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The onset of convection in systems that are heated via current dissipation in the lower bound-
ary or that lose heat from the top boundary via Newton’s law of cooling is formulated as a
bifurcation problem. The Rayleigh number as usually defined is shown to be inappropriate
as a bifurcation parameter since the temperature difference across the layer depends on the
amplitude of convection and hence changes as convection evolves at fixed external parameter
values. A modified Rayleigh number is introduced that does remain constant even when the
system is evolving, and solutions obtained with the standard formulation are compared with
those obtained via the new one. Near the 1 : 2 spatial resonance in low Prandtl number fluids
these effects open up intervals of Rayleigh number with no stable solutions in the form of steady
convection or steadily traveling waves. Direct numerical simulations in two dimensions show
that in such intervals the dynamics typically take the form of a nearly heteroclinic modulated
traveling wave. This wave may be quasiperiodic or chaotic.
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1. Introduction

Rayleigh–Bénard convection has been the subject
of a large number of theoretical and experimental
studies since the pioneering work of Lord Rayleigh
and H. Bénard. Yet despite this there are still var-
ious issues whose significance has not been fully
recognized. One such issue that is important for
the interpretation of experiments relates to the
proper boundary conditions to be used in any the-
oretical treatment of the problem. In papers in
which comparison between experiment and theory
is attempted this important question is usually dis-
missed with the claim that boundaries consisting

of a “good” thermal conductor correspond to fixed
temperature boundary conditions while those made
of a thermal insulator correspond to fixed heat flux.
For example, it is commonly believed that since cop-
per is a good thermal conductor, copper boundaries
are always correctly modeled by constant tempera-
ture boundary conditions. However, the situation is
not so simple. Whether or not a boundary behaves
like a constant temperature boundary does not de-
pend only on its composition but also on its heat
capacity relative to the heat capacity of the fluid
with which it is in contact. The basic issue is fun-
damentally whether a change in the temperature of
the fluid in contact with the boundary produces a
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small change in the temperature of the boundary or
a large one. If it is the former then the boundary is
effectively a constant temperature one; otherwise it
is not. Both the conductivity of the material of the
boundary (and of the confined fluid) and its mass
enter into the determination of the (dimensionless)
Biot number that characterizes the thermal proper-
ties of the boundary when in contact with a given
mass of fluid. Regrettably, experimentalists almost
never provide sufficient information to allow a the-
orist to estimate the Biot numbers for the lower
and upper boundaries used in their experiment. It
is this fact that is responsible for one of the main
difficulties in comparing experiment with theory.

These issues are particularly acute when one
studies problems in which the bifurcation to con-
vection is subcritical. In this case once the con-
duction state loses stability the system evolves far
from the initial state and the temperature differ-
ence ∆T across the layer drops, since convection de-
creases the temperature of the lower boundary and
increases that of the upper boundary. In a bifur-
cation diagram showing the Nusselt number (a di-
mensionless measure of the heat transport) against
the conventionally defined Rayleigh number (pro-
portional to ∆T ) the system therefore follows a
path that slopes to the left, instead of evolving ver-
tically as one would expect of a system under con-
stant conditions. This behavior is seen quite dra-
matically in a number of the early experiments on
binary fluid convection in which the lower bound-
ary was heated electrically, via constant electrical
power [Surko et al., 1986; Sullivan & Ahlers, 1988;
Steinberg et al., 1989], indicating that for these ex-
periments the assumption that the lower boundary
is a fixed temperature boundary is in fact incorrect,
a fact noted already by Villers and Platten [1984].

In this article we indicate how the convection
problem can be reformulated in order to define a
bifurcation parameter that remains constant un-
der fixed external conditions, and focus on the
case in which the Biot numbers of the upper and
lower boundaries are distinct. The use of the Biot
numbers is advantageous because it supplants the
solution of the time-dependent conduction prob-
lem in boundaries of finite width [Proctor, 1981;
Recktenwald & Lücke, 1998], subject to a fixed tem-
perature outer boundary condition if the boundary
is held in thermal contact with a heat bath at fixed
temperature. Note that the notion of a heat bath
requires that the thermal capacity of the bath be
large compared to that of the sample. Whether or

not a boundary acts like a constant temperature
heat bath under experimental conditions depends
therefore on its heat capacity, and a boundary com-
posed of a good thermal conductor may still be un-
able to smooth out temperature fluctuations in the
adjacent fluid.

We assume here that the fluid is Boussinesq
so that its properties (with the exception of the
density) may be taken to be constant, and use no-
slip boundary conditions at the top and bottom.
The resulting system has Boussinesq symmetry if
the Biot numbers at the top and bottom are like-
wise identical. In earlier work [Prat et al., 1998]
we showed, following Armbruster [1987], that even
two-dimensional convection is strongly affected by
the presence of Boussinesq symmetry. This is be-
cause Boussinesq symmetry changes the relative
importance of certain spatial resonances. In par-
ticular the Boussinesq symmetry turns the 1 : 2 res-
onance into a weak resonance but has no effect on
the 1 : 3 resonance. As a result the moderate ampli-
tude behavior of systems with Boussinesq symmetry
is dominated by the n1 :n2 = 1:3 spatial resonance
while the 1 : 2 resonance remains the dominant res-
onance in systems without this symmetry. At a
n1 :n2 spatial resonance the conduction state of the
system is marginally stable with respect to two spa-
tial modes with distinct wavenumbers, of the form
2πn/L, where n is an integer and L is the imposed
spatial period in the horizontal. Since the dynamics
near the 1 : 2 and 1 : 3 resonances are quite different
[Porter & Knobloch, 2000, 2001] it is of interest to
explore the crossover from one type of behavior to
the other, particularly in low Prandtl number flu-
ids since low Prandtl numbers favor dynamics. In
previous papers we have used numerical branch fol-
lowing techniques to explore the behavior near the
1 : 3 resonance in systems with Boussinesq symme-
try [Prat et al., 1998], and to investigate in detail
how the 1 : 2 resonance comes to dominate the dy-
namics as the Boussinesq symmetry is progressively
broken [Mercader et al., 2001; Prat et al., 2002].
We accomplished this by homotopically continuing
the velocity boundary conditions at the top from
no-slip to free-slip, while keeping the lower bound-
ary no-slip, and discovered that the progressive loss
of symmetry opens up intervals in Rayleigh num-
ber in which none of the simple solutions known
to be present near the 1 : 2 mode interaction (the
n = 1 and n = 2 steady states, and traveling waves)
is stable. As shown below, the results are simi-
lar if the velocity boundary conditions at top and
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bottom remain no-slip but the top layer radiates
heat to the outside via Newton’s law of cooling
while the bottom temperature remains fixed, or if
the bottom plate is heated electrically via constant
current dissipation while the temperature at the top
remains fixed. In these interesting Rayleigh number
intervals complex dynamical behavior may be ex-
pected. We report here the results of direct numer-
ical simulations of the governing equations in two
dimensions, and show that the dynamics in these
regimes may take the form of either quasiperiodic
modulated traveling waves or one of two types of
(nearly) heteroclinic traveling waves that may be
periodic or chaotic, depending on initial conditions.
Similar behavior occurs in layers that are heated
with constant electrical power, modeled here using
a finite Biot number lower boundary.

2. Modified Rayleigh Number

We consider Boussinesq convection between bound-
aries responsible for the boundary conditions

dT−
dz

= −B−
d

(TL − T−) at z = −d
2
,

dT+

dz
= −B+

d
(T+ − TU ) at z =

d

2
,

where d is the layer depth, TL, TU are the tempera-
tures of the lower (L) and upper (U) heat baths, and
T−, T+ are the temperatures in the fluid right next
to the lower and upper boundaries (see Fig. 1). Here
B∓ are the Biot numbers of the boundaries: per-
fectly conducting boundaries correspond to B =∞
while an insulating boundary corresponds to B = 0.
In the following we assume that the Biot numbers
are constants, independent of the wavelength of the
pattern. This is so whenever the wavelength ex-
ceeds the thickness of the boundary plates [Platten
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Fig. 1. Sketch of the fluid layer.

& Legros, 1984]. Note that, by hypothesis, TL, TU
are independent of time, while T−, T+ fluctuate in
response to the motion of the fluid.

In the standard description of the Rayleigh–
Bénard problem one describes the system in terms
of the dimensionless temperature difference across
the fluid in the conduction state, regardless of
whether this state is stable or not. This is a conve-
nient way of describing the system because in the
presence of perfectly thermally conducting bound-
aries this temperature difference remains constant
even after instability has set in. More generally,
the temperature in the conduction state satisfies an
equation of the form dT/dz = −∆T c/d, and so

∆T c = B−(TL − T c−) = B+(T c+ − TU ) .

Here T c∓ are the temperatures at the bottom and
top of the fluid in the conduction state. Since
T c− − T c+ = ∆T c it follows that

∆T c = (TL − TU )
B+B−

B+B− +B+ +B−
,

and is therefore constant provided TL−TU remains
fixed. Moreover, in view of the equivalent relation,

∆T c =
B+B−∆T − d(B+T

′
− +B−T ′+)

B+B− +B+ +B−
,

we see that the temperature difference ∆T ≡ T− −
T+ across the fluid may indeed change during evo-
lution but must be compensated by a correspond-
ing variation in the vertical temperature gradients
(indicated by a prime) at the top and bottom.
We propose therefore to define a modified Rayleigh
number based on the quantity ∆T c (as opposed to
∆T ) as a proper bifurcation parameter for the sys-
tem (cf. Prat et al. [2001]).

To do this we nondimensionalize the equations
in the usual way, by expressing the temperature T
in units of ∆T c, distances in units of the layer depth
d and time in units of d2/κ, where κ is the thermal
diffusivity of the fluid. We define the dimensionless
control parameter by the relation [Clune, 1993]

Ra′′ =
αg(TL − TU )d3

κν
= Ra′

TL − TU
∆T c

, (1a)

where Ra′ is defined by analogy to the usual
Rayleigh number, i.e. Ra′ is proportional to the
temperature difference ∆T c across the fluid in the
conduction state, and so

Ra′ =
αgd3

κν

B+B−∆T − d(B+T
′
− +B−T ′+)

B+B− +B+ +B−
. (1b)
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Note that both Ra′ and Ra′′ defined in this man-
ner remain constant for fixed external conditions.
Thus both provide good definitions of a control pa-
rameter, in contrast to the conventionally defined
Rayleigh number

Ra =
αg∆Td3

κν
. (1c)

However, Ra′ reduces to Ra in the limit of infinitely
conducting boundaries (B± →∞), as it must. Note
that the Rayleigh number Ra′′ is defined in terms of
TL − TU and not the temperature difference across
the fluid, and hence is in principle easily measured
in any experiment.

In the following we list the final dimensionless
equations describing convection in two dimensions
with periodic boundary conditions in the horizon-
tal (x) direction, expressing the temperature fluc-
tuation θ away from the conduction profile T c− −
∆T c(z/d+ 1/2) in units of ∆T c. These are written
in terms of a mean flow U = (U, 0) and its fluctu-
ating part v′ = (−∂zχ′, ∂xχ′), where v′ = χ′ = 0,
with the overline indicating an average over the
horizontal period [Prat et al., 1995]. The result is

(∂t − σ∂2
zz)U + ∂zv′xv

′
z = 0 , (2a)

(∂t + U∂x − σ∇2)ω′ + Ra′σ∂xθ + ∂2
zzU∂xχ

′

+
∂(χ′, ω′)

∂(x, z)
− ∂(χ′, ω′)

∂(x, z)
= 0 , (2b)

(∂t + U∂x −∇2)θ − ∂xχ′ +
∂(χ′, θ)

∂(x, z)
= 0 , (2c)

where ω′ = −∇2χ′, and σ is the Prandtl number.
Note that Ra = Ra′(1 +θ− −θ+).

The boundary conditions on the temperature
fluctuation θ are

(1−B∗±)∂zθ = ∓B∗±θ at z = ±1

2
, (2d)

where B∗± = B±/(1 + B±). The modified Biot
numbers B∗± are convenient for numerical explo-
ration, and are such that B = 0(∞) corresponds
to B∗ = 0(1). For no-slip boundaries the velocity
boundary conditions are

U = χ′ = ∂zχ
′ = 0 at z = ±1

2
. (2e)

Note that the boundary conditions on the tem-
perature perturbation θ involve the Biot numbers

and hence differ from the standard situation. As
a result the steady states with B± < ∞ dif-
fer from those with perfectly conducting bound-
ary conditions (cf. Fig. 2). In the case B± � 1
the primary instability sets in with a small
wavenumber, and a single evolution equation for the
horizontal planform can be derived ([Knobloch,
1990; Petrescu, 1998], and references therein). In
one dimension this equation exhibits behavior re-
lated to the presence of the 1 : 2 spatial resonance
including the associated structurally stable hetero-
clinic cycles present for sufficiently small Prandtl
numbers [Cox, 1996]; for infinite Prandtl num-
ber a related equation describes a variety of two-
dimensional patterns of large spatial scale and the
transitions among them [Knobloch, 1990; Pontes
et al., 1996, 1999], while for finite Prandtl num-
bers the long wave vertical vorticity mode [Pismen,
1986] leads to yet richer behavior [Petrescu, 1998].

Figure 2 shows the results obtained by solving
Eqs. (2a)–(2e) for the case (B∗−, B

∗
+) = (1, 0.8) and

σ = 0.1 using a spectral Galerkin–Fourier technique
in x and collocation-Chebyshev in z [Prat et al.,
1998; Drissi et al., 1999] in a periodic box of L = π
(i.e. k ≡ 2π/L = 2). For these parameters the 1 : 2
interaction occurs at Ra′ = 1786.03, k = 2.04, and
the Boussinesq symmetry is broken. Here and else-
where we use N−1 as a measure of the amplitude of
convection, where N (the Nusselt number) denotes
the total heat flux across the layer measured in units
of the conductive heat flux, the latter calculated us-
ing the temperature difference ∆T c defined above.
As a result the state N = 1 corresponds to the pure
conduction state, with no motion present. The fig-
ure shows N − 1 for the n = 1, 2 convective states
(solid curves) as a function of (a) Ra′ and (b) Ra,
and compares the results with those for the n = 2
state when B∗− = B∗+ = 1 (dotted curve). For these
parameter values (2π/L < 2.04) the n = 2 state
bifurcates from the conduction state before n = 1
state and does so supercritically.

The evolution from the unstable conduction
state that results is indicated by arrows. These
are vertical in Fig. 2(a) but slope to the left as in
Fig. 2(b) whenever B∗+ < 1. This slope can be used
as a diagnostic for the value of the Biot number. In
both cases the Nusselt number in the final state is
independent of z and hence equals the Nusselt num-
ber N+ at the top; since the convective flux van-
ishes at the boundary the latter is given (in terms
of dimensional variables) by N+ ≡ −d∂zT+/∆T

c.
Using the boundary condition at the top one finds
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Fig. 2. The Nusselt number N for the system (2a)–(2e) with σ = 0.1, B∗+ = 0.8, B∗− = 1 and k = 2 as a function of
(a) Ra′ and (b) Ra. The primary instability is to an n = 2 mode (at Ra′ = 1751.23 or equivalently Ra′′ = 2187), followed by
an instability to an n = 1 mode at Ra′ = 1816.87 (Ra′′ = 2268). The dotted line shows n = 2 branch for B∗+ = B∗− = 1 and is
identical in both plots. The arrows connect initial states with final states, showing that the conventionally defined Rayleigh
number Ra decreases during evolution (b); this is not the case in (a).

that N+ = B+(T+ − TU )/∆T c, where T+ is the
temperature of the fluid next to the boundary; in
a convecting state this temperature is, in general,
greater than T c+, the temperature in the conduc-
tion state, because the convection transports heat
upwards from the lower boundary. For a perfect
conductor at the bottom one finds

N+ − 1 =
B∗+

1−B∗+
Ra′ −Ra

Ra′
. (3)

Thus, provided B∗+ > 0, we may use either N+ − 1
or (Ra′ − Ra)/Ra′ as indicators of the amplitude
of the convection that develops from an unstable
conduction state once Ra′ exceeds the critical value
for convective instability. In the special case of a
perfectly insulating boundary, B∗+ = 0, the Nusselt
number N+ = N− = 1 for all steady or steadily
translating states. This is so also whenever convec-
tion is driven by constant heat flux Q̇ at the bot-
tom (Sec. 3.2). In this case B∗− = 0, and we define

∆T c = Q̇d/K, where K is the thermal conductiv-
ity. In either of these cases we use the quantity
(Ra′ −Ra)/Ra′ (or equivalently (Ra′ −Ra)/Ra) as
a measure of the solution amplitude.

We emphasize that the solid and dotted curves
in Fig. 2 for n = 2 states are not the same, i.e.
the assertion that Biot numbers only affect the
evolutionary path in the Nusselt number–Rayleigh

number diagram (N–Ra diagram) but not the final
equilibrated state is manifestly false.

3. Nearly Heteroclinic Cycles

In this section we summarize our results on nearly
heteroclinic cycles in the interesting case B∗+B

∗
− < 1

and unequal Biot numbers. We consider two cases,
(i) B∗+ = 0.8, B∗− = 1, corresponding to a perfectly
thermally conducting lower boundary, and heat loss
from the upper boundary, and (ii) B∗+ = 1, B∗− = 0,
corresponding to a system heated via constant heat
flux through the lower boundary, with a perfectly
thermally conducting upper boundary. These ex-
amples illustrate the two distinct mechanisms iden-
tified in normal form theory that produce attracting
structurally stable heteroclinic cycles.

3.1. B∗+ = 0.8, B∗− = 1

For these values of the Biot numbers Fig. 2 shows
that nothing interesting occurs for k < 2.04. How-
ever, this is no longer so when k > 2.04. Fig-
ure 3 shows the Nusselt number N as a function
of Ra′ obtained from Eqs. (2a)–(2e) for σ = 0.1
and k = 2.08. The figure shows that the branch of
steady states with n = 1 now bifurcates from the
conduction state before the pure modes n = 2. The
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Fig. 3. Time-averaged Nusselt number N as a function of
Ra′ for σ = 0.1, B∗+ = 0.8, B∗− = 1 and k = 2.08, show-
ing steady states (—), TW (- - -) and MW (*). Open circles
denote local bifurcations.

n = 1 branch is initially stable but loses stability
as Ra′ increases at a parity-breaking bifurcation at
Ra′ ≈ 1826 that produces a pair of traveling waves
(dashed line), one traveling to the left and the other
to the right. These traveling waves (hereafter TW)
bifurcate supercritically and hence are initially sta-
ble. The (now unstable) n = 1 branch undergoes a
saddle-node bifurcation (Ra′ = 1840.1) before ter-
minating on the n = 2 branch in a steady state bi-
furcation (Ra′ = 1839.6). However, the n = 2 states
remain unstable until a (subcritical) steady state bi-
furcation at Ra′ ≈ 1935 gives rise to a mixed mode.
Thus there are no stable steady states in the interval
1826 < Ra′ < 1935. Since the TW themselves lose

stability at a tertiary Hopf bifurcation producing
modulated traveling waves (MW) at Ra′ ≈ 1856 the
dynamics in 1856 < Ra′ < 1935 must have nontriv-
ial time-dependence. In the remainder of this paper
we describe some of the solutions we have located
in this interval using direct numerical simulation of
Eqs. (2a)–(2e). The integration in time is carried
out using a semi-implicit second-order stiffly stable
scheme, Fourier–Galerkin in x and Chebyshev col-
location in the z direction. The Fourier nonlinear
term is calculated pseudospectrally, increasing the
number of modes to obtain a de-aliased evaluation.
A minimum of 32 vertical points and 24 Fourier
modes is used.

The loss of stability of the TW so soon after
they bifurcate from the n = 1 branch is discussed
by Prat et al. [2002], and is simple to understand
in the context of unfolding of the codimension-two
bifurcation that arises when the parity-breaking bi-
furcation to the TW coincides with the saddle-node
bifurcation on the n = 1 branch. This bifurcation
is a pitchfork–saddle-node bifurcation, and contains
a secondary Hopf bifurcation in its unfolding that
corresponds to the bifurcation of the TW to MW.
This bifurcation moves farther up the TW branch
as the codimension-two bifurcation is split apart,
but continues to destabilize the TW at larger am-
plitude. Figure 4 shows the change in the MW
as Ra′ increases beyond Ra′ = 1856 in terms of
Re θ2(z, t) at the dimensionless location z = −0.28,
where θ2(z, t) is the n = 2 Fourier amplitude of
the temperature θ(x, z, t). The torus bifurcation at
Ra′ = 1856 introduces a new frequency ω into the
dynamics. Although ω ≈ 4ω1 = 2ω2 at the torus
bifurcation the new frequency is incommensurate
with ωj, and the resulting motion is quasiperiodic;
the modulation frequency ω − 2ω2 is clearly visible
in Fig. 4. Here ωj is the frequency of θj, and in a
traveling wave ωj = jω1, j ≥ 1. Since the frequency
ω2 corresponds to drift it is absent from the mean
temperature gradient which oscillates with the fre-
quency ω. The period of the Nusselt number is
therefore 2π/ω, and since ω ≈ 2ω2, this period is
approximately half the period of the fast oscilla-
tions in Fig. 4. These results should be compared
with the corresponding ones for a problem with
Boussinesq symmetry [Deane et al., 1987].

Figure 4 shows that the modulation period in-
creases dramatically near Ra′ = 1863, suggesting
the presence of a global bifurcation. Figure 5 con-
firms this impression and compares the modulation
period with the Nusselt number period as functions
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Fig. 4. Time series Re θ2(z = −0.28, t) for several values of Ra′ near the global bifurcation at Ra′ ≈ 1863.
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Fig. 5. (a) The Nusselt number period and (b) the modula-
tion period from Fig. 4 as functions of Ra′. Both diverge at
Ra′ ≈ 1863.

of Ra′ in this regime. Near the global bifurcation
the period 2π/ω2 of the θ2 oscillation is double that
in the Nusselt number and both diverge together.
The simulations indicate that this divergence is a
consequence of the approach of the phase space tra-
jectory closer and closer to reflection-invariant sub-
spaces. As this occurs the Eulerian mean flow U
associated with the MW disappears (Fig. 6). This
flow is periodic when the wave is a modulated trav-
eling wave, and oscillates with the same period as
the Nusselt number. Figure 7 shows a projection
of these solutions onto the complex θ1 plane. At
Ra′ = 1857 the modulation is weak and the oscil-
lation is largely azimuthal, with the trajectory cir-
cumscribing the origin in a counterclockwise direc-
tion. The corresponding state in physical space is a
left-traveling wave with a small amplitude modula-
tion superposed on it. By the time Ra′ = 1862.5 the
oscillations are primarily radial indicating that the
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Fig. 6. The mean flow U(z, t) versus time at z = −0.28 for several different values of Ra′ near the global bifurcation at
Ra′ ≈ 1863 showing the rapid disappearance of the mean flow as the modulated traveling wave approaches the circle of
reflection-invariant subspaces.

amplitude modulation dominates the slow residual
drift in the counterclockwise direction that remains.
The frequency ω2 is now associated with the stand-
ing component of the oscillation, and the Nusselt
number frequency is therefore 2ω2, as observed; the
drift frequency corresponds to the modulation fre-
quency shown in Fig. 5(b).

A global bifurcation occurs when the modula-
tion period diverges [cf. Fig. 5(b)], i.e. when the
MW collides with the circle of n = 2 fixed points.
Each of these fixed points may be labeled by its
spatial phase φ, and lies in a reflection-invariant
subspace we call Σφ. In the situation considered
here the subspaces Σφ contain no standing waves,
and consequently the Nusselt number period must
diverge at the same value of Ra′ as the modula-
tion period. At the global bifurcation a particular
MW trajectory approaches one of the n = 2 fixed

points, in Σφ say, and thereafter remains trapped
in Σφ. Its evolution in Σφ corresponds to a reori-
entation (over infinite time) of the trajectory rel-
ative to the n = 1 state, followed by a transition
(also over infinite time) to an n = 2 state with the
opposite sign. During the first phase the ampli-
tude of the n = 1 component remains zero; during
the second phase the n = 1 mode is briefly excited
but the spatial phase of both modes remains fixed.
The resulting heteroclinic cycle thus consists of the
destruction of an n = 2 state followed by its re-
construction with the opposite sign. This new state
can be thought of as an L/4 translate of the original
n = 2 state. Within the normal form for the 1 : 2
spatial resonance this global bifurcation transfers
stability from the MTW to a structurally stable het-
eroclinic cycle connecting n = 2 steady states with
their translates by L/4 (see Sec. 4). Such cycles can
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Fig. 7. Projections of the solutions in Figs. 4 and 6 on the complex θ1(z = −0.28) plane, showing that the solutions correspond
to quasiperiodic MW. The gradual transition from (counterclockwise) azimuthal to radial oscillation is a consequence of the
approach of the (left-traveling) MW to a circle of reflection-invariant subspaces. Near Ra′ = 1863 the MW travels only during
the brief transitions from the vicinity of one invariant subspace to the next.

therefore be thought of as heteroclinic waves of the
type just described, but ones that spend arbitrarily
long intervals of time in the stationary state. We
may expect something similar to occur in the pdes
(2a)–(2e) as well, even though there is no definitive
proof that such a global bifurcation in fact takes

place. However, assuming that it does we may use
the theory of Krupa and Melbourne [1995] to con-
firm that the resulting heteroclinic cycle is asymp-
totically stable. Its stability is determined by the
leading eigenvalues of n = 2 state. This state has
one zero eigenvalue generated by translations and
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Fig. 8. The eigenvalue ratio ρ (see text) as a function of
Ra′; ρ > 1 indicates that the (putative) structurally stable
heteroclinic cycle is attracting.

one unstable eigenvalue in the reflection-invariant
subspace (corresponding to n = 1 perturbations)
which we call λ+. All the remaining eigenvalues
are stable, and we divide them into two groups,

those with eigenvectors in the reflection-invariant
subspace, and those perpendicular to it. We denote
the (absolute value of the real part of the) least sta-
ble perpendicular eigenvalue by λ−; this is the eigen-
value whose eigenvector defines the direction along
which the MW trajectory approaches the n = 2
fixed points. Under these conditions the theorem of
Krupa and Melbourne [1995] implies that the het-
eroclinic cycle connecting two n = 2 fixed points
related by an L/4 translation is attracting provided
ρ ≡ λ−/λ+ > 1. Note that the eigenvector of λ+

for an n = 2 state and that of λ− for its L/4 trans-
late are both reflection-invariant with respect to the
same reflection. Figure 8 shows ρ as a function of
Ra′, and confirms that the cycle acquires stability
for Ra′ & 1863, i.e. beyond the termination of the
MW branch identified in Fig. 5(b). However, the
resulting theory predicts that in Ra′ & 1863 the ex-
cursions between the two fixed points should occur
more and more infrequently as time progresses, and
the trajectory comes closer and closer to the het-
eroclinic cycle. In fact in our simulations we find
that the oscillation period saturates (Fig. 9), and

� � � � � � � � � �
� � ��
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�� � �

�� �


�� �	

Fig. 9. Time series Re θ1 (—), Im θ1 (- - -), and Re θ2 (—), Im θ2 (- - -)(heavy lines) at z = −0.28 for Ra′ = 1865 showing the
gradual lengthening of the oscillation period, followed by saturation.
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we (may) obtain a periodic cycle with finite albeit
long period [Fig. 10(a)]. In this plot (as in Fig. 9)
the heavy line shows Re θ2(z = −0.28, t); we see
that the system spends extended periods of time in
an almost pure n = 2 state. The thin lines in turn
show the real (solid) and imaginary (dashed) parts
of θ1(z = −0.28, t); these have twice the period of
θ2(z = −0.28, t), as expected of a TW, and are only
excited during the brief transitions from one n = 2
state to its L/4 translate. In the example shown
the phase of θ1 rotates clockwise, corresponding to
a pattern that translates, in fits and starts, towards
the right. Integration at Ra′ = 1870 with a time
step ∆t = 4×10−3 shows that the saturated period
in θ1 fluctuates from period to period by at most
0.2%; this period changes by 0.4% when the time
step is decreased by a factor of 10. Similar results
apply to Ra′ = 1865. In contrast, Fig. 10(b) shows
a time series, also for Ra′ = 1865, that appears
to remain chaotic for all time, albeit it still with
a well-defined switching time. The two time series
differ in the initial conditions employed, and iden-
tical time series were obtained with a different code
using primitive variables [Karniadakis et al., 1991],
provided both were started from the same initial
conditions. Specifically, if both codes are started
from the same small disturbance in Reθ1 they pro-
duce identical periodic time series. Moreover, when
the same time step is used the periods calculated
with the two codes differ by only 0.6%. In contrast,
if the calculation is started from a general (complex)
perturbation in θ1 the time series remains irregular
(chaotic) for as long as the integration is carried
out (cf. Zhou and Sirovich [1992]), but once again
both codes yield identical time series. These results
suggest that the periodicity (or the chaotic behav-
ior) of the time series is not an artifact of numer-
ical discretization or round-off errors, even though
we do detect a very slow drift in Imθ2 with both
methods (which we attribute to the presence of a
zero eigenvalue arising from translation invariance
of the system).

The characteristic time τ between successive
switches in θ1 also depends on initial conditions.
However, the overall oscillation amplitude is the
same in both cases, i.e. the fixed points visited
by the cycle are identical. The amplitudes in
Figs. 10(a) and 10(b) look different only because
the imaginary part of θ2 vanishes in Fig. 10(a) but
is nonzero in Fig. 10(b). Similar results obtain for
Ra′ = 1870 and Ra′ = 1885, albeit with larger
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Fig. 10. Long time behavior of Re θ1 (—), Im θ1 (- - -), and
Re θ2 (heavy line) at z = −0.28 for two different initial con-
ditions when Ra′ = 1865. In (a) the cycle is periodic with
τ ≈ 490; in (b) it is irregular with τ ∼ 460.

values of τ . In the periodic case the asymptotic pe-
riodT of the time series is 4τ , with the periods of
θj, j = 1, 2, given by Tj = 4τ/j. In the chaotic case
θ2 remains approximately periodic, with T2 ≈ 2τ .

In an attempt to shed light on the initial con-
dition dependence of the results we computed the
quantity θ ≡ arg θ2 − 2 arg θ1 as a function of
time. This quantity is invariant under translations
(cf. Sec. 4). If θ = 0 (modπ) the pattern does not
drift and the dynamics then takes place in an invari-
ant subspace. We find that in all cases θ = 0 almost
all the time, although during each cycle θ̇ becomes
briefly nonzero as the phase of the n = 1 component
reorients itself prior to the switch from the n = 2
state to its L/4 translate. During the rest of the cy-
cle θ is essentially zero, and it is during this phase of
the oscillation that the switch between the two n =
2 states takes place. Since this switch corresponds



2512 I. Mercader et al.

0 2000 4000 6000 8000 10000 12000
−0.05

0

0.05

time

(a)

0 2000 4000 6000 8000 10000 12000
−0.05

0

0.05

time

(b)

Fig. 11. Time series Re θ1 (—), Im θ1 (- - -), and Re θ2 (heavy line) at z = −0.28 after extended transients for (a) Ra′ = 1890,
(b) Ra′ = 1895. Note that in contrast to Fig. 10 all three variables ultimately oscillate with the same period T , with
(a) T ≈ 1500, (b) T ≈ 1660.

to a π jump in arg θ2 it is accompanied by a π/2
jump arg θ1 as seen in Figs. 10(a) and 10(b). The-
sejumps are all clockwise in the initial segment of
the time series in Fig. 9 (t < 7100) but become dis-
ordered following the first counterclockwise jump at
t ≈ 7100. These results indicate that the dynamics

do not take place in an invariant subspace, although
they are very close to being in one. As discussed in
Sec. 4 these facts are consistent with the normal
form theory for this problem, and indicate that the
initial conditions do not confine the dynamics to an
invariant subspace.

(a) 

(b) 

(c) 

(d) 

Im

Re

θ1

Re 2

θ

θ

1

Fig. 12. The four (nearly) heteroclinic connections, labeled (a–d), between an n = 2 state and its L/4 translate at Ra′ = 1865
projected onto the three-dimensional space (Re θ1, Im θ1, Re θ2).
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Figures 11(a) and 11(b) show similar time se-
ries for Ra′ = 1890 and Ra′ = 1895, in both cases
starting from a periodic solution at Ra′ = 1885.
Careful integration of the equations shows that af-
ter a very long transient the system again settles

into a periodic switching sequence, but this time
with Re θ1, Im θ1 and Re θ2 having identical periods,
i.e. T1 = T2 = T/2. It follows that for these val-
ues of Ra′ the sequence of transitions no longer fol-
lows the dynamics of the modulated traveling wave
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t=160

t=180

t=200

Fig. 13. A series of snapshots of the instantaneous streamlines of (U, 0) + (−∂zχ′, ∂xχ′) (left panels) and the temperature
fluctuation θ (right panels) at Ra′ = 1862, with time increasing upwards. The pattern drifts towards the left in fits and starts,
with a translation by L/4 occurring in time T/4 ≈ 100.
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prior to the acquisition of stability by the struc-
turally stable heteroclinic cycle. Instead the phase
of θ1 oscillates back and forth. We may visualize
the resulting cycle in terms of Fig. 12. This fig-
ure shows the heteroclinic connections in the three-
dimensional space (Re θ1, Im θ1, Re θ2). In a ro-
tating wave [Fig. 10(a)] the system switches from
connection (a) to (b) to (c) and then to (d), or the
reverse. In the time series in Figs. 11(a) and 11(b)
the system switches from (b) to (a) and then back to
(b). We can also find time series corresponding to
repeated switches between (b) and (c), and surmise
that at least four stable long period periodic orbits
are present for these values of Ra′. The nature of
the transition from rotating phase to trapped phase
with increasing Ra′ is not understood, but it is not
the result of a change in the order of the leading
eigenvalues of n = 2 state. However, the loca-
tion of the transition appears to be well-defined:
if one starts with a settled solution at Ra′ = 1890
with trapped phase and reduces Ra′ to Ra′ = 1885
the time series ultimately develops rotating wave
symmetry.

Figure 13 gives a good idea of what is happen-
ing in the physical system in an MW state close
to the global bifurcation at Ra′ ≈ 1863. The fig-
ure shows the instantaneous streamlines (left pan-
els) and θ (right panels) at Ra′ = 1862 with time
increasing upwards, and reveals the gradual transla-
tion of the pattern towards the left (corresponding
to counterclockwise rotation in Fig. 7; see Fig. 14
for the corresponding time series). The patterns
spend dominant periods of time in a state charac-
terized by wavenumber n = 2 but undergo well-
defined episodes during which the n = 1 mode is
excited, leading to the disruption of the pattern
followed by its regrowth as an L/4 translate. In
the figure these episodes manifest themselves by a
temporary doubling of the wavelength of the pat-
tern; these larger cells then undergo “fission” due
to the regrowth of a counterrotating cell in the
center of these larger cells. This type of dynamic
is well-known from studies of the breakdown of
the turbulent boundary layer [Aubry et al., 1988;
Holmes et al., 1996]. Figure 14 shows the associated
(periodic) oscillations in the Nusselt number, the
mean flow and the conventionally defined Rayleigh
number Ra; these oscillations reflect the oscillations
in the amplitude of the wave. The dynamic asso-
ciated with the nearly heteroclinic cycles discussed
above is almost the same, except that the time spent
near the pure n = 2 states is longer. Figure 15
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Fig. 14. The time series for N−1, Ra and U(z = −0.28) for
a modulated traveling wave when Ra′ = 1862, showing that
the conventionally defined Rayleigh number (1c) fluctuates
for states with a nonzero amplitude modulation whenever
B∗ 6= 1 at either top or bottom (or both).

shows the details of the four transitions that to-
gether make up the cycle in Fig. 10(a).

3.2. B∗+ = 1, B∗− = 0

For these values of the Biot number the 1 : 2 mode
interaction takes place at Ra′ = 1463.19, k = 1.77.
The results reported in Fig. 16 are for σ = 0.1,
k = 1.75. Since B∗− = 0 (so that N = 1 for both
steady states and traveling waves) the figure shows
instead (Ra′ − Ra)/Ra versus Ra′. For this choice
of k the first instability is to an n = 2 mode, at
Ra′ = 1448.01, and is supercritical; this branch re-
mains stable until Ra′ = 1455, where stability is
transferred to the n = 1 branch. The latter origi-
nates in a subcritical bifurcation at Ra′ = 1476.38
and undergoes two successive bifurcations before
its termination on the n = 2 branch: the first, at
Ra′ = 1467.2, is a parity-breaking bifurcation and
produces a branch of (unstable) traveling waves; the
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second is a supercritical Hopf bifurcation that sta-
bilizes the n = 1 branch and produces a branch
of stable standing waves (SW). The resulting bi-
furcation diagram (Fig. 16) resembles Figs. 14(i)
and 14(j) of Prat et al. [2002]. In Fig. 17 we show
the standing waves in the (Re θ1, Re θ2) plane for
several values of Ra′; for these solutions Im θ1 and
Im θ2 both vanish. As Ra′ increases the period of
the standing waves increases rapidly and a hetero-

clinic connection between the origin and the n = 2
fixed point forms at Ra′ ≈ 1461.3. As before, such
connections form in every reflection-invariant sub-
space. For larger Ra′ we find that the system fol-
lows a nearly heteroclinic cycle, of the same type
as shown in Fig. 10(a). Figure 18 shows an ex-
ample for Ra′ = 1461.4. Once again the trajec-
tory appears to be periodic in time, albeit with a
long period, in contrast to theory which predicts

(c) (d )

(a ) (b )

Fig. 15. The details of the four excursions that form the (near-) heteroclinic cycle at Ra′ = 1865 [Fig. 10(a)], in terms of
the instantaneous streamlines superposed on the temperature fluctuations (shaded), with time increasing upwards. (a) The
transition from Re θ2 > 0 to Re θ2 < 0 via Re θ1 > 0, (b) the transition from Re θ2 < 0 to Re θ2 > 0 via Im θ1 < 0, (c) from
Re θ2 > 0 to Re θ2 < 0 via Re θ1 < 0, and (d) from Re θ2 < 0 to Re θ2 > 0 via Im θ1 > 0.
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Fig. 16. Bifurcation diagram (Ra′−Ra)/Ra versus Ra′ for σ = 0.1, B∗+ = 1, B∗− = 0 and k = 1.75, showing steady states (—),
TW (- - -) and SW (*); open circles denote local bifurcations. For the SW both (Ra′−Ramax)/Ramax and (Ra′−Ramin)/Ramin

are plotted. A bifurcation to stable standing waves occurs on the n = 1 branch.
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Fig. 17. The stable standing waves projected onto the
(Re θ1, Re θ2) plane at z = −0.28 for Ra′ = 1460, 1461,
1461.2 and 1461.3, showing the approach to a heteroclinic
connection between the origin and the n = 2 fixed point.

a gradual lengthening of the period as the trajec-
tory approaches closer and closer to the putative
heteroclinic cycle. Numerically we find that the
characteristic interval between successive switches
depends on the value of Ra′; we attribute this de-
pendence to the dependence of T on the eigenvalue
ratio ρ. In the case under discussion the typical val-
ues of T (see Fig. 11) are substantially larger than
in Case (i), Sec. 3.1, a likely consequence of the
substantially larger values of ρ.

4. Discussion

The results described in the preceding section bear
a close resemblence to those familiar from stud-
ies of the normal form for the 1 : 2 spatial reso-
nance with periodic boundary conditions on a line,
given by the (scaled) equations [Dangelmayr, 1986;
Armbruster et al., 1988; Proctor & Jones; 1988;
Porter & Knobloch, 2001]

ż1 = (µ1 + d11|z1|2 + d12|z2|2)z1 +z1z2 , (4a)
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Fig. 18. A nearly heteroclinic trajectory at Ra′ = 1461.4. (a) Projection onto the (Re θ1, Re θ2) plane at z = −0.28, (b) time
series for Re θ1 (—), Im θ1 (- - -), and Re θ2 (heavy line) at z = −0.28, and (c) the corresponding oscillations in the Rayleigh
number Ra defined in Eq. (1c).

ż2 = (µ2 + d21|z1|2 + d22|z2|2)z2 + σz2
1 . (4b)

Here the zj are complex amplitudes of the eigen-
functions exp ijkx, j = 1, 2, σ = ±1, and the equa-
tions have been truncated at third order. It should
be noted that in systems of hydrodynamic type
(i.e. systems with only advective nonlinearities) the
coefficient σ is necessarily −1 [Chossat, 2001]; this is
the “interesting” case in which TW are found near

the 1 : 2 resonance. Equations of the above type
with σ = −1 have also been derived from the pdes
describing two-dimensional weakly non-Boussinesq
convection [Manogg & Metzener, 1994]. From the
point of view of bifurcation theory these equations
apply rigorously only in situations in which the co-
efficients of both quadratic terms are small, result-
ing in a balance between the linear, quadratic and
cubic terms. However, it is not necessary to think
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of this (near) degeneracy, and one may instead use
these equations to examine the evolution of the dy-
namics described by Armbruster et al. [1988], and
Proctor and Jones [1988] as one moves away from
the mode interaction point, i.e. as |µ| ≡ (µ2

1 +µ2
2)1/2

increases. It is in this sense that Eqs. (4) apply to
the problem studied in this paper.

Two forms of Eqs. (4) are particularly useful.
Both reduce the order of the equations by factoring
out the translational degree of freedom represented
by the action of Tφ : (z1, z2)→ (eiφz1, e

2iφz2), φ ≡
`/k, corresponding to spatial translations x→ x+`.
The “polar” coordinates defined by zj = aje

iφj and
the Tφ-invariant relative phase θ = φ2 − 2φ1 are
standard:

ȧ1 = (µ1 + d11a
2
1 + d12a

2
2)a1 + a1a2 cos θ , (5a)

ȧ2 = (µ2 + d21a
2
1 + d22a

2
2)a2 + σa2

1 cos θ , (5b)

θ̇ = − 1

a2
(σa2

1 + 2a2
2) sin θ . (5c)

The evolution of the individual phases φj is slaved
to that of a1, a2 and θ, and is given by

φ̇1 = a2 sin θ , φ̇2 = −σa
2
1

a2
sin θ .

Thus fixed points of the θ equation with φ̇j 6= 0
correspond to periodic solutions of equations (4)
while limit cycles in (5) correspond to tori. In
the following we refer to (nontrivial) solutions with

φ̇1 = φ̇2 = 0 as standing; such solutions are neces-
sarily reflection-symmetric and in the variables (5)
they are found in the union of the two subspaces
defined by cos θ = ±1.

The second and more useful form of Eqs. (4)
is obtained from (5) on using the variables x =
a2 cos θ, y = a2 sin θ:

ȧ1 = (µ1 + d11a
2
1 + d12(x2 + y2))a1 + a1x , (6a)

ẋ = (µ2 + d21a
2
1 + d22(x2 + y2))x

+ 2y2 + σa2
1 , (6b)

ẏ = (µ2 + d21a
2
1 + d22(x2 + y2))y − 2xy . (6c)

In this representation the standing solutions are
contained within a single invariant plane, y = 0, and
due to the invariance of (6c) under y → −y (corre-
sponding to invariance under spatial reflection) we
can, without loss of generality, restrict attention to
solutions with y ≥ 0, i.e. to θ ∈ [0, π]. All solutions
with y > 0 and a1 > 0 represent drifting states.
Figure 19(a) shows the various relevant structures
in the (a1, x, y) space. There are two types of
fixed points, both in the plane y = 0, the n = 1
mixed mode (characterized by a1x > 0 and labeled
MM0), and two possible n = 2 pure modes (char-
acterized by a1 = 0) whose phase relative to the
n = 1 state is either 0 or π; these are called P0, and
Pπ, respectively. Within the system (4) these states
are obtained from one another by a spatial transla-
tion by L/4, and hence have identical eigenvalues.
The same symmetry, i.e. the invariance of Eqs. (4)
under (z1, z2) → (iz1, −z2), is also responsible for
the presence of the structurally stable heteroclinic
cycles studied by Armbruster et al. [1988]. Fig-
ure 19(a) shows an example. The cycle connects P0

to Pπ in the invariant subspace y = 0, and Pπ back
to P0 in the pure mode subspace a1 = 0. As already
mentioned, the connection Pπ to P0 corresponds to
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Fig. 19. (a) The structurally and asymptotically stable AGH cycle in the (a1, x, y) variables for σ = −1, d11 = −0.4,
d12 = 1.6, d21 = −6, d22 = −0.5 when |µ| = 0.05 and α = 2.8, where µ1 = |µ| cos α, µ2 = |µ| sin α. (b) The corresponding
bifurcation diagram with α as the bifurcation parameter. After Porter and Knobloch [2001].
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a change in the phase φ1 by π/2 while the system
stays in a fixed n = 2 state. Since both subspaces
are two-dimensional both connections persist under
changes in the parameters µ1 and µ2. For other pa-
rameter values the fixed point MM0 may be absent,
or undergo a Hopf bifurcation in the y = 0 plane
creating an unstable limit cycle (SW).

In Fig. 19(a) the fixed point MM0 is repelling
in the y = 0 plane but attracting in the y direction.
Figure 19(b) shows how this situation comes about.
We write (µ1, µ2) = |µ|(cos α, sin α) and decrease
α along |µ| = 0.05. The fixed point MM0 is initially
attracting, but soon undergoes a supercritical Hopf
bifurcation that produces a branch of stable stand-
ing waves. As α decreases further the amplitude
of these standing oscillations grows and a hetero-
clinic connection between the origin and P0 forms,
i.e. the unstable manifold of P0 connects to the ori-
gin. When α is decreased this connection breaks
and the unstable manifold of P0 now connects to Pπ,
forming the heteroclinic cycle depicted in Fig. 19(a).
Figures 17 and 18 suggest that this is exactly what
is happening in the pdes (2a)–(2e) when σ = 0.1,
and B∗+ = 1, B∗− = 0. Figure 19(b) shows that this
heteroclinic cycle exists over a wide range of α but
that it loses stability with decreasing α at the point
where the modulated traveling waves collide with
the circle of pure modes n = 2. At this point the
cycle transfers its stability (without hysteresis) to
the MW and vice versa. In our numerical solutions
of the pdes (2a)–(2e) we find evidence for a global
bifurcation of this kind as well (see Sec. 3.1). More-
over, an examination of the structure of Eqs. (4)
suggests that if one starts with an initial condition
(z1, 0) with Im z1 = 0 the system will evolve in the
invariant subspace Im z1 = Im z2 = 0, and simi-
larly for an initial condition (z1, 0) with Re z1 = 0.
However, it is simple to see that Eqs. (4) restricted
to either of these invariant subspaces [y = 0 in
Eqs. (6)] do not describe the switching observed
in the pdes: the switching only occurs if θ̇ 6= 0,
however briefly, a fact consistent with our compu-
tation of the equantity arg θ2 − 2 arg θ1 in Sec. 3.1.
These considerations suggest that it is the proxim-
ity to such invariant subspaces that distinguishes
between periodic and nonperiodic switching. If the
system is started exceedingly close to an invariant
subspace it will exhibit switching, but its dynamics
will be lower-dimensional, and consequently com-
plex behavior (beyond the formation of the struc-
turally stable connection between P0 and Pπ) is less
likely. In contrast, with generic initial conditions

the system never approaches an invariant subspace
quite so closely and its dynamical behavior is there-
fore less constrained. Whether this is a consequence
of round-off error is difficult to tell [Berkooz et al.,
1994], but all our tests suggest that it may be the
higher modes that are present in the pdes that pre-
vent the formation of the structurally stable hete-
roclinic cycle (or perhaps destabilize it), with the
result that a long periodic orbit is present instead
[Fig. 10(a)].

In this article we have shown that the loss of
midplane reflection symmetry may have profound
dynamical consequences even in two-dimensional
convection. We focused on the consequences of
heat loss through the upper boundary, or of heating
the system at constant electrical power instead of
fixed temperature, both effects measured by effec-
tive Biot numbers. The inclusion of these physically
important effects necessitates a reformulation of the
problem in terms of a modified Rayleigh number
Ra′ defined in such a way that Ra′ remains con-
stant for fixed values of the externally imposed pa-
rameters. This is because, as shown in Figs. 18 and
14, the conventionally defined Rayleigh number Ra
[Eq. (1c)] fluctuates in time, much as the Nusselt
number or the mean flow associated with drifting
states; in contrast the modified Rayleigh number
Ra′ employed here remains constant. The result-
ing reformulation should be of substantial help in
quantitative comparisons between experiments and
theory. We have noted that near the 1 : 2 spatial
resonance the resulting loss of midplane reflection
symmetry creates intervals in Ra′ containing no
stable steady or steadily drifting states. The bi-
furcation diagram that results bears a substantial
resemblance to that of the Kuramoto–Sivashinsky
equation [Armbruster et al., 1989] except for the
fact that in the latter the Hopf bifurcation to the
modulated traveling waves is subcritical. In these
intervals we showed, by direct numerical simulation,
that the system settles into an almost heteroclinic
cycle connecting two pure modes related by transla-
tion by L/4; this cycle may be periodic with a long
period, or chaotic with a long mean switching time,
depending on the initial conditions. Generic initial
conditions lead to complex dynamics, but the dy-
namics become much simpler (and periodic) for ini-
tial conditions sufficiently near reflection-invariant
subspaces. Similar behavior is obtained in the sta-
bility gaps created by homotopic continuation be-
tween no-slip and stress-free boundary conditions
at the top (cf. Fig. 9(a) of Prat et al. [2002]).
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These results are consistent with those of a re-
lated study of the (simpler) Kuramoto–Sivashinsky
equation [Armbruster et al., 1989; Kevrekidis et al.,
1990] for which the presence of structurally sta-
ble connections between n = 2 states and their
L/4 translates was established using reduction to
normal form [Armbruster et al., 1989] and careful
numerics on a Galerkin expansion of the equation
[Kevrekidis et al., 1990]. As in the present case nu-
merical simulations of the Kuramoto–Sivashinsky
equation reported by Kevrekidis et al. revealed pe-
riodic or nearly periodic switching between an n = 2
state and its L/4 translate, although this obser-
vation could be a consequence of the use of Fast
Fourier Transforms (i.e. of numerical error). More-
over, no chaotic switching was reported. As already
mentioned we have checked our results using two
independent codes, and believe them to be correct.
Both codes preserve exactly the symmetries of the
pdes since they employ Fourier decomposition in x.
However, the results obtained superficially conflict
with our independent determination of the eigen-
value ratio ρ (Fig. 8). The fact that ρ > 1 for
Ra′ > 1863 implies that a heteroclinic cycle con-
necting an n = 2 fixed point with its L/4 trans-
late (if present) will be asymptotically stable for
Ra′ > 1863 and hence should attract all trajecto-
ries starting near but not necessarily in the invari-
ant subspace. The observation of chaotic switching
for initial conditions that are not in the invariant
subspace conflicts with this statement. Thus, while
the possibility remains that both the periodic and
chaotic switching reported above is in fact due to
numerical error, the possibility that the higher or-
der modes prevent the formation of the structurally
stable heteroclinic cycle, is also worth considering.
The presence of such modes raises the dimension of
the stable manifold of the fixed points, and hence a
trajectory starting from one fixed point is no longer
forced to connect to its translate, in contrast to
the situation in the normal form (4). In such cir-
cumstances any connections that might be present
need not persist under changes of Ra′. The pa-
pers of Kevrekidis et al. [1990] on the Kuramoto–
Sivashinsky equation, and of Aubry et al. [1988],
and Sanghi and Aubry [1993] on models of the
turbulent boundary layer, provide some informa-
tion about the possible role of higher order modes.
Kevrekidis et al. [1990] showed, using careful nu-
merics on a Galerkin truncation, that for their prob-
lem the connection persists, but their FFT simula-
tions reveal periodic (or nearly periodic) switching.

In contrast Aubry et al. pointed out that near the
global bifurcation at which a putative heteroclinic
cycle acquires stability the switching interval will in-
crease only very slowly with time (by a factor of ap-
proximately ρ2 each time around the cycle) but that
further away it should increase much more rapidly
since ρ becomes larger. They compare these pre-
dictions with numerical integration of a 10 variable
(real) system and find that although the switch-
ing interval does increase with time in all cases, the
rate of increase is typically substantially slower than
the theoretical prediction, an effect they attribute
to rounding error. However, in no case do they
find that the switching interval actually saturates,
in contrast to both the Kuramoto–Sivashinsky sim-
ulations and the results reported above. On the
other hand they also emphasize that the addition
of small random perturbations arising from such
errors may produce a “statistical limit cycle”, as
already suggested by Busse [1981], and the switch-
ing interval would then saturate. For the purposes
of the present paper it is also important to note
that even for this relatively low-dimensional system
Aubry et al. are unable to prove the existence of
the required heteroclinic cycle. An actual pde or,
as here, a system of pdes is of course equivalent to
an ode system of much higher dimension, even when
integrated numerically. In contrast, Campbell and
Holmes [1991] showed that the presence of higher
order modes may allow the pure modes themselves
to lose stability via a parity-breaking bifurcation,
and suggest that if such a bifurcation occurs in the
heteroclinic regime, the system behavior will resem-
ble that of a heteroclinic cycle but with a super-
posed drift. This situation does not apparently arise
in the present problem. Regrettably, aside from the
work of Armbruster et al. [1989] on the Kuramoto–
Sivashinsky equation and the one-dimensional ex-
ample studied by Cox [1996], we know of no other
work that attempts a detailed comparison between
the normal form results and direct numerical sim-
ulations of pdes, and hence of additional results
pertaining to the structural stability of the dynam-
ics in the 1 : 2 spatial resonance with respect to
the inclusion of additional modes. The example
in the present paper suggests that the structurally
stable heteroclinic cycles are in fact quite fragile,
most likely due to the presence of n = 3 modes,
even though they do leave behind echos of their
dynamics, a conclusion that conforms to that of
Aubry et al.
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It remains to consider the mechanism whereby
the structurally stable heteroclinic cycles disappear
as Ra′ continues to increase. In the normal form this
occurs when a standing wave (SW) in the reflection-
invariant subspace forms a heteroclinic connection
between the origin and the n = 2 fixed points. In
case I of Porter and Knobloch [2001] and for suffi-
ciently small |µ| the SW are stable, and the hete-
roclinic cycle is replaced by stable standing oscilla-
tions as α increases (Fig. 19). In the case studied by
Aubry et al. and for larger values of |µ| in the cases
studied by Porter and Knobloch the SW are unsta-
ble. In these circumstances the system undergoes
instead a hysteretic transition to the n = 1 state
and all oscillations cease. In the example studied
in the present paper neither of these terminations
is possible. This is because no n = 1 states (and no
standing waves) are present beyond Ra′ = 1840.1.
Instead it appears that in our case the cycles dis-
appear at Ra′ ≈ 1935 where an n = 1 mode bifur-
cates from the primary n = 2 branch in a subcritical
steady state bifurcation. Cox [1996] has found sim-
ilar behavior in a long wave equation that applies in
the limit B∗− = B∗+ = 0 (i.e. for insulating bound-
aries) with different velocity boundary conditions
at the top and bottom.

Whether similar behavior occurs in other phys-
ical systems under realistic conditions remains
unclear, although the work of Chossat [2001] sug-
gests that it should be a general property of hy-
drodynamic systems. Jones [1982] has computed
a diagram similar to our Fig. 3 for axisymmetric
Taylor vortices with axial wavenumbers in the 1 : 2
ratio, but found no evidence of a secondary parity-
breaking bifurcation. Proctor and Jones [1988] ana-
lyzed a two-layer system using the normal form (4),
locating parameter regimes with structurally stable
heteroclinic cycles, but did not study the dynam-
ics in the original pdes. Perhaps the best system
for further study of the dynamical behavior studied
here is provided by the Bénard–Marangoni problem
in a cylinder [Echebarŕıa et al., 1997] where hetero-
clinic cycles were also identified. Simulations of the
relevant pdes as well as further experiments on this
system are therefore of great interest.

Added note: Recent work by C. Nore et al. [2001]
identifies a 1 : 2 spatial resonance in the von Kármán
flow between counter-rotating disks and obtains
results closely related to ours.
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“Resonant interactions in Bénard–Marangoni convec-
tion in cylindrical containers,” Physica D99, 487–502.

Holmes, P., Lumley, J. L. & Berkooz, G. [1996] Turbu-
lence, Coherent Structures, Dynamical Systems and
Symmetry (Cambridge University Press, Cambridge).

Jones, C. A. [1982] “On the flow between counter-
rotating cylinders,” J. Fluid Mech. 120, 433–450.

Karniadakis, G. E., Israeli, M. & Orszag, S. A. [1991]
“High-order splitting methods for the incompress-
ible Navier–Stokes equations,” J. Comput. Phys. 97,
414–443.

Kevrekidis, I. G., Nicolaenko, B. & Scovel, J. C. [1990]
“Back in the saddle again: A computer assisted study
of the Kuramoto–Sivashinsky equation,” SIAM J.
Appl. Math. 50, 760–790.

Knobloch, E. [1990] “Pattern selection in long-
wavelength convection,” Physica D41, 450–479.

Krupa, M. & Melbourne, I. [1995] “Asymptotic stabil-
ity of heteroclinic cycles in systems with symmetry,”
Ergod. Theor. Dynam. Syst. 15, 121–147.

Manogg, G. & Metzener, P. [1994] “Strong resonance
in two-dimensional non-Boussinesq convection,” Phys.
Fluids 6, 2944–2955.

Mercader, I., Prat, J. & Knobloch, E. [2001] “The 1 : 2
mode interaction in Rayleigh–Bénard convection with
weakly broken midplane symmetry,” Int. J. Bifurca-
tion and Chaos 11, 27–41.

Nore, C., Tuckerman, L., Daube, O. & Xin, S. [2001]
“The 1 : 2 mode interaction in exactly counter-rotating
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