AMPLITUDE EQUATIONS CLOSE TO A TRIPLE-(+1)
BIFURCATION POINT OF $D_4$-SYMMETRIC PERIODIC ORBITS
IN $O(2)$-EQUIVARIANT SYSTEMS

JUAN SÁNCHEZ AND MARTA NET

Departament de Física Aplicada, Universitat Politècnica de Catalunya
Jordi Girona Salgado s/n. Campus Nord. Mòdul B4
08034 Barcelona, Spain

José M. Vega
E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid
Pl. Cardenal Cisneros 3
28040 Madrid, Spain

(Communicated by Shouhong Wang)

Abstract. A two-dimensional thermal convection problem in a circular annulus subject to a constant inward radial gravity and heated from the inside is considered. A branch of spatio-temporal symmetric periodic orbits that are known only numerically shows a multi-critical codimension-two point with a triple +1-Floquet multiplier. The weakly nonlinear analysis of the dynamics near such point is performed by deriving a system of amplitude equations using a perturbation technique, which is an extension of the Lindstedt-Poincaré method, and solvability conditions. The results obtained using the amplitude equation are compared with those from the original system of partial differential equations showing a very good agreement.

1. Introduction. The free thermal convection of a Boussinesq fluid in a circular annulus, subject to a constant inward radial gravity and heated from the inside is considered. This problem provides the simplest two-dimensional model for natural convection in the equatorial plane of atmospheres and planetary interiors (see [9], and the introduction of [12]). Since the problem is independent of the axial coordinate $z$, only roll-like structures, which are exact solutions for a cylindrical annulus subject to stress-free and perfectly conducting top and bottom boundaries [1], and perturbations keeping the two-dimensionality are studied.

Beyond the physical relevance of the problem, the $z$-independent Boussinesq equations constitute a dynamical system of great interest from the point of view of the bifurcation theory. It is complex enough to give rise to new or not well known spatio-temporal dynamics, but, since it is two-dimensional, it can still be deeply explored from numerical simulations for small aspect ratios. In this case, the number of coexistent flows is relatively small and low-dimensional dynamics may be expected. The nonlinear dynamics can be understood in terms of the bifurcation theory for systems of ordinary differential equations (ODEs). In this sense, the results presented in this paper also concern other problems that are equivariant.
under the same symmetry group (O(2)). Such is the case of the dynamics that arises on a thin smectic-A liquid crystal film suspended in a small annulus, with an electric field applied in the radial direction \[5\], or of Rayleigh-Bénard convection \[3, 7\].

We develop a perturbation method to build and analyze the amplitude equations near a codimension-two bifurcation of a group orbit of symmetric time periodic solutions. They are direction reversing traveling waves, which drift back and forth in the angular direction without net drift \[8\]. Due to the rotation invariance of the problem, the group orbit is a circle. The codimension-two point was detected by integrating the full PDE system, and the numerical results indicate that the bifurcated flows keep some spatio-temporal symmetries, which consequently prevent net azimuthal drift. This dynamical behavior may seem anomalous in the context of known bifurcation theory, and requires a theoretical explanation.

One of the techniques usually employed to study theoretically the dynamics and bifurcations of symmetric periodic orbits consists of constructing return maps, in order to describe the trajectories avoiding the time dependence of the periodic orbits \[17\]. Other authors adopt a more formal approach and study the problem in the context of equivariant bifurcation theory \[10, 16, 11\]. Probably, the method used in \[2\] p.135, VI.1 for ribbon solutions in the Taylor-Couette problem is the most closely related to the method developed here. However, the time evolution for the ribbon solutions is trivial because they are azimuthal rotating waves, and the coefficients of the amplitude equations are not computed.

We propose a new approach to account for the nonlinear dependence of the period of the orbits, which can be thought as a generalization of the Lindstedt-Poincaré technique of ODEs to PDEs. It is a semi-analytical classical technique of relatively easy application to systems with quadratic nonlinearities. This technique allows to calculate (the coefficients of) the amplitude equations that describe the dynamics on the center manifold associated with bifurcation points, including spatial symmetry-breaking transitions. Equivariant bifurcation theory alone does not provide the numerical values of the coefficients, and return maps are not directly known in PDE systems, which is an additional strong difficulty when trying to calculate amplitude equations using this approach. In this paper, the symmetry properties of the eigenfunctions obtained in the numerical linear stability analysis of a circle of stable \[D_4\]-symmetric periodic orbits \(u_s\), found for radius ratios \(0.3 < \eta < 0.35\), are used to derive the amplitude equations, to anticipate the appropriate expansion of \(u_s\), and to simplify the recursive system of nonhomogeneous equations that involve the coefficients. These equations exhibit \(T\)-periodic solutions if and only if their forcing terms are orthogonal to the five linearly independent periodic orbits of the adjoint problem. Weakly nonlinear Floquet analysis of PDEs is also used in \[18, 15\] for the study of pattern formation in weakly damped Faraday waves, but in this case the problem is self-adjoint and the basic solution analytically known.

The paper is organized as follows. After the introduction and the statement of the problem in Sec. \[2\], Sec. \[3\] describes the linear stability analysis of the PDEs, and the symmetries of the eigenfunctions at the multi-critical bifurcation point. Secs. \[4\] and \[5\] deal with the amplitude equations and with the system of linear partial differential equations that determine the coefficients through the appropriate solvability conditions. The latter are derived in an appendix, where the formulation and resolution of the adjoint problem is also given. The amplitude equations are analyzed in Sec. \[6\], and the final conclusions are contained in Sec. \[7\].
2. Thermal convection in a circular annulus. Let us consider Boussinesq thermal convection in a two-dimensional annulus of inner and outer radii \( R_i \) and \( R_o = R_i + d \), heated from inside. The problem is governed by mass conservation, Navier-Stokes and energy equations,

\[
\nabla \cdot \mathbf{v} = 0, \\
(\partial_t + \mathbf{v} \cdot \nabla) \mathbf{v} = -\rho_i^{-1}\nabla p + \nu \nabla^2 \mathbf{v} - \alpha g (T - T_i), \\
(\partial_t + \mathbf{v} \cdot \nabla) T = \kappa \nabla^2 T,
\]

respectively, where \( \mathbf{v} \) is the velocity field, \( T \) the temperature, \( \rho_i \) the density at \( T_i \), \( p \) the deviation of the pressure from the hydrostatic pressure, \( g = -g \mathbf{e}_z \), the radial gravity vector, \( \alpha \) the thermal expansion coefficient, \( \nu \) the kinematic viscosity, and \( \kappa \) the thermal diffusivity of the fluid. Non-slip and perfectly conducting boundary conditions are taken, namely \( \mathbf{v} = 0 \), and \( T = T_i \) and \( T = T_o \) at \( R_i \) and \( R_o \), respectively.

By taking \( \Delta T = T_i - T_o \), \( d \), and \( d^2/\kappa \) as temperature, length, and time units, respectively, the three non-dimensional parameters that appear in the equations are the radius ratio, \( \eta = R_o/R_i \), the Prandtl number, \( \sigma = \nu/\kappa \), and the Rayleigh number, \( Ra = \alpha \Delta T g d^3/\kappa \nu \). With this scaling, the non-dimensional inner and outer radii are \( R_i = \eta/(1 - \eta) \) and \( R_o = 1/(1 - \eta) \), and the non-dimensional fields are \( \mathbf{u} = (d/\kappa) \mathbf{v} \), and \( T = T/T_i \).

In order to eliminate the pressure, the velocity \( \mathbf{u} \) is written as \( \mathbf{u} = f \mathbf{e}_o + \nabla \times (\Psi \mathbf{e}_z) \), where \( \mathbf{e}_z \) is the unit vector perpendicular to the plane of the annulus. Then, the stream function

\[
\Psi(t, r, \theta) = \psi(t, r, \theta) - \int_{R_i} f(t, r) dr
\]

verifies \( \mathbf{u} = \nabla \times (\Psi \mathbf{e}_z) \), \( f(t, r, \theta) = P_\theta u_\theta(t, r, \theta) \), and \( P_\theta \psi(t, r, \theta) = 0 \), where

\[
P_\theta g(t, r, \theta) = \frac{1}{2\pi} \int_0^{2\pi} g(t, r, \theta) d\theta
\]

is the azimuthal average operator. Note that the azimuthal mean flow \( f \) is needed if the azimuthal average of \( \psi \) is imposed to be zero by using homogeneous boundary conditions, which are convenient in numerical computations.

The equations for \( f \) and \( \psi \) are the azimuthal average of the azimuthal component of the Navier-Stokes equation, and the \( z \) component of its curl, respectively. The energy equation is written for the perturbation of the conductive state \( \Theta = T - T_c \), the conductive state being \( \mathbf{u} = 0 \), \( T_c(r) = T_i + \ln(r/R_i)/\ln \eta \). Then,

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & f & 0 \\
0 & 0 & \Delta
\end{pmatrix}
\begin{pmatrix}
f \\ \Theta \\ \psi
\end{pmatrix}
= \begin{pmatrix}
\sigma \Delta & 0 & 0 \\
0 & \Delta & -(r^2 \ln \eta)^{-1} \partial_\theta \\
0 & \sigma \tau^{-1} Ra \partial_\theta & \sigma \Delta \Delta
\end{pmatrix}
\begin{pmatrix}
f \\ \Theta \\ \psi
\end{pmatrix}
\]

\[
+ \begin{pmatrix}
P_\theta \left[ \Delta \psi \partial_\theta \psi / r \right] \\
J(\psi, \Theta) - f \partial_\theta \Theta / r \\
(1 - P_\theta) J(\psi, \Delta \psi) + \Delta f \partial_\theta \psi / r - f \partial_\theta \Delta \psi / r
\end{pmatrix},
\]

where \( \Delta = (\partial_r + 1/r) \partial_r + (1/r^2) \partial_{\theta \theta} \), \( \Delta = \partial_r (\partial_r + 1/r) \), and \( J(h, g) = (\partial_r h \partial_\theta g - \partial_\theta g \partial_r h)/r \). With this formulation, the no-slip boundary conditions for the velocity field, and the conditions for the temperature perturbation at the boundaries are

\[
f = \psi = \partial_r \psi = \Theta = 0 \quad \text{at} \quad r = R_o, R_i.
\]
See [14] for details. A simple inspection reveals that the system is $O(2)$-equivariant, $O(2)$ being generated by arbitrary rotations and reflections with respect to diameters, i.e., the actions

$$
\begin{align*}
\theta &\rightarrow \theta + \theta_0, \quad u \rightarrow u \\
\theta &\rightarrow 2\theta_0 - \theta, \quad u \rightarrow \zeta u,
\end{align*}
$$

with $u = (f, \Theta, \psi)$ and $\zeta u = (-f, \Theta, -\psi)$, leave the system invariant. The equations are autonomous, and so invariant under arbitrary time translations $t \rightarrow t + t_0$.

3. **Symmetric periodic orbits and their stability.** The conductive steady state is an $O(2)$ invariant solution of the system for any $Ra$ and $\sigma$ values. Below the critical Rayleigh number for the onset of thermal convection, heat is transported by conduction. When $Ra$ is increased, keeping $\sigma = 0.025$ and $\eta$ near 0.3, the conductive steady state suffers successive steady bifurcations, which break its invariance under arbitrary rotations. The new nonaxisymmetric steady solutions have consecutive azimuthal wavenumbers $n = 3, 2, 4$, etc., but maintain the reflection symmetry $\rho_\theta$, with respect to appropriate diameters $\theta_k = \theta_0 + k\pi/n$, and the invariance under $2k\pi/n$ rotations, $\sigma_{2k\pi/n}$, with $k = 0, 1, \ldots, n - 1$. The angular phase $\theta_0$ is fixed by the initial conditions. The discrete spatial symmetry group of these steady solutions is $D_n$, generated by the $2\pi/n$ rotation, and the reflection through $\theta_1 = \theta_0 + \pi/n$, i.e.,

$$
\begin{align*}
\rho_{2\pi/n} : \quad &\theta \rightarrow \theta + 2\pi/n, \quad u \rightarrow u, \\
\sigma_{\theta_1} : \quad &\theta \rightarrow 2\theta_1 - \theta, \quad u \rightarrow \zeta u.
\end{align*}
$$

Their spatio-temporal symmetry group is $D_n \times \mathbb{R}$, where $\mathbb{R}$ is the time translations group.

![Figure 1. Stable $n = 4$ steady solution at $Ra = 6300$, and $\eta = 0.3$.](image)

Bifurcations from the conductive state are symmetry-breaking steady-state bifurcations in which multiplicity two eigenvalues cross the imaginary axis and generate a circle of solutions. All the steady states above described, except for the branch with azimuthal wavenumber $n = 3$ are, initially, unstable. However, the branch with azimuthal wavenumber $n = 4$ stabilizes at higher $Ra$ values, after all positive eigenvalues have crossed back the imaginary axis. Fig. 1 shows the spatial symmetries of a stable steady solution on this branch at $Ra = 6300$, and $\eta = 0.3$. The stream function, $\Psi(t, r, \theta)$, is plotted on the left. Solid and dashed lines indicate, respectively, anti-clockwise and clockwise vortices. The temperature perturbation, $\Theta(t, r, \theta)$, is plotted on the right. Solid and dashed lines correspond, respectively, to higher and lower temperatures than that of the conductive state. This convention will be kept along the paper. All the contour plots of the paper have azimuthal phase $\theta_0 = 0$. 
By increasing $Ra$ further, the steady $n = 4$ branch loses stability in a Hopf bifurcation, which yields a new circle of stable time periodic orbits, $u_s$, plotted as the lower horizontal line in the bifurcation diagrams of Figs. 2 and 3 (see [12] for further details on the sequence of bifurcations), and is labeled with $n = 4$ because $u_s$ keeps the $\pi/2$-rotational symmetry of the steady state. The bifurcation breaks the (purely spatial) reflection symmetry of the steady solutions, but preserves a spatio-temporal reflection symmetry. Thus the spatio-temporal isotropy group of $u_s$ (see Fig. 4) is $D_4$, generated by

$$
\rho_{\pi/2} : \theta \rightarrow \theta + \pi/2, \quad u_s \rightarrow u_s,
$$

$$
\sigma_{\theta_1} : t \rightarrow t + T/2, \quad \theta \rightarrow 2\theta_1 - \theta, \quad u_s \rightarrow \zeta u_s,
$$

where $T$ is the period of $u_s$, and $\theta_1 = \theta_0 + \pi/4$. Physically, these are direction reversing traveling waves without net azimuthal drift. From now on, we shall focus on this branch of symmetric time periodic orbits, which will be referred to as the basic branch.

The symmetric time periodic solutions, $u$, obtained for $\eta = 0.32$ and 0.35 are shown in Figs. 2 and 3, respectively, where the norm $\|u - u_s\|_{L^2(\Omega)}$ (associated to the inner product defined in eq. (40) below) is plotted versus $Ra$. At every point of the diagram, $u$ and $u_s$ are calculated by using the Poincaré map obtained upon intersection of the orbits with the hyperplane defined such that the net azimuthal mass flow $\int f(t,r) dr$ vanishes. Newton-Krylov continuation of periodic orbits [19] is used, with $Ra$ as the continuation parameter. The fields $\Theta$ and $\psi$ are expanded in Fourier series in the azimuthal direction, and collocation for their coefficients and for $f$ is employed in a radial mesh of Gauss-Lobatto points.

Solutions related by the symmetries of the system, (7), are projected onto the same point of the diagrams, and stable/unstable solutions are plotted with solid/dashed lines. This convention will be kept along the paper. The change of line style in the middle of branch (i) in Fig. 3, corresponds to a real $\mu = +1$ bifurcation, which breaks the last spatio-temporal symmetry of the periodic orbit, and so produces a branch of azimuthally drifting quasi-periodic orbits (not shown in Fig. 3). In the remaining bifurcation points some spatio-temporal reflection symmetries are preserved, and thus lead to bifurcated branches that exhibit no net azimuthal drift. Their stability is generally studied computing the Floquet multipliers (FM) with an Arnoldi method. If it is required due to multiplicities in the spectrum, a more expensive subspace iteration method is used.

At any value of $Ra$, the spectrum of the linearized problem around any periodic solution, $u$, has two marginal $\mu = +1$ FMs due to invariance under rotation and time translation with eigenfunctions

$$
U_4 = \partial_\theta u, \quad U_5 = \partial_t u.
$$

When $\eta = 0.32$ (Fig. 2), the first pitchfork bifurcation on the $n = 4$ branch at $Ra = 10557$ is an azimuthal subharmonic (the $(\pi/2)$-azimuthal period is doubled) instability. It preserves the invariance under a $\pi$ rotation, and in consequence is labeled as $n = 2$ (the label (ii) is also used for comparison with the final results). The second instability at $Ra = 10961$ is associated with a double $\mu = +1$ FM, and breaks all spatial symmetries. Thus it yields two different bifurcated branches (i) and (iii)(a), not related by the symmetries of the system. Instead, when $\eta =$
Figure 2. Bifurcation diagram of symmetric periodic orbits for \( \eta = 0.32 \).

Figure 3. Bifurcation diagram of symmetric periodic orbits for \( \eta = 0.35 \).

0.35 (Fig. 3), the first instability at \( Ra = 8860 \) is the one that breaks all the spatial symmetries and gives rise to branches (i) and (iii)(a), the latter being now subcritical. This implies that the order in which these two bifurcations occur as \( Ra \) is increased is reversed as \( \eta \) moves between these two values. Thus, both bifurcation points must coalesce at some intermediate value of \( \eta \). We are interested in studying this codimension-two point, obtained numerically at the critical radius ratio \( \eta_c = 0.3255 \) and critical Rayleigh number \( Ra_c = 10385 \). At this point the double FM (forced by the symmetries), and the spatial subharmonic pitchfork bifurcations of time periodic orbits collapse in a triple \( \mu = +1 \) bifurcation (plus the other two FM with eigenfunctions \( U_4, U_5 \) defined above). Since the solutions that bifurcate from the basic branch still preserve some spatio-temporal reflection symmetries, all the branches of time periodic solutions plotted in figs. 2 and 3 at \( \eta = 0.32 \) and 0.35 correspond to solutions with no net drift. Now, we are interested in elucidating
whether mode interactions near the codimension-two point can break the spatio-temporal reflection symmetry and trigger net-drifting instabilities \[4\].

Let \( U_i \), with \( i = 1, \ldots, 5 \), be the eigenfunctions associated to the quintuple \( \mu = +1 \) FM. If \( U_1, U_2 \) correspond to the double FM, they can be chosen such that \( U_1(t, r, \theta) = -U_2(t, r, \theta + \pi/2) \) (see the first and third rows of Fig. 5). Both break the spatial symmetries of the basic solution, but each of them retain one spatio-temporal symmetry. Consequently, the symmetry groups of \( U_1 \) and \( U_2 \) are both \( \mathbb{Z}_2 \), generated by \( \sigma_{\pi/2} \) and \( \sigma_0 \), respectively.

The eigenfunction \( U_3 \), shown in Fig. 6, breaks the \( \pi/2 \) rotational invariance, but maintains the invariance by a \( \pi \) rotation, and under spatio-temporal reflections by \( \theta_1 = \pi/4 \) and \( \theta_2 = 3\pi/4 \). Its symmetry group is \( \mathbb{Z}_2 \times \mathbb{Z}_2 \), generated by \( \rho_{\pi} \) and \( \sigma_{\pi/4} \).

The eigenfunction \( U_4 = \partial_\theta u_s \), shown in Fig. 7, maintains the \( \pi/2 \) rotational invariance, but changes the spatio-temporal symmetry because the azimuthal derivative introduces a change of sign. Its symmetry group is \( \mathbb{Z}_4 \) generated for instance by \( \rho_{\pi/4} \). In addition, \( U_5 = \partial_t u_s \) has the same symmetries as \( u_s \) (Fig. 8). Therefore, its symmetry group is \( \mathbb{D}_4 \) (see also [13]).

In order to anticipate the form of the amplitude equations, the spatial \( \pi/2 \) rotation and two spatio-temporal reflections by the diameters \( \theta_1 = 0 \) and \( \theta_2 = \pi/2 \) are considered, namely

\[
\begin{align*}
\rho_{\pi/2} : & \quad \theta \rightarrow \theta + \pi/2, \quad u_s \rightarrow u_s, \\
\sigma_0 : & \quad t \rightarrow t + T/2, \quad \theta \rightarrow -\theta, \quad u_s \rightarrow \zeta u_s, \\
\sigma_{\pi/2} : & \quad t \rightarrow t + T/2, \quad \theta \rightarrow \pi - \theta, \quad u_s \rightarrow \zeta u_s,
\end{align*}
\]

even though these are not independent, since \( \sigma_{\pi/2} = \rho_{\pi/2}^2 \circ \sigma_0 \).

4. Symmetries of the eigenfunctions: Amplitude equations. As indicated above, we could expect that the system exhibits drift instabilities (yielding rigid-like rotations around the origin) when the spatio-temporal reflection symmetries are broken. Then, near the codimension-two point, the rotation would be quite slow.
and would involve the $U_4$-eigenmode associated with the invariance under rotations. As usually \cite{4}, a convenient weakly nonlinear description of these rotating solutions requires to use a rotating frame of reference with $\theta = \varphi(t)$, where the possibly non-constant (slow) azimuthal phase shift $\varphi$ must be determined as a part of the solution. Similarly, because of the invariance under time translations we introduce a slow, time dependent temporal phase $\phi$, which must also be determined as a part of the solution. The shifts $\varphi$ and $\phi$ are associated with the $U_4$ and $U_5$ eigenmodes, respectively. Thus, near the multi-critical point the solution can be written as

$$u(t, r, \theta) = u_s(r, \theta - \varphi(\tilde{t})) + \sum_{j=1}^{3} A_j(\tilde{t}) U_j(r, \theta - \varphi(\tilde{t})) + \cdots,$$


FIGURE 5. From left to right, (a), (b) instantaneous streamlines and temperature perturbation, respectively, for $U_1(0)$, (c), (d) for $U_1(T/2)$, (e), (f) for $U_2(0)$, and (g), (h) for $U_2(T/2)$. $Ra_c = 10385$, $\eta_c = 0.3255$. 
where $\tau$ and $\tilde{t}$ are a fast and a slow time variables, related to the original time variable as

$$\tau = t - \phi(t), \quad \tilde{t} = t.$$  \hspace{1cm} (9)

The amplitudes $A_j$ are real because the eigenfunctions $U_j$ are real. In order to make the analysis below more flexible, we are not scaling the slow time variable $\tilde{t}$. The fact that this variable is slow is imposed requiring that both the amplitudes and the phase shifts depend weakly on time, namely

$$|\dot{A}_j| \ll |A_j| \ll 1 \text{ for } j = 1, 2, 3, \quad |\dot{\phi}| \ll 1, \quad |\phi| \ll 1,$$  \hspace{1cm} (10)
where the dot means $d/dt$, and we are also imposing that the real amplitudes be small (as required by the weakly-nonlinear level of our analysis), namely that the solution be close to a (conveniently rotated and translated in time) base solution.

The structure of the amplitude equations is restricted by the symmetries of the eigenfunctions at the codimension-two bifurcation point. These symmetries can be extracted from figures (4-6), to be

\[
\begin{align*}
\tau \to \tau + T/2, & \quad \theta \to -\theta, \quad \varphi \to -\varphi \implies \begin{cases} 
 u_s \to \zeta u_s, & U_1 \to -\zeta U_1, \\
 U_2 \to \zeta U_2, & U_3 \to -\zeta U_3,
\end{cases} \\
\tau \to \tau + T/2, & \quad \theta \to \pi - \theta, \quad \varphi \to \pi - \varphi \implies \begin{cases} 
 u_s \to \zeta u_s, & U_1 \to \zeta U_1, \\
 U_2 \to -\zeta U_2, & U_3 \to -\zeta U_3,
\end{cases} \\
\theta \to \theta + \pi/2, & \quad \varphi \to \varphi + \pi/2 \implies \begin{cases} 
 u_s \to u_s, & U_1 \to -U_2, \\
 U_2 \to -U_1, & U_3 \to -U_3.
\end{cases}
\end{align*}
\]

These lead to the following symmetries in terms of the amplitudes $A_j$, the phase shift $\varphi$, and the time shift $\phi$ transformations

\[
\begin{align*}
\varphi \to -\varphi, & \quad A_1 \to -A_1, \quad A_3 \to -A_3, \\
\varphi \to \pi - \varphi, & \quad A_2 \to -A_2, \quad A_3 \to -A_3, \\
\varphi \to \varphi + \pi/2, & \quad A_1 \to -A_2, \quad A_2 \to -A_1, \quad A_3 \to -A_3.
\end{align*}
\]  

Up to third order, the most general equations that are invariant under the above symmetries are of the form

\[
\dot{A}_1 = (\alpha_1 \varepsilon_1 + \alpha_3 \varepsilon_2) A_1 + \beta_1 A_2 A_3 + (\gamma_1 A_1^2 + \gamma_2 A_2^2 + \gamma_3 A_3^2) A_1 + (\gamma_4 A_1^4 + \gamma_5 A_2^4 + \gamma_6 A_3^4) A_1, \quad (12)
\]
\[
\dot{A}_2 = (\alpha_1 \varepsilon_1 + \alpha_3 \varepsilon_2) A_2 + \beta_1 A_1 A_3 + (\gamma_1 A_1^2 + \gamma_2 A_2^2 + \gamma_3 A_3^2) A_2 + (\gamma_4 A_1^4 + \gamma_5 A_2^4 + \gamma_6 A_3^4) A_2, \quad (13)
\]
\[
\dot{A}_3 = (\alpha_1 \varepsilon_1 + \alpha_3 \varepsilon_2) A_3 + \beta_2 A_1 A_2 + [\gamma_4 (A_1^2 + A_2^2) + \gamma_5 A_3^2] A_3 + (\gamma_4 A_1^4 + \gamma_5 A_2^4 + \gamma_6 A_3^4) A_3, \quad (14)
\]
\[
\dot{\varphi} = \delta (A_1^2 - A_2^2) A_3, \quad (15)
\]
\[
\dot{\phi} = -\nu_1 \varepsilon_1 - \nu_2 \varepsilon_2 + \xi_1 (A_1^2 + A_2^2) + \xi_2 A_3^2, \quad (16)
\]
In order to avoid restricting the analysis to a particular distinguished limit, we take small amplitudes, and the large slow temporal scale in which the amplitudes evolve. The basic solution is represented by a series expansion of the solution in powers of these quantities, up to the appropriate order. The expansions of the plots in figures 9(b) and (d), resulting from the linear stability analysis, can also anticipate the appropriate expansion in the solution series. Perturbations in $\eta$ instead will be avoided at this stage setting $\varepsilon = 0$ (and added a posteriori, using fig.9), because they affect both the spatial domain and nonlinear terms in equations (9), because they are present in the basic periodic solution.

Note that the amplitude equations (12)-(14) are decoupled from (15)-(16), and that the fourth equation gives the slow drift velocity of the pattern $\dot{\varphi}$, which vanishes identically in the invariant manifolds $A_1 = \pm A_2$ and $A_3 = 0$, but is generically nonzero outside these manifolds, and can lead to a slow net drift (recall that an additional fast, instantaneous drift of the pattern, with no net drift, was already present in the basic periodic solution).

5. Determination of the coefficients of the amplitude equations. The coefficients of the equations (12)-(16) are determined numerically by perturbing the solution $u$, and applying solvability conditions. For the sake of clarity, we only consider at the moment perturbations in the Rayleigh number, which only appears in the linear part of the right hand side of the equations (5). Perturbations in $\eta$ instead will be avoided at this stage setting $\varepsilon_2 = 0$ (and added a posteriori, using fig.9), because they affect both the spatial domain and nonlinear terms in equations (5), and thus would lead to fairly involved perturbed equations.

At $\varepsilon_2 = 0$ (namely, $\eta = \eta_c$), the system (5) is rewritten as

$$\mathcal{L}_0 \partial_t u = \mathcal{L}_1 u + \varepsilon_1 \mathcal{L}_2 u + \mathcal{B}(u, u),$$

where $u = (f, \Theta, \psi)$, $\mathcal{L}_0$ denotes the linear operator appearing in the left hand side of eq. (5), while the linear operator appearing in the right hand side has been split into two parts because of its linear dependence on $Ra = Ra_c(1 + \varepsilon_1)$. The (non-symmetric) bilinear operator $\mathcal{B}$ results from convective terms, and is independent of $Ra$. The boundary conditions (6) are (implicitly) imposed in the domain of the linear operators; note that this implies that $\mathcal{L}_0$ admits a bounded inverse.

Since we have been able to anticipate the amplitude equations (12)-(16), we can also anticipate the appropriate expansion in the solution $u$. The amplitude equations contain terms that are not of the same order, and thus there are several distinguished limits (namely, several relations between the small parameter $\varepsilon_1$, the small amplitudes, and the large slow temporal scale in which the amplitudes evolve). In order to avoid restricting the analysis to a particular distinguished limit, we consider $\varepsilon_1$ and the amplitudes $A_j$ as independent small quantities, and seek a series expansion of the solution in powers of these quantities, up to the appropriate order. The basic solution $u_s$ and the eigenfunctions $U_j$ must be expanded in powers of $\varepsilon_1$, as

$$u_s = u_s^0 + \varepsilon_1 u_s^1 + \cdots \quad U_j = U_j^0 + \varepsilon_1 U_j^1 + \cdots \quad \text{for } j = 1, \ldots, 3,$$

The expansions (8) are rewritten to include higher order terms, as

$$u = u_s^0 + \varepsilon_1 u_s^1 + \sum_{j=1}^{3} A_j (U_j^0 + \varepsilon_1 U_j^1) + \sum_{k,l=1}^{3} A_k A_l U_{kl}^1 + \sum_{j=1}^{3} A_j \sum_{k=1}^{3} A_k^2 U_{jk}^2 + \cdots. \quad (19)$$
where all the functions \( u^m_j \), \( U^m_j \), and \( U^m_{jk} \) depend on \((\tau, \varphi)\), and \( A_j \) and \( \varphi \) depend weakly on \( t \) (see (10)), with the fast and slow time variables, \( \tau \) and \( t \) defined in (9). Note that this means that the time derivative of \( u \) in eq. (18) must be calculated as

\[
\partial_t = (1 - \phi) \partial_{\tau} - \varphi \partial_{\theta} + \partial_t,
\]
and that \( U^1_{kl} = U^1_{lk} \). Also, we are neglecting \( \varepsilon_1 \)-perturbations of \( U^1_{kl} \) and \( U^2_{jk} \), which are not needed below, and only those third order terms that contribute to the amplitude equations are displayed. For convenience, we rewrite the amplitude equations (12)-(16) as

\[
\dot{A}_j(t) = \tilde{\alpha}_j \varepsilon_1 A_j + \sum_{k, l = 1}^{3} \tilde{\beta}_{jk l} A_k A_l + A_j \sum_{k = 1}^{3} \tilde{\gamma}_{j k} A_k^2, \quad j = 1, 2, 3 \quad (20)
\]

\[
\dot{\nu}(t) = \sum_{j, k = 1}^{3} \tilde{\delta}_{jk} A_j A_k^2, \quad (21)
\]

\[
\dot{\phi}(t) = -\tilde{\nu}_1 \varepsilon_1 + \sum_{j = 1}^{3} \tilde{\xi}_j A_j^2. \quad (22)
\]

Comparison with (12)-(16) shows that

\[
\begin{align*}
\tilde{\nu}_1 &= \nu_1, & \tilde{\alpha}_1 &= \alpha_1, & \tilde{\alpha}_3 &= \alpha_2, & \tilde{\beta}_{123} &= \beta_{213} = \beta_1, & \tilde{\beta}_{312} &= \beta_2, \\
\tilde{\gamma}_{11} &= \tilde{\gamma}_{22} = \gamma_1, & \tilde{\gamma}_{12} &= \tilde{\gamma}_{21} = \gamma_2, & \tilde{\gamma}_{13} &= \tilde{\gamma}_{31} = \gamma_3, & \tilde{\gamma}_{32} &= \gamma_4, & \tilde{\gamma}_{33} &= \gamma_5, & \tilde{\delta}_{31} &= -\tilde{\delta}_{32} = \delta, & \tilde{\xi}_1 &= \tilde{\xi}_2 = \xi_1, & \tilde{\xi}_3 &= \xi_2,
\end{align*}
\]

the remaining coefficients \( \tilde{\beta}_{jk l}, \tilde{\gamma}_{jk}, \) and \( \tilde{\delta}_{jk} \) being zero.

Substituting the expansion (19) and the amplitude equations (20)-(22) into (18), and setting to zero the coefficient of each monomial in \( \varepsilon_1, A_1, A_2, \) and \( A_3 \), we obtain a recursive system of linear equations that are nonhomogeneous versions of the equation that gives the eigenfunctions \( U^0_j \) for \( j = 1, \ldots, 5 \), which is eq. (25) below. Since this homogeneous equation is singular, namely it exhibits nontrivial \( T \)-periodic solutions, when a forcing term is added the resulting equation does possess \( T \)-periodic solutions only if the forcing term satisfies an appropriate solvability condition, which is obtained in the Appendix. This will determine the coefficients, \( \tilde{\nu}_1, \tilde{\alpha}_j, \tilde{\beta}_{jk l}, \tilde{\gamma}_{jk}, \tilde{\delta}_{jk}, \) and \( \tilde{\xi}_j \) in the amplitude equations (20)-(21). At leading order, we obtain

\[
\mathcal{L}_0 \partial_t u^0_s = \mathcal{L}_1 u^0_s + \mathcal{B}(u^0_s, u^0_s),
\]

which is the equation verified by the unperturbed, basic solution \( u^0_s \). At order \( \mathcal{O}(\varepsilon_1) \), we get

\[
\mathcal{L}_0 \partial_t u^1_s = \mathcal{L}_1 u^1_s + \mathcal{B}(u^0_s, u^1_s) + \mathcal{B}(u^1_s, u^0_s) + \mathcal{L}_2 u^0_s - \tilde{\nu}_1 \mathcal{L}_0 \partial_t u^0_s, \quad (24)
\]

which gives the \( \varepsilon_1 \)-correction to the basic solution. By applying solvability conditions it provides \( \tilde{\nu}_1 \). At order \( \mathcal{O}(A_j) \), the relevant equation is

\[
\mathcal{L}_0 \partial_t U^0_j = \mathcal{L}_1 U^0_j + \mathcal{B}(u^0_s, U^0_j) + \mathcal{B}(U^0_j, u^0_s), \quad (25)
\]
which is the equation verified by the unperturbed eigenfunctions. At order $\mathcal{O}(\varepsilon_1 A_j)$, the following equation results

$$
\mathcal{L}_0 \partial_r U^0_j = L_1 U^1_j + B(u^0_0, U^1_j) + B(U^1_j, u^0_0) + L_2 U^0_j + B(u^1_s, U^0_j) + B(U^0_s, u^1_j)
- \alpha_j \mathcal{L}_0 U^0_j. 
$$

(26)

This equation provides both the $\varepsilon_1$-corrections of the eigenfunctions and (applying a solvability condition) the coefficients $\tilde{\alpha}_j$. At order $\mathcal{O}(A_k A_j)$, with $j \neq k$, we obtain

$$
\mathcal{L}_0 \partial_r U^1_{kl} = L_1 U^1_{kl} + B(u^1_s, U^1_{kl}) + B(U^1_{kl}, u^1_s) + B(U^0_k, U^0_l) + B(U^0_l, U^0_k)
- \frac{3}{2} \tilde{\beta}_{jkl} \mathcal{L}_0 U^0_j,
$$

(27)

which provides the coefficients $\tilde{\beta}_{jkl}$, and the functions $U^1_{kl}$, with $k \neq l$. If instead $k = l$, then we have

$$
\mathcal{L}_0 \partial_r U^1_{kk} = L_1 U^1_{kk} + B(u^1_s, U^1_{kk}) + B(U^1_{kk}, u^1_s) + B(U^0_k, U^0_k) + \tilde{\xi}_k \mathcal{L}_0 \partial_r u^0_s, 
$$

(28)

which allows to calculate the functions $U^1_{kk}$ (recall that $\tilde{\beta}_{jkk} = 0$, and $\tilde{\xi}_k$). At order $\mathcal{O}(A_j A_k^2)$, with $j \neq k$, we obtain

$$
\mathcal{L}_0 \partial_r U^2_{jk} = L_1 U^2_{jk} + B(u^0_0, U^2_{jk}) + B(U^2_{jk}, u^0_0) + B(U^1_k, U^0_j) + B(U^0_j, U^1_k)
+ B(U^1_j, U^0_k) + B(U^0_k, U^1_j) - 2 \sum_{l=1}^3 \tilde{\beta}_{jkl} \mathcal{L}_0 U^1_{kl} - \tilde{\gamma}_{jk} \mathcal{L}_0 U^0_j
+ \tilde{\delta}_{jk} \mathcal{L}_0 \partial_r u^0_s + \tilde{\xi}_k \mathcal{L}_0 \partial_r U^0_j,
$$

(29)

where $\tilde{\beta}_{jkl} = \tilde{\beta}_{jkl}/2$ if $j < k$, and $\tilde{\beta}_{jkl} = \tilde{\beta}_{jlk}/2$ if $j > k$. This provides the coefficients $\tilde{\gamma}_{jk}$ and $\tilde{\delta}_{jk}$. If instead $j = k$, we obtain

$$
\mathcal{L}_0 \partial_r U^2_{jj} = L_1 U^2_{jj} + B(u^0_0, U^2_{jj}) + B(U^2_{jj}, u^0_0) + B(U^1_j, U^0_j) + B(U^0_j, U^1_j)
- \tilde{\gamma}_{jj} \mathcal{L}_0 U^0_j.
$$

(30)

which provides the coefficients $\tilde{\gamma}_{jj}$ (recall that $\tilde{\gamma}_{jj} = 0$).

This completes the derivation of the coefficients of the amplitude equations (29)-(32) or, invoking (23), the coefficients of (12)-(16). These are as given below, in (31). In addition, we have checked that the parity and symmetries of the functions $u^0_1$, $U^1_j$, and $U^1_{kk}$ $(j, k = 1, 2, 3)$, obtained in the computation of the constants are those expected from the recursive system of equations.

Looking at the perturbations (19), and at the linear approximations of the amplitude equations (20), it turns out that the FM associated with $U_1$ and $U_3$ (at $\varepsilon_2 = 0$) are $\mu_1 = \exp(\bar{\alpha}_1 \varepsilon_1 T) \approx 1 + \bar{\alpha}_1 \varepsilon_1 T$ and $\mu_2 = \exp(\bar{\alpha}_3 \varepsilon_1 T) \approx 1 + \bar{\alpha}_3 \varepsilon_1 T$. This provides an alternative, direct method to calculate $\bar{\alpha}_1 = \alpha_1$ and $\bar{\alpha}_3 = \alpha_3$ (see (23)). Similarly, $\alpha_3$ and $\alpha_4$ of equations (12)-(14) can be calculated through the $\varepsilon_2$-perturbations of the Floquet multipliers at $\varepsilon_1 = 0$, as $\mu_1 = \exp(\alpha_3 \varepsilon_2 T) \approx 1 + \alpha_3 \varepsilon_2 T$ and $\mu_2 = \exp(\alpha_4 \varepsilon_2 T) \approx 1 + \alpha_4 \varepsilon_2 T$. The slopes $m_D$ of the double FM, $m_S$ of the simple FM displayed in Fig. 9(a), and the period $T = 0.1395$ of $u_s$ at $R_{ac} = 10385$, give $\alpha_1 = m_D/T = 2.88$, $\alpha_2 = m_S/T = 1.26$. Those displayed in Fig. 9(b) give $\alpha_3 = m_D/T = 26.09$, and $\alpha_4 = m_S/T = 4.13$. Moreover, when $A_j = 0$, the plots of $T$ versus $\varepsilon_1$ and $\varepsilon_2$ in Fig. 9(c, d) with the transformation $\tau = \left(1 + \nu_1 \varepsilon_1 + \nu_2 \varepsilon_2 \right) t$ supply an estimate of $\nu_i = \nu_i = -m_i T$, for $j=1$ and 2. They give $\nu_1 = 0.556,$
1370 JUAN Sánchez, MARTA NET AND JOSÉ M. VEGA

and \( \nu_2 = 1.24 \). The values of the coefficients \( \nu_1, \alpha_1 \) and \( \alpha_2 \) agree very well with those calculated using the solvability conditions on eqs. (24) and (26).

Finally, we have all coefficients in eqs. (12)-(16), which are

\[
\alpha_1 = 2.88, \quad \alpha_2 = 1.26, \quad \alpha_3 = 26.09, \quad \alpha_4 = 4.13, \quad \beta_1 = 0.805, \quad \beta_2 = 0.540, \\
\gamma_1 = -0.157, \quad \gamma_2 = -0.339, \quad \gamma_3 = -0.491, \quad \gamma_4 = -0.126, \quad \gamma_5 = -0.0519, \\
\delta = 0.576, \quad \xi_1 = 0.00217, \quad \xi_2 = 0.495, \quad \nu_1 = 0.560, \quad \nu_2 = 1.24. 
\]

Note that because \( \alpha_3 = 26.09 \) is fairly large, the unfolding parameter \( \varepsilon_2 \) must be extremely small, such that \( \alpha_3 \varepsilon_2 \ll 1 \) to get good results.

6. Analysis of the amplitude equation. Now we consider the amplitude equations (12)-(16), with the various coefficients as given in (31). The bifurcation diagram for fixed \( \varepsilon_2 \) and varying \( \varepsilon_1 \), such that \( |\varepsilon_1| \ll 1 \) and \( |\varepsilon_2| \ll 1 \) is topologically equivalent to that in Fig. 10 if \( \varepsilon_2 < 0 \), and to that in Fig. 11 if \( \varepsilon_2 > 0 \). In these figures, we are plotting

\[
\|u - u_s\|_{L_2(\Omega)} \approx \sqrt{a_1(A_1^2 + A_2^2) + a_3A_3^2},
\]

where, from (19), \( u - u_s \approx \sum_{j=1}^{3} A_j U_j^0 \), the weights are \( a_1 = \|U_1^0\|_{L_2(\Omega)} = \|U_2^0\|_{L_2(\Omega)} \) and \( a_3 = \|U_3^0\|_{L_2(\Omega)} \), and mutual orthogonality of \( U_1^0, U_2^0, \) and \( U_3^0 \) is taken into account.

Figure 9. Linear dependence of the leading Floquet multipliers near the multi-critical point versus the unfolding parameters: a) \( \varepsilon_1 \), and (b) \( \varepsilon_2 \). Linear dependence of the period \( T \), (c) on \( \varepsilon_1 \), and (d) on \( \varepsilon_2 \).
confirms the interchange in order of the single and double bifurcations as

11

10

and the primary bifurcated branches from the basic solution (display two bifurcation diagrams for

11

In principle, the system could exhibit also mixed modes, such that

and

point of the secondary branch satisfy

\( \epsilon = 1 - \alpha_4 \epsilon_2 / \alpha_1 \), at a
double-zero bifurcation.

ii.- \((A_1, A_2, A_3) = (0, 0, A_3)\), with \(A_3\) given by

\[
\alpha_2 \epsilon_1 + \alpha_4 \epsilon_2 = -\gamma_5 A_3^2,
\]

which bifurcate from the basic solution at \( \epsilon_1 = -\alpha_4 \epsilon_2 / \alpha_2 \), in a pitchfork bifurcation.

iii.- \((A_1, A_2, A_3) = (A, \pm A, A_3)\), with \(A \neq 0\) and \(A_3 \neq 0\) given by

\[
A^2 = \frac{-\alpha_1 \epsilon_1 + \alpha_3 \epsilon_2 \pm \beta_1 A_3 + \gamma_3 A_3^2}{\gamma_1 + \gamma_2},
\]

\[
\pm (\alpha_2 \epsilon_1 + \alpha_4 \epsilon_2) A_3 - \frac{\alpha_1 \epsilon_1 + \alpha_3 \epsilon_2 \pm \beta_1 A_3 + \gamma_3 A_3^2}{\gamma_1 + \gamma_2} (\beta_2 \pm 2 \gamma_4 A_3) \pm \gamma_5 A_3^3 = 0.
\]

This gives two bifurcated branches, namely (a) a primary bifurcation at

\( \epsilon_1 = -\alpha_2 \epsilon_2 / \alpha_1 \), and (b) a secondary branch that bifurcates from the branch considered in (ii) at the point \((A_1, A_2, A_3) = (0, 0, A_3)\) such that (see (32), (33))

\[
\alpha_1 \epsilon_1 + \alpha_3 \epsilon_2 \pm \beta_1 A_3 + \gamma_3 A_3^2 = \alpha_2 \epsilon_1 + \alpha_4 \epsilon_2 \pm \gamma_5 A_3^2 = 0.
\]

The system (33) with \(A_3 = 0\) or \(A = 0\) recovers solutions (i) and (ii) respectively.

All steady states considered above are pure modes, and exhibit no slow drift (\( \dot{\epsilon} = 0 \)).
In principle, the system could exhibit also mixed modes, such that \(A_1 \neq A_2\) and \(A_3 \neq 0\). This requires that the amplitudes be quite large as \( \epsilon_1 \to 0 \) and \( \epsilon_2 \to 0 \), which is outside the validity of the amplitude equations. By integrating the time dependent amplitude equations we have not found attractors at low amplitudes leading to quasi-periodic drifting dynamics.

Figures 10 and 11 display two bifurcation diagrams for \( \epsilon_2 = -0.0055 \) \((\eta = 0.32\) as in Fig. 2) and 0.0045 \((\eta = 0.33)\). All curves shown correspond to steady solutions of one of the above described types, and have been labeled accordingly. Because of the symmetries (11), each point of branches of types (i) and (iii) corresponds to four different steady states of the amplitude equations, and to two for points in case (ii). Note that, in both cases, the system exhibits, at least, one stable steady state.

In Fig. 10 the primary bifurcated branches from the basic solution \((A_1 = A_2 = A_3 = 0)\) are found at \( \epsilon_1 = 0.0181 \) and \( \epsilon_1 = 0.0498 \). All of them are supercritical. The secondary bifurcated branch corresponds to steady states of type (iii)(b), with the bifurcation points given by (34).

Concerning Fig. 11 two primary branches bifurcate sub and supercritically at

\( \epsilon_1 = -0.0407 \), while the second primary bifurcation at \( \epsilon_1 = -0.0148 \) is supercritical. Note that the upper branch of the first bifurcation terminates at a point of the primary branch starting at \( \epsilon_1 = -0.0148 \). This end point and the starting point of the secondary branch satisfy (34). In any event, comparison of Figs. 10 and 11 confirms the interchange in order of the single and double bifurcations as
\[ \|u - u_s\| \]

\[ \varepsilon_1 \]

**Figure 10.** Stable (solid) and unstable (dashed) steady states of (12)-(14) for \( \varepsilon_2 = -0.0055 \).

\[ \|u - u_s\| \]

\[ \varepsilon_1 \]

**Figure 11.** As in Fig. 10 for \( \varepsilon_2 = +0.0045 \).

\( \varepsilon_2 \) changes sign. It shows that \( \mathbb{D}_4 \)-symmetric periodic orbits in \( \mathbb{O}(2) \)-equivariant systems have generically a double bifurcation point giving rise to two branches of symmetric periodic orbits with just one spatio-temporal reflection symmetry. One of these branches is supercritical for any \( \varepsilon_2 \) value, and the other is super/subcritical depending on whether \( \varepsilon_2 < 0 \) or \( \varepsilon_2 > 0 \), respectively. The simple pitchfork bifurcation is also supercritical for any \( \varepsilon_2 \) value, and the secondary bifurcation on this branch is also generic, being sub/supercritical for \( \varepsilon_2 < 0 \) or \( \varepsilon_2 > 0 \), respectively. As \( \varepsilon_2 \to 0 \) it moves to \( u_s \). So, for any value of \( \varepsilon_2 \), only one of the branches emerging near \( \varepsilon_1 = 0 \) is subcritical (see also Fig. 12 corresponding to \( \varepsilon_2 = 0 \)).

The next three figures show the comparison between the bifurcation diagrams corresponding to the initial PDE (thick lines) and the system of ODE (12)-(14) (thin lines) for three different values of \( \varepsilon_2 \). Figs. 2 and 10 have been superposed in Fig. 13 and Fig. 11 and the bifurcation diagram obtained from the PDE system for \( \varepsilon_2 = +0.0045 \) in Fig. 14. Both diagrams show that for small amplitudes,
and $\varepsilon_2 = \eta - \eta_c$ small and constant, the system of ODEs reproduce quantitatively the bifurcations found in the PDEs, and at least the qualitative behavior and the stability of any branch, even at high amplitudes. The small differences in the bifurcation points of the $n = 4$ branch are due to the dependence of the eigenvalues on $\varepsilon_1^2$ and $\varepsilon_2^2$, which has not been taken into account. The larger differences in secondary bifurcations, especially in the turning (saddle-node) point in Fig. 14 are due to the neglected higher order nonlinear terms. Note that the good quantitative agreement is sometimes surprising since the involved values of $\|u - u_s\|$ (say, 0.5 in Fig. 13) cannot be considered small. If necessary, to correct the mismatch of Figs. 13 and Fig. 14, the second order terms could be added in the model a posteriori by extending Fig. 9 to higher $\varepsilon_1, \varepsilon_2$ values, and fitting a quadratic curve.

As anticipated at the end of last section, high $\varepsilon_2$ values are too large to get good quantitative comparison with the numerically obtained solution. This is illustrated in Fig. 15, which is a superposition of Fig. 3 ($\eta = 0.35$) with the corresponding diagram given by the amplitude equations for $\varepsilon_2 = 0.0245$. Now the primary double-zero bifurcation gives unacceptable $|\Delta \varepsilon_1| = 0.075$ differences, and the fold takes place at $O(1)$ amplitudes. This indicates that nonlinear interactions of other modes
not considered in the model are already important. However, even in this case, the model maintains the main features at small amplitudes, namely, the character of the bifurcations on the \( n = 4 \) branch, and the first pitchfork bifurcation on the \( n = 2 \) branch of the PDEs. In fact, the amplitude equations do show all bifurcations in Fig. 3, including the instability point in the middle of one of the branches that bifurcate at \( Ra = 9880 \), which involves net drifting solutions, but these occurs for large values of the amplitudes, which are outside the validity of the amplitude equations.

7. Conclusions. We have introduced a numerical perturbation technique to determine the coefficients of the amplitude equations near bifurcations of spatio-temporal symmetric periodic solutions. This technique only requires an accurate time evolution code. In fact, the calculation of the adjoint problem can be avoided by imposing that the solutions of (24)–(30) be bounded. However, in this case the method is not so fast and requires minimizing the linear growth slope with respect to the parameters. In any event, the generalization of the Lindstedt-Poincaré technique results
to work very well for PDE systems. To our knowledge, no similar techniques have been developed in the literature for the precise calculation of the coefficients of the amplitude equations near bifurcation points in Floquet problems in PDEs. Symmetry arguments allow to guess the form of the amplitude equations, but not the numerical values of the coefficients, which can be essential to anticipate the range of validity of the approximation and to explain quantitative discrepancies. For instance, the poor comparison in Fig. 15 becomes clear noticing the large numerical value of the coefficient \( \alpha_3 \). Empirical fitting can of course be always done, but this is not convincing enough and, in fact, can yield wrong results when the number of unknown coefficients is large. For example, since as mentioned above, the amplitude equations do contain all bifurcations shown in Figs. 2 and 3 (some of them for large values of the amplitudes, which are not acceptable), these two diagrams could be approximated reasonably well by appropriate (but wrong) selection of the coefficients.

In the case considered in this paper, the analysis of the amplitude equations confirms the numerical results. Any of the branches that bifurcate from the \( \mathbb{D}_4 \)-symmetric basic solution, \( u_s \), consist of time periodic orbits that exhibit no net drift. Namely, near the multiple (+1) bifurcation the dynamics is also restricted to the invariant manifolds \( A_1 = \pm A_2 \), and \( A_3 = 0 \), and therefore \( \dot{\varphi} = 0 \). Thus, due to the symmetry fourteen branches of periodic orbits without net azimuthal drift collapse at the triple \( \mu = +1 \) bifurcation point. However, it is necessary to consider the invariance of the system by rotations to determine the local coefficients of the amplitude equations.

**Appendix A. Solvability conditions.** The coefficients of the amplitude equations (20)-(22) are calculated imposing that the nonhomogeneous, linear problems (24), (26)-(30), possess \( T \)-periodic solutions (solvability condition), or equivalently (see below) that all solutions to these equations be bounded as \( \tau \to \infty \) (elimination of secular terms). These equations can be written as

\[
\mathcal{L}_0 \partial_\tau U = \mathcal{L} U + H - \sum_{j=1}^{5} b_j \mathcal{L}_0 U^0_j,
\]

where

\[
\mathcal{L} = \mathcal{L}_1 + \mathcal{B}(\cdot, u^0_4) + \mathcal{B}(u^0_4, \cdot),
\]

\[
U^0_4 = \partial_\theta u^0_4, \quad U^0_5 = \partial_\tau u^0_4, \quad \text{and} \quad H(\tau) = H(\tau + T).
\]

Let the constant, invertible linear operator \( \mathcal{L}_0 \), and the \( T \)-periodic, linear operator \( \mathcal{L} \) be such that the homogeneous equation

\[
\mathcal{L}_0 \partial_\tau U = \mathcal{L} U, \quad U(0) = U_0
\]

defines a unique solution \( U(\tau) = G(\tau) U_0 \), where, for each \( \tau > 0 \), the Green operator \( G(\tau) \) is a linear, compact, Fredholm operator in a Hilbert space \( (E, \langle \cdot, \cdot \rangle) \). Note that the Floquet multipliers of (36) are the eigenvalues of \( G(T) \). Assume in addition that eq. (36) exhibits the Floquet multiplier \( \mu = +1 \) with (algebraic and geometric) multiplicity five, and that the remaining Floquet multipliers are within the unit circle, at a nonzero distance from the boundary.

**Lemma 1.** The equation

\[
\mathcal{L}_0 \partial_\tau U = \mathcal{L} U + \tilde{H}
\]

(37)
exhibits $T$-periodic solutions if and only if

$$
\int_{0}^{T} \langle \tilde{H}, U^*_j \rangle \, d\tau = 0 \quad \text{for } j = 1, \ldots, 5,
$$

(38)

where $U^*_j$ are five linearly independent, $T$-periodic eigenfunctions of the adjoint problem

$$
-\mathcal{L}_0^T \partial_\tau U^* = \mathcal{L}^T U^*,
$$

which also exhibits the Floquet multiplier $\mu = +1$ with multiplicity five; these eigenfunctions can be chosen such that $\int_{0}^{T} \langle U^*_j, \mathcal{L}_0 U_k \rangle \, d\tau = 1$ and 0 if $j = k$ and $j \neq k$, respectively. Here, $\top$ stands for the adjoint with respect to the inner product $\langle \cdot, \cdot \rangle$.

Furthermore, if these conditions hold, then (37) possesses a five-dimensional, linear manifold of periodic solutions.

**Proof.** The statement that (37) exhibits $T$-periodic solutions if and only if (38) holds is proved by the argument in [6, p.206, theorem 7.3.2], after slight modifications. Adding the general $T$-periodic solution of (36) to a particular $T$-periodic solution of (37), the last statement follows.

**Lemma 2.** The solutions of the equation (37) are of the form

$$
U = \sum_{j=1}^{5} a_j \tau U^*_j + V + E.S.T,
$$

(39)

where $U^*_1, \ldots, U^*_5$ are five linearly independent periodic solutions of (36) associated with the Floquet multiplier $\mu = +1$, $V$ is $T$-periodic, and E.S.T denote exponentially small terms as $\tau \to \infty$. Thus, this system exhibits periodic solutions if and only if $a_j = 0$, $j = 1, \ldots, 5$.

**Proof.** Replace (39), ignoring E.S.T., into (37), to obtain that this latter equation holds provided that

$$
\mathcal{L}_0 \partial_\tau V = \mathcal{L}V + H - \sum_{j=1}^{5} a_j \mathcal{L}_0 U^*_j.
$$

Applying the preceding lemma, the constants $a_j$ can be uniquely selected such that this problem possesses periodic solutions. Adding the general solution of the homogeneous version of (37), we readily obtain the E.S.T.

Note that $\int_{0}^{T} \langle \cdot, \cdot \rangle \, d\tau$ defines an inner product in the space of those time dependent functions defined in the domain of the operator $\mathcal{L}$ that are $T$-periodic. Also note that the problem giving $U^*$ must be integrated backwards when dealing with the Navier-Stokes equations (or with any other parabolic problem).

Summarizing, imposing boundedness of the solutions of (37) is equivalent to impose that this equations possess $T$-periodic solutions. Each of these properties can be used to uniquely calculate the coefficients of the amplitude equations.

In order to apply all these to the linear problems in Sec. (5), the Hilbert space $E$ is defined as the ($L^2$) space of those square integrable functions in $R_1 < r < R_0$, $0 < \theta \leq 2\pi$, with the inner product

$$
\langle u_1, u_2 \rangle = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{R_1}^{R_0} (f_1 f_2 + \Theta_1 \Theta_2 + \psi_1 \psi_2) \, rdrd\theta,
$$

(40)
Figure 16. From left to right, (a), (b) instantaneous streamlines and temperature perturbation, respectively, for $U_1^*(0)$, (c), (d) for $U_1^*(T/2)$, (e), (f) for $U_2^*(0)$, and (g), (h) for $U_2^*(T/2)$. $Ra_c = 10385$, $\eta_c = 0.3255$.

Figure 17. From left to right, (a), (b) instantaneous streamlines and temperature perturbation, respectively, for $U_3^*(0)$, and (c), (d) for $U_3^*(T/2)$. $Ra_c = 10385$, $\eta_c = 0.3255$. 
and the linear operator $L$ is as defined in (35). Note that the range of the operator $G$ is the subspace of those functions such that $Lu$ is square integrable and $u$ satisfies the boundary conditions. The adjoint operator $L^\top$ is obtained imposing that $\langle u_1, Lu_2 \rangle = \langle L^\top u_1, u_2 \rangle$ for all $u_1, u_2$ in the range of $G$. Using these, the definition (40), and that $P_\theta^\top = P_\theta$, $P_\theta f = f$, and $(1 - P_\theta)\psi = \bar{\psi}$, we obtain upon repeated
integration by parts invoking the boundary conditions \( \mathcal{L}_0^\top = \mathcal{L}_0 \) and
\[
\mathcal{L}^\top u = \begin{pmatrix}
\sigma \tilde{\Delta} & 0 & 0 \\
0 & \Delta & -r^{-1} Ra \partial_\theta \\
0 & (r^2 \ln \eta)^{-1} \partial_\theta & \sigma \Delta \Delta
\end{pmatrix}
\begin{pmatrix}
f \\
\Theta \\
\psi
\end{pmatrix} + \left( \begin{array}{c}
P_\theta \left[ \tilde{\Delta} (\psi \partial_\theta \psi_s/r) - \Theta \partial_\theta \Theta_s/r - \psi \partial_\theta \Delta \psi_s/r \right] \\
- J(\psi_s, \Theta) + f_s \partial_\theta \Theta_s/r \\
(1 - P_\theta) \left[ \Delta J(\psi, \psi_s) - J(\psi, \Delta \psi_s) - J(\Theta, \Theta_s) \right] + \Delta \left( (f \partial_\theta \psi_s + f_s \partial_\theta \psi)/r \right) \\
- \left( f \partial_\theta \Delta \psi_s + \tilde{\Delta} f_s \partial_\theta \psi \right)/r
\end{array} \right),
\]
where \( u_s = (f_s, \Theta_s, \psi_s) \).

The \( T \)-periodic eigenfunctions \( U^*_j \) of the adjoint problem are shown in Figs. (16–19). They are ordered to be in correspondence to \( U^0_j \). Each \( U^*_j \) has the same spatial and spatio-temporal symmetries as \( U^0_j \). Because of these symmetries and those of \( \tilde{H} \), each coefficient can be determined directly selecting the only \( U^*_j \) which does not verify identically the orthogonality condition (38).

**Acknowledgments.** The research by JS and MN has been supported by MEC-DGI (Grant FIS2004-01066), and Catalonia GENCAT (Grant 2005SGR01028), and that by JMV was partially supported by MEC-DGI (Grant MTM2004-03808), and NASA (Grant NNC04GA47G).

**REFERENCES**


Received July 2005; revised June 2006.

E-mail address: sanchez@fa.upc.edu