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Abstract

The onset of convection in uids con�ned in a vertical rotating cylindrical annulus with radial gravity and heated
from the inside is analyzed. Solutions to the eigenvalue problem are found numerically for at lids and either no-slip or
stress-free boundary conditions on these surfaces. Except in special cases occurring with the latter boundary conditions
all critical modes precess in the rotating frame. The critical Rayleigh number and the corresponding precession frequency
are computed for low-Prandtl number uids and both types of boundary conditions as a function of the Taylor number,
the radius ratio and the aspect ratio, and the critical modes identi�ed and compared. c© 1999 The Japan Society of Fluid
Mechanics and Elsevier Science B.V. All rights reserved.

1. Introduction

Thermal convection driven by radial heating in an annulus rotating uniformly about its axis has
long been studied as the simplest model of convection in stellar and planetary atmospheres and
planetary interiors. Accurate laboratory experiments have been carried out by several authors to
investigate di�erent aspects of the dynamics resulting from a destabilizing thermal gradient perpen-
dicular to rotation. These depend fundamentally on the direction of gravity. If gravity is parallel
to the temperature gradient a motion-free conduction state is present and the observed dynamics
result from instabilities of this state. In contrast if gravity acts in a direction that is orthogonal
to the temperature gradient (and antiparallel to the rotation vector) the basic state consists of an
axisymmetric thermal wind. These situations are referred to as barotropic and baroclinic, respec-
tively. The former has been studied as a model for convection in the equatorial regions of the
earth’s interior using the centrifugal force to mimic radial gravity and heat input from the outside
(Busse and Carrigan, 1974; Azouni et al., 1986), with emphasis on the Rossby waves generated
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by slanted top and bottom ends. Experimental studies of the baroclinic case have been much more
numerous and help elucidate the dynamics of baroclinic waves at higher latitudes. Such studies
have been carried out either with a free upper surface (Hide and Mason, 1975), or with a rigid
lid (Fein and Pfe�er, 1976; Read et al., 1992), and focus on regimes with highly nonlinear vac-
illating or chaotic behavior. Both situations lead to nonaxisymmetric waves which drift in a pre-
ferred direction in the rotating frame. In the following, we shall refer to such waves as precessing
waves.
The present paper seeks to shed light on the origin of precession in rotating systems. General

theory (Knobloch, 1994) predicts that in such systems all nonaxisymmetric instabilities generically
give rise to precessing states. This prediction is in apparent conict with the early analytical work
of Busse (1970) on the barotropic case with horizontal lids. In this work Busse used stress-free
boundary conditions on the lids and noted the presence of a time-independent two-dimensional so-
lution in the form of Taylor–Proudman columns. This solution is characterized by an exact balance
between the pressure gradient and the Coriolis force. With slanted ends the Taylor–Proudman so-
lution is no longer time independent and takes the form of slowly drifting Rossby waves. In this
paper we show explicitly that precessing Taylor–Proudman columns are present in the barotropic
problem even with horizontal lids, provided only that no-slip boundary conditions are employed.
As noted by Knobloch (1994) and Alonso et al. (1995) these boundary conditions play a crucial
role in that they prevent the existence of the two-dimensional Taylor–Proudman solution. With these
boundary conditions the ow near the lids must necessarily be vortical and hence cannot be bal-
anced by a pressure gradient. In fact, we show that this conclusion holds for any nonstress-free
boundary conditions, in agreement with the abstract theory. These solutions are not to be thought
of as Rossby waves, however, since the precession is not topographically induced. In general, any
three-dimensional solution (i.e., a solution with nonzero axial and azimuthal wave numbers) will
precess, and such states can be the preferred mode of convection even with stress-free boundary
conditions at top and bottom (Alonso et al., 1995). In this paper we extend the calculations of
Alonso et al. to no-slip boundary conditions, focusing on the preferred modes of convection for
low Prandtl number uids and their associated precession frequencies. In the limit of rapid rotation
we expect convection to be nearly two-dimensional with departures from two-dimensionality con-
�ned to thinner and thinner Ekman boundary layers at the top and bottom plates. Since it is these
boundary layers that are ultimately responsible for the precession of the Taylor–Proudman columns
we expect the precession frequency to vanish in the in�nite rotation limit. Similar conclusions were
recently reached by Zhang and Greed (1997) in a study of a rotating annulus with uniform internal
heating.
The remainder of the paper is organized as follows. In Section 2, we summarize the basic equations

and the method used to solve them. In Section 3, we present (in two subsections) the results obtained
for low and high rotation rates. The signi�cance of our results is summarized in Section 4.

2. The equations and numerical method

The stability of the conduction state of a Boussinesq uid that �lls a cylindrical annulus of radius
ratio �= ri=ro and height L rotating about its axis of symmetry is considered. The linearized equations,
nondimensionalized using the gap width d= ro− ri as lengthscale, d2=� as timescale, where � is the
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thermal di�usivity, and �T ≡Ti − To as temperature scale, are

�−1
@u
@t
=−∇p+ Ra�êr +∇2u − 2
 × u; (1a)

@�
@t
=− u

r ln �
+∇2�; (1b)

∇ · u=0: (1c)

Here u=(u; v; w) is the velocity �eld, g=−gêr is the gravitational acceleration, � denotes the
departure of the temperature from its conduction pro�le T (r)=�T , T (r)=Ti +�T ln(r=ri)= ln �, and

 is the rotation rate expressed in viscous units. The Rayleigh, Prandtl and Taylor numbers are
de�ned, respectively, by

Ra =
��Tgd3

��
; �=

�
�
; Ta=4
2;

where � is the coe�cient of thermal expansion and � is the kinematic viscosity.
The problem is solved with no-slip and perfectly conducting boundary conditions on the lateral

walls

u=�=0 on r= ri; ro (2)

and either stress-free or no-slip, thermally insulating boundary conditions at top and bottom:

@u
@z
=
@v
@z
=w=

@�
@z
=0 on z=0; �; (3a)

u= v=w=
@�
@z
=0 on z=0; �: (3b)

Here �≡L=d is the inverse aspect ratio of the annulus.
Eqs. (1)–(3) are solved numerically using a potential formulation (Marqu�es et al., 1993) and the

eigenfunction 	≡ (u; �) is expanded in the form

	(r; �; z; t)= est
∑

lmn

almnTl(r)fm(z)ein�; (4)

where s is the growth rate, Tl(r) is the Tchebyshev polynomial of order l that speci�es the radial
structure of the eigenfunction, and fm(z) represents a trigonometric function for boundary conditions
(3a) and a Tchebyshev polynomial for boundary conditions (3b). The integers (m; n) indicate the
structure in the axial and azimuthal directions, respectively. Although the problem is nonseparable
in r, z when boundary conditions (3b) are used it can be divided into symmetric or antisymmetric
problems with respect to mid-height.
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3. Numerical results

Almost all the results presented in this section correspond to a Prandtl number �=0:025, but as
far as the linear problem is concerned, all of them are qualitatively very similar to those found for
other uids of moderate � values, as will be seen below.

3.1. Low rotation rates

Fig. 1 shows the variation of the Rayleigh number at the onset of convection in a nonrotating
annulus as a function of the radius ratio for both sets of boundary conditions. The remaining param-
eter values are indicated in the �gure. The two parts of the �gure look similar, with changes in the
azimuthal structure of the dominant modes taking place at nearly identical values of �, indicating a
strong constraining inuence of the annular geometry. However, there are also di�erences. In case
(3a) the dashed lines labelled n=2; 3; : : : correspond to m=0 solutions without axial structure, i.e.,
to Taylor–Proudman columns. These solutions are independent of the inverse aspect ratio �. The
n=1 Taylor–Proudman solution has a higher critical Rayleigh number and is not shown. Throughout
most of the � range considered these modes set in �rst. However, there are intervals in 0¡�¡0:3 in
which the �rst instability is to an m=1, n=1 state and not a Taylor–Proudman state. The existence
of these solutions is a manifestation of the tendency of rolls to align themselves parallel to the
shorter dimension of any container: large � favors axisymmetric rolls while small � favors columnar
convection, other parameters being �xed. The three-dimensional states are found near the cross-over
between these two types of states. In contrast, in case (3b) the corresponding solutions always have

Fig. 1. Critical Rayleigh number as a function of radius ratio, �, for no-slip (upper panel) and stress-free (lower panel)
boundary conditions on the lids. The heavy line indicates the envelope. The parameters are Ta = 0, �=1 and �=0:025.
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Fig. 2. Contour plots of the velocity components and temperature perturbation showing the axial structure of the dominant
convection modes in the (r; z) plane for Ta = 102, �=2:5, �=0:5 and �=0:025 and stress-free and no-slip boundary
conditions on the lids. The modes have opposite parities with respect to mid-height; both are three dimensional.

a nontrivial vertical structure which does depend on the value of � (cf. Fig. 2). Because of the no-
slip boundary conditions all (nonaxisymmetric) critical modes are three-dimensional, and the critical
Rayleigh numbers correspondingly higher than in the stress-free case. However, in both cases the
dashed curves correspond to symmetric modes with respect to mid-height while the thin solid lines
correspond to antisymmetric modes. Note that in the stress-free case an antisymmetric mode (m=1)
is sometimes preferred, while with no-slip boundaries the preferred modes are always symmetric,
at least for moderate aspect ratios (cf. Fig. 2). In the former case the axial velocity near the outer
wall is either in the direction of the rotation vector with a recirculation near the inner wall or vice
versa, while in the latter the axial velocity vanishes at mid-height at all radii. We can think of the
antisymmetric solutions as representing the type of ow seen with no-slip boundaries, but only in an
annulus of half the full height. This is because the stress-free boundaries are of Neumann type and
these allow one to construct solutions for a cylinder of twice the height by a simple reection in one
of the boundaries, i.e., the solution shown represents only half a wavelength of the full solution. In
contrast, the solution depicted for the no-slip case represents a complete wavelength. Qualitatively,
similar behavior occurs for all su�ciently small rotation rates provided �& 1.
Fig. 3a, computed with the boundary conditions (3a), shows the critical Rayleigh number versus

the (inverse) aspect ratio � for the dominant modes when the rotation rate is slow (Ta =102). For
�xed �=0:5 and �& 1:5, the azimuthal wave number remains constant (n=4) and only the axial
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Fig. 3. (a) The critical Rayleigh number and (b) the corresponding precession frequency in viscous units as functions of
the (inverse) aspect ratio, �, for stress-free boundary conditions on the lids and Ta = 102.

Fig. 4. (a) The critical Rayleigh number and (b) the corresponding precession frequency in viscous units as functions of
the (inverse) aspect ratio, �, for no-slip boundary conditions on the lids and Ta = 102.

wave number increases when the length of the annulus increases. Because of their three-dimensional
character (see Fig. 2) the precession frequency of these modes is nonzero, as shown (in viscous
units) in Fig. 3b. The heavy line indicates the precession frequency of the dominant modes. Only
for � . 1:3 does the dominant mode take the form of (nonprecessing) Taylor–Proudman columns,
with azimuthal wave number n=5. The corresponding results for no-slip boundary conditions are
shown in Fig. 4 plotted on the same scale as Fig. 3. Observe that the dominant mode is again
an n=4 mode, this time for � & 1:8; for su�ciently large � the inuence of the lids wanes
and the asymptotic azimuthal wave number is determined by the radius ratio which has been kept
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unchanged. For smaller values of � the dominant mode is again n=5; the small interval in �
with a three-dimensional n=3 state seen in Fig. 3 is now absent. Both the n=4 and the n=5
modes are three-dimensional (see Fig. 2) and hence precess, as indicated in Fig. 4b; for � & 3
the precession frequencies are comparable to those found in the stress-free case. Note that there
are, in fact, several di�erent types of n=4 modes, with a transition between them near �=4:6
and near �=5:6 (Fig. 4). These modes di�er in their axial structure, with solid and dashed lines
indicating symmetric and antisymmetric modes, respectively. In each case the system selects a mode
with a shorter axial wavelength; the �rst transition involves modes of opposite parity with respect
to mid-height while the second involves a transition between two symmetric n=4 modes. The latter
appears as a cusp in the thin solid curve labelled n=4 in Fig. 4a with a corresponding jump in
frequency in Fig. 4b. We surmise that the observed transitions take place when the dissipation along
the curved walls of the annulus exceeds that in the Ekman boundary layers at the lids. In contrast,
the preferred solutions for �. 1 (not shown) take the form of Taylor–Proudman columns, and these
are symmetric, with no nodes in the axial direction. Regardless of the boundary conditions these
modes have azimuthal wave number n=5; as already mentioned such modes precess only in the
no-slip case. For Ta =102, �=0:5 this mode ceases to be the preferred one near �=1:8; however,
for su�ciently large Taylor numbers it remains the dominant mode regardless of the value of �.

3.2. High rotation rates

The results presented in this section are for Taylor numbers high enough to have geophysical and
astrophysical interest. Alonso et al. (1995) show in detail that in the stress-free case there is always,
for any value of the parameters � and �, a moderate rotation rate at which convection sets in as
steady Taylor–Proudman columns whose azimuthal structure depends on �. Consequently, we have
focused mainly on the more interesting no-slip case.
Fig. 5 displays the aspect ratio dependence of (a) the critical Rayleigh number and (b) the pre-

cession frequency in viscous units for small, �=0:025, and moderate, �=0:7, Prandtl numbers. The
critical Rayleigh number, Rac, is independent of � for boundary conditions (3a) because columnar
convection is independent of the axial coordinate; in contrast with boundary conditions (3b) it de-
creases with increasing �, reaching asymptotically the stress-free result. This can also be seen in
Fig. 5b, which shows that the frequency tends to zero as �→∞, after �rst crossing the �-axis, i.e.,
for large enough � (small enough aspect ratio) the precession is prograde (!c¡0). The exact lo-
cation of the transition from retrograde-to-prograde precession depends both on the Prandtl number
and the Taylor number. It is important to note that the critical Rayleigh numbers in Fig. 5a are
essentially identical, with only the precession frequency, !c, showing any signi�cant Prandtl number
dependence (see Fig. 5b). This is a consequence of the fact that the precession frequency of these
modes is relatively small.
In Fig. 6 we study the �-dependence of the critical Rayleigh number and the precession frequency

of the dominant mode for no-slip boundary conditions, at �xed �. Fig. 6a resembles Fig. 1. The
change in the wave number n takes place at similar values of �, suggesting again the inuence of
the curvature of the lateral walls. Evidently, the radius ratio exerts a strong inuence on the selected
azimuthal wave number. In both cases we expect to observe, in the nonlinear regime, the phenomenon
of “mode-jumping” with increasing Rayleigh number, as di�erent azimuthal wave numbers become
unstable. However, because of the strong Rayleigh number dependence of the neutral stability curves
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Fig. 5. (a) The critical Rayleigh number and (b) the corresponding precession frequency in viscous units as functions
of the (inverse) aspect ratio, �, for stress-free and no-slip boundary conditions on the lids. The parameters are Ta = 107,
�=0:35; 0:5 and �=0:025; 0:7. The value of n indicates the dominant azimuthal wave number for each �.

Fig. 6. (a) The critical Rayleigh number and (b) the corresponding precession frequency in viscous units as functions of
the radius ratio, �, for no-slip boundary conditions on the lids and Ta = 107.

in Fig. 6a the selected wave numbers are likely to be constant in larger ranges of Rayleigh numbers
with no-slip boundary conditions than with stress-free ones. Note that in the limit �→ 1 Rac and !c
approach, as expected, the results for thermal convection in a rectangular rotating channel and that
here the azimuthal waves travel in a retrograde sense (!c¿0); this is a consequence of the moderate
aspect ratio (�=1). As predicted by Busse (1970) and con�rmed in Fig. 7 the dominant modes
of the no-slip case at high rotation rates are practically independent of the axial position except
near the top and bottom lids, where very thin Ekman boundary layers are present. These small
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Fig. 7. Contour plots of the velocity components and temperature perturbation showing the axial structure of the dominant
convection modes in an (r; z) plane for stress-free and no-slip boundary conditions on the lids. The parameters are Ta = 107,
�=1, �=0:5 and �=0:025.

regions, where the Taylor–Proudman constraint breaks down, control the dynamics of the system
(Greenspan, 1968) and are responsible for the large critical Rayleigh number needed for the onset
of the convection when � is small (see Figs. 5 and 6). To compensate for the viscous action in
these layers a small vertical velocity close to the lids must be present, as shown in the �gure. The
development of these Ekman layers and the transition from fully three-dimensional convection cells
to the almost two-dimensional columns can be seen in Fig. 8a and 8b, where curves of Rac and !c
as a function of the Taylor number are presented. Fig. 8a reveals a gradual change in the slope of the
Rayleigh number curve in the range of Taylor numbers where the Ekman layers begin to develop.
Furthermore, as shown in Fig. 8b, this change coincides with the change from prograde precession
(!c¡0) to retrograde (!c¿0) precession. This transition depends on �, but typically takes place
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Fig. 8. (a) The critical Rayleigh number and (b) the corresponding precession frequency in viscous units as functions of
the Taylor number, Ta, for no-slip boundary conditions on the lids and several radius ratios. The parameters are �=1,
�=0:025. The value of n indicates the dominant azimuthal wave number for each �.

Fig. 9. The evolution of the Ekman boundary layers with increasing Taylor number Ta for �=1, �=0:5 and �=0:025.

between Ta =103 and 105. For constant � . 4:6, the range of prograde frequencies increases with
decreasing �, but !c always becomes positive (retrograde precession) near Ta =105 indicating that an
almost two-dimensional state is achieved. For larger � the asymptotic precession frequency remains
prograde. Support for this argument is also provided in Fig. 9, plotted for �=0:5. At Ta≈ 104 the
radial velocity component starts to atten out at mid-height and by Ta =105 the Ekman structure is
already well developed. From this �gure we can estimate the thickness � of the Ekman layer, and �nd
that �≈ 3×Ta−0:24, thereby con�rming the expected relation �∝
−1=2. This agreement also con�rms
the accuracy of the calculations at high rotation rates. In order to show the evolution with increasing
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Fig. 10. Contour plots of the velocity components and temperature perturbation in an (r; z) plane showing the formation of
the Ekman boundary layers by increasing the Taylor number for �=1, �=0:5 and �=0:025. (a) Ta = 103, (b) Ta = 104,
(c) Ta = 105, (d) Ta = 109.

Taylor number even more graphically, we show in Fig. 10 contour plots of the velocity components
and the temperature perturbation in an (r; z) plane corresponding to a section of a Taylor–Proudman
column for several di�erent Taylor numbers, all drawn on the same scale to indicate the relative
order of magnitude of the variables. For example, at Ta =109, the vertical velocity is more than 30
times smaller than the other velocity components or the dimensionless temperature perturbation. It
is this change in the mode structure that is responsible for the change in the direction of precession
with increasing Taylor number (see Fig. 8b). Interestingly, a similar oscillation in the precession
frequency is also found with stress-free boundary conditions at top and bottom (Greed and Zhang,
1996), provided one restricts attention to three-dimensional modes, indicating that a similar transition
of the vertical mode structure takes place with increasing rotation rate in this case as well.
Finally, in Fig. 11 we have analyzed the degree of inuence of the type of boundary conditions

on the ends of the annulus by imposing the Robin boundary conditions

(1− )@
2w
@z2

+ 
@w
@z
=0 on z=0; �:
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Fig. 11. (a) The critical Rayleigh number and (b) the corresponding precession frequency in viscous units as functions of
the homotopy parameter  for two values of �. The parameters are Ta = 107, �=1. The value of n indicates the dominant
azimuthal wave number for each �.

Here  is a homotopy parameter that provides a continuous connection between stress-free conditions
(=0) and no-slip boundary conditions (=1). Note that the critical Rayleigh number and precession
frequency approach those for the no-slip conditions (=1) only for ¿0:8. For smaller values of 
the requisite Ekman boundary layers do not develop, at least for the parameter values considered.
However, the precession frequency is nonzero for all ¿0, i.e., for all non-Neumann boundary
conditions at the lids.

4. Conclusions

In this paper we have shown that for su�ciently high Taylor numbers convection in a rotating, ra-
dially heated annulus with radial gravity takes the form of nearly two-dimensional Taylor–Proudman
columns. These columns form with increasing Taylor number via a continuous lengthening of the
three-dimensional states that are present in moderate aspect ratio annuli at small rotation rates. The
columns are stationary in the rotating frame if stress-free boundary conditions are employed at the
top and bottom of the annulus, but precess if the more realistic no-slip boundary conditions are used
instead. The direction of this precession depends on the aspect ratio of the annulus. If the annulus
is su�ciently long the precession is prograde, while in a shorter annulus the precession is typically
prograde at intermediate Taylor numbers only but becomes retrograde at high Taylor numbers. The
precession originates in the Ekman boundary layers at the top and bottom which form in the presence
of no-slip boundaries. In these boundary layers the Taylor–Proudman theorem breaks down and the
Coriolis force cannot be balanced by the pressure gradient. We have focused on low Prandtl number
uids for which the precession is so slow that the �rst bifurcation is nearly steady and therefore
almost independent of the Prandtl number. Such solutions are characteristic of low viscosity uids
rather than those with high thermal di�usivity. However, for �xed Taylor number there is always a
transition to the latter case once the Prandtl number becomes su�ciently small. Conversely, for a
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�xed but low Prandtl number the system behaves like a high thermal di�usivity one at small Taylor
numbers but a low viscosity one at high Taylor numbers. Associated with the transition between
these two regimes is the topology change revealed graphically in Fig. 10.
Our high Taylor number results are in qualitative agreement with the large Taylor number asymp-

totics carried out by Zhang and Greed (1997) for a uid with uniform internal heating who showed
that

Rac =Ra0 + C
Ta1=4

�
;

where Ra0 is the critical Rayleigh number for the stress-free problem and C is a Prandtl-number
independent constant. Zhang and Greed also noted that the precession frequency vanished in the high
Taylor number limit but did not determine its parameter dependence at �nite Ta. It is important to
realize that for such high Taylor number columns the ow outside the boundary layers is potential
and hence that nonzero helicity is con�ned to the boundary layers. Such ows would therefore be
very ine�cient at generating magnetic �elds by the dynamo mechanism.
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