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Abstract. Novel spectral methods are formulated in terms of divergence-free
vector fields in order to compute finite amplitude time-dependent solutions
of incompressible viscous flows in cylindrical and/or annular geometries. The
numerical discretization of the method leads to a simple dynamical system of
amplitudes from which the stability properties of the solution can be analyzed
easily. In addition, the formulation allows easy implementation of continuation
algorithms to track solutions that have bifurcated from a known state, or the
search for disconnected solution branches by means of homotopy transformations
of the Navier—Stokes equations. The method is succesfully applied to the study
of generic double Hopf bifurcations in pressure-driven helicoidal flows and to the
search of unstable travelling wave solutions in pipe flow.

1 Introduction

Spectral methods have been extensively applied to the approximation of solutions of the Navier—
Stokes equations [3,6,10]. In particular, pseudospectral methods have become more popular
within the computational fluid dynamics community due to their easy implementation and ef-
ficiency [13]. By contrast, generalized Petrov—Galerkin methods are far from being competitive
in terms of algorithmic performance when compared with fractional step collocation meth-
ods because the former need suitable solenoidal vector bases to interpolate and project the
approximated solution, thus demanding large memory storage requirements [15,23]. By con-
trast, splitting collocation methods not only economize the storage of the interpolated solution
but also are more adaptable to problems with non-regular boundary conditions. However, the
algorithmic structure of a standard fractional step pseudospectral method is less flexible when
dynamical features of the problem must be studied. For example, fractional time solvers require
taylored methods to compute unsteady solutions using their own time stepper structure to pre-
conditionate the linear system arising from the Newton—Krylov iteration [16]. The spectral
computation of flows in axially unbounded cylindrical or annular geometries takes advantage
of the periodicity in the axial coordinate so that the spatial discretization leads to a system of
decoupled linear operators of smaller dimension. As a result, preconditioning in each Fourier
subspace is an easier task.
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In this work, solenoidal Galerkin formulations capable of simultaneously dealing with several
difficulties of the Navier—Stokes equations in axially unbounded cylindrical-annular geometries
is presented. First, the construction of solenoidal bases of trial functions for the velocity field
in order to satisfy the incompressibility condition identically. In addition, these bases have
to satisfy suitable physical boundary conditions at the radial annular boundaries and, in the
case of cylindrical domains, also to be analytic in a neighbourhood of the apparent singularity
located at the pole so that spectral accuracy is accomplished. Second, the obtention of dual
bases of solenoidal test vector fields in order to cancel the pressure terms out in the projection,
eventually leading to inner products involving orthogonal or almost-orthogonal functions so the
resulting discretized operators are banded matrices. In the case of cylindrical geometry, devising
an optimal quadrature rule in the radial variable capable of avoiding clustering of points near
the center axis so that time step restrictions become weaker and fast transform are applicable in
that coordinate. Third, the implementation of the described discretization within an accurate
linearly implicit time marching scheme capable of overcoming the difficulties arising from the
stiffness of the resulting systems of ODE. Finally, the whole scheme should be within the core
of an efficient continuation scheme, in order to compute unstable flows and, in some cases, to
compute other solutions arising from homotopy transformations of the Navier—Stokes equations.

The paper is structured as follows. In section 2 the solenoidal spectral bases are constructed
for the annular and cylindrical geometries and a brief outline of the projection method is
provided. Section 3 is devoted to the time evolution computations transient flows arising in
pipes and also to the accurate computation of steady and time-periodic stable helicoidal flows
appearing between concentric cylinders. Finally, section 4 is comprehensively devoted to the
formulation of the homotopic continuation scheme within the Petrov—Galerkin formulation
and the reliability and performance of the method is applied to the computation of unstable
travelling wave solutions in pipe flow.

2 Annular and cylindrical solenoidal bases in axially unbounded domains

Henceforth, two type of domains will be considered. The first one consists of a cylindrical
annulus of inner and outer radii 7" and r}, respectively. Although the annulus is unbounded in
the axial coordinate, it will be assumed that it has a finite length L* and periodic boundary
conditions in that direction will be imposed later on. By using the gap, d* = r} — r}, as the
unit of length, the spatial coordinates are rendered dimensionless and the domain is

D, = [, 7o) % [0,27] x [0, Al

where r; =n/(1—n), ro =1/(1 —n), n =rf/rl and A = L*/d*. The second one consists of a
cylinder of the same length L* and radius a*, the last being the unit of length. In this case the
domain is:

D, =1[0,1] x [0,27] x [0, A],

where A = L*/a*. Throughout this work, an arbitrary incompressible flow field u is approxi-
mated by a spectral expansion ug of order L in z, order N in #, and order M in r,

L N M
ug(r,0,z,t) = Z Z Z lrm, (€) @i (1, 0, 2), (1)
I=—Ln=—N m=0
where ®;,,,,, are trial bases of solenoidal vector fields of the form
B (1, 0, 2) = ellke 240y (), (2)
where k, = 27 /A is the fundamental axial mode and where ®y,,,, satisfies
V- ®um =0, (3)

forl=—-L,...,.L,n=—N,...,Nand m=0,..., M. In general, ug will represent a perturba-
tion from a known base flow so that the trial bases (2) are periodic in the axial and azimuthal
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directions and also cancel at the physical boundaries »r = 1 of ®. or r = 71y, r, of D,. In
addition, the set of functions (2) must be analytic at the pole axis of ©.. All the previous
requirements are accomplished by choosing a suitable set of quasiorthogonal polynomials in the
radial coordinate. The solenoidal condition (3) can be written as [22]

1 in .
(ar + ’I") Ulnm + 7Ulnm + 1lko Winm = 07 (4)
with .
Vinm = Ulnm r+ Vinm 0 + Winm zZ = (Ulnm7 Vlinm wlnm) . (5)

The Petrov—Galerkin scheme is accomplished when projecting the trial functions above
described over a suitable dual or test space of vector fields of the form

Winm = ei(n Okl Z)‘N’lnm (7’) (6)

In each geometry, the product (¥, ®) is defined as the volume integral over the domain:
(¥, ®)o, — [ ¥ 2. ™
Da c

where T stands for complex conjugate transposed, ® belongs to the physical or trial space and
¥ is a solenoidal vector field belonging to the test or projection space still to be determined.
One of the advantages of this product is that it cancels any gradient field, i.e., (¥, Vp) = 0. In
the following two subsections the general framework described above is particularized for the
two geometries.

2.1 Annular bases

In what follows, we define:

1
5:71jz, x(r) = 2r — ¢, (8)
that maps the radial domain r € [r;, 7] to the interval z € [—1,1], and
hm(r) = (1 - xz)Tm(x)v gm(T) = (1 - xz)sz(x)? (9)

where T, (r) is the Chebyshev polynomial of degree m, and w(z) = (1 — z2)~1/2

function within the interval (—1,1). The functions in (9) satisfy

hy (ri) = hin(76) = gm (i) = gm (7o) = Dgm(ri) = Dgm(ro) = 0, (10)

where D stands for the radial differentiation operator d/dr.
The trial basis for axisymmetric fields (n = 0) is given by

1 2 .
Vion(r) = (0, hin, 0), vig) (1) = (=il korgm, 0, Drgm] + gm), (11)
except that the third component of vl(gr)n is replaced by h,, when [ = 0, whereas for the non-
axisymmetric case the basis is

is the weight

D (1) = (—ingm, Dlrgm], 0), v\2 (r) = (0, —ilkorhm, inhy,), (12)

Vinm Vinm
(2)

except that the third component of v, is replaced by h,, when [ = 0. For the projection
space, the basis corresponding to axisymmetric fields is

f/l(ézn(r) = w(0, rhy,, 0), ffl(gr)n(r) =7 2w(ilkoZm, 0, Dygm +2r 1 (1 — 2% 4+ ra)h,,), (13)
where D = D + r~!, and the third component of i'/l(g,)n is replaced by rh,, if [ = 0. The basis
for the non-axisymmetric case is

ffl(ylbzn(r) =w(inrgm, rDy[rgm] + 2zr’h,,, 0), 7@ (r) = w(0, ilkor®h,,, —inrhy,). (14)

Inm

The projection fields contain the Chebyshev weight function w(z) so that the resulting radial
integratio can be computed exactly by means of quadrature formulas.
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2.2 Cylindrical bases

In this case, we define the radial functions

hm(r) = (]- - T2)T2m(’l“), gm(r) = (1 - 7‘2)hm(7"), W(T) = \/%7 (15)

where Ta,,(r) is the Chebyshev polynomial of degree 2m and r € [0,1]. In this case, the bases
must satisfy suitable regularity conditions at the origin [27] and also cancel at r = 1,

élnm(la 0, Z) =0. (16)

For the axisymmetric trial subspace one possible basis is
0 — (0, rhy, 0 ) — (—ik, I 0, D 17
Viom (0, rhyn, 0), Viom (—iko [ 78m, 0, Dy[rgml), (17)

(2)

Inm

except that if [ = 0, the third component of v
case the basis is spanned by the elements

is replaced by hy, (r). For the non-axisymmetric

v = (=in 17 g, D7 gml, 0), v = (0, =ik, I 7T by, inhy),  (18)
where

2 (n even)

- 19

? { 1 (n odd). (19)

The binomial factors (1 — r2) and (1 — r?)? appearing in h,,(r) and g,,(r) are responsible for
the non-slip boundary conditions (16) at the wall to be satisfied. Factors of the form 1 —r or
(1 — r)? would also solve the boundary problem, but they would violate the parity conditions
established by Theorem 1 of [27]. The monomials 7, 7 and r°*! appearing in the basis elements
enforce regularity and parity conditions at the pole.

The projection basis for the axysimmetric subspace is

O (1) =w(0, hyy 0), Vo) =w (=koil7?gm, 0, Dy[r?gm] + 72 hy), (20)

except that the third component of the vector in frl(gzn is replaced by rh,,(r) if I = 0. For the

non-axisymmetric subspace, the projection basis is spanned by the elements

v~ (inr'@gm,D[rﬂ+1 gm| 4+ P20y, 0), {’l(zZn =w (0, —ik,lrP+2h,,, inrﬁ+1hm) ,

Inm
(21)
except that the third component of the vector in {'l(z)m is replaced by 1 =Ph,,(r) if | = 0, where
_ {0 (neven) 99
g {1 (n odd). (22)

These vector fields include the Chebyshev factor (1 —72)~'/2 and suitable monomials so that
the products between the test and trial functions can be exactly calculated via Gauss—Lobatto
quadrature, leading to banded matrices.

3 Time evolution

For the stability analysis of a specific steady solution of the Navier-Stokes equation vp we
generally track the time evolution of solenoidal disturbances, i.e.,

v(r,0,z,t) = vg +u(r,0, z, t), V-u=0. (23)
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The pressure field would be disturbed accordingly, but its effects will not change the dynamics
since gradients cancel out in our projection scheme. On introducing the perturbed fields in the
Navier—Stokes equations, we obtain a nonlinear initial-boundary problem for the perturbation u:

Opu = éAu —(vg-V)u—(u-V)vg — (u-V)u, (24)
V-ou=0, (25)
u(r, 6, z, 0) = uy, (26)

for some prescribed initial condition ug. The Reynolds number appears dividing the laplacian
operator when using a space-advective velocity dimensionless system. Using a space-viscous
time dimensionless units, the Reynolds number would appear in the linear advective terms,
factorizing the basic solution vg. By substituting the trial expansion (1) in (24) and projecting
over the set of test vector fields,

(Wi, Ortts) = (q:lnm, éAu— (ve - V)u— (u- V)vg — (u- V)u> , (27)

the problem reduces to a dynamical system of amplitudes directly related to the time depen-
dence of the velocity field [6,15,23],

ALZT: Apgr = BLZT: apgr + Ninm(a), (28)
where the convention of sum for repeated subscripts is used. Due to the linearity of the time
diferentiation operator J; and the Fourier orthogonality in the periodic variables, the axial
and azimuthal modes decouple. The quadratic form Ny, (a) appearing in (28) corresponds to
the projection of the nonlinear convective term that must be calculated via a pseudospectral
method. Overall, the resulting stiff system of ODE is integrated in time by means of a linearly
implicit Backwards Differentation with explicit polynomial extrapolation for the nonlinear
terms.

3.1 Stable secondary flows in annular geometries

We consider an incompressible fluid of kinematic viscosity v and density g which is contained
between two concentric rotating cylinders whose inner and outer radii and angular velocities are
ry, ry and €, Q, respectively. In addition, the fluid is driven downstream by an imposed axial
pressure gradient. The independent dimensionless parameters appearing in this problem are:
the radius ratio n = r}/r%, which fixes the geometry of the annulus; the Couette flow Reynolds
numbers R; = dr}Q; /v and R, = dr}Q, /v of the rotating cylinders, where d = r} —r is the gap
between the cylinders, and the axial Reynolds number, Re = wd/v, where @ is the mean axial
flow velocity in the annulus, and measures the imposed axial pressure gradient. Henceforth,
all variables will be rendered dimensionless using d, d?/v, and v?/d? as units for space, time
and the reduced pressure (p = p*/p), respectively. The steady velocity field vug, independent
of the axial and azimuthal coordinates (6, z), and satisfying vg(ri,o) = Ri o is given by the
expression

vp = (UB, UB, 'LUB) = (0, Cir + CQ/?”, Cs 111(7"/7"0) + C4(7”2 — 7’3)), (29)

where
C1 = (Ro —nRy)/(1 + 1),
Ca = n(Ri — nRo)/[(1 = n)(1 = 1)),
C3 =2(1 = n*)Re/(1 —n° + (1 +7*) Inn),
Cy = (1 —n)(Inn)C3/(1+n).
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For Re = 0, i.e., when the basic flow has just azimuthal component, vg is called Circular
Couette Flow (CCF), otherwise it is termed as the Spiral Poiseuille Flow (SPF) [12].

In the absence of imposed axial flow, vp may exhibit local bifurcations that eventually
lead to stable steady secondary regimes. The simplest case that has been comprehensively
exemplified in the fluid dynamics literature is the transition from CCF to Taylor Vortexr Flow
(TVF), originally studied by G.I. Taylor in 1923, [31]. The resulting stable flow consists of
an array of steady axisymmetric toroidal vortices of selected axial periodicity. The solenoidal
Petrov—Galerkin method formulated in section 2.1 has been used to compute this flow. The
first stage of the computation consisted of a classical normal mode stability analysis to provide
the critical Reynolds number above which the basic flow becomes linearly unstable. This is
accomplished by neglecting nonlinear terms of (28) and computing the spectrum of eigenvalues
of the linearized operators L. = A™'B for a wide range of axial wavenumbers k. This procedure
provides the fundamental axial wavenumber k, of the secondary stable flow. As a result, the
axial periodicity is fixed in the forward integration of (28).

In figure 1(a), the streamfunction corresponding to this solution has been represented on
a radial-axial cross section of the cylinder. For the computation of this solution, just M = 16
radial modes were required and only L = 6 modes were enough to resolve the axial periodicity of
the solution. This flow has been computed formerly by many authors in the past as a benchmark
of verification of many Navier—Stokes solvers [23]. As long as R; is increased further, the TVF
solution also becomes unstable and new laminar stable flows appear. These flows are more
complex and also time dependent. In this case, a formal modal linearized stability analysis of
the TVF is much more complicated. As a result, time integration is the most straightforward
tool to identify instability. When increasing the Reynolds number, we monitor the amplitudes
of the coeflicients ay,,, of (28) until exponential growth is observed. The Fourier representation
of the flow provides the essential information regarding which axial-azimuthal modes destabilize
the flow. After the instability, the time integration will typically converge to a stable limit cycle,
originated at the Hopf bifurcation of the TVF.

Figure 1(b) shows a new solution bifurcated from the TVF, usually termed as Wavy Vor-
tez Flow (WVF). The Taylor-Couette problem exhibits a broad family of secondary solutions,
steady, time periodic, almost time-periodic or even chaotic, that have been repeatedly explored

(a)

27 ko

z=0

Ti To

Fig. 1. (a) Streamfunction of a stable TVF solution for n = 0.782, R; = 105, Ro = 0, ko = 3.1527.
(b) Snapshots of azimuthal vorticity isosurfaces (V x v)s = £30 corresponding to a stable T-periodic
WVF solution for the same value of n and ko, Ro = 0 and R; = 118.
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(8) (b)

Fig. 2. (a) Azimuthal vorticity isosurface (V x v)g = £10 of a stable 1PS solution at (Ri, Ro, Re)
(201,414.3,33) and n = 0.5. (b) Helicity isosurface of the corresponding perturbation field, H =
v+ (V x v) = 0.2. In both plots, just one third of the axial domain is shown.

experimentally and computed by many authors in the recent past [1,30]. In all cases explored,
perfect agreement with previous simulations and experiments has been obtained.

When the flow is axially driven by an external pressure gradient (SPF), the most common
instabilities lead to spiral waves travelling downstream or upstream with selected speeds and
angles. In particular, the spectral method has been used to compute secondary regimes consist-
ing of the coexistence of spiral modes of opposite advection speed and angle, formerly observed
experimentally by Nagib in the 1970’s [12]. When R;R,, > 0, two or more secondary spiral solu-
tions may bifurcate simultaneously at criticality [2,21]. In a vicinity of the bifurcating point, the
features of a double-Hopf bifurcation remain and may lead to secondary stable regimes usually
termed as Interpenetrating Spiral Flow (IPS), consisting of the superposition of spiral solutions
of different nature. Figure 2 shows a 1Ps bifurcated flow from the SPF which contains the main
features of the regimes observed by Nagib.

3.2 Intermittency patterns in pipe flow

The Hagen—Poiseuille flow (HPF) is the steady axisymmetric parabolic velocity profile appearing
in an infinite pipe of radius a when a fluid of density p and kinematic viscosity v is driven by
a uniform axial pressure gradient II, [28]. The problem is rendered dimensionless using a and
Uag = —Ipa? /4pv as the units for space and velocity, respectively, where U, is the maximum
axial speed of the basic HPF profile attained at the center line of the pipe. As a result, the basic
HPF reads

VB = (Oa Ov 1- 7‘2), (34)

and the Reynolds number is Re = a U, /v. The phenomenon of destabilization of this flow
has puzzled many fluid dynamicists for over a century and yet there is no clue regarding the
inner mechanisms responsible for the transition to turbulence in pipe flows [8,11,28,34,35]. All
theoretical and numerical studies suggest that HPF has the peculiarity of being linearly stable
for all Reynolds numbers [20,26,27,29], therefore this flow never suffers a local bifurcation.
However, this flow becomes turbulent in the experiments for Re > 2100 in a natural fashion
[28,34]. In general, HPF instability is characterized by being fast and explosive [8], without
traces of selection patterns or transient coherent structures during the transition. However, some
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0 AJ4 A/2 3A/4 A

Fig. 3. Equilibrium puff for Re = 2200, following [25], flow from left to right. From top to bottom, the
plots show the averaged azimuthal vorticity snapshots at ¢ = 20, 50, 70, 100.

experiments carried out in the past [34,35] reported intermittency patterns, usually termed as
puffs within the range 2100 < Re < 2200. The transition in this case is characterized by a
robust turbulent spot that preserves its length and the axial speeds of its trailing and leading
edges which form the boundary between laminar and turbulent flow. The trailing edge also
contains a recirculation bubble of vorticity that makes this structure easily identificable [35].

One of the difficulties of testing the spectral method in the pipe flow is the absence of other
stable solutions, apart from the basic HPF. Therefore, the solenoidal spectral formulation has
been applied to simulate the aforementioned puffs as well as other transitional regimes [17,19].
To the authors’ knowledge, the first numerical simulation of the puffs was provided by O’Sullivan
and Breuer [25] using a fractional step collocation method in a constant mass-flux computational
pipe. The puff was generated by adding to the basic flow a weakly stable eigenmode suitably
scaled up in amplitude. We have reproduced O’Sullivan and Breuer computations by adding to
the basic flow an helicoidal initial perturbation of the form

ul=ujy,=A <I>§11)0 +c.c, (35)

characterized by being weakly streamwise-dependent and non-axisymmetric. The spatial res-
olution used to simulate the puff is (L, Ny, M,) = (128,32,32) grid points, with aspect
ratio A = 327. With this specifications, the perturbation (35) excites the azimuthal-axial
pairs (n,k) = (£1,£0.06). Following O’Sullivan and Breuer [25], the average of the azimuthal
vorticity,

27
(V% V)o)o = %/0 (V x v)g do), (36)

has been monitored throughout different stages of the transitional dynamics. The results are
shown in figure 3, to be compared with figure 8 of [25] and figure 10 of [35]. To help visualization,
contours of the averaged vorticity have been plotted on an axial-radial cross section and the
regions where this vorticity is negative have been gray coloured to better identify the puff.
The L-shaped puff structure near the axis is clearly shown as well as the recirculation bubble
at its trailing edge. Overall, the simulation above described required nearly two days on a
3 GHz cpu.
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Fig. 4. (a) Amplitude ||u|| of a Cz-forced TWS as a function of the forcing norm |[|f||. (b) Sadddle nodes
of different non-forced TWs of different azimuthal symmetry.

4 Global bifurcations in pipe flow

Since the HPF is linearly stable, its transition can only be explained in terms of global bifurca-
tions. In other words, the topology of the basin of attraction of the basic solution must some-
how be affected by the presence of secondary finite amplitude solutions disconnected from the
basic regime. Something similar occurs in Plane Couette Flow (PCF), i.e., viscous flow between
parallel plates relatively sliding with constant speed. As in the pipe problem, PCF has been
proved to be linearly stable for all Reynolds numbers, yet it becomes turbulent in practice.
Finite amplitude solutions for the PCF were first obtained by Clever and Busse and also by
Nagata by introducing centrifugal or thermal forcing in the Navier—Stokes equations so that
the resulting problem admitts new solutions [7,24]. By tracking these solutions back with a
quasiestatic removal of the forcing, some of this solutions were found to remain in the original
PCF. Same attempts were tried for the HPF by Kerswell and Davey and by Barnes and Kerswell
without success, by introducing centrifugal terms and for elliptical pipes [4,14].

Waleffe’s reformulation of near-wall turbulence theory, originally developed by Benney [5],
leads to the identification an energy bootstrapping mechanism within the boundary layer of
a shear flow. This mechanism, usually termed as Self Sustained Process (SSP) is based on
the process by which streamwise vortices substract energy from the basic solution, leading to a
modulation of the steady flow that generates streaks or inflectional profiles that become unstable
with respect to specific three-dimensional waves [32]. To close the cycle, nonlinear selection rules
must regenerate the streamwise vortices again. These ideas were used by Wedin and Kerswell
and also by Faisst and Eckhardt in order to find a suitable homotopy transformation in the
Navier—Stokes equations so that this cycle could be closed artificially. With this technique,
Travelling Wave Solutions (TWS) have been recently found in the pipe problem [9,33]. Our
next challenge has been to reproduce these new solutions with the solenoidal method.

We proceed to explain how the Petrov—Galerkin scheme is adapted to compute TWs. The
first stage consists of adding a suitable homotopy forcing f to the Navier—Stokes equations
so that streamwise vortices capable of stabilize the sSSP are formed. Next step is to integrate
forward in time the forced system

Aa=Ba+Na)+f. (37)

Typically, f consists of an array of pairs of streamwise vortices. The asymptotic behaviour of
the solution of (37) will typically converge to a forced Tws advected downstream with constant
axial speed. The accuracy of the TWS is improved by searching travelling solutions of the form

L
a= Z &lefilkct’ (38)

l=—L

to equation (37), where c is the axial speed of the wave still to be determined exactly. Introducing
the expansion (38) in (37), the solenoidal spectral scheme leads to a decoupled system of
nonlinear equations for each axial l-mode,
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Fi(a,c) =ilkcAja+Bya+f; + Ny(a) =0, (39)

which are solved with a Newton method. The operators A; and B; are the closure of A and B
over the [-Fourier subspace, respectively. For each system, B; also decouples for each azimuthal
mode, and this property is exploited in order to preconditionate the system with the inverse
operator ]B%fl. Finally, a pseudo-arclength continuation of the forced solution is performed in
the space of parameters (Re, ||f||). In the continuation procedure, the forcing amplitude ||f]| is
progressively decreased until a non-forced TWs is (sometimes) found. This continuation is not
trivial and may lead to very complex results and unexpected folds in the solution branch, as
shown in figure 4(a) for a n = 2-forced solution (Cy) at Re = 2200. Figure 4(b) shows the
amplitude of non-forced TWS of different azimuthal symmetry computed with the continuation
method. In figure 5, a three-dimensional view of a C3-TWs has been represented to sketch its
internal features. In all cases cases computed, excellent agreement has been found with the
earlier works of Faisst and Eckhardt and Wedin and Kerswell [9,33].

Fig. 5. Three dimensional view of a C3-TWS.

5 Conclusions

In this work, the computational performance and adaptability of spectral solenoidal schemes
to the analysis of local and global stability properties of incompressible flows in cylindrical-
annular unbounded domains have been studied. In particular, the developed algorithms are
capable of computing steady and time-periodic secondary stable flows in annular geometry via
forward time integration. In all cases studied for the Taylor—Couette and spiral Poiseuille flow,
the agreement with former experimental and computational works is very good. For cylindrical
geometry, the forward time integration reproduces intermittency patterns already observed in
pipe flow experiments and the agreement with former DNS simulations is also excellent. Due to
the periodicity in the azimuthal and axial coordinate, the formulation of the solenoidal method
leads to a modulated data structure that remarkably simplifies the computation and continua-
tion of steady and time-dependent unstable solutions, as well as the homotopy transformations
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the Navier—Stokes equations. This has been exemplified for a really challenging problem as
e computation of unstable travelling waves in pipe flow. The presented formulation can also

include other effects such as external forcing or stochastic noise. Uncontrolled experimental
noise may be relevant when there is a considerable number of clustered secondary solutions. To

th

e authors’ experience, the inclusion of noise terms has not been necessary to obtain perfect

agreement with the experiments so far. Nevertheless, this and other issues will be addressed in

th

e future.
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