orbits (see below).
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The first branch of POs is supercritical, so it is stable from the bifurcation point

up to a Neimark-Sacker bifurcation located at Ra = 2.9899× 104. The period at

the beginning of the oscillations is T = 0.34272. The other two branches of POs

computed never regain stability. That starting at the second Hopf bifurcation of

Table 7 has a turning point at Ra = 2.4743× 104, and connects again the steady

branch at the fourth Hopf bifurcation of the same table, after its first saddle-node.

The period of these orbits is lower than 0.07. The third branch followed (see de-

tails in Figs. 14c and 14d) starts at Rac = 2.2538× 104, and it has two new con-

secutive folds at Ra = 2.2852× 104 and Ra = 1.9644× 104. It continues unsta-

ble up to Ra = 3.8490× 104, where it undergoes the first of two new consecutive

saddle-node bifurcations. The second turning point is located very close to the first

at Ra = 3.8468×104. Then the branch turns down again at Ra = 4.3006×104, and

up at 4.1067×104. The period of the initial PO of the third branch is 0.16919, which

is of the same order as that of the first at this Ra. After the second saddle-node of

the branch of SSs, there are two more Hopf bifurcations in the range of Fig. 14c,

but the chance that the emerging POs become stable is very low, therefore they were

not calculated.

The dynamics of the orbits along the stable branch of POs of Pr = 0.1 is illus-

trated in Fig. 15. It displays as Fig. 13 the temperature in the first row, and the

concentration in the second. The solutions does not break the symmetry of the SSs

of Figs. 4e,f, so each snapshot fulfills the center-symmetries (40) and (41). The

multi-vortex structure of the SSs of Figs. 4e,f is never broken in a period of the PO.

At the beginning of the sequence, the three vortices are almost connected maintain-

ing a temperature profile very similar to that of the SS branch. Then, they start to

contract allowing that tongues of cold (hot) fluid penetrate to the interior of the slot

in the upper (lower) part of the vortices, increasing the heat flux. At this point the

vortices are very well defined, and allow that weak secondary vortices appear near

the lids and, soon after, between them. Then all of them quickly elongate and almost

reconnect closing the cycle. The time evolution of the temperature resembles that

described in Ref. [98] for pure fluids of 0.3< Pr < 0.2, but for the binary mixture of

Pr = 0.1 studied the vortices do not fully reconnect, giving rise to a global centered

circulation. This fact is probably due to the lower Pr.

At first sight the vortices of the velocity field keep the concentration separated

into three levels of almost constant density, with the highest concentration at the

bottom. However, when the vortices elongate, small tongues of higher (lower) con-

centration go up (down) along the boundary of the contiguous vortices, dragged by

the velocity field, and mushrooms-shaped bubbles of concentration form, moving to

the lids. When the vortices shrink there is some mixing and diffusion between the

vortices, and the mushrooms diffuse into the surrounding fluid of different concen-

tration. Then the vortices stretch again ending the cycle.

For lower values of Pr the heat flux and the kinetic energy decrease. Fig. 16

shows the bifurcation diagram of the first four branches of POs computed for the

binary mixture of Pr = 0.046, Le = 0.01 and Se = −0.01. It shows the averaged

heat flux and K versus Ra. As for Pr = 0.1 the beginning of the oscillations in-

creases the mean heat flux, but the mean kinetic energy of the second and third
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Fig. 15 Idem Fig. 13. The parameters are Ra = 1.0069855×104 and Pr = 0.1, Se =−0.05, Le =
0.05.
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Fig. 16 a) and b) Averaged heat flux and kinetic energy versus the Rayleigh number of branches of

periodic solutions and their stability for Pr = 0.046, Le = 0.01, Se =−0.01, and c) and d) details

of b).

branches is lower. The first branch bifurcates at Rac = 1.97517× 103. It is super-

critical, and consequently stable at onset. It undergoes two fold bifurcations in the

interval 2.64666× 103 < Ra < 2.65172× 103 (see Fig. 16d). The branch becomes

unstable in the short gap between the two turnings points. The two saddle-nodes

bound the only zone of coexistence of two stable solutions found at low Pr. Finally,

this branch loses stability in a Neimark-Sacker bifurcation at Ra = 6.60457× 103.

The period of the PO at the bifurcation point is T = 1.4390, and it decreases with

Ra. However the period on the first branch doubles that of the others. For instance,

at Ra = 2.83350× 103 is 1.2560, while that of the second at the bifurcation point,

at Ra = 2.83340× 103, is 0.6121. The second branch of POs is supercritical and

always unstable, like the third and fourth (see Figure 16c). The former is subcriti-

cal. It starts at Ra = 3.05029× 103 with period 0.5758, and it has a turning point at

Ra = 3.04277×103. The later bifurcates at Ra = 3.49132×103 with period 0.5864,

and it has a turning point at Ra = 3.4170× 103.

The dynamics of a stable PO at this low Pr is shown in Fig. 17. As before, the first

row of snapshots corresponds to the temperature and the second to the concentration.

Although in this case the first bifurcation breaks the center-symmetry of the SSs

and the solution is an S-cycle, (compare for instance the first and sixth snapshots

of the last field), the temperature behaves, along a period, like that described before
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Fig. 17 Idem Fig. 13. The parameters are Ra = 4.7382217 × 103 and Pr = 0.046, Se = −0.01,

Le = 0.01.

for the POs of Pr = 0.1. The main difference is that the vortices keep a rounded

shape because the secondary vortices that appear either near the top and between

the central and lower vortices or near the bottom and the central and upper vortices

are always present and confine the main ones. Then, when the tongues of cold fluid

penetrate to the interior of the slot they push slightly the hottest fluid up. In this way

the center of the vortex oscillates slowly up and down.
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The time evolution of the concentration allows to distinguish very well the tran-

sient vortices of the velocity field because the levels of different concentration are

confined by this field. For instance, at t = 0 they are placed at the top and between

the two lower vortices, and at t = T/2 at the bottom and between the two upper.

The mixing by transport of fluid at different vertical levels and inside the vortices

is more efficient that for fluids of Pr = 0.1. Some spots of high concentration are

transported upwards, following trajectories external to the main vortices, to the next

vortex, before diffusing. After half a period, spots of low concentration do the same

in a symmetric way. When the secondary vortices develop, they open a paths that

allow the fluid captured by the central vortex to travel up and down, to penetrate in-

side the other two main vortices forming sharp layers, or continuing by the external

part up to the limits of the slot where they diffuse. Moreover, spots of high (low)

concentration can also be transported to the lateral walls before diffusing.

6 Conclusions

A good performance of the Newton-Krylov techniques used here usually requires

that the multipliers be tightly clustered around the origin of the complex plane. De-

spite the spectra of the convective solutions of the binary mixtures analyzed have

several multipliers close to the unit circle (mainly when Pr is order one) the con-

vergence of Newton’s method remains quadratic, although the number of iterations

needed to solve the linear systems increases. This fact has allowed to use contin-

uation methods and stability analysis of the solutions to understand the behavior

and dynamics of the stable and unstable steady and periodic flows much better than

just by using direct numerical simulations. It is clear, however, that to study other

invariant objects beyond quasiperiodic solutions, like strange attractors, bursts or in-

termittent solutions, or to compute Lyapunov exponents, the time integration cannot

be substituted. However, in the case of homoclinic chains, having the possibility of

computing the unstable objects allows to know which of them are visited, and drive

the dynamics (see examples in Refs. [93, 33]).

From the preceding results, and their comparison with the velocity and tempera-

ture fields of pure fluids in long slots already published, some general remarks can

be extracted.

- The basic steady flows always destabilize via Hopf bifurcations. The shear is the

main responsible of the instability, and the work done by the two buoyancies

even can help to stabilize the fluid. The main dissipation of energy takes place in

the boundary layers near the maxima of the shear.

- A decrease of the generation of kinetic energy by the shear of the SSs leads to

more unstable POs of higher period in gaseous mixtures.

- With Pr ≈ 0.7 the binary mixtures have multiple stable solutions, as for the pure

fluids. For Pr ≤ 0.1 the POs are more unstable. Only one branch of stable POs bi-

furcating from the main branch of SSs has been found. Some branches of steady

and periodic solutions are subcritical, or are folded near the bifurcation points,
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but never regain stability. This means that some of the multipliers that get out

of the unit circle detach quickly from it when the parameter of the continuation

increases.

- The velocity and temperature fields of the binary fluids studied depend mainly

on the Prandtl number. The stratification of the concentration follows closely the

streamlines. Moreover, the location of the shear of the steady flows depends also

on Pr. If Pr ≈ 0.7 the source of instability of the SSs is located near the corners

of the slot. If Pr ≤ 0.3 (or even higher) the instability is due to the generation

of kinetic energy in its center or along the body of the slot around the vortices.

Depending on the location, the time periodic orbits behave as a pump of heat and

concentration near the lateral sides, or as periodic oscillations of the vortices of

the velocity field in the bulk of the fluid.

- For gaseous binary mixtures of Pr ≈ 0.7, and negative separation ratio, the fluid

remains almost homogeneous but in the lateral boundary layers. The mean heat

transported by the steady flow is almost the same as for the pure fluid, and the

mean kinetic energy of the mixture increases around 10%. The result of the dou-

ble diffusion and the Soret effect is to advance the onset of the oscillations, and to

increase their period in comparison with that of a pure fluid of the same Prandtl

number. The first branch of POs becomes stable for a larger interval of Rayleigh

numbers.

- At Pr ≤ 0.1 the double diffusion stratifies the mixture forming stacked levels

of decreasing concentration caught into the vortices. The oscillations increase

the transport of fluid, mixing the concentration between either the main neighbor

vortices or between the vortices and the top and bottom sides when the secondary

vortices form. When they are destroyed, the diffusion of concentration tends to

restore the levels of the steady states. The period of the POs increases by lower-

ing Pr and decreases by increasing Ra. Moreover, with the same parameters, the

period of the orbits on some branches of POs can double that of others.
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10. Borońska, K., L.S. Tuckerman, L.: Extreme multiplicity in cylindrical rayleigh-benard con-

vection. ii. bifurcation diagram and symmetry classification. Phys. Rev. E 81, 036,321 (2010)

11. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J.

Sci. Stat. Comput. 11(3), 450–481 (1990)

12. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Evolution to com-

plex geometries and applications to Fluid Dynamics. Springer (2007)

13. Christon, M., Gresho, P., Sutton, S.: Computational Predictibility of Natural Convection

Flows in Enclosures. Int. J. Numer. Methods Fluids 40, 953–980 (2002)

14. Cliffe, K.A.: Numerical calculations of two-cell and single-cell Taylor flows. J. Fluid Mech.

135, 219–233 (1983)

15. Cliffe, K.A.: Numerical calculations of the primary-flow exchange process in the Taylor

problem. J. Fluid Mech. 197, 57–79 (1988)

16. Cliffe, K.A., Spence, A., Taverner, S.: The numerical analysis of bifurcation problems with

applications to fluid mechanics. Acta Numer. pp. 39–131 (2000)

17. COMSOL, Inc, Sweden: COMSOL Multiphysics Reference Manual, version 5.3 (2008)

18. Dankowicz, H., Schilder, F.: Recipes for Continuation. Computational Science and Engi-

neering. SIAM (2013)

19. Davidenko, D.F.: On a new method of numerical solution of systems of nonlinear equations.

Dokl. Akad. Kauk SSSR. 88, 601–602 (1953)

20. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal.

19(2), 400–408 (1982)

21. Dijkstra, H.A., Wubs, F.W., Cliffe, A.K., Doedel, E., Dragomirescu, I.F., Eckhardt, B., Gelf-

gat, A., Hazel, A., Lucarini, V., Salinger, A., Sánchez, J., Schuttelaars, H., Tuckerman, L.,

Thiele, U.: Numerical bifurcation methods and their application to fluid dynamics: Analysis

beyond simulation. Commun. Comput. Phys. 15(1), 1–45 (2014)

22. Dinar, N., Keller, H.B.: Computation of Taylor vortex flows using multigrid continuation

methods. In: C.C. Chao, S.A. Orszag, W. Shyy (eds.) Recent Advances in Computational

Fluid Dynamics, Lecture Notes in Engineering, vol. 43, pp. 191–262. Springer (1989)

23. Doedel, E.: AUTO: Software for Continuation and Bifurcation Problems in Ordinary Dif-

ferential Equations. Tech. report, Applied Mathematics, California Institute of Technology,

Pasadena CA (1986)

24. Doedel, E.: Lecture Notes on Numerical Analysis of Nonlinear Equations. Tech. rep., Con-

cordia University, Canada (2007)

25. Doedel, E., Govaerts, W., Kuznetsov, Y.A.: Computation of periodic solution bifurcations in

ODEs using bordered systems. SIAM J. Numer. Anal. 41(2), 401–435 (2003)

26. Doedel, E., Tuckerman, L.S. (eds.): Numerical Methods for Bifurcation Problems and Large-

Scale Dynamical Systems, IMA Volumes in Mathematics and its Applications, vol. 119.

Springer–Verlag (2000)

27. Dorr, F.W.: The direct solution of the discrete poisson equation on a rectangle. SIAM Review

12(2), 248–263 (1970)

28. Duguet, Y., Pringle, C.C.T., Kerswell, R.R.: Relative periodic orbits in transitional pipe flow.

Phys. Fluids 20(11), 114,102– (2008)

29. Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov methods for the

incompressible Navier-Stokes equations. J. Comput. Phys. 110, 82–102 (1994)



Stationary flows and periodic dynamics of binary mixtures in tall laterally heated slots 41

30. Feigelson, R. (ed.): 50 years Progress in Crystal Growth. A reprint collection. Elsevier (2004)

31. Feudel, F., Tuckerman, L.S., Gellert, M., Seehafer, N.: Bifurcations of rotating waves in

rotating spherical shell convection. Phys. Rev. E 92, 053,015 (2015)

32. Formica, G., Arena, A., Lacarbonara, W., Dankowicz, H.: Coupling FEM with parameter

continuation for analysis of bifurcations of periodic responses in nonlinear structures. J.

Comput. Nonlinear Dynam. 8(2), 021,013–8 (2012)

33. Gao, Z., Podvin, B., Sergent, A., Xin, S.: Chaotic dynamics of a convection roll in a highly

confined, vertical, differentially heated fluid layer. Phys. Rev. E 91, 013,006 (2015)

34. Gao, Z., Sergent, A., Podvin, B., Xin, S., Le Quéré, P., Tuckerman, L.S.: Transition to chaos
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124. Xin, S., Le Quéré, P., Tuckerman, L.: Bifurcation analysis of doubly-diffusive convection

with opposing horizontal thermal and solutal gradients. Phys. Fluids 10(4), 850–858 (1998)
125. Yahata, H.: Stability analysis of natural convection in vertical cavities with lateral heating. J.

Phys. Soc. Jpn. 66(11), 3434–3443 (1998)


