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Abstract. The Eckhaus stability boundaries of travelling periodic roll patterns arising in binary fluid
convection is analysed using high-resolution numerical methods. We present results corresponding to three
different values of the separation ratio used in experiments. Our results show that the subcritical branches
of travelling waves bifurcating at the onset of convection suffer sideband instabilities that are restabilised
further away in the branch. If this restabilisation is produced after the turning point of the travelling-
wave branch, these waves do not become stable in a saddle node bifurcation as would have been the
case in a smaller domain. In the regions of instability of the uniform travelling waves we expect to find
either transitions between states of different wave number or modulated travelling waves arising in these
bifurcations.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory) – 47.20.Bp Buoyancy-driven instability –
47.27.Te Convection and heat transfer – 47.54.+r Pattern selection; pattern formation

1 Introduction

The stability of a binary fluid layer subject to a vertical
temperature gradient has been the subject of extensive ex-
perimental and theoretical research [1,2]. It is well known
that the interplay of the different mechanisms involved in
the system can lead to an oscillatory instability, which re-
sults in either travelling waves or standing waves in trans-
lation invariant systems. Experimentally, the realisation
of translation invariant systems that can support uniform
travelling waves has to be done with annular cells. Rectan-
gular systems, however large they are, have the translation
symmetry broken and the bifurcating solutions cannot be
spatially uniform.

The oscillatory instability in binary fluid convection is
usually subcritical, and convective motion begins in the
form of growing oscillations. In annular systems, the pat-
tern in these transient motions consists in the superposi-
tion of spatially modulated low-amplitude waves travelling
in both directions (irregular standing waves), which grow
until a final nonlinear state is selected. The final state
depends strongly on the parameters of the mixture, espe-
cially on the separation ratio, and can take the form of
large-amplitude travelling waves, steady convection rolls
or highly irregular states in the form of confined travel-
ling waves or spatiotemporal chaotic motions.

In order to clarify the origin of the different dynam-
ical states, both careful experiments [3,4] and numerical
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simulations [5] have been performed in this system using
water-ethanol mixtures as the convecting fluid.

In the extensive numerical work of Barten et al. [5],
the branches of travelling waves (TW) and steady states
(SOC) have been studied in detail for different values of
the separation ratio. The system they consider is a two-
dimensional cell such that only a single wavelength fits
in the domain (the length of the cell is usually two times
its height). In this way, the authors have obtained the
bifurcation diagrams of the uniform TW and SOC states
and have located the transition between them.

In periodic extended systems (large aspect ratio cells),
solutions with slightly different wavelengths can fit into
the domain, and we expect to find multistability and tran-
sitions between these states. In experiments in large an-
nular containers, different behaviours have been observed
depending on the separation ratio of the mixture. For in-
stance, in the experiment reported in [3] for a value of
the separation ratio of S = −0.257, when the threshold of
stability of the conduction state is crossed, the final state
consists of large-amplitude travelling waves. In this exper-
iment, the travelling-wave branch is stable until a saddle
node bifurcation is reached by decreasing the Rayleigh
number. In contrast, in experiments with a separation
ratio value closer to zero [4], S = −0.021, uniform travel-
ling waves are never observed, despite numerical compu-
tations confirming their existence [5].

These completely different behaviours may be attribu-
ted to the different stability properties of the travelling-



312 The European Physical Journal E

wave solutions when extended domains are considered,
due to Eckhaus instabilities (instabilities that modify the
periodicity of the basic solution).

The Eckhaus instability for travelling waves has been
analysed in diverse convection problems, either experi-
mentally, numerically or theoretically. One of the first
studies was carried out in convection in a radially heated
cylindrical annulus. The Eckhaus instability of the ther-
mal Rossby waves was analysed by means of Direct Nu-
merical Simulation of the full PDEs, in terms of a spatial
Floquet parameter; both in the case of the small-gap ap-
proximation [6,7] or retaining the curvature [8]. In the con-
text of the Rayleigh-Bénard convection, Janiaud et al. [9]
have studied this instability experimentally in a short an-
nular container for a low-Prandtl-number pure fluid. The
analysis of the experimental results is based on a nonlin-
ear phase equation that can be derived from a complex
Ginzburg-Landau equation describing the slow dynamics
near the onset of the oscillatory instability. The results
seem to correspond to a subcritical Eckhaus instability.
In thermosolutal convection [10], numerical simulations of
the evolution equations in large periodic domains have
shown the existence of transient long-wavelength modula-
tions of the travelling waves, indicating the possible pres-
ence of an Eckhaus instability in this system.

At least two experimental papers have been devoted to
the determination of the Eckhaus stability boundaries of
travelling waves in binary fluid convection [11,12]. Other
theoretical and numerical works have likewise considered
the stability of extended patterns in binary fluid convec-
tion. Huke et al. [13] have analysed the stability of steady
rolls and square convection for positive separation ratio
mixtures, including in their analysis the Eckhaus insta-
bility. In [14] transitions between different wave number
travelling-wave patterns have been observed in 2D numer-
ical simulations considering finite containers for negative
separation ratios, and the dynamics has been explained as
a manifestation of Eckhaus instabilities.

The purpose of this paper is the actual determination
of the sideband instabilities for travelling waves in binary
fluid convection in periodic domains of aspect ratio around
80, corresponding to the experiments reported in [11,12],
with the aim of explaining the different behaviours ob-
served in experiments. The methodology has been to cal-
culate the solution branches using a continuation strategy,
and to perform a stability analysis of these states against
wave patterns that either keep the spatial periodicity of
the basic solution or break it.

The paper is organised as follows. In Section 2 the
mathematical model is presented along with a description
of the numerical methods used for the calculations. In Sec-
tion 3 we present the results of our analysis, and finally the
results and main conclusions are summarised in Section 4.

2 Mathematical model

We consider Boussinesq binary fluid convection in a nar-
row annular cell in the presence of a vertical gravity
g = −gêz. A vertical temperature gradient is imposed

by fixing a temperature difference ∆T between the hori-
zontal plates, with the temperature at the bottom being
higher than at the top. We are interested in modelling
experiments in cells with cross-section width of the same
order of the height d, and mean circumference L much
larger than d [11,12]. It is well known that in such sys-
tems convection settles in the form of straight rolls with
the axis in the radial direction, the dynamics being purely
two dimensional. In accordance with this, we use a sim-
plified geometry consisting of a two-dimensional domain
(x, z) ∈ [0, L] × [0, d], with the aspect ratio Γ defined as
Γ = L/d much greater than one. This system admits the
following basic conductive state with constant gradients
of temperature and concentration:

uc = 0, (1a)

Tc = T0 −∆T

(

z

d
−

1

2

)

, (1b)

Cc = C0 + C0(1− C0)ST∆T

(

z

d
−

1

2

)

, (1c)

where u = (u,w) is the velocity field; T and C are the
fields of temperature and concentration of the denser com-
ponent, respectively; T0 and C0 are their mean values, and
ST is the Soret coefficient.

The dynamics of the system is governed by the con-
tinuity equation, the Navier-Stokes equations and the en-
ergy and mass conservation equations [15]. In their nondi-
mensional form, by using the height of the layer d, d2/κ
and ∆T as scales for length, time and temperature, re-
spectively, κ being the thermal diffusivity, the equations
explicitly read

∇ · u = 0, (2a)

∂tu + (u ·∇)u = −∇p+ σ∇2u

+Rσ[(1 + S)Θ + Sη]êz, (2b)

∂tΘ + (u ·∇)Θ = w +∇2Θ, (2c)

∂tη + (u ·∇)η = −∇2Θ + τ∇2η. (2d)

Here, Θ denotes the departure of the temperature from
its conduction profile, Θ = (T − Tc)/∆T , and η = −(C −
Cc)/(C0(1 − C0)ST∆T ) − Θ. The dimensionless parame-
ters in the above equations are the Rayleigh number, R,
the Prandtl number, σ, the Lewis number, τ , and the sep-
aration ratio, S, defined as

R =
α∆Tgd3

κν
, σ =

ν

κ
, τ =

D

κ
, S = C0(1− C0)

β

α
ST ,

where α and β are the thermal and concentration expan-
sion coefficients, ν is the kinematic viscosity and D is the
mass diffusivity.

The boundary conditions are taken to be periodic in
x with period Γ . No-slip, fixed temperature and no mass
flux at the top and bottom plates are considered

u = Θ = ∂zη = 0 on z = 0, 1 . (3)

As a measure of the heat transport by convection, we
use the Nusselt number Nu, defined as the ratio of heat
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flux through the top plate to that of the corresponding
conductive solution. It has the following expression:

Nu = 1− Γ−1

∫ x=Γ

x=0

∂zΘ(z = 1)dx.

Equations and boundary conditions are equivariant
under the two reflections,

R0 : (x, z)→ (−x, z), (u,w,Θ, η)→ (−u,w,Θ, η),

Rz : (x, z)→ (x, 1− z), (u,w,Θ, η)→ (u,−w,−Θ,−η),

and under translations of a distance `,

T` : (x, z)→ (x+ `, z), (u,w,Θ, η)→ (u,w,Θ, η).

The reflection R0 is with respect to an arbitrarily chosen
origin in x; reflections R`0 with respect to a plane x = `0,
say, are obtained by conjugation: R`0 = T`0R0T−`0 . These
symmetries generate the symmetry group O(2)×Z2. The
conduction state u = Θ = η = 0 is invariant under this
group.

For sufficiently negative values of the separation ratio,
which is the case considered here, the onset of instabil-
ity is oscillatory and the translation invariance is broken,
i.e. the wave number k of the dominant perturbation is
nonzero, and a pattern of wavelength a = 2π/k appears.
As expected in this type of Hopf bifurcation with O(2)
symmetry, two branches of nontrivial solutions bifurcate
simultaneously [16]. The instability evolves either to a pat-
tern of standing waves (SW) or into waves that travel in
either x-direction (TW). For the parameters chosen in this
paper, if we fix the wave number k and we use the Rayleigh
number as a bifurcation parameter, the TW branch typ-
ically bifurcates subcritically (see Fig. 1), acquiring sta-
bility at a secondary saddle node bifurcation. When the
Rayleigh number is increased from the saddle node point,
the TW branch disappears in a parity-breaking bifurca-
tion of steady solutions called SOC states (stationary over-
turning convection), to which stability is transferred [2].
The standing waves (SW) are unstable from the onset and
usually disappear in a global bifurcation in which the SW
connects with an unstable SOC state. The primary insta-
bility also breaks the midplane reflection symmetry Rz.
However, since this instability is oscillatory, the bifurcat-
ing periodic solutions (TW and SW) possess a space-time
symmetry such that the spatial action of Rz is exactly
compensated by an evolution in time by half a period.
For a TW or a SW, this also implies that these solutions
are invariant under the mirror-glide symmetry Ta/2Rz [5],
i.e. the spatial action of Rz is exactly compensated by a
translation in space by half a basic wavelength, a/2. As
a summary, we can say that the SOC and the bifurcating
SW states possess the same symmetries as the primary
rolls in 2D thermal convection [17], i.e. Rl0 and Ta/2Rz,
whereas TW states are only Ta/2Rz invariant, which im-
plies that they have a z-symmetric horizontal mean flow.

As far as the numerical method is concerned, we use
spectral methods for the spatial discretisation: Fourier-
Galerkin in x and Chebyshev collocation in z. Different

codes have been used depending on the type of solutions
we try to obtain.

Most of the calculations carried out in this paper are
aimed at obtaining spatial periodic solutions (either SOC
or TW states) that, fitting in the domain of periodicity Γ ,
contain many wavelengths a; this is the spatial periodic-
ity we have imposed. To calculate these steady solutions
we have adapted a first-order time-stepping formulation to
carry out Newton’s method, as described in [18,19]. In the
preconditioned version of Newton’s iteration, the corre-
sponding linear system is solved by an iterative technique
using a GMRES package [20]. Travelling waves have been
obtained in a similar way, by assuming time-independent
functions gn(z) in the following Fourier expansion of any
variable:

χTW(x, z, t) =
N
∑

n=−N

gn(z)e
ink(x−ct), (4)

being k = 2π
a the basic wave number. Letting x̃ = x −

ct, we solve a steady problem. By adding an equation to
fix the phase of the solution, the phase velocity c can be
determined. Steady and travelling waves have also been
calculated with a Newton-Raphson iterative scheme in a
streamfunction formulation [21,22,8].

To study the stability of two-dimensional waves in a
periodic box that containsM basic wavelengths a, we pro-
ceed in the same way as in [21]. Since the basic solution
has period a, the associated linear operator has the same
periodicity and, according to Floquet theory, the set of
perturbations splits as

{χ∗m(x̃, z, t) = χm(x̃, z)eidmkx̃eλmt}m=0...M−1, (5)

where
χm(x̃, z) = χm(x̃+ a, z) (6)

with dm = m/M being the spatial Floquet parameter.
Thus χ∗m(x̃, z, t) admits the following development:

χ∗m(x̃, z, t) =

N
∑

n=−N

g∗n(z)e
i(n+dm)kx̃eλmt. (7)

The corresponding eigenvalue problem has to be solved
for every value of m. If for some value of m, the real part
of λm is positive, the TW is unstable, otherwise it is sta-
ble. If d = 0, the perturbation has the same wavelength
as the two-dimensional waves and the solution that bifur-
cates still contains M basic wavelengths. In this stability
analysis, we always obtain a zero eigenvalue corresponding
to the trivial phase-shift solution.

In the case d 6= 0, subharmonic disturbances are con-
sidered. The basic periodicity a is now broken and a
new solution with a larger basic period emerges. As dis-
cussed in [22], the eigenfunctions for the problem with
dM−m, as well as the eigenvalues λM−m, can be obtained
by conjugating those with dm. Then it suffices to con-
sider perturbations with dm ∈ (0, 1/2]. Notice that if a
train of uniform travelling waves of basic wave number k
and frequency ω = ck suffers a bifurcation of this type
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(<(λ) = 0), additional wave numbers kn = (n + dm)k
and k′n = (n + dM−m)k are excited at first order in the
bifurcating solution; the corresponding frequencies being
ωn = −(n + dm)ω + ω∗ and ω′n = −(n + dM−m)ω − ω∗,
where ω∗ = =(λm). Then, for the bifurcated solution
near every pair of frequencies and wave numbers (ω0n =
nω, k0n = nk) of the basic solution, two pairs (ωn, kn)
and (ω′n−1, k

′
n−1) appear, which allows us to estimate the

group velocity as

cg ≈ c+
ω∗

dmk
. (8)

The linear stability analysis of the steady solutions
(SOC) is carried out in a similar way, and the details can
be found in reference [22].

To validate the stability analysis, time-dependent cal-
culations considering the real periodicity Γ , have also been
carried out. To do this, we use the second-order time-
splitting algorithm proposed in reference [23], which has
been successfully used in previous studies of binary mix-
tures in large aspect ratio containers [24].

3 Results

In this section we present the results obtained for binary
mixtures with three different values of the separation ra-
tio: S = −0.021, S = −0.127 and S = −0.257, correspond-
ing to the water-ethanol mixtures used in the experiments
of references [4,11,3]. The values of the Prandtl and Lewis
number chosen are also those of the experiments, so they
are slightly different in each case. In the first mixture
we consider σ = 6.22 and τ = 0.009, in the second one
σ = 6.86 and τ = 0.0083 and in the last σ = 9.16 and
τ = 0.008.

In Section 3.1 we discuss the dynamics of uniform
states with basic wave number k = π, and we analyse
the stability of the travelling-wave branch with respect
to both subharmonic disturbances and perturbations that
maintain the basic wave number. In Section 3.2 the previ-
ous stability analysis is extended to waves with basic wave
number different from π. To analyse the Eckhaus instabil-
ity, the aspect ratio of the container is taken to be Γ = 80
in the case of S = −0.021 and S = −0.257, and Γ = 84
in the S = −0.127 mixture.

Although the critical wave number in the two-
dimensional case when the length of the container is con-
sidered to be infinity is slightly different from k = π, the
critical wave number of the basic pattern in the problems
we analyse (Γ = 80 and Γ = 84) is certainly k = π. Never-
theless, the selected wave number in the experiments may
differ from k = π. On one hand, the number of pairs of
rolls must be adapted to the actual length of the container.
On the other, the width of the cell, which is neglected in
the 2D computations, is known to affect the critical wave
number of the pattern, as the linear stability analysis in
finite-width containers proves [25].

3.1 Eckhaus instability in the branch of travelling
waves with basic wave number k = π

Figure 1 shows the bifurcation diagrams for the three val-
ues of the separation ratio we are considering when the
basic periodicity of the pattern is not allowed to vary.
The Nusselt number has been plotted as a function of the
Rayleigh number (the control parameter of the system).
The diagrams include the branches of uniform travelling
waves (TW) and steady-state (SOC) solutions with basic
wave number π, which is the critical wave number in the
cells considered and corresponds to rolls of wavelength 2.
As usual, dashed and solid lines denote unstable and sta-
ble solutions, respectively. The precise location of the bi-
furcations presented in the three diagrams is indicated in
Table 1. Rc denotes the critical Rayleigh number at the
onset of convection, RTW

SN the Rayleigh number at which
the secondary stabilising saddle node bifurcation in the
TW branch takes place, R∗ the Rayleigh number of the
parity-breaking bifurcation in which the TW branch dis-
appears and transfers stability to the SOC solution and
RSOC

SN the Rayleigh number of the saddle node bifurcation
in the SOC branch.

Each bifurcation diagram also includes the contour
plots of the concentration field of a TW and a SOC solu-
tion computed in the upper part of the TW and SOC
branches of solutions. For both types of solutions, the
concentration field is nearly uniform within each roll and
presents boundary layers between rolls, but concentration
is different in adjacent rolls in a TW solution while it is the
same in the stationary solution. By observing the contour
plots, we see that the concentration plumes become nar-
rower and steeper as the Rayleigh number increases. It is
important to bear in mind that these layers need to be cor-
rectly resolved by the numerical method, so a high spatial
resolution is required to compute strongly nonlinear solu-
tions. The structure of the TW and SOC states has been
discussed extensively in the work of Lücke et al. (i.e., [2]).

Several differences in the bifurcation diagrams are ob-
served as the value of the separation ratio becomes more
negative. As is well known, the Soret effect stabilises the
layer in negative separation ratio mixtures, so the onset of
convection is delayed as |S| increases in magnitude. Fur-
thermore, the region of subcriticality, which is quite small
for S = −0.021, becomes progressively more important
with increasing |S|. As a result, the saturated nonlinear
solution at the onset of convection is of larger amplitude
in the case of S = −0.257. An indication of the amplitude
of convection is given by the Nusselt number, which for
the nonlinear stable state at the onset of convection, is in
the case of S = −0.257 an order of magnitude larger than
in the S = −0.021 case, as can be observed in the plots.
The value of the separation ratio of the mixture also influ-
ences the position of the transition from travelling wave to
SOC convection. As the value of |S| increases, this bifur-
cation moves away from the saddle node bifurcation in the
TW branch and occurs for a larger value of the Rayleigh
number, so the region of existence of the travelling waves
gets wider. Indeed, for such a small value of the separation
ratio as S = −0.021, the stable nonlinear solution at the
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Fig. 1. Bifurcation diagrams (Nusselt number-1 versus the
Rayleigh number) showing the SOC and TW branches of so-
lutions of the wave number k = π for three different sets of
parameters corresponding to the experiments of references [4,
11,3]. From top to bottom: (S = −0.021, σ = 6.22, τ = 0.009),
(S = −0.127, σ = 6.86, τ = 0.0083) and (S = −0.257, σ =
9.16, τ = 0.008). Each diagram includes a contour plot of the
concentration field of a nonlinear TW and a SOC solution com-
puted in the upper part of the TW and SOC branches.

onset is a SOC state, whereas for S = −0.257 nonlinear
travelling waves are stable at the Rayleigh number of the
onset of convection.

In order to find out how these bifurcation diagrams
are modified when the periodicity of the basic solution is
allowed to change, we have computed the Eckhaus insta-

Table 1. Critical values of the Rayleigh number of the bifurca-
tions included in Figure 1 for the three cases considered there,
S = −0.021,−0.127,−0.257. Rc indicates the primary Hopf
bifurcation of the conductive state, RTW

SN and RSOC
SN the saddle

node bifurcations in the branches of TW and SOC solutions
and R∗ the parity-breaking bifurcation of the SOC solutions,
where the TW branch disappears.

S Rc RTW
SN RSOC

SN R∗

−0.021 1760.81 1743.69 1743.35 1746.96
−0.127 1960.5 1863.7 1795.8 1941.5
−0.257 2291.4 2073.7 1834.3 2431

bility in the TW branch, both in the lower part of the
branch, before the saddle node bifurcation point, where
travelling waves are unstable, and in the upper part, af-
ter the saddle node point. To analyse the stability of the
travelling-wave solution with respect to subharmonic dis-
turbances, the length of the box needs to be fixed. In the
cases of S = −0.021 and S = −0.257, the aspect ratio of
the cell we have considered is Γ = 80, which means that
the basic solution of wave number k = π corresponds to
an n = 40 Fourier mode (i.e. the solution is formed by
40 pairs of rolls). In the case of S = −0.127, the choice
for the length of the container is Γ = 84, therefore the
basic solution of wave number k = π now corresponds to
an n = 42 Fourier mode.

For the binary mixture with S = −0.257, the com-
putations show that, although several subharmonic bifur-
cations in the lower part of the TW branch have been
identified, the stability of the k = π TW branch is not
modified when the Eckhaus instability is taken into ac-
count. The first destabilising Eckhaus bifurcation in the
TW branch has Floquet parameter d1 = 1/40 and takes
place at R = 2272 (convection sets in at Rc = 2291).
Successive destabilisations against perturbations of differ-
ent Floquet parameters occur, but the TW solution re-
gains stability against all these perturbations before the
saddle node point is reached. Therefore, travelling waves
with wave number k = π go on acquiring the stability in
the saddle node point. No Eckhaus bifurcations have been
identified in the upper part of the TW branch, so the trav-
elling waves remain stable until their connection with the
SOC branch. The behaviour is very similar for the binary
mixture with S = −0.127. Some destabilising bifurcations
followed by the corresponding stabilising bifurcations take
place in the k = π TW branch. In this case, though,
the last stabilising Eckhaus bifurcation is produced for a
Rayleigh number R = 1864.26, which is slightly superior
to that of the saddle node, RTW

SN = 1863.66.

A different behaviour is obtained in the S = −0.021
mixture. The Eckhaus bifurcations that have been identi-
fied are included in Figure 2. The open circles show the lo-
cation of the destabilising bifurcations, while the solid cir-
cles correspond to the stabilising ones. The first Eckhaus
instability, with Floquet parameter d1 = 1/40, occurs ex-
tremely soon, at R = 1760.67, which is nearly at the criti-
cal point (Rc = 1760.81). There are two more destabilising
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Fig. 2. Bifurcation diagram (Nusselt-1 versus the Rayleigh
number) for a uniform train of travelling waves of wave number
k = π contained in a periodic domain of aspect ratio Γ = 80.
The remaining parameters are S = −0.021, σ = 6.22, τ = 0.009
(the parameters considered in the diagram at the top of Fig. 1).
The points where subharmonic instabilities take place are in-
dicated in the figure together with the corresponding Floquet
parameter dm/M . Following the curve of TW waves from the
onset of convection, open and solid circles are used to indicate
loss and gain of stability, respectively.

bifurcations with Floquet parameters d2 = 2/40 and
d3 = 3/40. In this case, the Eckhaus stability is not re-
trieved before the saddle node point. As can be clearly seen
in the figure, the k = π TW is Eckhaus unstable against
disturbances of Floquet parameter d1 until R = 1746.40,
which is practically the position of the transition from TW
to SOC (R∗ = 1746.96). So in this case, the region of sta-
bility of the uniform travelling wave is extremely small.
This result agrees with the experimental observations re-
ported in [4], where nonlinear saturated TW states have
not been observed.

3.2 Eckhaus instability for travelling waves with
different values of the basic wave number

In large aspect ratio containers, stable uniform travelling
waves with a slightly different value of the wave num-
ber can coexist with the critical solution. These solu-
tions, which represent travelling waves with a different
number of roll pairs (n = . . . 38, 39, 41, 42 . . . in a box of
length Γ = 80; n = . . . 40, 41, 43, 44 . . . in a box of length
Γ = 84), bifurcate from the conduction state for a value of
the Rayleigh number very close to the critical one. There-
fore, it is of interest to calculate these travelling waves
and analyse their stability with respect to subharmonic
disturbances, as is done in the previous section with the
k = π TW.

The results obtained for the mixtures with S = −0.021
and S = −0.257 in a box of aspect ratio Γ = 80 are
summarised in a schematic way in Figure 3. The critical
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Fig. 3. Sketch of the stability regions of uniform TW solutions
of different wave numbers contained in domains of aspect ratio
Γ = 80 for the parameters: S = −0.021, σ = 6.22, τ = 0.009,
(top) and S = −0.257, σ = 9.16, τ = 0.008 (bottom). We use n

to indicate the number of pairs of rolls that fit in the periodic
domain. Dashed and continuous lines denote unstable (U) and
stable (S) regions. The values of the Rayleigh number of the
boundaries of these regions are also given; SN is used for the
saddle node of the TW branch; ECK is the point where the TW
branch becomes Eckhaus stable, and SOC is the point where
the TW branch finishes in a parity breaking of the SOC state.

solution corresponds to the n = 40 TW, and only the
adjacent solutions, n = 39 and n = 41 TW, have been
plotted. Each straight line represents the upper part of
the TW branch (after the saddle node bifurcating point).
For each solution, the location of the saddle node point,
of the last stabilising Eckhaus bifurcation and of the TW-
SOC transition is indicated. The solid lines point out the
regions of stability of the solution, while the dashed lines
indicate that the corresponding uniform TW is Eckhaus
unstable. As can be inferred from the figure, the behaviour
is different depending on the value of the separation ratio.
For S = −0.021, the n = 39 and n = 41 travelling waves
behave like the n = 40 TW. They are Eckhaus unstable
in most of the region between the saddle node and the
TW-SOC transition; indeed they are only stable in a tiny
interval of Rayleigh numbers. In contrast, for S = −0.257
the stability of the uniform TW depends very much on
whether the number of rolls is increased or decreased with
respect to the critical number of rolls. The critical n = 40
TW is stable in all the region. If there is an increase of
one roll pair, n = 41 TW, the last Eckhaus bifurcation
that stabilises the TW takes place at a Rayleigh number
slightly superior to the one corresponding to the saddle
node point, but the solution goes on being Eckhaus stable
in a significant region. When there is a decrease in one roll
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Fig. 4. Stability boundaries in a wave number (n)-Rayleigh
number diagram corresponding to solutions for the parameters
S = −0.127, σ = 6.86, τ = 0.0083, Γ = 84 [11]. The bifurca-
tion points for travelling waves containing a different number
n of pair rolls are indicated by using: squares for the bifur-
cation of the conductive state, triangles for the saddle node
bifurcation of TW solutions, diamonds for the parity-breaking
bifurcation TW-SOC and circles for the Eckhaus instability
which stabilises the TW branch.

pair, n = 39 TW, the last Eckhaus bifurcation is shifted
upward in the branch. As a result, the n = 39 TW is
stable in a considerably smaller region than the n = 40
and n = 41 TW. This result seems to indicate that there
is a trend to favour the stability of solutions with a wave
number larger than the critical one (solutions with a larger
number of pairs of rolls). This trend is also observed for
the S = −0.127 mixture, as we will see below.

Finally, the results obtained from the analysis of the
binary mixture with an intermediate value of the separa-
tion ratio, S = −0.127, in a box of Γ = 84 are included
in Figure 4. In this figure we plot the Rayleigh number at
the onset of convection (squares), the Rayleigh number at
which the TW-SOC transition takes place (diamonds), the
position of the last stabilising Eckhaus bifurcation (circles)
and the saddle node point in the TW branch (triangles) as
a function of the number of roll pairs in the cell. This de-
fines the four corresponding stability curves. In this cell,
the critical mode is the n = 42 TW, and it is Eckhaus
stable from just above the saddle node point to the TW-
SOC bifurcation. Travelling-wave solutions with n = 40,
n = 41, n = 43 and n = 44 are stable only in a part of the
region between the saddle node point and the TW-SOC
transition. Again, the region of stability of the n = 41
TW is drastically reduced with respect to the n = 42
TW, while such a reduction does not take place for the
n = 43 TW. Other travelling-wave solutions, such as the
n = 38, n = 39 or n = 46 TW, are always unstable. As a
consequence, the SOC solution is also unstable after the
TW-SOC bifurcation. The Eckhaus bifurcation that sta-
bilises the solutions with these wave numbers now takes
place in the SOC branch. It is worth mentioning that, ac-
cording to our results, the subharmonic bifurcation that
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Fig. 5. Sketch of the different scenarios of stability diagrams
containing SOC and TW solutions that we have found when
these uniform states are contained in big periodic domains. On
the left, the solution has become stable to every Floquet pa-
rameter at the lower branch before reaching the saddle node
point, so the TW branch is stable from this point. In the mid-
dle, the solution becomes Eckhaus stable in the zone from the
saddle node to the TW-SOC bifurcation, so the stability region
of travelling waves is reduced. On the right, the branch TW
solutions is unstable, and the SOC state gains stability further
away from the TW-SOC bifurcation.

stabilises the TW or the SOC solutions is always that with
Floquet parameter d1 = 1/n, irrespective of the number
of rolls of the TW.

4 Discussion

In this paper we present the results for the travelling-wave
Eckhaus instability in binary mixtures with different val-
ues of the separation ratio. Depending on the number of
rolls of the uniform travelling wave and on the value of
the separation ratio, the three different scenarios depicted
in Figure 5 are possible. First, the uniform travelling wave
can be stable against Eckhaus disturbances in the whole
region between the saddle node bifurcating point and the
TW-SOC transition (left diagram in Fig. 5). We have only
obtained this behaviour in the case of the n = 40 TW in
a box of length Γ = 80 for S = −0.257 (the n = 42 TW
in a box of length Γ = 84 for S = −0.127 becomes sta-
ble slightly above the saddle node). Second, the uniform
travelling wave can acquire the stability for a value of the
Rayleigh number between the saddle node point and the
TW-SOC bifurcation (middle diagram in Fig. 5). In princi-
ple, as expected, the region of stability of the uniform trav-
elling wave becomes smaller as the difference in the num-
ber of roll pairs with the critical solution increases, but a
tendency to favour the stability of solutions with a larger
number of rolls compared with those with a smaller num-
ber has been identified for S = −0.257 and S = −0.127
mixtures. Finally, some uniform travelling waves are al-
ways Eckhaus unstable. In such cases, the SOC solution
is still unstable after the TW-SOC bifurcating point, and
acquires stability in a bifurcation that occurs for a larger
value of the Rayleigh number (right diagram in Fig. 5).

It must be mentioned that the type of bifurcation is
not the same when the last stabilising Eckhaus bifurcation
takes place in the TW branch (first and second possibili-
ties) as when it occurs in the SOC branch (third scenario).
In the former case, the Eckhaus bifurcation is a Hopf bi-
furcation, and modulated travelling waves (both in time
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and in space) will arise. If this bifurcation is supercriti-
cal, the modulated travelling waves will be observed, as
happens in the two-dimensional Poiseuille flow [21]. The
pulses leading to the appearance of spatially nonuniform
wave trains described in [10] for thermosolutal convection
also exhibit a behaviour that would be typical of such
modulated travelling waves. However, if the bifurcation is
subcritical, transients that bring the uniform solution back
within the stable band, involving a change in the num-
ber of rolls such as those observed in experiment [12], are
expected to occur. In the latter case, the Eckhaus bifur-
cation is found to be stationary. Nevertheless, the arising
pattern might also travel slowly as a result of the parity
breaking produced in the bifurcation point. The slowly
travelling patterns reported in the experiment [3], which
coexist with the SOC solution might arise from an Eck-
haus instability in a SOC branch. However, these patterns
could also result from a breakdown of the pitchfork bifur-
cation from SOC to TW due to the presence of spatial
inhomogeneities in the system, as argued in [26].

The stability properties of the uniform TW solu-
tion obtained with the Eckhaus analysis have been con-
firmed with some computations performed with the time-
evolution code.

Our stability analyses for the S = −0.021 mixture are
in total agreement with the observations in the experi-
ment [4]. In this experiment no stable nonlinear travel-
ling waves are observed irrespective of the value of the
Rayleigh number. Our Eckhaus stability analysis deter-
mines that all the uniform travelling waves we have ana-
lyzed are indeed Eckhaus unstable until the TW-SOC bi-
furcation point is nearly reached. On the other hand, the
comparison between our results for the S = −0.127 bi-
nary mixture and the experimental observations reported
in [11] show some discrepancies. First, the minimum of the
experimental Eckhaus curve is not obtained for an n = 42
TW (which is the minimum of the curve for the onset of
convection) but for n = 40. Apart from this, the Eckhaus
stability boundary, which is not symmetric as in our re-
sults, seems to present just the opposite trend: the region
of Eckhaus stability of the travelling waves with a smaller
number of roll pairs is larger than that of the waves with a
larger number of rolls. We believe that the cause of these
discrepancies might be the finite width of the experimen-
tal cell, which is neglected in our computations.
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