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The effects of weak breaking of the midplane reflection symmetry on the 1:2 steady state mode
interaction in Rayleigh–Bénard convection are discussed in a PDE setting. Effects of this type
arise from the inclusion of non-Boussinesq terms or due to small differences in the boundary
conditions at the top and bottom of the convecting layer. The latter provides the simplest
realization, and captures all qualitative effects of such symmetry breaking. The analysis is
performed for two Prandtl numbers, σ = 10 and σ = 0.1, representing behavior typical of large
and low Prandtl numbers, respectively.

1. Introduction

Midplane reflection symmetry plays a profound role
in the theory of Rayleigh–Bénard convection. Its
best known effect is the breaking of the degener-
acy between up- and down-hexagons and the con-
sequent preference for one or other hexagon type.
This is because in three dimensions the loss of mid-
plane reflection symmetry destabilizes convection in
the form of parallel rolls and turns the bifurcation
to hexagons into a transcritical bifurcation leading,
at onset, to a hysteretic transition to one or other
hexagon type. These effects are absent in systems
with midplane reflection symmetry, i.e. systems
in which the boundary conditions at the top and
bottom are identical and non-Boussinesq effects are
absent or ignored. It follows that the inclusion of
non-Boussinesq terms or a change in the boundary
conditions at the top results in a marked prefer-
ence for hexagons [Busse, 1967] even though stable
hexagons can and do occur in systems with exact re-

flection symmetry [Golubitsky et al., 1984; Clever &
Busse, 1996]. Since hexagons do not exist in two di-
mensions it is usually assumed that midplane sym-
metry plays no qualitative role in two dimensions.
While this is indeed so for the transition to parallel
rolls it is no longer true when mode interactions be-
tween n and n+1 rolls are considered. In this paper
we discuss the most important of these mode inter-
actions, the 1:2 interaction. This interaction has
been studied abstractly, i.e. in the context of the
amplitude equations governing the weakly nonlin-
ear evolution of the modes, by Dangelmayr [1986]
and, in more detail, by Armbruster et al. [1988],
Jones and Proctor [1987], and Proctor and Jones
[1988]. The analysis of these authors is based on the
presence of the symmetry O(2) arising from trans-
lations and reflection in a vertical plane when peri-
odic boundary conditions are imposed in one direc-
tion. No midplane symmetry is therefore present.
The authors identify different types of dynamical

27



28 I. Mercader et al.

behavior in the resulting normal form equations,
including attracting structurally stable heteroclinic
cycles. The corresponding problem with midplane
reflection symmetry was considered by Busse and
Or [1986] and Armbruster [1987] who showed that
this type of behavior is absent in the correspond-
ing normal form equations, and computed the re-
quired normal form coefficients for Boussinesq con-
vection with stress-free boundaries at the top and
bottom. Non-Boussinesq convection was studied by
Manogg and Metzener [1994] from the same point
of view, while Cox [1996] considered the long wave
equations governing convection between nearly in-
sulating boundaries with different combinations of
stress-free and no-slip boundaries at the top and
bottom.

Since the normal form analysis is necessarily
limited in its applicability we consider in the present
paper the full partial differential equations (PDEs)
governing Boussinesq convection. This allows us to
describe a larger neighborhood of the mode inter-
action point, while focusing at the same time on
the effects of small symmetry breaking. We expect
our results to capture all the effects of the break-
ing of the midplane reflection symmetry sufficiently
close to the mode interaction point; moreover, we
argue on the basis of genericity that the transitions
that are found farther away from this point are also
correctly described, although these need not all oc-
cur in any given problem. As a result our analysis
also describes the effects of all small non-Boussinesq
terms and small asymmetries in the boundary con-
ditions such as those arising from the use at the
top of Newton’s law of cooling with a large Biot
number. We anticipate that our results will also
describe qualitatively convection in two-layer sys-
tems or other systems such as Bénard–Marangoni
convection (e.g. [Echebarŕıa et al., 1997]) possess-
ing a parameter that describes the extent to which
the midplane symmetry is broken. Application
to the interaction of turbulent boundary layers in
narrow channels is also envisaged [Holmes et al.,
1996].

The paper is organized as follows. In Sec. 2
we summarize the equations and boundary condi-
tions employed. The results obtained by numerical
continuation are presented in Sec. 3 and focus on
Prandtl numbers σ = 10 and 0.1, these being repre-
sentative of high and low Prandtl number fluids. In
Sec. 4 we provide a theoretical explanation of our
results based on symmetry arguments. The paper
concludes with a discussion in Sec. 5.

2. Basic Equations

We consider two-dimensional Boussinesq thermal
convection in a periodic horizontal layer and include
the possibility of generating a nontrivial mean flow.
Consequently, we split the solenoidal velocity field
v(x, z, t) into its mean and fluctuating components,

v = U(z, t) + v′(x, z, t) ,

where U = (U, 0), v′ = (−∂zχ′, ∂xχ′) and v′ =
χ′ = 0, with the overline indicating an average over
the horizontal period. The temperature T (x, z, t)
is written in the nondimensional form

T =
1

2
− z + θ(x, z, t) .

Equations for U , χ′ and θ are obtained from the
horizontal average of the Navier–Stokes equations,
the deviation of the vorticity equation from its hor-
izontal average and the heat equation. In nondi-
mensional form these are

(∂t − σ∂2
zz)U + ∂zv′xv

′
z = 0 , (1a)

(∂t + U∂x − σ∇2)ω′ +Raσ∂xθ + ∂2
zzU∂xχ

′

+
∂(χ′, ω′)

∂(x, z)
− ∂(χ′, ω′)

∂(x, z)
= 0 , (1b)

(∂t + U∂x −∇2)θ − ∂xχ′ +
∂(χ′, θ)

∂(x, z)
= 0 , (1c)

where ω′ = −∇2χ′, lengths and time have been
expressed in units of the layer depth and thermal
diffusion time in the vertical, respectively, and Ra
and σ are the Rayleigh and Prandtl numbers. The
boundary conditions are taken to be periodic in x
with period L. The top and bottom boundaries are
perfectly conducting,

θ = 0 at z = ±1

2
, (1d)

with the velocity boundary conditions

β∂zU + (1− β)U = χ′ = β∂2
zzχ
′ + (1− β)∂zχ

′

= 0 at z =
1

2
, (1e)

and

U = χ′ = ∂zχ
′ = 0 at z = −1

2
. (1f)
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The equations are thus defined on the domain
(x, z) ∈ [0, L]× [−1/2, 1/2]. The resulting problem
is solved numerically for β = 0 (the symmetric case)
and 0 < β � 1 (weakly broken midplane reflec-
tion symmetry) using a spectral Galerkin–Fourier
technique in x and collocation-Chebyshev in z. In
the following we define the quantity α ≡ 2π/L
and compute bifurcation diagrams as a function of
Ra for values of α on either side of αc, the loca-
tion of the 1:2 resonance. This point, (Rac, αc) ≈
(2022, 2.165), is determined by the intersection of
the n = 1 and n = 2 neutral stability curves for the
conduction state (see Fig. 1), and is independent of
the Prandtl number and almost independent of β
for the small values of β considered here.

Insight into the results can be gained by consid-
ering the symmetries of the basic states that emerge
from the conduction state as Ra is increased, and
the (usually smaller) symmetries of states created
in subsequent (secondary) bifurcations. These sym-
metries depend on the presence or absence of the
midplane reflection symmetry. When β = 0,
Eqs. (1) are equivariant under the two reflections,

R0 : (x, z)→ (−x, z) , (U, χ′, θ)→ (−U, −χ′, θ),
(2a)

κ : (x, z)→ (x, −z) , (U, χ′, θ)→ (U, −χ′, −θ),
(2b)

Fig. 1. The location of the 1:2 resonance in the (Ra, α)
plane for Rayleigh–Bénard convection with no-slip bound-
ary conditions. Here α = 2π/L and L is the spatial pe-
riod: Rac = 2021.6, αc = 2.1648. The open circles indicate
the location of the primary bifurcations when α = 2.12 and
α = 2.2.

and translations through a distance `,

T` : (x, z)→ (x+ `, z) , (U, χ′, θ)→ (U, χ′, θ) .
(2c)

The reflection (2a) is with respect to an arbitrarily
chosen origin in x; reflections R`0 with respect to
a plane x = `0, say, are obtained by conjugation:
R`0 = T`0R0T−`0 . These symmetries generate the
symmetry group Γ = O(2) × Z2. The conduction
state U = χ′ = θ = 0 is invariant under this group.
The primary instability of this state is to a nontriv-
ial roll state (0, χ′, θ) that breaks the translation
symmetry T` but is invariant under a reflection R`0
for an appropriate `0 and the shift-reflect operation
Ta/2κ, where a ≡ L/n is the pattern wavelength
[Prat et al., 1998]. Each of these symmetries is a
generalized reflection in the sense that its square is
the identity. It follows that the symmetry group of
such a roll state is G ≡ Z2 × Z2 = D2, a subgroup
of O(2)×Z2 [Weiss, 1990; Moore et al., 1991; Prat
et al., 1995]. In contrast an individual roll is invari-
ant only under a 180◦ rotation. For a pattern with
a node at x = 0 this symmetry is P = Ra/4κ and
is sometimes referred to as a point symmetry. This
symmetry acts on the fields as follows:

P : (x, z)→
(
a

2
− x, −z

)
,

(U, χ′, θ)→ (−U, χ′, −θ) .
(2d)

Note that P = R0Ta/2κ (since T`0R0T`0 = R0) and
so P ∈ G. In the following we shall use the symbol
R to refer to the reflection R`0 for suitable `0.

When β > 0 the reflection κ is broken and
Γ = O(2). The symmetry of the primary flow is
thus G ≡ Z2, i.e. R [Crawford & Knobloch, 1991].
In either case the symmetry R of the primary flow
implies that no mean flow is present: U(z) ≡ 0.
This is not necessarily so for the states produced
in secondary bifurcations from the primary rolls, if
these break the symmetry R of the roll state.

When β = 0 the presence of the D2 symme-
try implies that a roll state of wavelength a can be
written in the form

χ′(x, z) =
K∑
k=1

M∑
m=0

χkmfm(2z) sin

(
2πkx

a

)
,

θ(x, z) =
K∑
k=0

M∑
m=0

Tkmgm(2z) cos

(
2πkx

a

)
,
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relative to a suitable origin. Here k + m is odd,
and the functions fm(2z), gm(2z) are suitable com-
binations of Chebyshev polynomials satisfying the
boundary conditions. These functions are odd when
m is odd and even when m is even. The linear sta-
bility of such a roll state is determined as in [Prat
et al., 1995, 1998]. When β = 0 the possible pertur-
bations split into four disjoint classes, those that are
invariant under the full group G ≡ D2, and those
that are invariant under the three nontrivial sub-
groups of G generated by the generalized reflections
P , Ta/2κ and R, respectively [Prat et al., 1998].
A zero eigenvalue with respect to perturbations of
the first type indicates a saddle-node bifurcation.
The next two classes of perturbations, P and Ta/2κ,
generate solutions with antisymmetric and symmet-
ric mean flow profiles U(z), respectively. Steady
state bifurcations of this type produce secondary
branches of tilted cells, and of traveling waves. The
remaining perturbation type results in a bifurcation
to a secondary branch of solutions that are invari-
ant under R; such solutions are not associated with
a mean flow. Note that these conclusions apply to
fully nonlinear roll states.

These considerations also apply to the state
n = 2 provided perturbations of period L/2 are
considered. However, in a domain of period L this
state can also lose stability with respect to pertur-
bations of wavelength L corresponding to an insta-
bility of n = 2 with respect to the state n = 1.
Such an instability is a spatial subharmonic insta-
bility and is characterized by a Floquet multiplier
1/2, cf. [Prat et al., 1998]. It produces a secondary
branch of solutions with smaller symmetry that can
be computed using the expansion

U(z) =
M∑
m=0

Umg̃m(2z) ,

χ′(x, z) =
K
′∑

k=−K

M∑
m=0

χkmfm(2z)eikαx ,

θ(x, z) =
K∑

k=−K

M∑
m=0

Tkmgm(2z)eikαx ,

with χkm and Tkm now complex and satisfying
χ−km = χ∗km, T−km = T ∗km. The prime indicates
that the k = 0 term is absent. The stability of these
solutions is calculated as for the D2-symmetric rolls
although the perturbations no longer split into four
subgroups. Note that for β = 0, g̃m = gm; however,

this is no longer so once β > 0 because g̃m now
satisfies different boundary conditions than gm.

We restrict the analysis that follows to solu-
tions that are either steady, or that are steady in
a suitably moving reference frame, i.e. to traveling
waves (hereafter TW). The speed of the frame (the
phase velocity c of the wave) is determined as part
of the solution. All of these solutions (including the
n = 1 steady state for β 6= 0) can be computed
using the above general expansion, with x replaced
by x − ct for the TW. In all cases the symmetry
properties guarantee the existence of TW solutions
with phase velocity ±c; the sign of c is therefore
arbitrary. The computations employ a Newton–
Raphson iterative scheme with K ≤ 16, M ≤ 16 or
M ≤ 20. This resolution suffices for the relatively
modest values of the Rayleigh number considered
because the Prandtl number used is not very small.
For small values of β considered no Hopf bifurca-
tions to standing waves were detected.

There is a fundamental reason for computing
TW in problems of this type. This is because the
breaking of the midplane reflection κ allows some of
the secondary steady solutions to drift [Matthews
et al., 1992; Knobloch, 1996]. This is the case for
the point-symmetric solutions P but not for the so-
lutions with the symmetries R or G since both of
these retain the symmetry R even with broken mid-
plane reflection symmetry (see Sec. 4). However,
TW can be produced in a secondary bifurcation
even when β = 0, provided the instability breaks
both the R and P symmetries that are then present.
Of course, when β > 0 the shift-reflect symmetry
of this state is lost but it remains a traveling wave.
More details about the symmetries of the possible
secondary solution branches can be found in [Prat
et al., 1998].

3. The Bifurcation Diagrams

Our results for σ = 10 are summarized in Figs. 2
and 3, and those for σ = 0.1 in Figs. 4 and 5. Of
these the first figure in each case summarizes the
results in schematic form, since the quantitative re-
sults presented in Figs. 3 and 5 mask some of the
details. In these figures steady solutions are indi-
cated by solid lines, while traveling waves are in-
dicated by dashed lines. The figures also give the
signs of the two dominant eigenvalues, with a mi-
nus sign indicating stability. The schematic figures
consist of four bifurcation diagrams, showing the
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(a) (b)

(c) (d)

Fig. 2. Schematic bifurcation diagrams for σ = 10. (a) α = 2.2, β = 0. (b) α = 2.2, β = 10−4. (c) α = 2.12, β = 0.
(d) α = 2.12, β = 10−5. The solid (dashed) lines denote steady (traveling) solutions. Secondary bifurcations are indicated by
solid dots and stability by the signs of the two leading eigenvalues, with + (−) indicating instability (stability).

results for β = 0 and 0 < β � 1 and the two
choices α = 2.2 > αc and α = 2.12 < αc. For
α > αc the mode n = 1 sets in prior to n = 2 and
vice versa; when β = 0 this is a pure mode, but this
is no longer the case when β > 0, i.e. when β > 0
the n = 1 solutions contain some n = 2 contribu-
tion as soon as Ra > Rac. In contrast the n = 2
mode is always a pure mode (see Sec. 4). Since
the distinction between β = 0 and 0 < β � 1 is al-
most invisible in the Nusselt number plots shown in
Figs. 3 and 5 these show the results for β = 0 only.
Additional plots of the phase velocity of any trav-
eling wave present are also included in these figures
since these distinguish clearly between branches of
steady and traveling solutions even if these have
almost identical heat transport properties.

3.1. Results for σ = 10

Figure 2(a) summarizes the results for β = 0,
i.e. for the problem with midplane symmetry, and
α = 2.2 > αc shown in Fig. 3(a). The n = 1 mode
bifurcates first and remains stable for all values of
Ra. This bifurcation is closely followed by a bi-
furcation to the n = 2 mode; this state is initially
unstable but gains stability already at small am-
plitude (as measured by Nu − 1, where Nu is the
Nusselt number), when a pair of (unstable) sec-
ondary branches bifurcates from it. One of these,
labeled P, is point-symmetric, while the other, la-
beled R, is symmetric with respect to the reflection
R. Figure 6 indicates the form of the different types
of solutions. No tertiary bifurcations to traveling
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Fig. 3. Numerical results for σ = 10. (a) The Nusselt number Nu − 1 as a function of Ra for α = 2.2, β = 0, (b) the same
but for α = 2.12, β = 0. (c) The phase velocity c of traveling waves as a function of Ra for α = 2.2, β = 10−4, (d) the same
but for α = 2.12, β = 10−5. The sign of c is arbitrary since waves can always travel to the left or the right.

waves were found, even for values of α as close to αc
as α = 2.17, in contrast to the case α < αc discussed
below and the prediction of Armbruster [1987] for
stress-free boundaries and σ > 0.7.

Figure 2(b) shows what happens when β =
10−4. Although the n = 1 branch is essentially

unaffected, the perturbation splits the multiple bi-
furcation from the n = 2 branch into two succes-
sive bifurcations. Both of these are to reflection
symmetric states, hereafter referred to as R1 and
R2 (see Sec. 4). The state corresponding to the
P state now bifurcates in a tertiary steady state
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(a) (b)

(c) (d)

Fig. 4. Schematic bifurcation diagrams for σ = 0.1. (a) α = 2.2, β = 0. (b) α = 2.2, β = 10−4. (c) α = 2.12, β = 0.
(d) α = 2.12, β = 10−4.

bifurcation from R2 and is a traveling wave. Fig-
ure 3(c) shows that this bifurcation is a parity-
breaking bifurcation, i.e. a steady state bifurcation
from a circle of steady states that breaks the sym-
metry R. As a consequence the phase velocity of
the TW vanishes at the tertiary bifurcation and
increases away from it as the square root of the
distance from the bifurcation (see, e.g. [Knobloch
& Moore, 1990]). However, these solutions remain
unstable.

Figures 2(c) and 2(d) show the corresponding
results for α = 2.12 < αc. When β = 0 the n = 2
mode now bifurcates first and again remains sta-
ble for all values of Ra. However, there are now
two successive bifurcations from the initially unsta-
ble n = 1 branch whose combined effect is to sta-

bilize the n = 1 branch at larger amplitudes [see
Figs. 2(c) and 3(b)]. Moreover, in this case the pre-
dicted tertiary branch of traveling waves connecting
the resulting R and P branches [Armbruster, 1987]
is present, with the TW branch bifurcating from the
P branch at Ra = 2145.7 and connecting to the R
branch at Ra = 2145.9. We remark that for slightly
smaller values of α the bifurcations to the R and P
branches trade places and that in this process the
TW branch disappears. An example for α = 2.08
can be found in [Prat et al., 1998], Fig. 8(a). Thus
the predicted TW are present only very close to the
mode interaction point. These important details
are absent from Fig. 2 of [Armbruster, 1987].

Due to the presence of the TW the capture
of the qualitative effects of symmetry breaking
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requires that we use an even smaller value of β,
viz. β = 10−5. Figure 2(d) summarizes the results.
These differ substantially from both Figs. 2(b) and
2(c), largely because of the behavior of the n = 1

branch. Behavior of this type is made possible be-
cause the n = 1 branch is a mixed mode when
β 6= 0. As a result it can turn into other mixed
mode branches with the same symmetry without a
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Fig. 5. Numerical results for σ = 0.1. (a and c) The Nusselt number Nu− 1 and the phase velocity c as functions of Ra for
α = 2.2, β = 0, (b and d) the same but for α = 2.12, β = 0. (e and f) The phase velocity c as a function of Ra for α = 2.2,
β = 10−4, (g) the same as (e) but for α = 2.12, β = 10−4. In (e) and (f) the notation TW(R1) refers to the branch TW1 in
Fig. 4(b). The sign of c is arbitrary since waves can always travel to the left or the right.
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Fig. 5. (Continued )

bifurcation. As in Fig. 2(b) the branch R splits
into two steady mixed mode branches R1, R2 while
the P branch turns into a TW. The lower of the
two n = 1 branches consists of an amalgam of the
original n = 1 branch and R1, and increases mono-
tonically in amplitude. It possesses two secondary

bifurcations connected by a secondary TW branch.
The resulting bifurcation “bubble” [see Figs. 2(d)
and 3(d)] is a consequence of the bifurcation to TW
present on the R branch when β = 0, and consists in
part of one of the resulting TW and in part the drift-
ing P states. In contrast the upper n = 1 branch is



(a) (b)

(c) (d)

(e)

Fig. 6. Instantaneous streamlines of steady and traveling
wave convection when β = 0, σ = 0.1, α = 2.2 andRa = 3000.
Light (dark) shading indicates hot (cold) fluid. (a) The solu-
tion n = 1, (b) the solution n = 2, (c) the solution R, (d) the
solution P, (e) the solution TW.

36
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an amalgam of the upper part of the original n = 1
branch and the R2 branch, connected via a saddle-
node bifurcation. The large amplitude TW branch
produced from the P branch bifurcates below the
saddle-node [see Fig. 2(d)]. Consequently the whole
of the n = 1 branch above the saddle-node is sta-
ble. As shown in Fig. 3(d) the phase velocity of
the TW along this branch passes through a sharp
maximum. This is a consequence of the fact that
the initial part of this branch was a TW branch
even when β = 0. Consequently the drift speed
along this part of the branch is necessarily substan-
tially larger than the slow drift of the P states that
form the remainder of the TW branch caused by
the weak breaking of the midplane reflection sym-
metry. Note that even with β small the computed
bifurcation diagram lacks the expected the saddle-
node bifurcation on one of the TW segments that
should be inherited from the break-up of the TW
present when β = 0. This is because the β = 0 TW
branch is almost vertical [see Fig. 2(c)].

3.2. Results for σ = 0.1

For low Prandtl numbers the situation is more
complex. Figure 4(a) summarizes the results for
σ = 0.1, β = 0 and α = 2.2 > αc. The basic
features of this plot remain the same as for σ = 10,
with two important differences. First, the R branch
terminates on the n = 1 branch at Ra = 4980 with
the n = 1 branch unstable at higher Rayleigh num-
bers. Two branches of TW are also present. A short
segment in 2155 < Ra < 2190, called TW(RP) in
Fig. 5(c), connects the R and P branches, with a sec-
ond bifurcation to TW occurring on the P branch
at Ra = 2710. The latter produces the branch
labeled TW(P) in Fig. 5(c). These bifurcations
are all parity-breaking bifurcations from circles of
reflection-symmetric states (i.e. from states with a
symmetry that involves R) and so generate unsta-
ble TW via steady state bifurcation. These results
differ from the predictions of Armbruster [1987] for
σ < 0.297 and stress-free boundaries both in the
presence of the TW branches and in the absence of
a termination of the P branch.

As soon as the midplane reflection is broken
the P branch becomes a TW while the multiple
bifurcation on the n = 2 branch splits into two
successive bifurcations to R-symmetric states, at
Ra = 2097.15 and Ra = 2097.20, as for σ = 10
(see Sec. 4). However, the presence of the TW
when β = 0 complicates this process considerably.

Figure 4(b) shows what happens when β = 10−4.
What had been the P branch is now a TW branch
that connects smoothly with the TW branches pro-
duced by the splitting of the original TW branches
by the broken midplane reflection symmetry. As a
result there is TW “bubble” on the R2 branch in
the range 2098 < Ra < 2155 [called TW(R2R2) in
Fig. 5(f)] with a saddle-node bifurcation at Ra =
2183. There is also a bifurcation to TW on the
R1 branch at Ra = 2155 with the resulting TW,
called TW(R1) in Fig. 5(f), extending to large Ra,
and a disconnected segment, called TW in Fig. 5(e),
with a saddle-node bifurcation at Ra = 2736. Fig-
ure 4(b) shows that the bifurcations to TW(R1) and
TW(R2R2) are distinct, despite the appearance of
Fig. 5(f). The phase velocity plots are again simple
to interpret; we emphasize that the sign of c is arbi-
trary and was chosen to be positive or negative for
clarity only. For example, the TW branch that bi-
furcates from R1 has initially a substantial phase
velocity c because this part of the branch arises
from the short TW segment in the β = 0 case [see
Fig. 5(f)]. The phase velocity then drops to a small
value because the middle part of the branch con-
sists of drifting P states, before the phase velocity
picks up again when the branch turns into TW1,
i.e. one of the TWs in the β = 0 case split by the
small value of β [see Figs. 5(e) and 4(b)]. A similar
argument applies to the disconnected TW branch
in Fig. 4(b). In fact, our calculations indicate that
at large Ra the phase velocity on what was the P
branch may change sign, indicating that the corre-
sponding TW drifts slowly in a direction opposite
to that of the original TW. This is the case, for ex-
ample, when β = 0.01. Of particular significance in
what follows is the fact that the R1 branch connects
smoothly to the n = 1 branch. As a result the n = 1
branch has only a finite extent, 2010 < Ra < 4930,
before annihilation in a collision with the R1 branch
at Ra = 4930, and its role at large Ra is assumed
by the R2 branch.

Figures 4(c) and 4(d) show what happens when
α = 2.12 < αc. When β = 0 the n = 2 branch is sta-
ble throughout. The n = 1 branch is also supercrit-
ical but is unstable throughout, with a secondary
bifurcation to an unstable P branch at Ra = 2150,
followed by a tertiary bifurcation to unstable TW
at Ra = 3220 [see Figs. 5(b) and 5(d)]. Once again
this is a parity-breaking bifurcation from a circle of
P states. The absence of an R branch is particularly
noteworthy, since the n = 1 branch now remains
unstable, eliminating the possibility of bistability
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between the n = 1 and n = 2 branches. When
β = 10−4 the diagram breaks up in an obvious way
[see Fig. 4(d)]: the P branch becomes a TW and
the original TW splits into two, labeled TW1 and
TW2, forming a branch of traveling waves that ex-
tends from a bifurcation on the n = 1 branch to
large amplitudes, and a disconnected traveling wave
branch formed from what was the large amplitude
P branch and TW2. As a result the former branch
is composed of an initial part that is a drifting P
state and hence is characterized by a relatively small
value of c, followed at larger values of Ra for TW1,
i.e. a part that was a TW even in the unperturbed
system, and hence is characterized by a substan-
tially larger phase velocity [see Fig. 5(g)]. For the
same reason we expect the phase velocity along the
latter branch to drop dramatically near the saddle-
node bifurcation as one traverses the disconnected
branch towards larger amplitudes. Once again these
results differ substantially from those of Armbruster
for stress-free boundaries.

4. Interpretation of the Results

The results of the preceding section reveal three
principal effects of breaking of the midplane reflec-
tion symmetry. First, the R branch splits into two
branches, called R1 and R2. Second, the P branch
begins to drift, forming a traveling wave with a
small phase velocity, proportional to β. Third, the
TW branch splits into two traveling wave branches,
labeled TW1 and TW2. Using these observations
it is a simple matter to construct the “unfolded”
bifurcation diagrams.

In this section we explain the reason why the
loss of midplane reflection leads to these effects.
This is easiest done by identifying the correspond-
ing transitions in the amplitude equations for the
1:2 mode interaction, although the conclusions ob-
tained are valid quite generally. We suppose there-
fore that (Ra − Rac)/Rac � 1, (α − αc)/αc � 1,
and write the (total) streamfunction χ in the form

χ(x, z, t) = Re(iveikx + iwe2ikx)f(z) + · · · .

Here f(z) is the vertical eigenfunction, and v and w
denote the complex amplitudes of the two modes.
Since the system has O(2) symmetry these ampli-
tudes must satisfy equations equivariant with re-
spect to the following two operations,

(v, w)→ (ve−ik`, we−2ik`) , (v, w)→ (v, w) ,

corresponding, respectively, to translations x →
x + ` of the origin and reflections x → −x. The
latter is a consequence of the fact that χ is a pseu-
doscalar under reflections. The most general equa-
tions satisfying this requirement take the form

v̇ = pv + qwv , ẇ = rw + sv2 ,

where p, . . . , s are real invariant functions, i.e. func-
tions of the three elementary invariants |v|2, |w|2
and Re v2w. To third order in the amplitudes we
therefore have [Dangelmayr, 1986]

v̇ = µ1v + a1|v|2v + b1|w|2v + c1wv , (3a)

ẇ = µ2w + a2|v|2w + b2|w|2w + c2v
2 . (3b)

Here µ1, µ2 are the unfolding parameters. These
equations are analyzed by Armbruster et al. [1988],
and by Proctor and Jones [1988]. The equations
possess pure n = 2 solutions of the form (0, w) but
no solutions of the form (v, w) = (v, 0), i.e. no pure
modes with n = 1. As a result the bifurcation at
µ1 = 0 leads to a branch of mixed modes. Owing
to translation invariance there is a whole circle of
both solution types, with an associated zero eigen-
value. The pure n = 2 modes may lose stability to
mixed modes of the form (v, w), vw 6= 0, at which
an additional simple eigenvalue passes through zero.
Setting v = r1e

iθ1 , w = r2e
iθ2 and ψ = 2θ1 − θ2,

Eqs. (3) become

ṙ1 = µ1r1 + a1r
3
1 + b1r

2
2r1 + c1r1r2 cos ψ , (4a)

ṙ2 = µ2r2 + a2r
2
1r2 + b2r

3
2 + c2r

2
1 cos ψ , (4b)

θ̇1 = −c1r2 sin ψ , θ̇2 =
c2r

2
1

r2
sin ψ .

Thus

ψ̇ = −
(
c2r

2
1

r2
+ 2c1r2

)
sin ψ . (4c)

If we take θ2 = 0 the mixed modes take the form
M0 = (r1+, r2+), invariant under R0, and Mπ =
(r1−eiπ/2, r2−), invariant under Rπ/2k. These are
the solutions R1 and R2 identified in Sec. 3. If
c1c2 < 0 these mixed modes can lose stability at a
parity-breaking bifurcation to a TW. Such TW are
fixed points of the relative phase ψ, although the in-
dividual phases θ̇1, θ̇2 drift in time. In particular, if
TW+ = {r1, r2, ψ} is a steady solution of Eqs. (4),
so is TW− = {r1, r2, −ψ}. Since TW− = R0TW+

the TW± represent waves traveling in opposite di-
rections, i.e. the parity-breaking bifurcation creates
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waves that travel either to the left or to the right,
depending on initial conditions. Hopf bifurcations
from the mixed modes to standing waves can also
occur but are not considered further since they do
not occur in the PDEs.

The absence of a solution of the form (v, w) =
(v, 0), i.e. a pure n = 1 mode, is an important prop-
erty of Eqs. (3). However, in the presence of mid-
plane reflection symmetry the symmetry group of
the problem is not O(2) but O(2) × Z2. The mid-
plane reflection κ ∈ Z2 takes (v, w) into (−v, −w)
whenever f(z) is even; otherwise it has no effect.
Once again this is because the streamfunction χ is
a pseudoscalar under reflections. Since f(z) is even
for the modes of interest here the extra reflection
cannot be omitted. This requires a change in the
amplitude equations describing the 1:2 resonance
which now read [Armbruster, 1987]

v̇ = µ1v + a1|v|2v + b1|w|2v + c1w
2v3 , (5a)

ẇ = µ2w + a2|v|2w + b2|w|2w + c2v
4w . (5b)

In these equations we have retained only the lowest
order resonant terms; three other nonresonant fifth
order terms in each equation have been omitted.
Observe that the midplane reflection symmetry has
had a dramatic effect on the structure of these equa-
tions. Pure n = 1 solutions (v, 0) now exist. More-
over, mixed modes of the form (v, w), vw 6= 0, and
symmetries R (ψ = 0) and P (ψ = π/2) bifurcate
from both pure modes. The bifurcations from the
n = 1 pure mode are due to simple zero eigenval-
ues, while that from the n = 2 pure mode is due to
a double zero eigenvalue. Consequently, the mixed
modes bifurcate in succession from the n = 1 pure
mode but simultaneously from the n = 2 modes, in
agreement with the numerical results of Sec. 3.

Equations (5) can be written in the alternative
form

ṙ1 = µ1r1 + a1r
3
1 + b1r

2
2r1 + c1r

3
1r

2
2 cos 2ψ , (6a)

ṙ2 = µ2r2 + a2r
2
1r2 + b2r

3
2 + c2r

4
1r2 cos 2ψ , (6b)

ψ̇ = −r2
1(c2r

2
1 + 2c1r

2
2) sin 2ψ , (6c)

showing the presence of mixed modes with ψ = 0,
π/2, π, 3π/2. If θ2 = 0, the mixed mode M0 =
(r1+, r2+) is invariant under R0, Mπ/2 = (r1−eiπ/4,
r2−) is invariant under P = R3π/4kTπ/kκ, while
Mπ, M3π/2 are related to M0 and Mπ/2 us-

ing appropriate symmetries: Mπ = (r1+e
iπ/2,

r2+) = κR0T−π/2kM0, M3π/2 = (r1−ei3π/4, r2−) =

T−π/kR0Mπ/2. Here Rl0 is defined to be Tl0R0T−l0 ,
as before.

The effects of weak breaking of the midplane re-
flection symmetry can be incorporated by including
in Eqs. (5) small quadratic terms:

v̇ = µ1v + a1|v|2v + b1|w|2v + β1wv + c1w
2v3 ,

ẇ = µ2w + a2|v|2w + b2|w|2w + β2v
2 + c2v

4w ,

where β1, β2 are both of order β. Although the de-
tailed properties of these equations will be reported
elsewhere, we use them here to identify the origin
of the splitting of the R and TW branches observed
in Figs. 2 and 4 when 0 < β � 1, as well as the
origin of the drift of the P states.

In the (r1, r2, ψ) variables these equations be-
come

ṙ1 = µ1r1 + a1r
3
1 + b1r

2
2r1 + β1r1r2 cos ψ

+ c1r
3
1r

2
2 cos 2ψ , (7a)

ṙ2 = µ2r2 + a2r
2
1r2 + b2r

3
2 + β2r

2
1 cos ψ

+ c2r
4
1r2 cos 2ψ , (7b)

ψ̇ = −
(
β2r

2
1

r2
+ 2β1r2

)
sin ψ

− r2
1(c2r

2
1 + 2c1r

2
2) sin 2ψ . (7c)

Consequently, when β is small but nonzero the
steady mixed modes are those corresponding to
M0, Mπ and these are now split, i.e. they are no
longer related by the symmetry κR0T−π/2k. In
contrast the modes corresponding to ψ = π/2,
3π/2 are perturbed to a single TW. This is be-
cause for each fixed point of Eqs. (7) of the form
{r1, r2, ψ = π/2 + ε} there is also a fixed point
{r1, r2, ψ = 3π/2 − ε} (with the same r1, r2) and
these solutions are related by the remaining sym-
metries: TWπ/2+ε = (r1e

i(π/4+ε/2+θ2/2), r2e
iθ2),

and TW3π/2−ε = (r1e
i(3π/4−ε/2−θ2/2), r2e

−iθ2) =

T−π/kR0TWπ/2+ε. Here c = θ̇2/2k = θ̇1/k is the
phase velocity of the wave and is small.

Likewise, observe that Eqs. (6) admit TW so-
lutions provided c1c2 < 0 and sin 2ψ 6= 0. It
follows that if {r1, r2, ψ = δ} solves (6) so does
{r1, r2, ψ = π − δ}. Consequently, there are
two types of traveling wave solutions of the sys-
tem (5), TW1 = (r1e

i(δ+θ2)/2, r2e
iθ2) and TW2 =

(r1e
i(π−δ−θ2)/2, r2e

−iθ2), related by the symmetry
κTπ/2kR0 ∈ D2: κTπ/2kR0TW1 =TW2. It follows
therefore that when the midplane symmetry κ is
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broken these two solutions become distinct, i.e. the
TW branch splits into two once β becomes nonzero.
Note that TW3 = (r1e

−i(δ+θ2)/2, r2e
−iθ2) is an-

other TW with the property that R0TW3 =TW1,
i.e. TW1 and TW3 form a pair of left- and right-
traveling waves of type TW1, and similarly for TW2

and TW4 = (r1e
i(3π+δ+θ2)/2, r2e

iθ2).

5. Discussion

In this paper we have discussed and illustrated the
consequences of weak breaking of the midplane re-
flection symmetry on the 1:2 mode interaction in
Rayleigh–Bénard convection. We identified three
basic principles that enabled us to determine the
consequences of such symmetry breaking. These
consisted of the splitting of the branches of R and
TW solutions, and of the appearance of a slow drift
in the P solutions. As a result the P solutions be-
come traveling waves and can connect with the trav-
eling waves produced by the splitting of the origi-
nal TW branches. Likewise, the splitting of the
mixed modes R allows the hybrid n = 1 solution
branch to connect with them. Although these re-
sults were based on the form of the solutions of the
corresponding amplitude equations they are in fact
only based on the symmetry properties of these so-
lutions. Consequently they apply in a wider pa-
rameter regime than required for the validity of the
mode interaction equations. In fact the derivation
of these equations is valid only in the neighbor-
hood of the codimension two point (Rac, αc) and
for sufficiently weak breaking of the midplane re-
flection symmetry. In this derivation the two un-
folding parameters µ1, µ2 enter in the linear terms
only, while the symmetry breaking parameter β en-
ters only in the coefficients of the small quadratic
terms. Under appropriate nondegeneracy condi-
tions the cubic and quintic term coefficients can
be calculated at the multiple bifurcation point (i.e.
at µ1 = µ2 = 0) and at β = 0 and hence are
independent of both the Rayleigh number and the
spatial period. However, as in other applications, it
is not possible to state a priori the size of the neigh-
borhood of the mode interaction point in which the
resulting equations remain valid. Thus it should
be of no surprise that for any given set of param-
eters the results for the partial differential equa-
tions may differ from the normal form predictions.
Wittenberg and Holmes [1997] discussed in detail
an example of this type. For this reason the full

partial differential equations must be used to iden-
tify the correct dynamics away from the codimen-
sion two point and to trace the transition from weak
to strong resonance as the strength of the midplane
symmetry breaking terms is progressively increased.
Note, however, that Eqs. (7) suggest that the tran-
sition between the two extreme cases occurs already
at β ∼ ε3/2, where ε indicates the distance in the
(Ra, α) plane from (Rac, αc), i.e. for β � 1. Al-
though these results could have been anticipated
without solving the full partial differential equations
the calculations provide valuable additional infor-
mation, because they allow us to estimate the size
of the interval in β in which such a theory applies,
while at the same time providing a visualization of
the various possible solutions. The above estimate
suggests that for the values of α used the transition
between behavior characteristic of weak and strong
1:2 resonance should occur for β ≈ 0.01. In fact
we have seen that in the case of σ = 10 values of
β as small as 10−5 were not small enough to yield
the generic unfolding of the weak resonance. We
found that this limitation was due to the presence
of certain secondary branches (in this case TW)
that turned out to be almost degenerate. Indeed,
this investigation was motivated in part by our in-
ability to understand the bifurcation diagrams for
β = 10−2 which we had assumed to be “small” on
the basis of the heuristic argument just given. In
contrast, Manogg and Metzener [1994] considered,
at the level of the amplitude equations, the regime
β ∼ ε1/2. As a result of this larger symmetry break-
ing their bifurcation diagrams do not collapse into
those of Ambruster [1987] as β → 0, leaving the
origin of much of the reported behavior mysterious.
It should be pointed out that not all mode inter-
actions are affected equally by the loss of midplane
reflection symmetry. For example, weak symmetry
breaking has almost no effect on the 1:3 interac-
tion; this interaction is therefore still expected to
dominate the process of wavenumber selection at
moderate Rayleigh numbers, as it does in the pres-
ence of midplane reflection symmetry [Prat et al.,
1998].

The principles identified above will be used in
a future publication to elucidate the effects on the
1:2 resonance of heat loss from the top boundary
via Newton’s law of cooling, and to identify param-
eter regimes in which nontrivial dynamics may re-
sult. More generally, calculations of this type serve
to quantify the imperfection tolerance of idealized
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models of physical systems and hence the reliability
of any predictions that are based on them.
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