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Flow in a cylinder driven by the co-rotation of the top and bottom endwalls displays
distinct instability mechanisms, depending on whether its aspect ratio (length to
diameter) is large or small. When the cylinder length is about the same as its
diameter, the two mechanisms compete and lead to a stable mixed mode solution.
Using numerical computations of the three-dimensional Navier–Stokes equations,
together with equivariant bifurcation and normal form theory, we explore the nature
of this mode competition, both from a flow physics point of view and from a
dynamical systems with symmetry point of view. The results help to clarify the
distinct behaviours observed experimentally in some short and long cylinder flows.

1. Introduction
Systems with nominally flat clean surfaces are often modelled as being stress

free, and this stress-free interface is essentially equivalent to a reflection symmetry
plane. However, it is practically impossible to attain a perfectly stress-free interface,
particularly in an air/water system, because of the ubiquitous presence of surfactants
(Scott 1975) whose surface concentration gradients produce a Marangoni stress.
There has been recent interest in flows in open cylindrical containers driven by the
rotation of the bottom endwall, and the various instability modes of such flows
(Spohn 1991; Spohn, Mory & Hopfinger 1993; Young, Sheen & Hwu 1995; Spohn,
Mory & Hopfinger 1998; Hirsa, Lopez & Miraghaie 2002; Miraghaie, Lopez & Hirsa
2003). Modelling efforts in these flows have typically approached the problem by
imposing the reflection symmetry (Valentine & Jahnke 1994; Lopez 1995; Gelfgat,
Bar-Yoseph & Solan 1996; Brons, Voigt & Sorensen 1999, 2001). For deep systems
(H >R, where H is the depth from the free surface to the bottom endwall and R is
the cylinder radius), the stress-free surface model works quite well in describing the
primary mode of instability, which is non-axisymmetric (Hirsa et al. 2002; Lopez et al.
2004). However, for shallow systems (R >H ), the model is incapable of describing
the primary mode of instability. In this case, the primary mode corresponds to a
spontaneous breaking of the reflection symmetry (Miraghaie et al. 2003; Lopez et al.
2004). For systems with R ∼ H , the two primary modes of instability (Z2-reflection
preserving for deep systems and Z2-reflection breaking for shallow systems) compete,
and it is this competition that is explored here in a closed system with both the top
and bottom endwalls rotating, so that the basic state has a Z2-symmetric mid-plane
modelling the stress-free interface.

The symmetry Z2 × SO(2) (where in the problem we address here, the Z2 is a
reflection about z = 0 and SO(2) is invariance to rotations about the axis r =0) plays
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a role in many fluids problems. Classic examples are Taylor–Couette flow in physical
containers, i.e. with endwalls and of finite length (Benjamin 1978; Benjamin & Mullin
1981; Cliffe & Mullin 1985; Cliffe, Kobine & Mullin 1992; Mullin, Toya & Tavener
2002; Schulz, Pfister & Tavener 2003), and Rayleigh–Bénard convection in rotating
cylinders (Zhong, Ecke & Steinberg 1991; Goldstein et al. 1993, 1994). The role of Z2-
symmetry breaking has attracted much attention, particularly in the Taylor–Couette
flows, but the focus has typically been on steady-state Z2-symmetry breaking (via a
pitchfork bifurcation) and the theoretical and numerical studies have been restricted
mainly to SO(2) invariant subspaces, i.e. axisymmetric flows. Symmetry-breaking Hopf
bifurcations, such as those examined here, have received comparatively little attention.
A fundamental difference is that the Z2-symmetry breaking Hopf bifurcation leads to
another single state – a Z2-symmetric limit cycle which is not pointwise Z2-symmetric,
but rather it is setwise Z2-symmetric (e.g. see Golubitsky, Stewart & Schaeffer 1988).
The interaction and competition between Z2-symmetry preserving and Z2-symmetry
breaking Hopf bifurcations is explored in detail here, both by examining a full fluid
dynamics problem and in terms of its centre manifold reduction and normal form
analysis of the corresponding double Hopf bifurcation. The main result is the existence
of a stable mixed mode. Nore et al. (2003) have studied a related problem, swirling flow
in a stationary cylinder driven by the exact counter-rotation of the endwalls. Their
symmetry is different, O(2) that mixes the axial and azimuthal directions z and θ ,
but again competition between distinct instability modes led to a mixed mode, whose
normal form dynamics were predicted in Armbruster, Guckenheimer & Holmes (1988).

In Lopez & Marques (2003), a Taylor–Couette flow with SO(2) × Z2 symmetry
also displayed mode competition organized by a double Hopf bifurcation, but in
that case the competition was between an axisymmetric (m = 0) limit cycle and a
rotating wave with azimuthal wavenumber m =1. Since one of the limit cycles had
wavenumber m =0, the mode competition was non-resonant (Marques, Lopez &
Shen 2002). Furthermore, in the mode competition parameter regime, the two limit
cycles co-existed and were stable, while the mixed mode was unstable. In our present
problem, the mode competition is between two rotating waves with m =1 and m =2,
and so resonance may be a factor in the dynamics. Here, we derive the equivariant
double Hopf normal form and the conditions for resonance, and show that, in fact,
our problem is non-resonant. A distinction between the present mode competition
and that in Lopez & Marques (2003) is that here the mixed mode is stable, and the
two limit cycles (rotating waves) are unstable. The stability of the mixed mode allows
a comprehensive description of its spatiotemporal characteristics.

2. Governing equations, symmetries and numerical method
We consider the flow in a cylinder of length 2H and radius R, driven by the

co-rotation of both rigid endwalls at constant angular speed Ω , as shown in figure 1.
Using R as the length scale and 1/Ω as the time scale, there are two non-dimensional
governing parameters:

Reynolds number: Re= ΩR2/ν,

Aspect ratio: Γ =H/R,

where ν is the kinematic viscosity of the fluid.
The equations governing the flow are the Navier–Stokes equations together with

initial and boundary conditions. In cylindrical coordinates, the domain is (r, θ, z) ∈
[0, 1]× [0, 2π]× [−Γ, Γ ], and the non-dimensional velocity vector is u = (u, v, w). The
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Figure 1. Schematic of the flowapparatus. The inset illustrates typical streamlines of a steady
axisymmetric flow determined by numerical simulation, projected onto a meridional plane.

boundary conditions are no-slip for all solid walls and the essential pole conditions
at the axis; see Lopez, Marques & Shen (2002) for details, where the treatment of the
discontinuity at (r = 1, z = ± Γ ) is also discussed.

The three-dimensional Navier–Stokes equations are solved numerically using a
Galerkin spectral scheme for spatial discretization and a second-order projection
scheme for time-evolution. Legendre polynomial bases are used in the radial and
axial directions and a Fourier basis is used in the periodic azimuthal direction. The
details of the numerical method are given in Lopez et al. (2002). The computed results
presented here employed 48 Legendre modes in r and z, 32 Fourier modes in θ , and a
time step of 2 × 10−2. The initial condition is either a state of rest or the continuation
of a solution from one point in the (Re,Γ )-parameter space to a nearby point in that
parameter space.

The governing equations and boundary conditions are equivariant to rotations
Rβ , of arbitrary angle β , around the cylinder axis, and to a reflection K about the
mid-plane z =0. Their actions on the velocity vector u are

Rβ(u, v, w)(r, θ, z) = (u, v, w)(r, θ + β, z), (2.1)

K(u, v, w)(r, θ, z) = (u, v, −w)(r, θ, −z). (2.2)

Since Rβ and K commute, the symmetry group of the problem is G = SO(2)×Z2. The
basic state, i.e. the unique solution of the Navier–Stokes equations for small values
of Re, is steady and invariant to the group G.

We shall consider the dynamics in a number of invariant subspaces: (i) the SO(2)×
Z2-invariant subspace, where all solutions are axisymmetric and reflection symmetric
about the mid-plane z = 0; (ii) the SO(2)-invariant subspace, where all solutions are
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axisymmetric but the mid-plane need not be a symmetry plane; (iii) the Z2-invariant
subspace, where the mid-plane is a symmetry plane but the solutions need not be
axisymmetric; and finally (iv) the full problem where no symmetry conditions are
imposed. With the spectral method used, the restriction to the axisymmetric SO(2)-
invariant subspace is accomplished by setting to zero all but the zeroth Fourier mode;
the restriction to the Z2-invariant subspace is simply accomplished by setting to zero
all the odd Legendre polynomials in the z-basis for u and v and all the even Legendre
polynomials in the z-basis for w. This enforces the condition

∂u/∂z = ∂v/∂z = w =0, (2.3)

at the mid-plane, which means that on this plane there is no flow-through (maintaining
it flat) and there are no tangential stresses. The restriction to the SO(2)×Z2-invariant
subspace is accomplished by imposing both SO(2) and Z2 invariance.

3. Basic flow state
For the base flow, it is often convenient to describe the axisymmetric solutions in

terms of the streamfunction, ψ , the axial component of angular momentum, α, and
the azimuthal component of the vorticity, η. These are related to the velocity and
vorticity fields as

u = (u, v, w) = (−ψz, α, ψr )/r, (3.1)

∇ × u = (−αz, rη, αr )/r. (3.2)

In the same way as contours of ψ give the projection of the streamsurfaces onto
a meridional plane (i.e. the streamlines), contours of α give the vortex lines in the
meridional plane. For a Z2-invariant state, ψ and η are odd functions of z and α is
even.

Figure 2 shows the streamlines, vortex lines and lines of constant azimuthal vorticity
of the basic state for Γ =1, at Re =1950, just lower than the Re for which the basic
state becomes unstable. Near the axis, r = 0, the vortex lines are vertical straight lines,
producing a region of solid-body rotation that extends to about r = 0.2. In a solid-
body rotation region, the angular velocity ω = v/r = α/r2 is constant, and α depends
only on r , producing the vertical straight lines; and since α is quadratic in r , the
vortex lines are equispaced for quadratically spaced contour levels. There is virtually
no secondary meridional motion in this near-axis region, i.e. ψ → 0 here. We have
spaced the streamlines quadratically, in order to visualize the very weak recirculation
bubbles near the edge of the solid-body-rotation region. The endwall boundary layers
at z = ± Γ for r > 0.2 carry angular momentum to larger radii, and wall jet-shear
layers form as these are turned into the interior by the presence of the stationary
cylinder at r = 1. These jet-shear layers are inclined at a small angle in from the wall
and are distinct from the cylinder wall boundary layers, which remain attached up to
the mid-plane at z = 0. Figure 3 shows contours of the three velocity components of
the same basic state as in figure 2; these contours are linearly spaced. The contours
of v further illustrate the structure of the inclined wall jet-shear layers, where v has
local maxima near the corners (r = 1, z = ±Γ/2). At the mid-plane z = 0, the cylinder
wall layers (coming in from z = ± Γ ) separate forming a radially inwards swirling jet
at z =0 that penetrates to small radii, up to the region of solid-body rotation. This
jet has radial and azimuthal velocity components that are of comparable strength, as
seen in the contours (figure 3). Velocity profiles plotted in figure 4 further detail the
structure of the jet at the mid-plane. Figure 4(a) gives the axial profiles of the three



Mode competition between rotating waves 269

(a) (b) (c)

Figure 2. Basic state at Γ = 1.0, Re= 1950, showing contours of (a) ψ , (b) α and (c) η in a
meridional plane (r, z) ∈ [0, 1] × [−Γ, Γ ]. Contour levels, 18 positive (black) and 18 negative
(grey), are spaced quadratically with ψ ∈ [−0.008, 0.008], α ∈ [0, 1], η ∈ [−18, 18].

(a) (b) (c)

Figure 3. Basic state at Γ = 1.0, Re= 1950, showing contours of (a) u, (b) v and (c) w in a
meridional plane (r, z) ∈ [0, 1] × [−Γ, Γ ]. Contour levels, 18 positive (black) and 18 negative
(grey), are spaced linearly u ∈ [−0.145, 0.145], v ∈ [0, 1], w ∈ [−0.132, 0.132].
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Figure 4. Velocity profiles of the basic state at Re= 1950, Γ = 1.0 in (a) the axial direction
at r = 0.5 and (b) the radial direction at z = 0.

velocity components at mid-radius r = 0.5; the u profile shows a typical jet profile
with maximum in its core and the w profile shows the convergent flow into the jet
core. The jet’s core extends between approximately z = ± 0.3Γ , and all three velocity
components are of comparable magnitude. Figure 4(b) gives the radial variations
of the velocity components at the mid-plane, i.e. along the core of this jet. The
w velocity here is zero; the basic state is Z2 symmetric. The u profile shows that
the jet extends from the sidewall all the way to the solid-body-rotation region at
about r = 0.2. The v velocity increases linearly as it is advected by the jet from the
sidewall, owing to approximate conservation of angular momentum rv, and reaches
a maximum as the jet collides with the region of solid-body rotation (where v/r is
approximately constant). Figure 2 shows this jet colliding with the region of solid-
body rotation at about r = 0.2 and fluid being turned into the ±z directions. The
characteristic recirculation zones attached to the mid-plane and the associated large
azimuthal component of vorticity due to vortex line bending (Brown & Lopez 1990)
are also clearly evident. Such recirculation zones have been visualized experimentally
(Spohn et al. 1993), where the mid-plane in our computations corresponds to their
free surface. The structure of this basic state is quite complex, it is an axisymmetric
flow but has a three component velocity field, and consists of several boundary layers
and internal shear layers and jets, all of which are interacting intimately.

4. Bifurcations from the basic state
4.1. Symmetry considerations

The primary instability of the basic state leads to a limit cycle, γ , via a Hopf
bifurcation. The normal form for a Hopf bifurcation from a base state with symmetry
group G = SO(2) × Z2 is the same as for the standard Hopf bifurcation. Using the
complex amplitude of the limit cycle, A, the normal form, up to third order in A, is

Ȧ= A(iω0 + µ − a|A|2), (4.1)

where ω0 is the imaginary part of the critical eigenvalue at the bifurcation and µ is
the bifurcation parameter (related to Re and Γ in our case). Although the presence of
the symmetry group G does not modify the generic Hopf normal form, the bifurcated
solution, γ , may have symmetries different from G. The action of G on the amplitude
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A is (Iooss & Adelmeyer 1998):

RβA= eimβA, KA= sA, (4.2)

where m is an integer (the azimuthal wavenumber of γ in our problem) and s = ±1.
When m =0, the eigenvector is SO(2)-invariant, i.e. axisymmetric; when s = +1, the
eigenvector is Z2-invariant. The action of G on the periodic bifurcated solution γ is
the following: if m =0, the action of Rβ leaves every point of γ invariant. If m �=0,
the action of Rβ on γ is equivalent to a time translation t → t + mβ/ω0: advancing
in time is equivalent to a rigid rotation of the flow pattern, and γ is called a rotating
wave with precession frequency ωp =ω0/m. If s = 1, the action of K leaves every
point of γ invariant. If s = −1, the action of K is equivalent to a time translation of
π/ω0, which is half the period of γ .

The bifurcated limit cycle γ , as a set, is G-invariant, but the individual points on γ

(the solution at a given time), are only invariant to a subgroup ∆ of G, called the group
of spatial symmetries of the bifurcated periodic solution. That is, applying an element
of G to a given point in γ will either leave it invariant or produce a symmetrically
related point in γ . The elements of G which leave the point invariant form the
subgroup ∆. The remaining elements of G are called spatiotemporal symmetries
of γ , and their action is equivalent to a specified time translation along the orbit
(Lamb & Melbourne 1999). There are four different possibilities for the symmetries
of the bifurcated orbit γ :

m s ∆

Type I 0 +1 SO(2) × Z2

Type II 0 −1 SO(2)
Type III �=0 +1 Zm × Z2

Type IV �=0 −1 Z2m




(4.3)

where Zm is the discrete group of rotations generated by R2π/m, and Z2m is generated
by KRπ/m; the notation Zm(R2π/m) and Z2m(KRπ/m) is often used to indicate
simultaneously the group and the corresponding generator(s); Z2 is generated by
the reflection K: Z2(K).

In our problem, we have found Hopf bifurcations leading to limit cycles with
symmetries corresponding to all four cases. The axisymmetric Hopf bifurcations
(types I and II) have been previously studied by restricting the computations to
an SO(2)-invariant subspace (Valentine & Jahnke 1994; Lopez 1995; Brons et al.
2001), but our three-dimensional computations have found that these take place at
Re much larger than the Re at which the basic state undergoes non-axisymmetric
Hopf bifurcations (types III and IV); compare Rec ∼ 1960 in the present study with
Rec ∼ 2564 (axisymmetric Hopf bifurcation) for Γ = 1.

When the aspect ratio Γ is greater than one (deep systems), the basic state loses
stability to a mode with even z-parity (s = +1), while in shallow systems (Γ smaller
than one), the primary instability mode has odd z-parity (s = −1). Near Γ = 1, both
modes with opposite z-parity compete, and we have located a double Hopf bifurcation
point (at Γ = 1.0264 and Re = 1949.07) where both modes bifurcate simultaneously.
This codimension-2 point is the organizing centre for the dynamics and flow physics
associated with this mode competition.
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u2 v2 w2

Figure 5. Isosurfaces of the m= 2 velocity components of rw2 with odd z-parity at
Re= 2000, Γ = 1.0; isolevels at ±0.003.

4.2. Numerical results

The Γ = 1 case illustrates the mode competition between non-axisymmetric odd and
even z-parity modes. The basic state loses stability to each of these types of mode at
critical Re that are quite close. The odd z-parity mode bifurcates first in a supercritical
Hopf bifurcation at Re ≈ 1955. It has azimuthal wavenumber m = 2 and leads to a
rotating wave rw2.

The structure and symmetry of the m = 2 Fourier component of the velocity
components of rw2 at Re =2000 are shown in figure 5. The w = 0 surface near the
mid-plane z = 0 undulates with azimuthal wavenumber m =2. The isosurfaces show
that this Hopf mode has odd z-parity and rw2 has type IV symmetry (m =2 and
s = −1). According to (4.3), the spatial symmetry group of the bifurcated solution is
Z4, generated by KRπ/2, i.e. a reflection about z = 0 composed with a rotation of π/2
about the axis. Figure 5 shows that u and v have this symmetry. For w it is more
complicated, because the action of K also changes the sign of the vertical velocity
(see (2.2)); therefore neither K nor Rπ/2 leave w invariant, but their combination
does. Neither K nor Rβ are spatial symmetries of rw2, but they are spatiotemporal
symmetries. For K , its action is equivalent to a half-period temporal evolution, and
Rβ is equivalent to a temporal evolution of β/π of the period (characteristic of a
rotating wave with m =2).

As Re is increased, the rw2 with broken spatial Z2 symmetry becomes unstable
via a Neimark–Sacker bifurcation that introduces an m =1 component at Re ≈ 2005
(see figure 7), leading to a modulated rotating wave mrw. Isosurfaces of the m = 1
velocity components of mrw at Re =2050 are shown in figure 6. It is clear that the
m =1 component has even z-parity.

It is interesting to compute in a Z2-invariant subspace for Γ = 1. In this subspace,
the odd z-parity rw2 does not exist, and neither does mrw. The first instability of
the basic state in this subspace, as Re is increased, is to an m =1 mode at Re ≈ 2005,
leading to an even z-parity rotating wave rw1. Figure 7 shows the modal energies of
the rw1, rw2 and mrw solutions as functions of Re. The modal energies are

Em =
1

2

∫ z =Γ

z = −Γ

∫ r = 1

r = 0

em r dr dz, (4.4)
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Figure 6. Isosurfaces of the m= 1 velocity components of mrw at Re= 2050, Γ = 1.0;
isolevels at ±0.003.
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Figure 7. Variation with Re of E2 for rw2, E2 and E1 for mrw, and E1 for rw1, for Γ = 1.

where

em = um · um, (4.5)

is the modal energy density and um is the mth Fourier mode of the velocity field.
Comparing the E1 modal energies of mrw and rw1 in figure 7, we find that they are
very close over an extensive range in Re, with E1 of rw1 consistently larger than that
of mrw. Both modal energies, E1 and E2, of mrw increase with Re, but E1 grows
much faster with Re than does E2, and by Re ≈ 2010, the m = 1 component of mrw is
dominant. Although the first instability of the basic state at Γ = 1 breaks the spatial
Z2 symmetry in z, the flow quickly (in terms of increasing Re) attempts to re-establish
a Z2 symmetric state, and with increasing Re the ratio E1/E2 increases and the flow
progressively becomes more Z2 symmetric. Figure 8 shows isosurfaces of the m =1
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u1 v1 w1

Figure 8. Isosurfaces of the m= 1 velocity components of rw1 with even z-parity at
Re= 2050, Γ = 1.0; isolevels at ±0.003.

velocity components of rw1 at Re = 2050 and Γ =1.0, the same parameters as used
in figure 6 for the corresponding isosurfaces of mrw; the two modes are clearly very
similar. Using the rw1 state as an initial condition in a computation without any
imposed symmetry conditions, together with a small odd z-parity perturbation, results
in an evolution with a growing m =2 component and eventually the mrw state is
reached. The rw1 state is unstable for Γ = 1.0.

The isosurfaces in figure 8 show that rw1 has even z-parity and type III symmetry
(m =1 and s = +1). According to (4.3), the spatial symmetry group of the bifurcated
solution is Z1 × Z2 which is isomorphic to Z2 (because Z1 is the trivial group,
consisting of the identity). The Z2 is generated by K . Rβ is not a spatial symmetry
of rw1, but it is a spatiotemporal symmetry: its action is equivalent to a temporal
evolution of β/2π of the period (characteristic of a rotating wave with m = 1).

An interpretation of mrw as a mixed mode between the odd z-parity rw2 and the
even z-parity rw1 is apparent. Further, given that rw2 and rw1 bifurcate from the
basic state at quite close values of Re at Γ = 1 suggests that for a nearby value of Γ ,
they could bifurcate simultaneously, i.e. at a codimension-2 double Hopf bifurcation
point, and that mrw is a mixed mode that originates at the bifurcation point.

A typical feature associated with double Hopf bifurcations is the existence of a
mixed mode, which may be stable, depending on the particulars of the system; see
detailed accounts for the generic case in, for example, Guckenheimer & Holmes
(1997) or Kuznetsov (1998). When the system has symmetries, these may introduce
new dynamics (Golubitsky et al. 1988), and before presenting further numerical results
for our problem, we first determine how the symmetry group SO(2) × Z2 affects the
dynamics. The details are given in the Appendix, and in the following section we
present the salient points.

5. Double Hopf bifurcation with SO(2) × Z2 symmetry
In the double Hopf bifurcation, the presence of SO(2) × Z2 symmetry alters the

generic normal form only in the presence of resonances. In the Appendix, we present
a derivation of the normal form for the double Hopf bifurcation with SO(2) × Z2
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Figure 9. Parametric portrait for a simple type II double Hopf bifurcation. The curves H1

and H2 (coinciding with the axes µ1 = 0 and µ2 = 0, respectively) are the two Hopf bifurcation
curves at which the limit cycles, P1 and P2, bifurcate supercritically from the basic state P0. The
curves N1 and N2 are Neimark–Sacker bifurcation curves at which the quasiperiodic mixed
mode P3 bifurcates. Phase portraits in each of the six regions indicated are shown in figure 10.

symmetry. We show that the symmetries inhibit resonances, as in the double Hopf
bifurcation with SO(2) symmetry in Marques et al. (2002). The resonance condition is
ω0

2/ω
0
1 = m2/m1 (ω0

2 and ω0
1 are the Hopf frequencies at the bifurcation), i.e. resonance

is only possible if both the frequencies and the azimuthal wavenumbers are in the
same ratio. In the present problem, we shall show below that our double Hopf
bifurcation is far from resonance and the corresponding normal form is simply that
for the generic double Hopf bifurcation. In terms of the moduli and phases of the
complex amplitudes of the eigenvectors, the normal form can be written, up to fourth
order, as A 20:

ṙ1 = r1

(
µ1 + p11r

2
1 + p12r

2
2 + q1r

4
2

)
,

ṙ2 = r2

(
µ2 + p21r

2
1 + p22r

2
2 + q2r

4
1

)
,

φ̇1 = ω0
1 + ψ1(r1, r2, µ1, µ2),

φ̇2 = ω0
2 + ψ2(r1, r2, µ1, µ2),




(5.1)

where µ1 and µ2 are the normalized bifurcation parameters and µ1 = µ2 = 0 at the
bifurcation point. The pij and qi depend on the parameters µ1 and µ2, and satisfy a
non-degeneracy condition in the neighbourhood of the bifurcation, pij �= 0.

The normal form (5.1) admits a multitude of distinct dynamical behaviours,
depending on the values of pij and si . These are divided into so-called simple
(p11p22 > 0) and difficult (p11p22 < 0) cases. In the simple cases, the topology of the
bifurcation diagram is independent of the qi terms. Even in the simple case, several
different bifurcation diagrams exist. A comprehensive description of all the simple
and difficult scenarios is given in Kuznetsov (1998). In our problem, the double Hopf
bifurcation is of type II simple (Kuznetsov 1998).

Figure 9 shows the parametric portrait in a neighbourhood of the double Hopf
bifurcation point, for the case corresponding to our problem. Parameter space is
divided into six regions, delimited by bifurcation curves. The number of solutions and
their stability is different in each region. Figure 10 shows typical phase portraits in
these six different regions. P1 and P2 are rotating waves emerging from the basic state
P0 when the Hopf bifurcation curves H1 and H2 are crossed. There is a region (4 in
figure 9) where a stable two-torus solution P3 (a modulated rotating wave) coexists
with the two unstable rotating waves P1 and P2. This is a mixed mode between the
two rotating waves.
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Figure 10. Phase portraits corresponding to the six different regions of the double Hopf
bifurcation of simple type II in figure 9. Solid (open) circles are stable (unstable) states.

5.1. Numerical results

The double Hopf bifurcation is localized by the intersection of the two Hopf
bifurcation curves, H1 and H2, at which rw1 and rw2 bifurcate from the basic
state, respectively. Parts of these Hopf curves are straightforward to determine, the
parts which are the first bifurcation curves crossed from the stable basic state. To
determine the parts where they are the second bifurcations from the basic state, we
compute in appropriate subspaces such that these are primary bifurcations in the
respective subspaces. To determine H2, we compute in an even azimuthal subspace
(i.e. all odd azimuthal Fourier modes set to zero), as rw1 does not exist in this
subspace. To determine H1, we compute in an even z-parity subspace, as rw2 has odd
z-parity and so does not exist in this subspace. Figure 11 shows the loci of H1 and H2

in (Γ , Re) space, indicating that the double Hopf point is (Γ = 1.0264, Re = 1949.07).
In order to determine the Neimark–Sacker curve N1, at which the even z-parity

rw1 loses stability to mrw with odd z-parity that arises due to the growth of the
m =2 azimuthal component, we monitor a parity parameter:

L2
z =

Nr∑
i = 0

(
(Nz−1)/2∑

j = 0

[
|ui,2j+1,2|2 + |vi,2j+1,2|2

]
+

Nz/2∑
j =0

|wi,2j,2|2
)

, (5.2)

where (ui,j,k, vi,j,k, wi,j,k) is the ith radial, j th axial, kth (k = 2) Fourier complex
spectral coefficient of the velocity. This parity parameter is zero for even z-parity
solutions (such as the basic state and rw1) and non-zero for solutions that are not
of even z-parity (such as rw2 and mrw). The Neimark–Sacker curve N2, where the
odd z-parity rw2 loses stability to mrw with a non-zero m =1 component is more
straightforward to determine, simply by monitoring E1. These Neimark–Sacker curves
are also shown in figure 11. The wedge-shaped region between the two Neimark–
Sacker curves corresponds to region 4, depicted in figure 9, where mrw exists and is
stable.
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Figure 11. Regime diagram in (Γ , Re) space, showing the Hopf bifurcations curves from the
basic state to rw1 (H1) and to rw2 (H2), the Neimark–Sacker curves across which rw1 and
rw2 become unstable (N1 and N2, respectively), leading to the stable mixed mode mrw. In
all cases, the bifurcations are supercritical with increasing Re. The double Hopf point is the
codimension-2 point where all the curves meet.

Γ = 1.00 Γ = 1.01 Γ = 1.02 Γ = 1.03 Γ = 1.04 Γ = 1.05

Figure 12. Isosurfaces of the m= 1 (top row) and m= 2 (bottom row) Fourier components
of the axial velocity of mrw at Re= 2010, for Γ as indicated; all isolevels at ±0.003.

Figure 12 shows isosurfaces of the m =1 (top row) and m =2 (bottom row) Fourier
components of the axial velocity of mrw at Re = 2010, for a range of Γ between the
two Neimark–Sacker curves N1 and N2. As N2 is crossed with increasing Γ (keeping
Re = 2010 fixed, for example), rw2 (with odd z-parity) becomes unstable and the
stable mrw is spawned. At Γ =1.0, the m =2 component of mrw is virtually identical
to that of rw2 (compare with figure 5), and the m =1 component is quite weak,
but clearly has even z-parity (the z-component of an even z-parity vector quantity is
odd). With increasing Γ , the m =1 component of mrw increases in magnitude, and
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Figure 13. Contours of the axial velocity perturbation (i.e. the axial velocity minus its
axisymmetric component) of mrw at Re= 2010 and Γ = 1.02 in a horizontal plane at z = −Γ/2,
at 8 instances in time spaced by δt = 1.58. There are 12 equispaced positive and negative contour
levels, in the range ±0.01.

by Γ =1.02 (roughly half-way between the two Neimark–Sacker curves N1 and N2

for Re =2050) the magnitude and structure of the m =1 component of mrw is very
similar to that of rw1 (compare with figure 8). The magnitude of the m = 2 component
of mrw decreases with increasing Γ (but it retains the same spatial structure), and as
N1 is approached (e.g. near Γ = 1.05), this component vanishes and mrw is absorbed
in the Neimark–Sacker bifurcation that results in stabilizing rw1. In essence, the
mixed mode mrw is a combination of rw1 and rw2, weighted by the relative distance
to N1 and N2 (see (A 23)).

Figure 13 shows the temporal evolution of the axial velocity perturbation (i.e.
the axial velocity minus its axisymmetric component) of mrw at Re =2010 and
Γ =1.02 in a horizontal plane at z = −Γ/2. It is clear that mrw is not simply a linear
superposition of rw1 and rw2, but has a complex spatial and temporal structure.
Nevertheless, the figure shows that on average, the flow structures close to the axis
tend to rotate counterclockwise while those near the cylinder wall rotate clockwise.
Although these solutions are unstable in the presence of the mrw, they can be
computed easily by time evolution in the appropriate invariant subspace: rw1 is
Z2-invariant, and is stable in the subspace of Z2-invariant velocity fields; rw2 exists
and is stable in the even Fourier subspace, containing only the even Fourier modes
in the azimuthal direction.

Contours of the axial velocity perturbation (i.e. the axial velocity minus its
axisymmetric component) of rw1 and rw2 at Re = 1960 and Γ = 1.025 in a horizontal
plane at z = −Γ/2 (inside region 4, where the stable state is mrw) are shown in
figure 14. As we are very close to the double Hopf bifurcation point, the dominant
Fourier mode almost coincides with the corresponding eigenfunction at the double
Hopf bifurcation point. The maxima in magnitude of the eigenmode for both rw1

and rw2 are comparable and occur for r ∼ 0.5. The rw1 eigenmode has a significant
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(a) (b)

Figure 14. Contours of the axial velocity perturbation (i.e. the axial velocity minus its
axisymmetric component) of (a) rw1 and (b) rw2 at Re= 1960 and Γ = 1.025 in a horizontal
plane at z = −Γ/2. There are 12 equispaced positive and negative contour levels, in the range
±0.03

component near the sidewall (r = 1), whereas for rw2 the eigenmode vanishes near
the cylinder wall.

The precession periods for rw1 and rw2 at Re = 1960 and Γ = 1.025 are T1 = 44.6
for rw1 and T2 = 8.85 for rw2; rw1 precesses clockwise (retrograde with the endwalls)
and rw2 precesses anticlockwise (prograde with the endwalls). The corresponding
frequencies are ω1 = −2π/T1 = −0.141 and ω2 = 2π/T2 = 0.710. Since ω1 and ω2 have
opposite sign, the double Hopf bifurcation is non-resonant (see the Appendix). The
precession frequencies are given by ωm/m, where m is the azimuthal wavenumber.

The retrograde precession of rw1 with its eigenmode large near the cylinder
wall and the prograde precession of rw2 with its eigenmode vanishing near the
cylinder wall, and both eigenmodes having comparable magnitudes for r � 0.5 but
with rw2 precessing about 5 times faster than rw1 (in the opposite direction),
is consistent with the observed spatiotemporal structure of the mixed-mode mrw

(figure 13). From the Appendix, we see that when viewed in an appropriate rotating
frame (with rotation frequency ω1), mrw is seen as a periodic solution with period
Tr = 2π/(ω2 −2ω1) = 2π/[0.710−2(−0.141)] = 6.33. The frames in figure 13 are shown
at phases approximately one quarter of a period apart (δt = 1.58, the approximation
is necessary owing to the discrete time step used in the computations). Comparing
frames 4δt ≈ Tr apart we see that the structure is unchanged, but has been rotated by
ω1Tr =0.9004 rad.

6. Physical mechanisms
It is tempting to try and extract the physical mechanisms responsible for flow

instability in complicated flows by isolating and idealizing certain flow features of
the unstable basic flow state, and then do a classical stability analysis on these. This
approach works reasonably well when the flow feature in question is well isolated.
For example, in the flow studied in this paper, the boundary layers on the rotating
endwalls are very well described by von Kármán’s similarity solution for the boundary
layer on a rotating disk (von Kármán 1921). This self-similar solution described the
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(a) (b) (c)

Figure 15. Contours of the modal energy density for (a) e0 of the basic state, (b) e1 of rw1,
and (c) e2 of rw2, all at Re= 2050, Γ = 1.0. On all three, the arrows are the (u,w) velocity
vectors of the basic state in the meridional plane. For (a) the 18 contours are quadratically
space over [0, ], for (b) and (c) they are linearly spaced over [0, 2.8 × 10−4].

boundary-layer flow in the enclosed cylinder for r � 0.95. Stability analysis of such disk
flows (e.g. Gregory, Stuart & Walker 1955) shows that for the Re values considered in
this paper, the boundary-layer flow is stable, in accord with our numerical solutions.
On the other hand, conducting a similar analysis on the region of solid-body rotation
(r < 0.2, z ∈ [−Γ/2, Γ /2]) gives absolute stability for all Re (e.g. Joseph 1976), and
yet, as we shall now demonstrate for Re ∼ 2000, the region of solid-body rotation is
not stable.

The usual way to determine the instability mechanisms is to look at the
characteristics of the eigenmode responsible for the instability. The eigenmodes for
rw1 and rw2, and their symmetries have already been described in the earlier sections.
Here we determine what features of the base state are associated with the maximum
kinetic energy of the eigenmodes. Figure 15(a) shows contours of the kinetic energy of
the base flow, e0, together with meridional (u, v) velocity vectors of the base flow. The
kinetic energy is mainly concentrated in the endwall boundary layers; the contours are
quadratically spaced so that several contour levels are concentrated near 0, thereby
letting us see where the flow is most energetic outside of the boundary layers: in the
jet-shear-layer at the mid-plane, and in the resulting rebound region following the
impact with the solid-body-rotation region. In these regions, the meridional velocities
(u, v) of the base state also reach local maxima.

Figures 15(b) and 15(c) show equispaced contours of kinetic energy for the
rw1 and rw2 eigenmodes. The kinetic energy contours of rw1 (figure 15b) show
the maximum at the cylinder axis (r = 0, z = 0), where the axisymmetric jet of
the base flow converges towards; there are also some secondary maxima located
where the jet collides with the solid-body-rotation region. Other maxima appear in the
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Figure 16. Contours of the modal energy density for mrw (all Fourier modes except m= 0),
at Re= 2050, Γ = 1.0. The 18 contours levels are linearly spaced over [0, 2.8 × 10−4].

solid-body-rotation region near the endwalls. From the kinetic energy contours and
the three-dimensional isosurface plots of the eigenmode (figure 8), it is seen that this
mode produces a non-axisymmetric deformation of the solid-body-rotation region and
of the jet, as a result of their collision. The kinetic energy contours of rw2 eigenmode
(figure 15c) show that the energy of the perturbation is located on the inner side of
the rebounding jet, as can also be seen in the three-dimensional isosurface plots of
the eigenmode (figure 5). In this mode, neither the solid-body-rotation region nor the
jet-shear-layer are deformed, except in a small neighbourhood of the impact region.
This mode only produces a non-axisymmetric deformation of the rebounding fluid.

In the (Re,Γ ) parameter regime where the mixed mode mrw exists and is stable
(see figure 11), neither rw1 nor rw2 are stable. Figure 16 shows the kinetic energy
of mrw minus the kinetic energy corresponding to its axisymmetric component,
which is essentially a combination of e1 and e2 from rw1 and rw2 (this was also
essentially shown in figure 12), so that the physical mechanisms for mrw are a
mix of both the core/jet deformation and the rebound deformation. For Γ > 1, the
core/jet deformation mechanism dominates and for Γ < 1, the rebound deformation
dominates. This is understood in terms of the robustness of the solid-body-rotation
core region, which is extensive for Γ < 1 (Lopez et al. 2004), and so the collision with
the jet does not deform it. For Γ > 1, the radial extent of the solid-body-rotation core
region is much smaller and it is more feeble and subject to large deformation by the
jet impingement.

7. Conclusion
Cylinder flows with rotating endwalls have been widely studied; these systems

have SO(2) symmetry (invariance to rotations about the axis) which may or may
not be broken in various parameter regimes. Here, we have studied the case where
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both endwalls co-rotate, giving the system an additional Z2 symmetry – reflection
about the cylinder half-height. We have analysed the bifurcations of the SO(2) × Z2

basic state (axisymmetric and reflection symmetric), which lead to (non-axisymmetric)
rotating wave states as primary modes of instability that may or may not be reflection
symmetric. Cylinder flows with one rotating endwall and a free surface have often
been modelled by employing a flat stress-free interface. This model is equivalent to
imposing Z2 symmetry at the mid-plane in the extended system we have studied.

We have shown that for aspect ratios Γ > 1, the primary bifurcation preserves
Z2. This is in agreement with deep free-surface experiments (Hirsa et al. 2002), and
justifies the use of the idealized flat stress-free interface model for these deep systems.
However, when Γ < 1, we have observed that the primary bifurcation breaks Z2. For
these shallow systems, the experiments do not agree with results imposing Z2; instead,
the experimental flows in the bulk closely resemble computed flows with broken Z2

symmetry (Miraghaie et al. 2003).
Here, we have explored in detail the spatiotemporal dynamics in the region with

Γ ∼ 1, where Z2-symmetry preserving and Z2-symmetry breaking instability modes
compete. In this region, the pure modes (rotating waves) are not stable, and the only
stable state is a mixed mode (a quasi-periodic modulated rotating wave) possessing
characteristics of both pure modes. This is in contrast to the usual scenarios following
symmetry breaking (e.g. via steady pitchfork bifurcations) that result in multiple
stable states; common examples include Taylor–Couette flows (Coles 1965) and
Rayleigh–Bénard convection (Mullin 1999). Two physical instability mechanisms are
responsible for the symmetry-breaking bifurcations in our problem. The basic state
consists of a region of essentially solid-body rotation for r � 0.2 and overturning
meridional swirling flow for r � 0.2 which supports a swirling jet at the mid-plane.
As this jet impinges on the region of solid-body rotation, the flow is subjected
to two symmetry-breaking types of deformation; both break the axisymmetry, but
only one breaks the reflection symmetry. The mode that only breaks SO(2) is the
core/jet deformation mode, and the other is the rebound deformation mode. For
Γ ∼ 1, these two mechanisms compete, and the result of this competition is a mixed
mode that exhibits the consequences of both instability mechanisms. By computing
in appropriate subspaces, the details of the individual instability mechanisms have
been explored and compared with the details of the mixed mode. Our analysis of the
problem is from a flow physics point of view as well as from a bifurcation theory with
symmetry point of view. The theory provides precise predictions of the spatiotemporal
characteristics of the various states, and these are in full agreement with the nonlinear
Navier–Stokes solutions.

This work was partially supported by NSF grant CTS-9908599 (USA) and MCYT
grant BFM2001-2350 (Spain). Part of this work was completed during visits by both
authors to ETH Zürich with support from Swiss NSF grant P1012-100371.

Appendix. Normal form of the double Hopf bifurcation with SO(2) × Z2

symmetry
The technique of Iooss & Adelmeyer (1998), which provides a clear and simple

method to obtain normal forms, incorporating symmetry considerations, is now
used for the double Hopf bifurcation with the SO(2) × Z2 symmetry group. In the
codimension-1 Hopf bifurcation, the presence of SO(2) × Z2 symmetry does not
alter the generic normal form, and the same is true for the double Hopf bifurcation
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without resonance. However, it is important to specify what the resonance conditions
are, because as we shall see, SO(2) × Z2 inhibits resonance. Resonance is only
possible if both the temporal frequencies (imaginary parts of the eigenvalues at the
bifurcation point, ω0

1 and ω0
2) and the spatial frequencies (azimuthal wavenumbers,

m1 and m2) satisfy the resonance condition ω0
2/ω

0
1 = m2/m1 = p/q , where p and q are

positive irreducible integers. Additional restrictions on the normal form may appear,
depending on how the Z2 symmetry acts on the eigenvectors, and this is governed
by the z-parities, s1 and s2. We will follow closely the analysis of the double Hopf
bifurcation with SO(2) symmetry in Marques et al. (2002).

The normal form theorem says that the dynamical system in a neighbourhood of
the fixed point (steady, axisymmetric basic state) in the centre manifold can be cast
in the form

żi = iω0
i zi + Pi(z1, z2, z1, z2, µ), (A 1)

plus complex conjugate, for i =1, 2. The functions Pi are second order in z for µ =0
and satisfy

P (exp(tL∗
o)z) = exp(tL∗

o)P (z), (A 2)

P (Rβz) = RβP (z), (A 3)

P (Kz) = KP (z), (A 4)

where Lo is the linear part of the dynamical system at criticality and L∗
o is the

corresponding adjoint operator. We have used vector notation z = (z1, z2, z1, z2) and
P = (P1, P2, P 1, P 2) in order to keep the expressions compact. In this notation, the
matrices etL∗

o , Rβ and K are diagonal:

etL∗
o = diag

(
exp

(
−iω0

1t
)
, exp

(
−iω0

2t
)
, exp

(
iω0

1t
)
, exp

(
iω0

2t
))

, (A 5)

Rβ = diag
(
exp(im1β), exp(im2β), exp(−im1β), exp(−im2β)

)
, (A 6)

K = diag(s1, s2, s1, s2). (A 7)

Equation (A 2) gives the simplest form of P attainable using the structure of the
linear part Lo, and (A 3) and (A 4) give the additional constraints on P imposed by
the symmetries SO(2) and Z2, respectively.

Let z
k1

1 z
k2

2 z
l1
1 z

l2
2 be an admissible monomial in P1; it must satisfy (A 2), (A 3) and

(A 4), i.e.

(k1 − l1 − 1)ω0
1 + (k2 − l2)ω

0
2 = 0, (A 8)

(k1 − l1 − 1)m1 + (k2 − l2)m2 = 0, (A 9)

s
k1−l1−1
1 s

k2−l2
2 = 1. (A 10)

If ω0
2/ω

0
1 �∈ �, the non-resonant case, the only solution to (A 8) is k1 = l1 + 1 and

k2 = l2, and (A 9) and (A 10) are identically satisfied. The symmetry group SO(2) × Z2

does not alter the normal form, except in the case of resonance. The non-resonant
normal form is

P1 = z1Q1, P2 = z2Q2, (A 11)

where Qi(|z1|2, |z2|2), which coincides with the generic case analysed in Kuznetsov
(1998).

If ω0
2/ω

0
1 = p/q ∈ �, we are in the temporal resonant case and (A 8) admits

additional solutions:

k1 − l1 − 1 = kp, k2 − l2 = −kq, k ∈ �, (A 12)
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and additional monomials z1(z
p

1 z
q

2)
j |z1|2r |z2|2l , j ∈ �, appear in the normal form. If

ω0
1 and ω0

2 have the same sign, we can take p and q positive, and we obtain

P1 = z1Q11 + z
p−1
1 z

q

2Q12, (A 13)

P2 = z2Q21 + z
p

1 z
q−1
2 Q22, (A 14)

where Qii(|z1|2, |z2|2, zp

1 z
q

2), i = 1, 2, and Qij (|z1|2, |z2|2, zp

1 z
q

2 ), i �= j . If ω0
1 and ω0

2 have
opposite signs, then either p or q must be negative; we can take p < 0. In this case,
P1 and P2 can be written as

P1 = z1Q11 + z
|p|−1
1 z

q

2Q12, (A 15)

P2 = z2Q21 + z
|p|
1 z

q−1
2 Q22, (A 16)

where Qi1(|z1|2, |z2|2, z|p|
1 z

q

2 ), and Qi2(|z1|2, |z2|2, z|p|
1 z

q

2), i �= j .
Now we determine whether (A 12) is consistent with (A 9) and (A 10). If m1 =m2 = 0,

(A 9) is identically zero, the centre manifold lies in an SO(2)-equivariant subspace,
and the symmetry group SO(2) does not play any role in the neighbourhood of the
bifurcation. This is the generic non-symmetric resonant case, with normal form (A 13)
and (A 14) when ω0

1 and ω0
2 have the same sign, or (A 15) and (A 16) when ω0

1 and
ω0

2 have opposite signs. The symmetry K imposes an additional condition, (sp

1 s
q

2 )k = 1
(A 10). When s

p

1 s
q

2 = −1, k must be even, and so the functions Qi1 are even and Qi2

are odd in their last argument.
If one of the mi is zero and the other is not, (A 9) implies k1 = l1 +1 and k2 = l2, the

resonant terms are suppressed by the presence of the symmetry, and the normal form
is (A 11). If both mi are non-zero, the resonant terms (A 12) must satisfy (A 9) and
(A 10), which gives m2ω

0
1 − m1ω

0
2 = 0 and (sp

1 s
q

2 )k = 1. Again, the presence of SO(2)
inhibits resonance and the normal form is (A 11), except when the spatial and temporal
modes satisfy the same resonance condition ω0

2/ω
0
1 = m2/m1 =p/q; notice that this

condition can never be satisfied if the two rotating waves do not precess in the same
direction. When this simultaneous resonance condition is satisfied, the normal form is
(A 13)–(A 14), with some additional restrictions imposed by (sp

1 s
q

2 )k = 1: the functions
Qi1 are even and Qi2 are odd in their last argument.

Substituting (A 11) into (A 1), we obtain the normal form in the non-resonant case:

żi = zi

[
iω0

i + Qi(|z1|2, |z2|2)
]
. (A 17)

In terms of the moduli and phases of zi , zi = ri exp(iφi), we have

ṙi = riQ
R
i

(
r2
1 , r

2
2

)
, (A 18)

φ̇i = ω0
i + QI

i

(
r2
1 , r

2
2

)
, (A 19)

where QR
i and QI

i are the real and imaginary parts of Qi , respectively. Up to fourth
order in r1 and r2, and assuming that the coefficients of second order in QR

i are
non-zero, the normal form can be written as (Kuznetsov 1998):

ṙ1 = r1

(
µ1 + p11r

2
1 + p12r

2
2 + q1r

4
2

)
,

ṙ2 = r2

(
µ2 + p21r

2
1 + p22r

2
2 + q2r

4
1

)
,

φ̇1 = ω0
1 + ψ1(r1, r2, µ1, µ2),

φ̇2 = ω0
2 + ψ2(r1, r2, µ1, µ2),




(A 20)
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where we have introduced explicitly the normalized bifurcation parameters µ1 and
µ2. The dynamics of the moduli r1 and r2 decouple from the phase dynamics, and we
end up with an effective two-dimensional normal form for r1 and r2.

This effective normal form has four fixed points, that after introducing the phase
dependence, become one fixed point, two periodic solutions, and a quasi-periodic
solution. The stability and regions of existence of these solutions depend on the values
of pij and qi . There are eleven different scenarios, classified in two categories: simple
(p11p22 > 0) and difficult (p11p22 < 0). For a specific problem, in order to determine
the corresponding scenario, there are two options. One option is to compute the
normal form coefficients pij and qi using the eigenvectors at the bifurcation point,
which is very complicated in the present case. The other option is to compute
numerically a regime diagram in parameter space, delineating the regions of existence
of the solutions, and determine their stability in a neighbourhood of the double Hopf
bifurcation point, and use this information to determine the corresponding scenario;
this is the approach we have employed here. Figure 11 is the regime diagram we
have obtained, by computing a few hundred solutions for different parameter values
close to the double Hopf bifurcation point. There are only two double Hopf scenarios
compatible with our results, and they are types I and II of the simple case (Kuznetsov
1998). They differ in the stability of the quasi-periodic solution. As in our case the
quasi-periodic solution is stable, we conclude that our problem corresponds to the
simple case, type II scenario. We describe this scenario in detail in § 5.

For the simple cases (p11p22 > 0), the fourth-order terms in (A 20) can be neglected.
Introducing new variables, ξ1 = −p11r

2
1 and ξ2 = −p22r

2
2 , we obtain

ξ̇1 = 2ξ1(µ1 − ξ1 − θξ2),

ξ̇2 = 2ξ2(µ2 − δξ1 − ξ2),

}
(A 21)

where θ = p12/p22 and δ = p21/p11. In our problem θ > 0, δ > 0 and θδ < 1. This normal
form admits up to four fixed points:

P0 = (0, 0), P1 = (µ1, 0), P2 = (0, µ2), (A 22)

P3 =

(
µ1 − θµ2

1 − θδ
,
µ2 − δµ1

1 − θδ

)
. (A 23)

P0 exists for all values of µ1 and µ2, and is stable for µ1, µ2 < 0. This corresponds
to our basic state. P1 exists for µ1 > 0 and is stable for µ2 <δµ1 (below the N1 curve
in figure 9); P2 exists for µ2 > 0 and is stable for µ2 >θ−1µ1 (above the N2 curve in
figure 9). By including the phase information, P1 and P2 are limit cycles, corresponding
to our rw1 and rw2. P3 exists and is stable between N1 and N2. As both moduli
are non-zero for P3, by including the phase information, it is recognized as a quasi-
periodic solution on a two-torus, and in our case it corresponds to mrw. For P1, P2

and P3, r1 and r2 are constant, and so they have constant angular frequencies:

ω1 = φ̇1 = ω0
1 + ψ1(r1, r2, µ1, µ2),

ω2 = φ̇2 = ω0
2 + ψ2(r1, r2, µ1, µ2).

}
(A 24)

In the non-resonant case, we have seen that the normal form is unaltered by the
symmetry group G. Nevertheless, the symmetries act on the bifurcating solutions in a
well-determined fashion. From (A 6) and (A 7), we see that the action of G leaves the
moduli (r1, r2) invariant, and G acts only on the phases (φ1, φ2). The action of G on
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the phases is:

Rβ

(
φ1

φ2

)
=

(
φ1 + m1β

φ2 + m2β

)
, (A 25)

K

(
φ1

φ2

)
=

(
φ1 + (1 − s1)π/2

φ2 + (1 − s2)π/2

)
. (A 26)

In our problem, m1 = 1, s1 = 1, m2 = 2, and s2 = −1, and the action of G on the phases
is simply:

Rβ

(
φ1

φ2

)
=

(
φ1 + β

φ2 + 2β

)
, (A 27)

K

(
φ1

φ2

)
=

(
φ1

φ2 + π

)
. (A 28)

The basic state P0 is a steady solution, it has no phase, and hence it is G-invariant.
The rotating wave P1 has r2 = 0 and so we only need to consider φ1; P1 is K-invariant
but Rβ (as a spatial symmetry) is broken, and the action of Rβ is equivalent to a time
translation τ : φ1 → φ1 + ω1τ = φ1 + β , i.e. τ = β/ω1, i.e. Rβ becomes a spatiotemporal
symmetry. The limit cycle as a set is G-invariant, but it is only pointwise invariant to
K .

The rotating wave P2 has r1 = 0 and so we only need to consider φ2; both K

and Rβ are broken (as spatial symmetries), and their actions are equivalent to time
translations (they become spatiotemporal symmetries):

Rβ: φ2 → φ2 + ω2τ1 = φ2 + 2β, τ1 = 2β/ω2, (A 29)

K: φ2 → φ2 + ω2τ2 = φ2 + π, τ2 = π/ω2. (A 30)

When β = π/2, the actions of Rβ and K are equivalent, and their combined action
leaves the phase φ2 unchanged. The combination KRπ/2 is a spatial symmetry of P2;
this combination generates the spatial symmetry group ∆ =Z4. The limit cycle as a
set is G-invariant, but it is only pointwise invariant to Z4.

P3 is actually a family of quasi-periodic solutions that generates a two-torus. From
an individual P3 solution, the whole family is generated by applying Rβ , β ∈ [0, 2π).
The two-torus as a set is G-invariant, but the individual P3 solutions do not retain any
pointwise (spatial) symmetry. The time evolution of a P3 solution on the two-torus is
given by

Φt

(
φ1

φ2

)
=

(
φ1 + ω1t

φ2 + ω2t

)
, (A 31)

where Φt is the time evolution operator acting on the phases φ1 and φ2. As ω1 and ω2

are incommensurate, P3 is quasi-periodic. However, in an appropriate rotating frame
of reference, it becomes a periodic solution; using (A 25), in an arbitrary reference
frame rotating with angular velocity ωr , the time evolution of P3 is given by:

R−ωr tΦt

(
φ1

φ2

)
=

(
φ1 + (ω1 − m1ωr )t

φ2 + (ω2 − m2ωr )t

)
. (A 32)

When ωr is such that (ω1 − m1ωr )/(ω2 − m2ωr ) is rational, P3 is periodic in the
rotating reference frame. The two simplest choices are ωr = ωi/mi , for i = 1 and 2.
These choices are precisely the precession frequencies of the pure modes P1 and P2.
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In the particular problem considered in this paper, the action of K on the phase
φ1, (A 27) and (A 28), is trivial. Viewing P3 in the frame of reference rotating with
ωr = ω1, the action of K and temporal evolution on φ2 are:

Kφ2 = φ2 + π; Φtφ2 = φ2 + (ω2 − 2ω1)t. (A 33)

Hence, P3 (a periodic solution in the rotating frame with period 2π/(ω2 − 2ω1)) has
a spatiotemporal symmetry consisting of the reflection K composed of a half-period
time evolution. This symmetry generates the group Z2, which is a spatiotemporal
involution here.
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