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Nonlinear two-dimensional Rayleigh–Bénard convection with periodic boundary conditions in
the horizontal is studied for spatial periods near the 1:2 steady state mode interaction. The
boundary conditions at the bottom are no-slip, and convection is driven by a fixed imposed
temperature difference across the layer. Homotopic continuation is used to continue the bound-
ary conditions at the top from no-slip (β = 0) to stress-free (β = 1). When β = 0 and non-
Boussinesq effects are absent the system has midplane reflection symmetry and the 1:2 reso-
nance is weak. When β = 1 this symmetry is strongly broken and the resonance is strong. The
transition between these two cases is explored for two Prandtl numbers, σ = 10 and σ = 0.1,
representing behavior typical of large and low Prandtl numbers, respectively.

1. Introduction

Midplane reflection symmetry plays a profound role
in the theory of Rayleigh–Bénard convection in
both two and three dimensions. In three dimensions
this symmetry identifies up- and down-hexagons so
that the appearance of a particular hexagon type
is necessarily a consequence of initial conditions
[Golubitsky et al., 1984; Clever & Busse, 1996]. The
marked preference for one or other type of hexagons
observed in experiments is a consequence of the
breaking of the midplane reflection symmetry either
by non-Boussinesq effects [Busse, 1967] or by differ-
ences in the boundary conditions at the top and
bottom of the fluid layer. The effects of midplane
reflection on convection in two spatial dimensions
are less well known. However, in an earlier paper

Prat et al. [1998] pointed out, following Busse and
Or [1986] and Armbruster [1987], that the presence
of midplane reflection symmetry (hereafter Boussi-
nesq symmetry) changes the structure of mode in-
teractions even in two dimensions, provided only
that the resonant terms in the corresponding am-
plitude equations are even. This effect is partic-
ularly dramatic in the 1:2 resonance because with
symmetry this resonance is weak, i.e. the resonant
terms are of fifth order. In contrast, as discussed
by Mercader et al. [2001a], when this symmetry is
appropriately broken the behavior characteristic of
the strong 1:2 resonance [Armbruster et al., 1988;
Jones & Proctor, 1987; Proctor & Jones, 1988] is re-
stored. This occurs already for quite small values of
the symmetry-breaking parameter β. In the present
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paper we extend the work of Mercader et al. and
homotopically continue the velocity boundary con-
ditions at the top of the layer from no-slip (β = 0)
to stress-free (β = 1) in order to elucidate the origin
of the various solution branches present in the lat-
ter case, and their relation to the solution branches
in the symmetric case β = 0. Two values of the
Prandtl number are used, σ = 10 and σ = 0.1, char-
acteristic of high and low Prandtl number fluids.
In both cases the sequence of transformations that
connects the symmetric and nonsymmetric cases is
exceedingly rich. It should be noted that the ef-
fects on the 1:2 resonance of small non-Boussinesq
terms (equivalent to small nonzero values of our
parameter β) were studied by Manogg and Met-
zener [1994] from a similar point of view, while
Cox [1996] considered the long wave equations gov-
erning convection between nearly insulating bound-
aries with different combinations of stress-free and
no-slip boundaries at the top and bottom. How-
ever, neither of these papers studied the sequence
of transitions that must take place as the symme-
try is increasingly broken. Some idea of the com-
plexity of these transitions can be gleaned from the
work of Porter and Knobloch [2001] on the 1:2 reso-
nance with O(2) symmetry; this work examines, in
the context of the corresponding amplitude equa-
tions, the effect of changing the relative magnitude
between the resonant quadratic terms and the non-
resonant cubic terms.

In the present paper we choose one particular
way of breaking the Boussinesq symmetry, applying
homotopic continuation to the velocity boundary
conditions. This procedure has the advantage over
other ways (e.g. including non-Boussinesq terms,
or introducing a Biot number into the temperature
boundary conditions) in that the basic (conduction)
state remains unchanged. We expect, however, that
the sequence of transitions described below is typ-
ical of other ways of breaking the Boussinesq sym-
metry as well, although some of the details may well
differ.

The paper is organized as follows. In Sec. 2
we summarize the equations and boundary condi-
tions employed. The results obtained by numerical
continuation for different values of the symmetry-
breaking parameter β are presented in Sec. 3. Some
of the higher codimension bifurcations uncovered in
Sec. 3 are analyzed in Sec. 4, and related to the nu-
merical results of Sec. 3. The paper concludes with
a brief discussion.

2. Basic Equations

We consider two-dimensional Boussinesq thermal
convection in a periodic horizontal layer, and com-
pute both steady convecting states and steady trav-
eling wave states in the nonlinear regime. Since
both tilted convection rolls and the traveling waves
are associated with a nontrivial mean flow, we split
the solenoidal velocity field v(x, z, t) into its mean
and fluctuating components,

v = U(z, t) + v′(x, z, t) ,

where U = (U, 0), v′ = (−∂zχ′, ∂xχ′) and v′ =
χ′ = 0, with the overline indicating an average over
the horizontal period. The temperature T (x, z, t)
is written in the nondimensional form

T =
1

2
− z + θ(x, z, t) .

Equations for U , χ′ and θ are obtained from the
horizontal average of the Navier–Stokes equations,
the deviation of the vorticity equation from its hor-
izontal average and the heat equation. In nondi-
mensional form these are

(∂t − σ∂2
zz)U + ∂zv′xv

′
z = 0 , (1a)

(∂t + U∂x − σ∇2)ω′ +Raσ∂xθ + ∂2
zzU∂xχ

′

+
∂(χ′, ω′)

∂(x, z)
− ∂(χ′, ω′)

∂(x, z)
= 0 , (1b)

(∂t + U∂x −∇2)θ − ∂xχ′ +
∂(χ′, θ)

∂(x, z)
= 0 , (1c)

where ω′ = −∇2χ′, lengths and time have been
expressed in units of the layer depth and thermal
diffusion time in the vertical, respectively, and Ra
and σ are the Rayleigh and Prandtl numbers. The
boundary conditions are taken to be periodic in x
with period L. The top and bottom boundaries are
perfectly conducting,

θ = 0 at z = ±1

2
, (1d)

with the velocity boundary conditions

β∂zU + (1− β)U = χ′

= β∂2
zzχ
′ + (1− β)∂zχ

′

= 0 at z =
1

2
, (1e)
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and

U = χ′ = ∂zχ
′ = 0 at z = −1

2
. (1f)

The equations are thus defined on the domain
(x, z) ∈ [0, L] × [−1/2, 1/2]. The resulting prob-
lem is solved numerically for various values of β
using a spectral Galerkin–Fourier technique in x
and collocation-Chebyshev in z. In the following
we define the quantity α ≡ 2π/L and compute bi-
furcation diagrams as a function of Ra for values
of α on either side of αc, the location of the 1:2
resonance. This quantity is determined by the in-
tersection of the n = 1 and n = 2 neutral stabil-
ity curves for the conduction state (cf. [Mercader
et al., 2001a]) and depends on β as shown in Fig. 1,
although it is independent of the Prandtl number.
For β = 0 (corresponding to the presence of Boussi-
nesq symmetry) the mode interaction point is lo-
cated at (Rac, αc) ≈ (2022, 2.165).

Insight into the results can be gained by consid-
ering the symmetries of the basic states that emerge
from the conduction state as Ra is increased, and
the (usually smaller) symmetries of states created
in subsequent (secondary) bifurcations. These sym-
metries depend on the presence or absence of the
midplane reflection symmetry. When β = 0 Eqs. (1)
are equivariant under the two reflections,

R0 : (x, z)→(−x, z ) , (U, χ′, θ)→(−U, −χ′, θ) ,
(2a)

κ : (x, z)→ (x, −z) , (U, χ′, θ)→ (U, −χ′, −θ) ,
(2b)

as well as translations through a distance `,

T` : (x, z)→ (x+ `, z) , (U, χ′, θ)→ (U, χ′, θ) .
(2c)

The reflection (2a) is with respect to an arbitrarily
chosen origin in x; reflections R`0 with respect to
a plane x = `0, say, are obtained by conjugation:
R`0 = T`0R0T−`0 . These symmetries generate the
symmetry group Γ = O(2) × Z2. The conduction
state U = χ′ = θ = 0 is invariant under this group.
The primary instability of this state is to a nontriv-
ial roll state (0, χ′, θ) that breaks the translation
symmetry T` but is invariant under a reflection R`0
for an appropriate `0 and the shift-reflect operation
Ta/2κ, where a ≡ L/n is the pattern wavelength
[Prat et al., 1998]. Each of these symmetries is a
generalized reflection in the sense that its square is
the identity. It follows that the symmetry group of
such a roll state is G ≡ Z2 × Z2 = D2, a subgroup
of O(2)×Z2 [Weiss, 1990; Moore et al., 1991; Prat
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Fig. 1. The dependence of the critical values Rac and αc
for the 1:2 resonance on the homotopy parameter β. Here
α = 2π/L and L is the imposed spatial period, when β = 0,
Rac = 2021.6, αc = 2.1648.

et al., 1995]. In contrast an individual roll is invari-
ant only under a 180◦ rotation. For a pattern with
a node at x = 0 this symmetry is P = Ra/4κ and
is sometimes referred to as a point symmetry. This
symmetry acts on the fields as follows:

P : (x, z)→
(
a

2
− x, −z

)
,

(U, χ′, θ)→ (−U, χ′, −θ) .
(2d)

Note that P = R0Ta/2κ (since T`0R0T`0 = R0) and
so P ∈ G. In the following we shall use the symbol
R to refer to the reflection R`0 for suitable `0.

When β > 0 the reflection κ is broken and
Γ = O(2). The symmetry of the primary flow is
thus G ≡ Z2, i.e. R [Crawford & Knobloch, 1991].
In either case the symmetry R of the primary flow
implies that no mean flow is present: U(z) ≡ 0.
This is not necessarily so for the states produced
in secondary bifurcations from the primary rolls, if
these break the symmetry R of the roll state.

When β = 0 the presence of the D2 symme-
try implies that a roll state of wavelength a can be
written in the form

χ′(x, z) =
K∑
k=1

M∑
m=0

χkmfm(2z) sin
2πkx

a
, (3a)

θ(x, z) =
K∑
k=0

M∑
m=0

Tkmgm(2z) cos
2πkx

a
, (3b)

relative to a suitable origin. Here k + m is odd,
and the functions fm(2z), gm(2z) are suitable com-
binations of Chebyshev polynomials satisfying the
boundary conditions. These functions are odd when
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m is odd and even when m is even. The linear sta-
bility of such a roll state is determined as in [Prat
et al., 1995, 1998]. When β = 0 the possible pertur-
bations split into four disjoint classes, those that are
invariant under the full group G ≡ D2, and those
that are invariant under the three nontrivial sub-
groups of G generated by the generalized reflections
P , Ta/2κ and R, respectively [Prat et al., 1998].
A zero eigenvalue with respect to perturbations of
the first type indicates a saddle-node bifurcation.
The next two classes of perturbations, invariant
under P and Ta/2κ, generate solutions with anti-
symmetric and symmetric mean flow profiles U(z),
respectively. Steady state bifurcations of this type
produce secondary branches of tilted cells, and of
traveling waves. The remaining perturbation type
results in a bifurcation to a secondary branch of so-
lutions that are invariant under R; such solutions
are not associated with a mean flow. Note that
these conclusions apply to fully nonlinear roll states.
Furthermore, expansions of the form (3) can be used
to compute the primary branches of solutions with
wavelength a even in the case β 6= 0; in this case
k+m is either odd or even, depending on the field,
while fm is neither.

The considerations just described for n = 1,
β = 0, also apply to the state n = 2, β = 0,
provided perturbations of period L/2 are consid-
ered. This time the symmetry of the basic state is
D4. Moreover, in a domain of period L this state
can lose stability with respect to perturbations of
wavelength L corresponding to an instability of the
n = 2 state with respect to the state n = 1. Such
an instability is a spatial subharmonic instability
and is characterized by a Floquet multiplier 1/2,
cf. [Prat et al., 1998]. Mathematically, the impor-
tant point is that it breaks the D4 symmetry of the
n = 2, and hence corresponds to a steady state bi-
furcation with double algebraic multiplicity. As a
result two branches of solutions bifurcate from the
n = 2 branch simultaneously. These are the R and
P states, and both can be found by means of the
following expansion:

U(z) =
M∑
m=0

Umg̃m(2z) , (4a)

χ′(x, z) =
K∑

k=−K

′
M∑
m=0

χkmfm(2z)eikαx , (4b)

θ(x, z) =
K∑

k=−K

M∑
m=0

Tkmgm(2z)eikαx , (4c)

with χkm and Tkm now complex and satisfying
χ−km = χ∗km, T−km = T ∗km, and g̃m = gm. The
prime indicates that the k = 0 term is absent. For
the R states Um = 0, all m, while for the P states
Um = 0 only for m even. As before, the above ex-
pansion (with g̃m 6= gm and an appropriate change
in the functions fm) applies to the case β 6= 0 as
well. In this case we must distinguish between the
two types of R-symmetric states that now bifur-
cate in succession from the n = 2 state. These are
distinguished by an appropriately defined phase dif-
ference ψ between the n = 2 state and the n = 1
perturbation (see [Mercader et al., 2001a]). If ψ = 0
we call the resulting bifurcation point M0; if ψ = π
we call it Mπ. The former bifurcation point gives
rise to solutions that are reflection-symmetric about
a nodal line through x = 0; the latter have reflection
symmetry about the line x = L/4. In Sec. 4.1 we
describe another characterization of the points M0,
Mπ. The stability of the resulting solutions is cal-
culated as for the D2-symmetric rolls although the
perturbations no longer split into four subgroups.

We restrict the analysis that follows to solu-
tions that are either steady, or that are steady in
a suitably moving reference frame, i.e. to traveling
waves (hereafter TW). The speed of the frame (the
phase velocity c of the wave) is determined as part
of the solution. All of these solutions (including the
n = 1 steady state for β 6= 0) can be computed us-
ing the general expansion (4), with x replaced with
x − ct for the TW; in the latter case none of the
expansion coefficients vanish in general. In all cases
the symmetry properties guarantee the existence of
TW solutions with phase velocity ±c; the sign of
c is therefore arbitrary. The computations employ
a Newton–Raphson iterative scheme with K ≤ 16,
M ≤ 16 or M ≤ 24. This resolution suffices for
the relatively modest values of the Rayleigh num-
ber considered because the Prandtl number used is
not very small. We do not follow branches of stand-
ing waves and of two-frequency states, although in
several cases the corresponding Hopf bifurcations
have in fact been detected (see below).

There is a fundamental reason for computing
TW in problems of this type. This is because the
breaking of the midplane reflection κ allows some of
the secondary steady solutions to drift [Matthews
et al., 1992; Knobloch, 1996]. This is the case for
the point-symmetric solutions P but not for the so-
lutions with the symmetries R or G since both of
these retain the symmetry R even with broken mid-
plane reflection symmetry (see Sec. 4). However,
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TW can be produced in a secondary bifurcation
even when β = 0, provided the instability breaks
both the R and P symmetries that are then present.
Of course, when β > 0 the shift-reflect symmetry
of this state is lost but it remains a traveling wave.
More details about the symmetries of the possible
secondary solution branches can be found in [Prat
et al., 1998].

3. The Bifurcation Diagrams

This section is divided in four subsections, for α >
αc and α < αc in each of the cases σ = 10 and

σ = 0.1. In each case we first summarize the results
in schematic form, since the quantitative results of-
ten mask some of the important details. Since the
mode interaction point depends on the values of the
symmetry-breaking parameter β we vary in each
case the values of α along with β in order to remain
in the vicinity of the mode interaction point αc(β).

3.1. The case σ = 10: α > αc

Figure 2 shows the sequence of bifurcation diagrams
encountered as β increases from β = 0 to β = 1,
focusing on the diagrams of particular interest. In
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Fig. 2. Schematic bifurcation diagrams for σ = 10 and α > αc. (a) α = 2.2, β = 0, (b) α = 2.2, β = 10−4, (c) α = 1.96,
β = 0.6, (d) α = 1.92, β = 1. The solid (dashed) lines denote steady (traveling) solutions. Secondary bifurcations are indicated
by solid circles and stability by the signs of the two leading eigenvalues, with + (−) indicating instability (stability). Note
that TW are absent both for β = 0 and for β = 1.
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these diagrams steady solutions are indicated by
solid lines, while traveling waves are indicated by
dashed lines. The diagrams also indicate the signs
of the two dominant eigenvalues, with a minus sign
indicating stability. We use the notation R1 (R2)
to refer to the the R-symmetric branch that bifur-
cates first (second) from the n = 2 branch as Ra
increases.

For α > αc the mode n = 1 sets in prior to
n = 2; when β = 0 the former is a pure mode, but
this is no longer the case when β > 0, i.e. when
β > 0 the n = 1 solutions contain some n = 2
contribution as soon as Ra > Rac. In contrast the
n = 2 mode is always a pure mode. For all val-
ues of β the n = 1 state bifurcates supercritically
with increasing Rayleigh number and remains sta-
ble thereafter. However, for larger Ra these states
coexist with stable n = 2 states. When β = 0
these states acquire stability at a secondary bifur-
cation with D4 symmetry, generated by the two op-
erations R and TL/4κ; this group is the symmetry
group of a square, with the operation R identified
with a reflection in a line connecting the midpoints
of two opposite sides and TL/4κ identified with a
90◦ rotation. Since this bifurcation involves the
n = 1 mode (the bifurcation is subharmonic) the
D4 symmetry is broken. As a result the algebraic
multiplicity of the zero eigenvalue is two [Crawford
& Knobloch, 1991; Bergeon et al., 2001] and the
bifurcation produces simultaneously two distinct so-
lution branches. These correspond respectively to
the P - and R-symmetric states; in the present case
both branches are unstable. As soon as β becomes
nonzero the D4 symmetry of the n = 2 states is bro-
ken to D2 (the operation TL/4κ is no longer a sym-

metry, although (TL/4κ)
2 is), and hence the mul-

tiple bifurcation is split into two successive simple
bifurcations to distinct states with the symmetry
R; the counterpart of the P states now bifurcates
from the R2 branch in a (tertiary) parity-breaking
bifurcation, and takes the form of a drifting state
(hereafter a traveling wave, TW). This is the only
aspect of the problem where the fact that the n = 2
state is part of a whole circle of states enters into the
analysis; as explained by Mercader et al. [2001a] the
P states are perturbed into a TW because the sym-
metry κ that prevented them from drifting along
the group orbit is now broken.

Figure 3 shows the quantitative results, includ-
ing the phase velocity along the TW branch. Ob-
serve that for larger β the TW branch no longer
extends to large amplitudes but terminates instead

back on the R2 branch (as shown in Fig. 3(d) for
β = 0.6). With increasing β the resulting TW
“bubble” shrinks to zero, and by the time β reaches
β = 1 [Figs. 3(e) and 3(f)] the TW branch is ab-
sent altogether. Thus the R- and P -symmetric
branches that bifurcate simultaneously from the
n = 2 branch when β = 0 are replaced by two suc-
cessive bifurcations to distinct R-symmetric states
when β = 1, with no trace of the P -symmetric
state remaining. Note that the phase velocity of
the TW vanishes at the tertiary bifurcations and
increases away from them as the square root of the
distance from the bifurcation (see, e.g. [Knobloch
& Moore, 1990]), and that there is no branch of
traveling waves at large amplitude.

3.2. The case σ = 10: α < αc

Figure 4 shows schematically the corresponding re-
sults for α < αc. When β = 0 and α = 2.12 the
n = 2 mode bifurcates first and again remains sta-
ble for all values of Ra. However, there are now
two successive bifurcations from the initially unsta-
ble n = 1 branch (to R and P branches) whose
combined effect is to stabilize the n = 1 branch at
larger amplitudes. Moreover, a tertiary branch of
traveling waves connecting the resulting R and P
branches is also present, with the TW branch bi-
furcating from the P branch at Ra = 2145.7 and
connecting to the R branch at Ra = 2145.9. We
remark that for slightly smaller values of α the bi-
furcations to the R and P branches trade places and
that in this process the TW branch disappears. An
example for α = 2.08 can be found in [Prat et al.,
1998], Fig. 8(a). Thus the TW are found only very
close to the mode interaction point.

For slightly nonzero β, β = 10−5, the results are
noticeably different, largely because of the behavior
of the n = 1 branch. This branch becomes a mixed
mode when β 6= 0, and, as a result, can turn into
other mixed mode branches with the same symme-
try without a bifurcation. As in Fig. 2 the branch
R splits into two steady mixed mode branches R1,
R2 while the P branch turns into a TW. The lower
of the two n = 1 branches consists of an amalgam
of the original n = 1 branch and R1, and increases
monotonically in amplitude. It possesses two sec-
ondary bifurcations connected by a secondary TW
branch. The resulting bifurcation “bubble” is a con-
sequence of the bifurcation to TW present on the R
branch when β = 0, and consists in part of one of
the resulting TW and in part the drifting P states.
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Fig. 3. Numerical results for σ = 10 and α > αc. (a) The Nusselt number N − 1 and (b) the phase speed c of traveling
waves as functions of Ra for α = 2.19, β = 0.01, for comparison with Fig. 2. (c, d) The same but for α = 1.96, β = 0.6.
(e) The same as (c) but for α = 1.92, β = 1, with (f) showing a detail of (e). Note the presence of a TW “bubble” in (c) and
(d). The sign of c is arbitrary since waves can travel to the left or the right.
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Fig. 4. Schematic bifurcation diagrams for σ = 10 and α < αc. (a) α = 2.12, β = 0, (b) α = 2.12, β = 10−5, (c) α = 2.12,
β = 10−4, (d) α = 1.97, β = 0.15, (e) α = 1.97, β = 0.156, (f) α = 1.97, β = 0.158, (g) α = 1.97, β = 0.16, and (h) α = 1.82,
β = 1. In all cases the large amplitude behavior is the same as in Fig. 3.
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Fig. 4. (Continued )

In contrast the upper n = 1 branch is an amalgam of
the upper part of the original n = 1 branch and the
R2 branch, connected via a saddle-node bifurcation.
The large amplitude TW branch produced from the
P branch bifurcates below the saddle-node. Conse-
quently the whole of the n = 1 branch above the
saddle-node is stable. As shown in Fig. 5(a) the
phase velocity of the TW along the large amplitude
branch passes through a sharp maximum. This is
a consequence of the fact that the initial part of
this branch was a TW branch even when β = 0.
Consequently the drift speed along this part of the
branch is necessarily substantially larger than the
slow drift of the P states that form the remain-
der of the TW branch due to the broken midplane
reflection symmetry. Note that even with β this
small, the computed bifurcation diagram lacks the
expected saddle-node bifurcation on the TW bub-
ble that should be inherited from the break-up of
the TW present when β = 0. This is because the
β = 0 TW branch is almost vertical.

Figure 4 shows that as β increases the TW bub-
ble on the R1 branch rapidly disappears, leaving
only one TW branch. This branch bifurcates super-
critically from the R2 branch, as shown in Fig. 6(a)
in the form of a Nusselt number versus Ra diagram
computed for β = 0.01. However, by β = 0.15
the TW branch has changed its direction of bifur-
cation from the R2 branch, and now bifurcates sub-
critically. Moreover, by β = 0.156 a TW bubble
reappears on the R1 branch, and develops a saddle-
node bifurcation which then annihilates with the

saddle-node bifurcation on the other TW branch.
This process results in a reconnection of the TW
branches and produces a TW segment connecting
the R1 and R2 branches, and a large amplitude TW
branch that now bifurcates from the R1 branch (see
Fig. 4(g) for β = 0.16). This interesting bifurcation
is described further in Sec. 4 and is required if one
is to understand the origin of the β = 1 bifurca-
tion diagram [Fig. 4(h)]. As before, Fig. 5 shows
the corresponding quantitative changes in the TW
phase velocity. Note in particular the formation of
the loop when β = 0.15 and the “necking” accom-
panying the disappearance of the TW saddle-node
bifurcations [Figs. 5(c)–5(f)].

Note that at larger amplitude the bifurcation
diagrams for β = 0 must be independent of whether
α > αc or α < αc, and likewise for β = 1. As a re-
sult the TW branch that appears in Fig. 4 must in
fact terminate at finite amplitude on one of the R
branches, and cannot extend to infinite amplitude
[cf. Fig. 4(h)]. Figure 6(b) shows the Nusselt num-
ber versus Ra for β = 1. The TW branch present
in this figure in fact terminates at larger Ra back
on the R1 branch, as can be seen from Fig. 5(h),
and so does not extend to large amplitudes. This
should come as no surprise since the large amplitude
behavior for α < αc and α > αc must be identical.

3.3. The case σ = 0.1: α > αc

For low Prandtl numbers the situation is more
complex. Figure 7 summarizes schematically the
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Fig. 5. Phase speed of the traveling waves in Fig. 4 computed numerically as a function of Ra: (a) α = 2.12, β = 10−4,
(b) α = 2.11, β = 0.01, (c) α = 1.97, β = 0.15, (d) α = 1.97, β = 0.156, (e) α = 1.97, β = 0.158, (f) α = 1.97, β = 0.16,
(g) α = 1.95, β = 0.2, and (h) α = 1.82, β = 1. Note, in particular, the “necking” transition between (e) and (f).
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Fig. 6. The Nusselt number N − 1 as a function of Ra for (a) σ = 10, α = 2.11 and β = 0.01, showing the transformation of
the R and P branches into R1,2 and TW(R2), respectively. (b) The results for α = 1.82 and β = 1.

results for σ = 0.1, α > αc and various values
of β. When β = 0 and α = 2.2 the basic fea-
tures of the bifurcation diagram remain the same
as for σ = 10, α > αc, but with two important
differences. First, the R branch terminates on the
n = 1 branch at Ra = 4980 with the n = 1
branch unstable at higher Rayleigh numbers. Two
branches of TW are also present. A short seg-
ment in 2155 < Ra < 2190 connects the R and
P branches, with a second bifurcation to TW oc-
curring on the P branch at Ra = 2710. These bi-
furcations are all parity-breaking bifurcations from

circles of reflection-symmetric states (i.e. from
states with a symmetry that involves R) and so gen-
erate unstable TW via steady state bifurcation.

As soon as the midplane reflection is broken
(β > 0) the P branch becomes a TW while the
multiple bifurcation on the n = 2 branch splits into
two successive bifurcations to R-symmetric states
as for σ = 10. However, the presence of the
TW when β = 0 complicates this process consid-
erably [Mercader et al., 2001a]. Figure 7 shows
what happens when β = 10−4 and for successively
larger values of β. For very small β the P branch
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Fig. 7. Schematic bifurcation diagrams for σ = 0.1 and α > αc. (a) α = 2.2, β = 0, (b) α = 2.2, β = 10−4, (c) α = 2.19,
β = 0.005, (d) α = 2.19, β = 0.01, (e) α = 2.14, β = 0.05, (f) α = 2.1, β = 0.1, (g) α = 2.05, β = 0.2, (h) α = 2.0, β = 0.3.
The solid (dashed) lines denote steady (traveling) solutions. Secondary bifurcations of steady (Hopf) type are indicated by
solid (open) circles, and stability by the signs of the two leading eigenvalues, with + (−) indicating instability (stability).
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Fig. 7. (Continued )

becomes a TW branch that connects smoothly with
the TW branches produced by the splitting of the
original TW branches by the broken midplane re-
flection symmetry. As a result there is TW “bub-
ble” on the R2 branch containing a TW saddle-node
bifurcation. There is also a bifurcation to TW on
the R1 branch at Ra = 2155 with the resulting
TW extending to large Ra, and a disconnected TW
segment created via a saddle-node bifurcation. Of
particular significance in what follows is the fact
that the R1 branch connects smoothly to the n = 1
branch. As a result the n = 1 branch has only a
finite extent before annihilation in a collision with
the R1 branch; its role at large Ra is assumed by
the R2 branch.

As β increases the situation rapidly simplifies.
For example, by the time β reaches β = 0.005 the
TW bubble disappears [Fig. 7(c)], leaving only a
single bifurcation to TW on the R1 branch, al-
though with increasing β the disconnected TW
branch eventually reconnects again with the R2

branch (see below). Then at β between β = 0.0093
and β = 0.0094 (for α = 2.19) the saddle-node on
the n = 1 branch collides with the R2 branch form-
ing a pitchfork bifurcation (see Sec. 4.3), and for
larger β the n = 1 branch terminates at M0 instead
of Mπ [see Figs. 7(c) and 7(d)]. This reconnection
has no effect on the relative location of the points
M0 and Mπ or on the TW bifurcation, which re-
mains on the R1 (i.e. lower) branch. The bifurca-
tion diagram that results is shown in Fig. 7(d) for
β = 0.01. However, by the time β reaches β = 0.05

[Fig. 7(e)] the locations of the secondary bifurca-
tions M0 and Mπ have traded positions, restoring
the topology of the β = 0.005 diagram but with
M0 and Mπ now reversed. The details of this tran-
sition are involved. For α = 2.18 we find that the
exchange takes place very near β = 0.024(= βc) and
occurs as follows. For β < βc the branch R1 con-
nects to Mπ while R2 connects to M0. Of these the
R1 branch undergoes a parity-breaking bifurcation
producing a branch TW(R1) that extends to larger
amplitudes [cf. Fig. 7(d)]. However, by β = 0.020 a
pair of additional parity-breaking bifurcations ap-
pears on the branch R2 producing a TW bubble
with a small hysteresis at one end. The amount of
hysteresis increases with β, and a “necking” bifur-
cation (Sec. 4.4) occurs between β = 0.0213 and
β = 0.0214 (see Fig. 8). The resulting TW(R2)
now extends to larger amplitudes, leaving behind a
segment TW(R2R1) connecting R1 with R2. Specif-
ically, when β = 0.022,

• R1 (Mπ) bifurcates from n = 2 at Ra = 2001
• R2 (M0) bifurcates from n = 2 at Ra = 2002.4
• TW(R2) is born at Ra = 2076
• TW(R2R1) extends from Ra = 2012 (R2) to 2078

(R1).

The value of the Rayleigh number at which the
TW(R2R1) segment bifurcates from R2 moves
towards the point M0 on the n = 2 branch as β
approaches βc, and at β = βc these two points co-
incide with Mπ. For β > βc the points M0 and Mπ

have traded positions, and the point at which the
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Fig. 8. The phase speed c of the TW participating in the
“necking” bifurcation as a function of Ra for σ = 0.1,
α = 2.18. The branches originating from the c = 0 line ap-
pear in parity-breaking bifurcations from steady states. The
“necking” bifurcation provides the key to the transition be-
tween Figs. 7(d) and 7(e), with the large Ra branch corre-
sponding to the TW branch in these figures. See text for
further discussion.

TW segment first appears reemerges on the new
R2 branch, thereby forming a TW bubble on the
new R2 branch. This bubble disappears with in-
creasing β, leaving behind a diagram of the type

shown in Fig. 7(e). Although this transition ap-
pears to be unnecessarily complex related transi-
tions are typical of near-degenerate steady state bi-
furcations with broken D4 symmetry [Crawford &
Knobloch, 1988; Bergeon et al., 2001], as discussed
further in Sec. 4.6. After the above sequence of
bifurcations the point Mπ moves to larger ampli-
tude as β increases in the interval 0.05 < β < 0.1
but thereafter remains almost stationary. When
β = 0.1 [Fig. 7(f)] the disconnected TW branch
[see Fig. 7(a)] collides with the branch R2 ema-
nating from Mπ, producing two successive bifur-
cations to TW (see Sec. 4). With increasing β
the larger amplitude bifurcation point moves off to
“infinity”. At the same time the saddle-node bi-
furcation moves to smaller amplitude, opening up
an interval in Rayleigh number containing no sim-
ple stable states. This interval grows with β as the
TW bifurcation on the n = 1 branch moves past
the saddle-node bifurcation, decreasing the range
of stable n = 1 states. Figures 9(a) and 9(b) show
that when β = 0.2 the “gap” in Ra extends from
Ra = 1710 to Ra = 2410. We anticipate that in
this range of Ra complex dynamics will be present,
since the motion of the bifurcation to TW past the
saddle-node creates a tertiary Hopf bifurcation on
the TW branch (see Sec. 4) that produces quasiperi-
odic (i.e. two-frequency) traveling waves [Mercader
et al., 2001b]. However, by β = 0.3 the tertiary
Hopf bifurcation has moved to large values of Ra,
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Fig. 9. The Nusselt number N − 1 as a function of Ra for σ = 0.1, (a, b) α = 2.05 and β = 0.2, and (c, d) α = 2.0
and β = 0.3, showing the rapid increase in stability of the TW branch with increasing β. Note especially the presence of
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(b, d) show details of (a, c), respectively.
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Fig. 10. Schematic bifurcation diagrams for σ = 0.1 and α > αc (continued). (a) α = 1.92, β = 0.8, (b) α = 1.915,
β = 0.84, (c) α = 1.915, β = 0.87, (d) α = 1.92, β = 1. The solid (dashed) lines denote steady (traveling) solutions.
Secondary bifurcations of steady (Hopf) type are indicated by solid (open) circles, and stability by the signs of the two leading
eigenvalues, with + (−) indicating instability (stability).
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leaving behind stable TW and closing the gap
[Figs. 9(c) and 9(d)]. The saddle-node bifurcation
on the n = 1 branch then disappears as well, as
shown in Fig. 7(h) for β = 0.3. As shown in Fig. 10,
for larger values of β all the action takes place at
larger amplitudes, and is associated with the ap-
proach of a TW bifurcation along the n = 2 branch
from large amplitude to smaller that destabilizes
the large amplitude n = 2 states. We refer to the
resulting TW branch as TW2 to indicate that these
TW bifurcate from the pure mode branch n = 2
(i.e. the TW2 have no odd wavenumber compo-
nents), in contrast to the TW encountered hith-
erto which bifurcated from the mixed mode branch

R2 and contain contributions from all wavenumbers.
Note that the TW2 branch is strongly subcritical;
consequently its presence limits dramatically the re-
gion of stability of simple and computable large
amplitude states. This occurs via a complex se-
quence of bifurcations as we now describe. Observe
first [see Fig. 10(a)] that the TW branch that bifur-
cates from the R2 branch terminates on the TW2
branch in a steady state subharmonic bifurcation;
the details of this bifurcation are also discussed in
Sec. 4. A similar bifurcation occurs further along
the TW2 branch and produces a branch called TW
possessing a Hopf bifurcation, whose presence is
probably related to the proximity to a saddle-node
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Fig. 11. Phase velocity for the traveling waves in Fig. 10 as a function of Ra. (a) α = 1.92, β = 0.8, (b) α = 1.915, β = 0.84,
(c) α = 1.915, β = 0.87, (d) α = 1.92, β = 1. The points where c = 0 represent parity-breaking bifurcations from (circles
of) steady states. The label TW2 indicates waves lacking odd wavenumbers. Solid (open) circles indicate steady (Hopf)
bifurcations.
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Fig. 12. The Nusselt number N − 1 as a function of Ra for σ = 0.1, α = 1.92 and β = 1, showing that all simple solutions
are unstable for Ra > 2195. (b) Shows a detail of (a). Solid (open) circles indicate steady (Hopf) bifurcations.

bifurcation on the TW2 branch [see Fig. 10(a)].
The TW2 branch then becomes tangent to the
n = 2 branch, producing two additional bifurca-
tions to TW2 on this branch. The upper of these
moves towards larger amplitude past the point Mπ

[Figs. 10(b) and 10(c)], annihilating in the process
the branch TW that bifurcates from R2 and leav-
ing only a TW2 bubble at large amplitude. These
transitions are summarized in Fig. 11, where the
phase velocity of the traveling waves is shown as
a function of Ra. With increasing β this TW2
bubble disappears [Fig. 11(c)], leaving the β = 1
diagram shown in Fig. 10(d); the corresponding
Nusselt number diagram is shown in Fig. 12. This
diagram, like the earlier ones for smaller β, is of in-
terest since for Ra > 2195 none of the simple states
we compute remains stable. From the calculations
performed the only likely stable state in this regime
is the quasiperiodic (i.e. two-frequency) state that
bifurcates from TW at Ra ≈ 2195, with the (new)
frequency ω2 ≈ 4.04. The interesting dynamics that
results requires direct numerical simulation, and is
explored elsewhere [Mercader et al., 2001b].

3.4. The case σ = 0.1: α < αc

When α < αc the situation is almost as compli-
cated. Figure 13(a) shows that when β = 0 and
α = 2.12 the n = 2 branch bifurcates first and
is stable throughout. The n = 1 branch is also
supercritical but is unstable, with a secondary bi-
furcation to an unstable P branch at Ra = 2150,

followed by a tertiary bifurcation to unstable TW
at Ra = 3220. Once again this is a parity-breaking
bifurcation from a circle of P states. The absence
of an R branch is particularly noteworthy, since the
n = 1 branch now remains unstable, eliminating
the possibility of bistability between the n = 1 and
n = 2 branches. When β = 10−4 the diagram
breaks up in an obvious way [see Fig. 13(b)]: the P
branch becomes a TW and the original TW splits
into two, labeled TW1 and TW2, forming a branch
of traveling waves that extends from a bifurcation
on the n = 1 branch to large amplitudes, and a dis-
connected traveling wave branch formed from what
was the large amplitude P branch and TW2. As a
result the former branch is composed of an initial
part that is a drifting P state and hence is charac-
terized by a relatively small value of c, followed by
TW1 at larger values of Ra, i.e. a part that was a
TW even in the β = 0 system, and hence is char-
acterized by a substantially larger phase velocity,
cf. [Mercader et al., 2001a]. For the same reason we
expect the phase velocity along the latter branch to
drop dramatically near the saddle-node bifurcation
as one traverses the disconnected branch towards
larger amplitudes.

When β = 0.14 and α = 1.99 the n = 1 branch
develops a hysteresis bifurcation below the bifur-
cation to TW [Figs. 14(a) and 14(b)]; the latter
moves to lower amplitudes with increasing β and
interacts with the saddle-node bifurcations created
in the hysteresis bifurcation. However, as discussed
in Sec. 4, this interaction is complicated by the
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Fig. 13. Schematic bifurcation diagrams for σ = 0.1 and α < αc. (a) α = 2.12, β = 0, (b) α = 2.12, β = 10−4, showing the
breakup of the pitchfork to TW in (a) when β becomes nonzero.
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Fig. 15. (a) The Nusselt number N − 1 as a function of Ra for σ = 0.1, α = 1.82 and β = 1 for comparison with Fig. 12(a).
(b) Shows a detail of (a).

additional appearance of a Hopf bifurcation to
standing waves (SW) between the TW bifurca-
tion and the upper saddle-node bifurcation (see
Figs. 14(c) and 14(d) for β = 0.145) which cannot
be understood as a consequence of the interaction
between a hysteresis bifurcation and a pitchfork bi-
furcation to traveling waves. As a consequence of
the Hopf bifurcation the n = 1 branch acquires a
(short) stable segment below the upper saddle-node
bifurcation; we do not follow the standing waves
that result from the Hopf bifurcation and do not
know their stability. With increasing β the primary
bifurcation to the n = 1 branch becomes subcriti-
cal and soon thereafter the n = 1 branch becomes
tangent to the n = 2 branch, breaking it into two
stable parts connected by an unstable interval in
between. It is unclear what kind of solutions are
present in this interval in which the bifurcation di-
agram (Fig. 14(g) for β = 0.15) predicts no stable
simple states.

With increasing β the lower Mπ point moves
rapidly downwards, eliminating the remaining
saddle-node bifurcation on the n = 1 branch
[Fig. 14(j)]. At larger β branches of traveling waves
(both TW and TW2) enter the picture and disap-
pear again by the same sequence of transitions as
already described for α > αc, resulting finally in
the β = 1 bifurcation diagram shown in Fig. 15.
Once again, this bifurcation diagram differs from
that shown in Fig. 12 only in the small amplitude
states [compare Figs. 15(b) and 12(b)], but the large

amplitude behavior is identical. Note that the in-
terval in Ra containing no stable steady states or
traveling waves persists from about β = 0.15 all
the way to β = 1. It is likely that with increasing
amplitude the SW undergo a parity-breaking bifur-
cation producing modulated traveling waves of the
type present when α > αc.

4. Interpretation of the Results

The numerical results reported in the previous sec-
tion include a number of interesting bifurcations. In
order to understand these bifurcations, we describe
in this section the local behavior near each of these,
and relate the unfolding that results to the behavior
discussed in Sec. 3.

4.1. Steady state bifurcation
with D4 symmetry

The first interesting bifurcation encountered when
β = 0 is the steady state bifurcation from the
n = 2 branch. Since this bifurcation is subharmonic
(i.e. the mode n = 1 is involved) this is a bifurca-
tion that breaks theD4 symmetry of the basic state.
As a result the multiplicity of the zero eigenvalue is
doubled. Since the group D4 is generated by the
two operations R and ρ ≡ TL/4κ we introduce the
(real) amplitudes a1 and a2 of perturbations that
are, respectively, even and odd with respect to R
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and observe that

R(a1, a2) = (a1, −a2) , ρ(a1, a2) = (a2, −a1) .
(5)

Thus [Crawford & Knobloch, 1991]

ȧ1 = g(λ, a2
1, a

2
2)a1 , ȧ2 = g(λ, a2

2, a
2
1)a2 , (6)

where g is a C∞ real-valued function and λ de-
notes the distance from the bifurcation point. In
the generic case these equations have only two types
(modulo symmetry-related states) of nontrivial so-
lutions near the origin (i.e. near the n = 2 state).
These are the states (a1, a2) = (a, 0) with symme-
try R and the states (a1, a2) = (a, a) with symme-
try Rρ. Observe that the solution (a1, a2) = (0, a)
has the symmetry Rρ2 and is related to (a, 0) by
ρ(0, a) = (a, 0), and that the state (a, a) is point-
symmetric. According to the above theory both the
R- and the P -symmetric states bifurcate simultane-
ously from the n = 2 state at λ = 0, in agreement
with Fig. 2(a).

As soon as β becomes nonzero the symmetry
of the n = 2 state changes from D4 to D2. This
is because the operation ρ ceases to be a symme-
try of the problem, although ρ2 remains a symme-
try. As a result the secondary bifurcation splits
into two successive simple bifurcations; since the
symmetry R is preserved both of these produce
reflection-symmetric states, one with the symme-
try R and the other with the symmetry Rρ2. The
R-symmetric state is (a1, 0) and bifurcates from the
n = 2 branch at the point M0; the Rρ2-symmetric
state (0, a2) bifurcates instead from Mπ (for consis-
tency with the definitions in [Mercader et al., 2001a]
we need to identify the point M−π with Mπ). The
analogue of the P branch now branches off one of
the R branches in a tertiary bifurcation; this is a
consequence of the fact that this state has no re-
maining reflection symmetry and so cannot bifur-
cate from the n = 2 branch; moreover, the absence
of a reflection symmetry implies that this state will
in fact drift along the group orbit, i.e. it will take the
form of a traveling wave. We describe this process
with the (truncated) normal form equations [van
Gils & Mallet-Paret, 1986]

ȧ1 = (λ+ ε+Aa2
2 +B(a2

1 + a2
2))a1 ,

ȧ2 = (λ+Aa2
1 +B(a2

1 + a2
2))a2 .

(7)

Here ε > 0 is proportional to β. When ε = 0 (i.e. in
the D4-symmetric case) the bifurcation diagram of

Fig. 2(a) corresponds to the choice A > 0, B > 0,
A + 2B > 0, with λ proportional to −(Ra − Rac).
For ε > 0 as λ increases (Ra decreases) one first en-
counters (at λ = −ε) a subcritical bifurcation to the
state (a, 0) from which there is a further bifurcation
to a once unstable state of the form (a1, a2); as al-
ready mentioned, when ε � 1 this state is almost
P -symmetric and its phase velocity is proportional
to ε and hence to β. As λ increases the bifurcation
to (a1, 0) from the n = 2 state is followed (at λ = 0)
by a second subcritical bifurcation, this time to the
state (0, a2). These predictions of Eqs. (7) and the
corresponding stability assignments are completely
consistent with Fig. 2(b).

Note that the normal form (7) also describes
the secondary bifurcation from the n = 1 branch,
albeit not rigorously. This branch has symmetry
D2 generated by the operations R and TL/2κ. In
appropriate variables this group acts by

R(a1, a2) = (a1, −a2) ,

TL/2κ(a1, a2) = (−a1, −a2) ,
(8)

so that the amplitude a1 refers to the amplitude of
the R-symmetric perturbation and a2 is the ampli-
tude of the P -symmetric perturbation (recall that
P = RTL/2κ). Standard theory now shows that we
should expect successive bifurcations to branches of
solutions invariant underR and P , and this is borne
out by the analysis of equations of the form (7), al-
beit with different interpretation of the solutions. In
particular the two solutions that bifurcate from the
origin now correspond to the (secondary) branches
of R- and P -symmetric states seen in Fig. 4(a).
Note that unless ε in Eqs. (7) is small we do not
expect to see (locally) any further bifurcations from
either of these branches, although such bifurcations
are in fact present in Fig. 4(a).

4.2. Parity-breaking bifurcation

We use the term parity-breaking bifurcation to re-
fer to a symmetry-breaking bifurcation from a cir-
cle of nontrivial equilibria. In the present prob-
lem the imposition of periodic boundary conditions
together with the symmetry R of the governing
equations (and boundary conditions) introduces the
group O(2) of rotations and reflections of a circle
into the system. As a result the primary states
are all symmetric with respect to R and occur in
one-parameter families, corresponding to the pat-
tern and all its translates. Secondary bifurcations
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that break the symmetry R result in drift along the
group orbit, i.e. in patterns that drift horizontally,
as described by the normal form

ċ = (λ− c2)c , φ̇ = c . (9)

Here φ denotes the spatial phase of the pat-
tern, i.e. χ′ = χ′(x + φ) relative to some origin.
Thus states with c = 0 correspond to stationary
(i.e. reflection-symmetric states) while those with
c 6= 0 represent TW. Note that these states can
drift in either direction, depending on initial con-
ditions. In the above normal form the bifurcation
to TW is supercritical and the resulting TW will
therefore be stable (if the primary state from which
it bifurcates is stable). This type of supercritical
parity-breaking bifurcation from the R2 branch can
be seen, for example, in Figs. 2(b) and 2(c). Other
examples can be seen in Figs. 4(b), 7(a), 7(b), etc.

The TW bubbles encountered in Sec. 3
[Fig. 3(d)] are described similarly. The normal form
is

ċ = (ε− λ2 − c2)c , φ̇ = c . (10)

Thus if ε > 0 a TW bubble exists in the interval
−ε1/2 < λ < ε1/2, and the bubble disappears as
ε → 0 [Figs. 2(c) and 2(d)]. See Figs. 4(b), 4(c),
7(b), 7(c), 10(c) and 10(d) for other examples.

4.3. The imperfect bifurcation

There are a number of instances where an imper-
fect bifurcation is observed. The simplest example
occurs when σ = 10, α = 2.12 and β is changed
from zero [Figs. 4(a) and 4(b)]. When β = 0 the
bifurcation from the n = 1 branch to the R branch
is a pitchfork because it breaks the symmetry TL/2κ
[see Eq. (8)]; the resulting solutions are related by
TL/2κ, and this is the reason the bifurcation dia-
gram in Fig. 4(a) does not look like a pitchfork.
However, once β becomes nonzero this symmetry
is no longer present, and the pitchfork becomes an
imperfect bifurcation. This bifurcation is described
by the normal form

ż = ε+ (−λ+ z2)z , (11)

where z measures the amplitude of the n = 2 contri-
bution that enters at λ = 0 (λ ∝ (Ra−Rac)/Rac),
and ε is proportional to β. This normal form is
the appropriate unfolding since we are only varying
a single parameter to break the symmetry TL/2κ.
It is for this reason that we do not expect to en-
counter all the diagrams present in the universal

unfolding of the pitchfork [Golubitsky & Schaeffer,
1988], given (up to time reversal) by

ż = ε1 + ε2z
2 + (λ− z2)z .

Note that since ε breaks the TL/2κ symmetry the
R branch is now split into two distinct branches
unrelated by symmetry, as in Fig. 4(b).

A different but very important example of an
imperfect pitchfork bifurcation is provided by the
transition between Figs. 7(c) and 7(d). Figure 16
shows what happens. In Fig. 16(a) we show the
Nusselt number N − 1 as a function of Ra when
β = 0.0093, α = 2.19 for comparison with Fig. 7(c).
Evidently, the two branches are to be identified
with the R1 (nonmonotonic) and R2 (monotonic)
branches in Fig. 7(c). These results are presented
in a more revealing form in Fig. 16(b) which shows
the amplitude T00 of the zero temperature mode
[see Eq. (4c)] along the two interacting branches,
with the label n = 1 indicating the branch that
corresponds to the n = 1 primary branch. The
figure shows the situation both before (continuous
line) and after (dashed line) the formation of a
pitchfork bifurcation. Since the orientation of the
imperfect bifurcation is reversed for β = 0.0094
the branch R1 now corresponds to the monotonic
branch and R2 to the nonmonotonic one. These
figures provide strong evidence that the transition
from Fig. 7(c) to Fig. 7(d) occurs via the forma-
tion of a pitchfork bifurcation at a particular value
of β, 0.0093 < βc < 0.0094, and its transforma-
tion into an imperfect bifurcation for both β < βc
and β > βc. Note that a pitchfork bifurcation of
this type forms only because the coefficient of the
quadratic term in the normal form passes through
zero, and not as the result of any reflection sym-
metry. The connection between this situation and
the normal form (11) is provided by the universal
unfolding just mentioned.

Other examples of imperfect bifurcations are
seen, for example, in the diagrams corresponding
to σ = 0.1, α = 2.12 [Figs. 13(a) and 13(b)], where
the pitchfork from the P branch to the TW branch
becomes imperfect once β becomes nonzero (this bi-
furcation is described by Eq. (11) with z replaced
by the phase velocity c), and in the diagrams for
σ = 0.1, α = 2.2 [Figs. 7(a) and 7(b)], where the
termination of the R branch on the n = 1 branch
also becomes an imperfect bifurcation. In the latter
case, described by the normal form ż = ε+(λ+z2)z,
this bifurcation changes dramatically the overall
topology of the n = 1 branch.
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Fig. 16. (a) The Nusselt number N − 1 as a function of Ra when β = 0.0093 < βc and σ = 0.1, α = 2.19 for comparison
with Fig. 7(c). (b) The unfolding of the codimension-two pitchfork bifurcation at β = βc when β < βc (continuous lines) and
β > βc (broken lines), shown in terms of the temperature mode T00 along the two branches. The label n = 1 indicates the
branch that connects to the n = 1 primary bifurcation.

The situation is different for the bifurcation
from the n = 1 branch to the P states [see Figs. 4(a)
and 4(b)]. This bifurcation is also a pitchfork, but it
remains a pitchfork even when β becomes nonzero.
This is because this time the bifurcation breaks the
symmetry R and this symmetry is unaffected by the
loss of midplane reflection symmetry. However, due
to the loss of the TL/2κ symmetry the P states turn
into TW, as already explained.

4.4. The necking bifurcation

In the case σ = 10 we encountered an instance of
two branches of TW reconnecting as the parame-
ter β increased [Figs. 4(f) and 4(g), 5(e) and 5(f)].
This is a standard bifurcation, and is described by
the normal form

ċ = λ2 + β − βc − c2 , φ̇ = c . (12)

Here β = βc is the location of the reconnection; at
this value of β the normal form (12) describes a pair
of straight lines intersecting at the origin. If β < βc
these break up leaving a gap in the values of λ for
which solutions exist, while if β > βc the straight
lines reconnect in the opposite sense leaving a gap in
c instead. Up to rotation of the axes this is exactly
what is observed during the change in topology of
the two TW in, for example, Figs. 5(e) and 5(f). A
particularly nice example of this type of transition

occurs in the transition between Figs. 7(d) and 7(e),
as discussed in Sec. 3.3 (see Fig. 8).

4.5. The tangent bifurcation

Another type of bifurcation observed in Sec. 3 may
be termed the tangent bifurcation. This bifurca-
tion arises when the n = 1 branch becomes tangent
to the n = 2 branch, as in Figs. 14(f) and 14(g),
thereby introducing a pair of new steady state bi-
furcations on the latter and breaking the n = 1
branch into two parts. This type of bifurcation can
only occur when β > 0 since it requires that the
n = 1 branch be a mixed mode branch in order
that it can connect with the n = 2 branch. The
bifurcation is described by the normal form

ż = z(−λ2 + β − βc + z2) , (13)

where β = βc denotes the location of the tangency
and z is a suitable measure of the amplitude of the
n = 1 component; this amplitude can be either posi-
tive or negative although both cases are identified in
the figure. This normal form is nothing but the nor-
mal form in Sec. 4.2 but with the sign of the z3 term
positive. As a result if β < βc the solution z = 0 is
stable, but once β > βc an unstable interval opens
up between two steady state bifurcations. These
bifurcations produce branches of solutions with
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|z| > 0 and hence correspond to the n = 1 solutions.
In the present example [Figs. 14(f) and 14(g)] they
are nothing but the R1 and R2 branches already
encountered, and here they extend in opposite
directions away from the origin (z, λ) = (0, 0) in-
stead of forming a bubble. Once again, up to ro-
tation of the axes, this is exactly what is observed
during the tangent bifurcation that occurs between
β = 0.148 and β = 0.15 in Figs. 14(f) and 14(g).

The same type of bifurcation also occurs in
Figs. 10(a) and 10(b) between β = 0.8 and β = 0.84.
This time it is the branch of TW2 that becomes
tangent to the n = 2 branch, producing a doubly
unstable segment on the latter. The corresponding
normal form is identical to that in Eq. (13) with the
replacement of z by the phase speed c. An identi-
cal bifurcation occurs in Figs. 7(e) and 7(f) when
the disconnected large amplitude TW branch col-
lides with the R2 branch, creating the bifurcation
diagram in Fig. 7(f).

4.6. The exchange bifurcation

As discussed in more detail in Sec. 3, when σ = 0.1,
α = 2.18 and β ≈ 0.024 the system undergoes a
complex sequence of transformations, whose net ef-
fect is to interchange the bifurcation points M0 and
Mπ on n = 2 [Figs. 7(d) and 7(e)], while the TW
branch remains on the lower branch. A transition
of this type is described by the normal form (7) but
with A < 0, B > 0, A + 2B > 0. Moreover, ε > 0
when β < βc and vice versa. Once again increasing
λ corresponds to decreasing Ra. At ε = 0 the R-
symmetric branch (a1, 0) and the ρ2R-symmetric
branch (0, a2) coincide (i.e. a1 = a2 = a) and these
bifurcate from the n = 2 branch together with the
branch (a, a). Both branches are subcritical, with
the latter doubly unstable. When ε > 0 (β < βc)
the (a1, 0) branch is encountered first as λ increases,
followed by the (0, a2) branch from which the TW
branch (a1, a2) bifurcates. As ε decreases through
zero the branches (a1, 0) and (0, a2) pass through
one another with the bifurcation to the TW trans-
ferred to (a1, 0). Although the results of this analy-
sis, including the stability assignments, are in com-
plete agreement with the observed transition from
Fig. 7(d) to Fig. 7(e), the detailed results reported
in Sec. 3 reveal that the details of the transition are
in fact more involved. Specifically as β increases
we observe the formation of a TW bubble on the
branch R2, followed by necking (see Fig. 8), and
then the motion of the bifurcation to TW on the

R2 branch towards the n = 2 branch, followed by
the reemergence of this point on the new R2 once
β exceeds βc. In other words, the observed transi-
tion, for β sufficiently close to βc is of the opposite
type, with the TW bifurcating from (a1, 0) instead
of (0, a2) as in the scenario just described. Clearly,
close enough to β = βc the coefficient A > 0, but
it is small enough that further away from the bi-
furcation where higher order terms become impor-
tant the system behaves as if A were in fact neg-
ative. It follows, therefore, that an explanation of
the observed detailed transition must be sought in
the unfolding of the degeneracy A = 0. The effect
of forced symmetry-breaking from D4 to D2 on this
degeneracy was analyzed in detail by Crawford and
Knobloch [1988], and this theory is directly rele-
vant to our pdes when β ≈ βc. Indeed, Sec. 2.3
of this paper identifies a number of possible transi-
tions (depending on fifth- and seventh-order terms,
cf. [Knobloch, 1986]), of which one is precisely of
the type we have found in the pdes (under time re-
versal). We conclude therefore that the observed
transition from Fig. 7(d) to Fig. 7(e) is the conse-
quence of an accidental degeneracy (here A ≈ 0), in
addition to the requirement that β ≈ βc in order to
bring the two branches R1 and R2 together. Thus
strictly speaking the observed exchange bifurcation
is of codimension three, in contrast to the situa-
tion in Sec. 4.1 which represents the unfolding of a
codimension-one degeneracy.

4.7. The hysteresis bifurcation

When σ = 0.1, α < αc, a hysteresis (or cusp) bi-
furcation takes place on the n = 1 branch between
β = 10−4 and β = 0.14, creating a pair of saddle-
node bifurcations on the n = 1 branch [Fig. 14(b)].
This bifurcation is described by the normal form

ż = λ+ εz − z3 ,

so that when ε < 0 (β < βc) there is no hysteresis
as λ increases, but a hysteresis loop is created as
soon as ε > 0 (β > βc).

4.8. The saddle-node pitchfork

In Sec. 3 we located several instances where differ-
ent codimension-two bifurcations take place. For
example, in Figs. 7(f) and 7(g), the pitchfork to
TW on the n = 1 branch slides past the saddle-
node bifurcation, creating a tertiary Hopf on the
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TW branch. This bifurcation is described by the
normal form

ż = −λ− z2 + bc2 +O(3) , ċ = −µc+ azc+O(3) ,

with a < 0, b > 0. Here the symbol O(3) in-
dicates terms of cubic order required to resolve
certain degeneracies involving the periodic oscilla-
tions present in these equations [Guckenheimer &
Holmes, 1990]. Thus the states (z, 0) representing
the amplitude of the n = 1 branch near the saddle-
node bifurcation are present for λ < 0, while the
pitchfork to TW (c 6= 0) occurs on the z < 0 branch
when µ > 0, but as µ passes through zero the TW
pitchfork moves onto the z > 0 branch; a (tertiary)
Hopf bifurcation on the TW branch appears at the
same time, as in Fig. 7(g). Note that the fate of the
limit cycle created at the (tertiary) Hopf bifurcation
falls outside the range of validity of the normal form,
and may therefore involve global bifurcations with
other states not described by the normal form. Re-
cent work by Porter and Knobloch [2001] indicates
some of the possibilities, and describes the complex
dynamics that may result.

A different example can be seen in Figs. 14(b)
and 14(d), where the bifurcation to the TW branch
moves down past the larger amplitude saddle-node
bifurcation as β increases, and coincides with it at
βc, 0.140 < βc < 0.142 (α = 1.99). Here the n = 1
states are present for λ > 0, i.e. towards larger Ra,
while the states above (below) the pitchfork are sta-
ble (unstable) to TW perturbations. The resulting
bifurcation is described by the normal form,

ż = λ− z2 + bc2 +O(3) , ċ = µc+ azc+O(3) ,

with a < 0, b < 0. In contrast to the case just de-
scribed in this case no (tertiary) Hopf bifurcation
appears as a result of this interaction. The origin
of the standing waves indicated in Figs. 14(b) and
14(c) is quite different, and is discussed in Sec. 4.11
below.

4.9. The subharmonic bifurcation for
traveling waves

For σ = 0.1 [Figs. 10(a)–10(d)] we encountered sev-
eral instances of a subharmonic bifurcation of trav-
eling waves. This bifurcation can be understood in
terms of an interaction between two traveling waves
with wavenumbers n = 2 and n = 1. Recall that the
former is invariant under the translation TL/4 fol-
lowed by evolution through a time P/4, where P is

the time taken to travel the length L. Immediately
after the bifurcation the symmetry of the TW will
be TL/2 followed by evolution through a time P/2,
i.e. the bifurcation is a subharmonic bifurcation in
time as well and so is a standard period-doubling
bifurcation. In the rest frame of the n = 2 wave
this bifurcation is a steady state bifurcation, and
is indicated as such in the bifurcation diagrams. A
relevant model problem of this type is provided by
the equations describing the double Hopf bifurca-
tion with 1:2 resonance (cf. [Knobloch & Proctor,
1988]),

ȧ1 = λ1a1 + p1|a1|2a1 + q1|a2|2a1 + r1a2a1 ,

ȧ2 = λ2a2 + p2|a2|2a2 + q2|a1|2a2 + r2a
2
1 ,

where λj, pj , qj, rj (j = 1, 2) are complex coef-
ficients, and indicates that under appropriate con-
ditions on the coefficients the pure n = 2 branch
(i.e. the branch consisting of solutions of the form
(a1, a2) = (0, a2)) undergoes a secondary bifurca-
tion to a mixed state of the form (a1, a2), a1a2 6= 0,
and that this bifurcation is indeed subharmonic in
time [Knobloch & Proctor, 1988].

4.10. The double pitchfork bifurcation

The diagrams for σ = 0.1 indicate that as β in-
creases the n = 2 branch is destabilized at large
amplitude by the appearance of a bifurcation to
TW2, i.e. with respect to traveling waves with only
the wavenumber n = 2 (Fig. 10). This TW2 branch
undergoes a subharmonic instability of the type just
described, with the resulting TW connecting to the
R2 branch. The TW2 branch then undergoes a tan-
gent bifurcation with the n = 2 branch, as described
in Sec. 4.5 above, that introduces two new bifurca-
tions on the n = 2 branch, both below the pitchfork
to R2. The upper of these then moves up along the
n = 2 branch [Figs. 10(a) and 10(b)] producing a
double pitchfork on the n = 2 branch when it col-
lides with the pitchfork to R2; the subharmonic TW
branch is eliminated in this process, i.e. as the two
pitchforks on the n = 2 branch approach one an-
other both (tertiary) bifurcations generating TW
move towards the n = 2 branch. This behavior
is seen quite clearly in Figs. 11(b) and 11(c) which
show that the branch labeled TW(R2) is eliminated
when the solid circle that indicates its appearance
collides with the axis c = 0 (i.e. the steady n = 2
branch). This behavior is readily understood by
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examining the unfolding of the double pitchfork
bifurcation,

ż = λz +Az3 +Bc2z ,

ċ = (λ− ε)c+ Cz2c+Dc3 .

Here z denotes the amplitude of the n = 1 contri-
bution, and c 6= 0 indicates a traveling wave. Com-
parison with Figs. 10(b) and 10(c) indicates that
we must take A > 0, D > 0, C > A, B < D and
AD − BC < 0. This is case Ib in the classification
of Guckenheimer and Holmes [1990]. Starting from
negative values of λ, i.e. from the stable part of the
n = 2 branch, and increasing λ (decreasing Ra)
with ε < 0 (i.e. β > βc), we first encounter a sub-
critical bifurcation to TW2, followed by a second
subcritical bifurcation to R2. If ε > 0 (β < βc) we
find instead that the first bifurcation is to a subcrit-
ical R2 state which undergoes a further bifurcation
to a once unstable “mixed mode”. This mode is
the TW branch, i.e. the TW branch that contains
contributions from wavenumber n = 1. This branch
terminates on the TW2 branch that bifurcates from
the n = 2 state at λ = ε, also subcritically.

4.11. A Takens Bogdanov pitchfork
interaction

There remains one aspect of the bifurcation dia-
grams reported in Sec. 3 that requires a more com-
plicated analysis. This concerns the appearance be-
tween the two saddle-node bifurcations on the n = 1
branch in Fig. 14(d) of an unexpected Hopf bifur-
cation to a reflection-symmetric state we have la-
beled SW. This Hopf bifurcation is not required
(see Sec. 4.8 above); however, the fact that it is
present calls for an explanation. A careful numeri-
cal investigation of the case α = 1.99 indicates that
at β = 0.14 the TW bifurcates from the n = 1
branch above the upper saddle-node bifurcation,
while at β = 0.142 the bifurcation is below it. Thus
the saddle-node–pitchfork interaction, discussed in
Sec. 4.8 takes place at βc, 0.14 < βc < 0.142. At
β = 0.143 the Hopf bifurcation is still absent but it
appears once β is increased to β = 0.144 and falls
between the saddle-node and pitchfork bifurcations
[Fig. 14(d)]. From the motion of the eigenvalues
it is clear that there are three eigenvalues that are
responsible for these bifurcations, suggesting that
only a third-order system is capable of providing
a consistent explanation. We focus here on the

Takens–Bogdanov bifurcation on the n = 1 branch
coupled with a pitchfork to TW. This bifurcation is
described by the normal form

ẍ = −(ν − kx)ẋ− (λ− x2)± y2 ,

ẏ = −(µ− γx)y
(14)

(cf. [Arnéodo et al., 1985]). Here x represents the
variable in the reflection-invariant subspace, while
y represents the variable associated with the trav-
eling wave instability. Setting y = 0 we see imme-
diately that there is a saddle-node bifurcation at
λ = 0, with a pair of equilibria (x0, 0), x0 = ±

√
λ,

for λ > 0. Of these the upper (+) equilibrium
is a saddle while the lower (−) is stable if ν > 0
(cf. Fig. 14). Moreover, the lower equilibrium un-
dergoes a pitchfork to TW, i.e. to equilibria of the
form (x0, y0), x0y0 6= 0, provided γ < 0. This bi-
furcation is supercritical (subcritical) if the sign of
the last term is + (−). Finally, a Hopf bifurcation
within the invariant space y = 0 (i.e. to standing
waves) occurs on the lower equilibrium provided
k < 0. This bifurcation lies between the saddle-
node and the pitchfork to traveling waves provided
γν > µk. Under these conditions (and the choice
of the lower sign in the last term of the first equa-
tion) the resulting bifurcation diagram is of the type
shown in Figs. 14(d), 14(f) and 14(h). Although the
case just described is by no means the most interest-
ing regime described by Eq. (14) it does provide a
complete explanation of the transitions reported in
Fig. 14 near β = 0.145, and indicates that we must
take the parameter ν = k0(β−βc), k0 > 0, in order
to take the system from Fig. 14(b) to Fig. 14(d).

5. Discussion

In this paper we have described the results of
numerical branch-following techniques applied to
the partial differential equations describing two-
dimensional Rayleigh–Bénard convection in the
vicinity of a codimension-two point at which two
modes, with wavenumbers α and 2α are simultane-
ously unstable. This technique allows us to com-
pute all the branches of time-independent states
that emanate from this point, as well as those corre-
sponding to traveling waves, that is, states that are
time-independent in an appropriately moving refer-
ence frame. We have focused on two values of the
Prandtl number, σ = 10 and σ = 0.1, characteristic
of large and small Prandtl number regimes, respec-
tively, exploring in each case the effect of chang-
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ing the velocity boundary condition at the top of
the layer from no-slip to stress-free while the lower
boundary remained no-slip. This change in the
boundary condition was accomplished via the in-
troduction of a homotopy parameter which we have
called β. Such homotopic continuation has been
used before and has shed much light on the rela-
tionship between the bifurcation diagrams for su-
perficially quite different problems [Schaeffer, 1980].
In the present problem, we described in detail for
both Prandtl numbers the sequence of transitions
through which the system passes as β varies from
β = 0 (no-slip) to β = 1 (free-slip), and showed that
these depend on whether α > αc or α < αc, i.e. on
whether the imposed spatial period is smaller or
larger than that corresponding to the codimension-
two point. Since we have fixed the temperatures at
the top and bottom boundaries and ignored all non-
Boussinesq effects the partial differential equations
studied possess a reflection symmetry with respect
to the layer midplane when β = 0 but this sym-
metry is broken when β > 0. Thus the homotopic
continuation performed can be viewed alternatively
as a study of the effects of a progressive increase in
asymmetry between the boundary conditions im-
posed at the top and bottom of the layer.

Our study builds on our earlier work [Mercader
et al., 2001a] on the effects of weak symmetry break-
ing on the 1:2 resonance and reveals a definite se-
quence of additional bifurcations that must take
place before the β = 0 bifurcation diagram is trans-
formed into the corresponding β = 1 diagram. We
have discussed each of these bifurcations in turn,
using appropriate normal forms. Some of the bi-
furcations we identified were unexpected, such as
the “necking” bifurcation (Sec. 4.4) or the Takens–
Bogdanov–pitchfork interaction (Sec. 4.11). How-
ever, in all cases the study enabled us to understand
the transition from the diagram of Fig. 2(a) to that
in Fig. 2(d) (α > αc) and from Fig. 4(a) to that in
Fig. 4(h) (α < αc) when σ = 10, and from Fig. 7(a)
to that in Figs. 12(a) and 12(b) (α > αc) and from
Fig. 13(a) to that in Figs. 15(a) and 15(b) (α < αc)
when σ = 0.1. Of particular interest is the discovery
of certain ranges of β within which there are inter-
vals of Rayleigh numbers for which none of the sim-
ple states we compute are stable. In these intervals
the partial differential equations must admit solu-
tions with a more complex time-dependence, per-
haps quasiperiodic or chaotic. In other cases we
were able to identify the presence of a Hopf bifur-
cation to standing waves but have not followed the

resulting solution branch at finite amplitude. In a
related paper [Mercader et al., 2001b] we study the
possibility of complex behavior identified here via
direct numerical simulation of the governing par-
tial differential equations, and explore other mech-
anisms for breaking the up-down symmetry, such as
introducing a Biot number into the thermal bound-
ary condition at the top to describe heat loss from
the surface. Similar stability “gaps” are present in
this case, allowing us to vary the Biot number to
locate regimes with complex time-dependence in a
system which exhibits none when the top surface is
either perfectly conducting or perfectly insulating.
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