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Rayleigh-Bénard convection in a finite rotating cylinder of moderate aspect ratio
(radius four times the depth) is investigated numerically for a fluid of Prandtl number
equal to 7 (corresponding essentially to water). We consider the effects of rotation
from both the Coriolis force and the centrifugal force and find that the centrifugal
force plays a significant dynamic role. In this initial study, we restrict the computations
to the axisymmetric subspace in which the convection patterns near onset consist of
steady concentric circular cells, the so-called target patterns, which have been studied
and observed experimentally under different conditions by a number of investigators.
As the convection is driven far enough beyond onset, the steady cellular patterns give
way to time-periodic states in which the target patterns travel radially inward. We have
identified two such travelling modes, primarily distinguished by one having alternating
warm and cold plumes forming at the cylinder sidewall and then propagating radially
inward to quench alternately cold and warm plumes on the axis. The other mode
always has a cold plume descending on the sidewall and the adjacent warm plume
periodically splits into two, with the innermost of the split pair travelling radially
inward. The first of these modes is found when the centrifugal force is weak and the
second for stronger centrifugal force. The large-scale meridional circulation driven by
the centrifugal buoyancy is seen to favour having a cold plume descending on the
sidewall, accounting for the switch to the second travelling mode.

1. Introduction

Rotating thermal convection is a paradigm problem that incorporates fundamental
processes of great importance to atmospheric and oceanic circulations, as well as
being of astrophysical importance. Early theoretical work considered an infinite
layer of fluid between two plates maintained at constant temperatures (Veronis
1959; Chandrasekhar 1961). If the temperature difference is not too great, then the
Boussinesq approximation can be implemented which treats fluid properties (viscosity,
thermal diffusivity, and coefficient of volume expansion) as constants, assumes that
density varies linearly with temperature and that density variations need only be
taken into account in the buoyancy terms.

Traditionally, density variation was only incorporated in the gravitational buoyancy
term and not in the centrifugal buoyancy term. This is valid only in the limit of
vanishingly small centrifugal force relative to gravity. In this limit, the governing
equations admit a trivial conduction solution, where the velocity corresponds to solid
body rotation (which is a static state in the rotating frame) together with a linear
temperature profile across the layer. A number of mathematical simplifications to
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the rotating thermal convection problem follow from taking this limit of vanishing
centrifugal buoyancy.

The centrifugal buoyancy drives a large-scale circulation in which the cool denser
fluid is centrifuged radially outward and the hot less-dense fluid is centrifuged
radially inward (Barcilon & Pedlosky 1967; Homsy & Hudson 1969; Hart 2000).
This large-scale circulation exists for any non-zero difference in temperature between
the top and bottom plate, and so there is no trivial conduction state when the
centrifugal buoyancy is incorporated. Neglecting the centrifugal buoyancy allows
a straightforward linear stability analysis for the onset of convection from the
conduction state; Chandrasekhar (1961) provides a comprehensive account of this
when the fluid layer is assumed to be horizontally unbounded. In the horizontally
unbounded case, Kiippers & Lortz (1969) found a new mode of instability where
convection rolls become unstable to another set of rolls aligned at a different angle
(whose value depends on parameters). This instability leads to chaotic flow very
near the onset of convection and has led to many experimental investigations in
large-aspect-ratio containers as well as theoretical investigations in terms of reduced
models and Ginsburg-Landau equations (see Knobloch 1998; Bodenschatz, Pesch &
Ahlers 2000, for reviews).

There had been problems in reconciling experimental data in finite though large-
aspect-ratio containers and the unbounded theory (e.g. Rossby 1969; Pfotenhauer,
Niemela & Donnelly 1987; Bajaj et al. 1998), and it was concluded that lateral
boundaries change the picture considerably. A linear stability analysis neglecting
centrifugal buoyancy in an enclosed rotating cylinder shows that when the system is
rotating sufficiently fast, the onset of thermal convection from the conduction state
is to a so-called wall mode which consists of alternating hot and cold thermals rising
and descending in the cylinder boundary layer and precessing retrograde with respect
to the rotation of the cylinder (Goldstein et al. 1993); Buell & Catton (1983) noted the
spatial structure of these wall modes earlier, but assumed that they were a stationary
mode and missed the fact that they precess. These linear stability analyses are still
relatively straightforward since the state whose stability is being tested is the trivial
conduction state. Experiments to test this linear theory have needed to be carefully
designed in order to minimize the effects of the neglected centrifugal buoyancy, and
have found good agreement with the theory for the onset of convection (Zhong,
Ecke & Steinberg 1991, 1993; Ning & Ecke 1993; Liu & Ecke 2002). More recently,
nonlinear computations neglecting centrifugal buoyancy have found good agreement
with the very low centrifugal buoyancy experiments (Riidiger & Knobloch 2003;
Sanchez-Alvarez et al. 2005). Nevertheless, the question still remains as to what are
the effects of centrifugal buoyancy on thermal convection and when is it safe to
neglect centrifugal buoyancy.

The presence of centrifugal buoyancy changes the problem in a fundamental
manner. The total buoyancy force (gravitational plus centrifugal) no longer points
solely in the vertical direction, but now also has a radial component which varies
with radial distance from the rotation axis. This destroys the horizontal translation
invariance that is inherent in the unbounded theoretical treatments of the problem.
Furthermore, the reflection symmetry about the cylinder mid-height is also destroyed.
When the centrifugal buoyancy is small, it acts like an imperfection to the symmetric
problem, and has some analogies with the Taylor—Couette problem between finite-
length cylinders (Benjamin 1978a,b; Benjamin & Mullin 1981). When the centrifugal
buoyancy is neglected, the onset of convection is via a pitchfork bifurcation when
the system is further restricted to an axisymmetric subspace, giving two steady
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convecting states that are reflections of each other (of course, over a wide range of
parameter space with a sufficiently strong Coriolis force acting, the conduction state
is first unstable to the non-axisymmetric wall modes, but the underlying axisymmetric
pitchfork bifurcation is essential to the complete picture). Centrifugal buoyancy
renders the pitchfork bifurcation imperfect, resulting in two distinct branches of
(axisymmetric) steady states that are not related by any symmetry. One is the smooth
connection to the large-scale circulation driven by the centrifugal buoyancy and
the other comes into existence at a saddle-node bifurcation when the gravitational
buoyancy is of sufficient strength. Additional axisymmetric branches appear in saddle-
node bifurcations, differing in the number of circular concentric roll cells. How the
centrifugal buoyancy and the gravitational buoyancy interact and compete is different
along each branch.

In order understand the effects due to the centrifugal buoyancy, it is first necessary to
understand how it affects the axisymmetric states. The spatial structure of convective
axisymmetric states consists of steady concentric rolls, the so-called target patterns.
Koschmieder (1967), in an early experiment on the onset of rotating convection in
a large-Prandtl-number fluid, observed that these types of axisymmetric patterns are
initiated near the cylinder sidewall. Although for most of parameter space these
axisymmetric ring modes are unstable, they have also been observed experimentally
either as transient states or by forcing them to be stable. The early experiments
of Koschmieder (1968) attempted to stabilize the concentric rolls by non-uniformly
heating the bottom plate. For zero rotation, Hu, Ecke & Ahlers (1993) and Royer
et al. (2004) stabilized the target patterns by applying a small static heat source
at the sidewall. In a rotating system, Thompson, Bajaj & Ahlers (2002) were
able to stabilize the axisymmetric rolls by weakly modulating the rotation of the
cylinder.

We have observed that in the axisymmetric subspace steady target patterns are
unstable to a radial travelling wave mode where the axisymmetric rolls propagate
radially inward in a periodic fashion, much like the computed axisymmetric travelling
waves found by Tuckerman & Barkley (1988) in a non-rotating system with a non-
insulating sidewall. These radially travelling target patterns have also been stabilized
experimentally by suitably modulating the rotation (Thompson et al. 2002). In this
paper, we enforce axisymmetry. This restriction enables a computationally tractable
systematic study of the influence of the centrifugal force on rotating Rayleigh-Bénard
convection and allows us to explore in detail the generation and dynamics of the
travelling wave states, and how centrifugal buoyancy affects them.

2. Governing equations

We consider the flow in a circular cylinder of radius ry and depth d, rotating at
a constant rate w rads~!. The top endwall is maintained at a constant temperature
T" = Ty—0.5AT and the bottom endwall at a constant temperature 7" = To+0.5AT.
The Boussinesq approximation is implemented, which treats all fluid properties as
constant, except for the density in the buoyancy terms which are composed of the
gravitational and the centrifugal buoyancies. To lowest order, the density varies
linearly with temperature, i.c.

p = po(l —a(T" —Tp)), (2.1)

where Ty is the mean temperature and p, is the density at that temperature. In the
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rotating frame of reference, the governing equations are

(0, +u-Vyu=—VP/py+vViu+ gaT% + 20u x 2 — w’aTr, (2.2)

(0, + u-V)T = «V>T, (2.3)

V-u=0, (2.4)

where u is the velocity field, T = T" — Ty is the temperature deviation with

respect to the mean temperature 7p, P is the dynamic pressure which incorporates
the hydrostatic pressure due to the gravitational and centrifugal forces, g is the
gravitational acceleration, « is the coefficient of volume expansion, v is the kinematic
viscosity, and « is the thermal diffusivity.

The system is non-dimensionalized using d as the length scale, d*/« as the time
scale, and AT as the temperature scale. There are five non-dimensional parameters:

Rayleigh number: R = agd’ AT /v,

Coriolis number: 2 = a)dz/v,
Froude number: F = w’r/g,
Prandtl number: o =v/k,
aspect ratio: y =ro/d.

Restricting the system to an axisymmetric subspace, the non-dimensional governing
equations reduce to

202 1 1
Dv— 2y — Ly =0 <8§+af+8r—2> v, (25)
r r r r

2 F 1 1
Dn + mgz — Zvv, —2R0v, =0 R (— T, — VTz) +o (372+3r2+ —0, — z) n, (26)
r r 14 i r r
1
DT = (af +92 + 8,) T, (2.7)
r

where D = 9, 4+ 1/r(y¥,0, — ¥,0,), the velocity is written in terms of a streamfunction
(u, v, w) = (—y,/r, v, ¥, /r), and n is the azimuthal component of vorticity satisfying

1
<a§ + 07 — a,> v =—rn. (2.8)
r
The boundary conditions are:
r=0: T,=v=v¢y =19y, =0; (2.9)
r=y: I,=v=9 =9, =0; (2.10)
z==0.5: T=7F05 v=y =y, =0. (2.11)

Equations (2.5)—(2.8) are solved on a uniform grid using second-order centred-
differences in space and a second-order explicit predictor—corrector scheme in time.
The same code has been used to study the effects of centrifugal buoyancy for the
stably stratified case (Brummell, Hart & Lopez 2000). Here, we have fixed y = 4,
o =7, and 2 = 625, and consider variations in R and F. We have used 101 grid
points in z and 401 grid points in r and a time step d¢ = 2.3 x 10~® thermal time units.

Apart from being restricted to the axisymmetric subspace, the system, in the
limit F — 0, has an additional symmetry. The governing equations and boundary
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FIGURE 1. Variation with R of the temperature at the sidewall at mid-height, 7,,, for various
values of F as indicated.

conditions are reflection-symmetric about the cylinder half-height. The action, K, of
this Z, symmetry on the flow is

K(,v,n, T)r,z) = (=¥, v, —n, =T)(r, —2). (2.12)

3. Results
3.1. Onset of convection

For small R, the only solution with F = 0 is a conducting state with zero relative
velocity and a linear vertical temperature gradient, 7 = —z. This conduction state loses
stability for R > R.(o, v, £2) via a pitchfork bifurcation. In this paper, we fix y = 4,
o = 7and 2 = 625. For these values, R, ~ 9.85x 10*. For comparison, steady rotating
Rayleigh-Bénard convection between rigid plates in a horizontally unbounded domain
with £ = 625 (which corresponds to a Taylor number Ta = 422 = 1.56 x 10°) sets
in at R, ~ 9.2 x 10* with critical wavenumber a. ~ 11.8 (see figures 21 and 22 in
Chandrasekhar 1961); note that this classical linear stability result is for ¥ = 0 and
y — oo and is independent of o. From our figure 2, the radial wavenumber of the
circular cells is 21 x 7.5/y = 11.78 which is in very good agreement with the classical
theory, suggesting that the circular concentric rolls are the analogues of the planar
two-dimensional convection rolls. The critical R in the enclosed cylinder is a little
larger than in the unbounded system, and this is to be expected due to the presence
of the no-slip cylinder wall. At the pitchfork bifurcation, two branches of steady
symmetrically related solutions are created. Figure 1 is a bifurcation diagram using
the temperature at mid-height on the sidewall, 7,, = T(r = y, z = 0), as the measure
of the flow state. The stable conduction state and the symmetrically related steady
convection states, for F = 0, are the solid curves. The convecting solutions are cellular
in character, having either eight warm plumes rising and seven cold plumes falling or
seven warm plumes rising and eight cold plumes falling. For R just above R, these
plumes are small in amplitude and grow with increasing R. Figure 2 shows contours
of the streamfunction ¥, temperature deviation T, relative angular momentum ruv,
and azimuthal vorticity n at R = 10° for the cellular states on the two branches of the



336 J. M. Lopez, A. Rubio and F. Marques

Normal branch Anomalous branch

FiGURe 2. Contours of v, T, rv and n on the normal (left) and anomalous (right)
branches for F = 0 and R = 10°. Contour levels (grey scales) are evenly spaced with
¥ € [-7.9%x1073,7.9%x107%], T € [-0.5,0.5], rv € [-2.4,2.4], and 5 € [—220, 220]. The black
curves are the zero contours, the darker (lighter) grey scales are negative (positive). For each
panel, the left vertical boundary is the axis » = 0, the right vertical boundary is the cylinder
wall r = y, and the top and bottom boundaries are the plates at z = +0.5 and z = —0.5,
respectively.

pitchfork. This value of R is just slightly above critical (¢ = (R — R.)/R. = 0.015). We
name the branch with cold fluid flowing down the sidewall ‘normal’ and the one with
warm fluid flowing up the sidewall ‘anomalous’. For F = 0, this distinction in not
very meaningful, but when F # 0, the centrifugal buoyancy favours the normal state
with cold fluid being centrifuged out and consequently flowing down the sidewall. We
introduce a naming convention for these cellular states. The first letter in the name
is either N (for normal) or A (for anomalous) corresponding to states with either
a cold downdraught or a warm updraught on the sidewall, followed by the number
of warm plumes rising across the radius, and then either H or C for a rising hot
plume or a descending cold plume on the axis. The states shown in figure 2, using
this naming convention are N8H and A8C. That the solutions on the two branches
are K-conjugates for F = 0 is apparent in the figure.

We have used the term cellular for the steady states because there are zero
streamlines beginning and ending on the top and bottom endwalls that follow the
centres of the ascending warm plumes and descending cool plumes. There is no
fluid transport across these streamlines and hence the flow is confined to cells in
between them. At first glance it appears that the radial extent of these (circular) cells
is approximately constant. However, closer inspection of, say, the results in figure 2
with R = 10° and F = 0, shows that this is only approximately so for R near R.;
as R increases the states have fewer plumes and the variation amongst them is more
evident (both when F = 0 and F # 0). It needs to be noted that the radial direction
is not a periodic direction. Apart from the fact that the boundary conditions for the
velocity at r = y are rigid no-slip, there is also the presence of curvature which would
destroy radial invariance even for y — co. Even for R ~ R, where the radial extent



Travelling circular waves in axisymmetric rotating convection 337

P T

R=5x10*

- |

R=175x10*

FIGURE 3. Streamlines and temperature contours for normal branch solutions at F = 0.05, for
R values as indicated. /-contours are evenly spaced between [—0.011,0.011] for R = 5 x 10%,
7.5 x 10* and 9 x 10* and between [—0.11,0.11] for R = 1 x 10°.

of each cell is very nearly the same, the cells contain different volumes of fluid due
to the curvature. These considerations make the presence of radially travelling waves
all the more remarkable (these are described in §3.3).

The (weak) ascending thermal plumes associated with the cellular convection states
in figure 2 drive clockwise meridional circulations with ¥ > 0 on the large-r sides
of the plumes and counterclockwise circulations with ¢ < 0 on the small-r sides of
the plumes (both when F = 0 and F # 0). Near the top and bottom of the cylinder,
these cellular circulations are predominantly in the radial direction. In regions where
the radial velocity, u = —,/r, is positive, fluid with axial angular momentum rv is
advected to larger r and is consequently spun-down, whereas where u is negative, the
flow is spun-up. This ballerina effect is evident in the contours of rv in figure 2.

When the contributions of the centrifugal force to the rotation are accounted for
(F > 0), no conduction state exists for any R > 0. Instead, at low R a large-scale
circulation centrifuges the cool (relatively dense) fluid near the top radially outward
and warmer fluid near the bottom is drawn radially inward. This results in a cold
downdraught in the sidewall boundary layer generating a localized recirculation zone
that smoothly develops into a cellular structure of concentric rings as R is increased
past R.. Figure 3 shows such a smooth development from the large-scale circulation
at R = 5 x 10* through to the cellular state at R = 10° for small F = 0.05. This
concentric ring state is similar to the F = 0 state at R = 10° (see figure 2) with seven
rising warm plumes and eight descending cold plumes, but there are differences. The
F = 0 state is N8H and the F = 0.05 state is N7C. We have found that there is a
hysteretic switch between N8H and N7C for R € (1.1 x 10°, 1.2 x 10°) when F = 0.
The hysteretic pattern selection is discussed below in §3.2.
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Normal branch Anomalous branch
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FIGURE 4. Isotherms of the steady states along the normal and anomalous branches for
R=25x%x10°,0 =70,y =4.0, 2 = 625 and F as indicated.

The smooth transition from the large-scale circulation to the concentric ring pattern
shown in figure 3 is consistent with the onset of thermal instability in a rotating
cylinder observed in the experiments of Koschmieder (1967) and with the asymptotic
calculations of Daniels (1980), who also observed that axisymmetric convection sets
in at large radius with more and more circular cells filling radially inward with
increasing R.

The Froude number F, parameterizing the centrifugal buoyancy, acts as an
imperfection parameter unfolding the pitchfork bifurcation for the onset of convection
(see figure 1). The normal branch from the F = 0 pitchfork with the cool downdraft
on the sidewall becomes the F # 0 branch smoothly connected to the large-scale
circulation as R — 0. The F = 0 pitchfork branch with the warm updraft on the
sidewall is the disconnected anomalous branch for F # 0. This branch comes into
existence at a saddle-node bifurcation at Ry, > R., where the value of R, increases
with F. Note that the mid-height sidewall temperature is cooler for larger F on both
branches; the centrifugally driven large-scale circulation enhances the cool downdraft
on the normal branch and opposes the warm updraft on the anomalous branch, i.e.
on the normal branch the effects of centrifugal and gravitational buoyancy reinforce
each other whereas on the anomalous branch they oppose each other. Figure 4 shows
isotherms for solutions on both branches, side-by-side, at the same points in parameter
space. For small F < 0.2, we have T(r,z) ~ —T(r, —z). However, for F = 0.3 there
are large differences on the two branches, in particular both have a hot plume rising
on the axis.

3.2. Pattern selection

As is evident from the results presented so far, there are multiple co-existing stable
solutions over a considerable range of parameters. We have found that stable steady
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FIGURE 5. A selection of different patterns for the F = 0.3 normal branch.

cellular states either bifurcate directly from the conduction state when F = 0 via
a pitchfork bifurcation, or are created and destroyed at saddle-node bifurcations.
That the bifurcations are steady for the parameter regimes we have considered is a
consequence of the restriction to an axisymmetric subspace; without this restriction
for the F = 0 case it is well-known that the conduction state first loses stability via a
Hopf bifurcation to a precessing wall mode. Since we have only varied R and F, we
only have one pair of symmetrically related stable states emerging at the pitchfork
bifurcation when F = 0. All the other F = 0 states we have found, like the F # 0
states, are created and destroyed at saddle-node bifurcations.

At a given point in parameter space, we have found up to four stable distinct cellular
states. The various coexisting states have been found by starting the computations
with different initial conditions, and the branches of each of these are found by
continuation (using the solution at one value of R as initial condition for a slightly
different value of R). The branches are terminated at saddle-node bifurcations, and
the continuation strategy leads to a ‘switching’ to another branch. For y =4, 0 =7
and £2 = 625 the cellular states for small F and R ~ R, are N8H on the normal
branch and A8C on the anomalous branch. As either F or R is increased, there is
a tendency to switch to states with fewer plumes (i.e. with larger radial wavelength).
This trend for increasing R with fixed F = 0.3 along the normal branch is illustrated
in figure 5, which shows isotherms of the various cellular states encountered: N7C
— N7H — N6C — N6H — N5C — N5H — N4C — N4H. Figure 6 illustrates
the switching from N7C to N7H, from N7H to N6C, and from N6C to N6H via
saddle-node bifurcations as R is increased for F = 0.3 in terms of T,,, giving a clear
indication of the hysteretic overlap regions between adjacent cellular states.
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FIGURE 6. Switching via saddle-node bifurcations between cellular patterns on the normal
branch with F = 0.3.

FIGURE 7. Schematics of the unfolding of the pitchfork bifurcation for various F; the
horizontal axis is R and the vertical axis is a measure of the flow state (e.g. temperature
at a point): (a) the symmetric case at F = 0, (b) and (c) increasing Froude numbers, and (d)
by further increasing F, the anomalous branch disappears in an isola bifurcation. The solid
(dashed) lines are stable (unstable) steady states; the thick lines correspond to limit cycles, that
appear in SNIC bifurcations.

Figure 7 is a sequence of schematic bifurcation diagrams for various F; the
horizontal axis is R and the vertical axis is a measure of the flow state (e.g. temperature
at a point). It is a summary of our results such as in figure 6 showing the hysteretic
(with varying R) coexisitence of states with differing numbers of rolls. Part (a) is for
F = 0 showing the first pitchfork bifurcation from the conduction state at R = R,
and the hysteretic regions in between the saddle-node bifurcations. The steady-
state branches are terminated by saddle-node bifurcations which we conjecture to
involve an unstable (saddle) pair of symmetrically related states that originate at a
pitchfork bifurcation from the unstable conduction state at R > R.. These saddle-
node bifurcations are special as they lead to the creation of a time-periodic state,
which we describe in detail in §3.3, due to a global reconnection between them. The
bifurcation is a saddle-node on an invariant circle (SNIC), where after the bifurcation
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FIGUrRe 8. The location in (R,F) parameter space of the SNIC bifurcation curves that give
rise to travelling waves of modes I and II. The intersection of the two bifurcation curves is a
cusp point near (R = 1.69 x 103, F = 0.168).

the stable and unstable manifolds connecting the saddles and nodes, which have
annihilated each other, persist as a limit-cycle solution.

The others parts of figure 7 correspond to increasing F > 0. Part (b) is for small
F and simply corresponds to an unfolding of the symmetric picture in part (a). The
unfolding of the unstable pitchfork (dashed curves) is conjectured, but we have direct
numerical evidence of the unfolding of the stable branches: in particular how the
anomalous branch begins at a saddle-node bifurcation for R = Ry, > R. with Ry,
increasing with F, as illustrated in parts (c) and (d) of the figure, and terminating
at an ordinary saddle-node bifurcation at larger R. The value of R for this terminal
saddle-node bifurcation decreases with F so that for F ~ 0.2 the anomalous branch
vanishes in an isola (i.e. the saddle-nodes that delimit the anomalous branch collapse
in on themselves as F increases beyond about 0.2).

3.3. Travelling waves

As illustrated schematically in figure 7, the normal branch of steady solutions is
terminated at a SNIC bifurcation leading to time-periodic flow. For the parameter
regime considered (y = 4, 2 = 625, 0 = 7), the loci of this bifurcation in (R, F)-
parameter space is plotted in figure 8. In fact, we have found two distinct curves of
SNIC bifurcations, labelled SNIC; and SNICy;, which come together at a cusp-like
point at R ~ 1.69 x 10°, F ~ 0.168. Note that this cusp-like intersection of two SNIC
curves is very different from the conventional codimension-two cusp point where two
curves of regular saddle-node bifurcations meet. In that case, the two steady states
that are created at each of the saddle-node bifurcations coexist and are stable inside
the cusp region. In our problem, outside the cusp region (to the right of the SNIC;
and SNICy; curves) we have time-periodic states while inside the cusp region there
are only steady states.

Figure 9 shows the variations with R of the period, 7, of the oscillatory states as
(a) the SNIC; curve is crossed with F = 0 and (b) the SNICy; curve is crossed with
F = 0.3. In both cases, as R — Rsnic from above, the period becomes unbounded
following the characteristic (R — Rsnic) ™% scaling associated with a SNIC bifurcation.



342 J. M. Lopez, A. Rubio and F. Marques

Hr——T———T T 40 — T T T T T 1

301 4 30
T 20 4 20f

10 4 10

O
o 0 P R T
3.5 4.0 4.5 (XIOS) 5.0 1.50 1.51 1.52 (XIOG) 1.53
R R

FIGURE 9. Periods in thermal time units vs. R for (a) F =0 and (b) F = 0.3. The curve is of
the form (R — Rsnic) ™% fitted to the first four data points of each case.

a1 1114

FIGURE 10. Isotherms at equally spaced times over one period, T = 9.9, of an oscillatory state
at R=4x10°, F =0.

At F =0, the SNIC bifurcation breaks the spatial K-reflection symmetry, but the
resulting limit cycle retains a spatio-temporal Z, symmetry, H, whose action is

H,v,n, T)r z,t)=(—y¥,v,—n, =T)r,—z,t +1/2) = (¥, v,n, T)r,z,t). (3.1)

Figure 10 shows isotherms at 10 equally spaced phases over one oscillation period
T of the symmetric limit cycle at F = 0, R = 4 x 10° (which is a little beyond the
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(a) F=0,R=4x10° (b) F=0,R=10°
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FIGURE 11. Time-series of the temperature on the sidewall at mid-height, 7,,, over appro-
ximately two oscillation periods for each case (F and R as indicated). The symbols indicate
times corresponding to the isotherm plots in figures 10-15.

critical Rgnic ~ 3.65 x 10°). The H-symmetry is evident from comparing isotherms
half a period apart and noting that T'(r, z,t) = —T(r, —z,t + t/2). The limit cycle
is far from being a uniform oscillator, as it would be if it had originated at a
Hopf bifurcation, due to its creation via a SNIC bifurcation. The limit cycle has the
characteristic slow—fast oscillations, spending a long time in the neighbourhood of
the ghost of the saddle-node (there are two due to the Z, nature of the H-symmetry,
corresponding to the saddle-nodes on the anomalous and the normal branches), and
then rapid excursions from one ghost to the other. The time-series of the mid-height
sidewall temperature deviation, T, shown in figure 11(a) illustrates this slow—fast
oscillation with 7,,(¢) = —T,,(t + t/2). The symbols on the time-series plot correspond
to the isotherms in figure 10. The left-hand column of isotherms correspond to the
T,, < 0 phase of the oscillation with a cold plume descending on the sidewall and the
right-hand column to the 7,, > 0 phase with a warm plume on the sidewall. Notice
that during the first phase, there is a warm plume on the axis which is quenched by
the surrounding cold plume closing in on it, and at the end of this phase, the rapid
excursion seen in the 7;, time-series corresponds to a new warm plume being created
at the sidewall. If we were to record T at the mid-height on the axis, we would have
a time-series similar to that on the sidewall but shifted by /4. This is best illustrated
in a space—time diagram of T'(r, z = 0, ¢). Figure 12(a) is such a diagram for F = 0,
R = 4 x 10°. The figure extends over about 1.6 periods. It shows that the creation of
plumes at the sidewall and the quenching of plumes at the axis occur very rapidly
and that the plumes travel radially inward rather slowly (taking about five oscillation
periods, which is about 80 thermal time units, to travel from r = y to r = 0). The
plumes, away from the sidewall and the axis, travel at a fairly uniform speed without
much distortion to their (r, z) structure.

For larger R = 10%, the oscillation period reduces considerably, but the oscillation
retains its slow—fast character (see figure 11b). The plumes created at the sidewall are
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FIGURE 12. Space-time diagrams of the temperature at mid-height z = 0 for R and F as
indicated; the contour line corresponds to 7' = 0, the dark shades are for 7 € [—0.5, 0] and
the light shades for 7 € [0, 0.5].

considerably thinner and travel into the interior faster, and as they do they broaden
their radial extent (see figure 13, which also shows that this oscillatory state is H
symmetric). As they approach the axis, they speed up as they quench the plume on
the axis. The non-uniform speed of propagation is clearly evident in the space—time
diagram of figure 12(b).

When F # 0, the H-symmetry is broken, but for small F > 0 it is only weakly
broken and we have an unfolding of the H-symmetric SNIC bifurcation, as illustrated
in figure 7. With F = 0, the oscillation is a symmetric switching between a cold plume
descending and a warm plume ascending on the sidewall. With F = 0, the large-scale
circulation associated with the centrifugal buoyancy favours the cold plume on the
sidewall phase of the oscillation, and so that phase is longer than the phase with the
warm plume on the sidewall. Figure 11(c) illustrates this effect for F = 0.1, R = 10°.
The period of the oscillation is about the same as for the F =0, R = 10° case shown
in figure 11(b) (v =~ 1.3), but the 7,, < 0 phase is about 0.9t when F = 0.1. The
structure of the plumes have not been altered in any significant way by having small
F > 0 (compare figures 13 and 14, both at R = 10° but one at F = 0 and the other
at F = 0.1), but their propagation characteristics certainly have. The corresponding
space—time diagram, figure 12(c), shows that a warm plume is created on the sidewall
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FIGURE 13. Isotherms at equally spaced times over one period, T = 0.9, of an oscillatory state
at R =10° F = 0.

FIGURE 14. Isotherms at equally spaced times over one period, T =~ 1.7, of an oscillatory state
at R=10%, F =0.1.

and is almost immediately pushed in by the creation of a cold plume. This pair
remain almost stationary until a new warm plume is created and they begin a fairly
uniform-speed propagation in toward the axis. The quenching of either cold or hot
plumes on the axis is quite uniform, each taking about t/2 to be quenched.

For F > 0.17, the nature of the oscillation changes, as illustrated schematically in
figure 7, due to the centrifugal buoyancy being too strong at the sidewall to allow the
formation of a warm plume there. For the higher F cases, the sidewall always has a
cold plume descending and the oscillation corresponds to the adjacent warm plume
splitting into two and then all but the outermost warm plume propagating radially
inward. For these cases, the propagation speed is much less uniform and the plumes
shuffle inward in fits and starts. The quenching of the cold plume on the axis is much
faster than the quenching of the warm plume on the axis. We interpret this as being
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FIGURE 15. Isotherms at equally-spaced times over one period, T =~ 3.3, of an oscillatory state
at R=1.7x10°% F =0.3.

a consequence of the centrifugal large-scale circulation which favours a warm plume
ascending on the axis. All of these processes are illustrated in figures 15 and 12(d).
The time-series of T, (figure 11d) shows that there is only a 7,, > 0 phase to the
large-F oscillation.

4. Discussion and conclusions

While stationary concentric ring patterns have been observed in many experiments
in circular cylinders of a variety of aspect ratios using fluids with a wide range of
Prandtl numbers, and both with and without rotation (e.g. see Koschmieder 1993;
Bodenschatz et al. 2000), the radially travelling axisymmetric wave states have been
quite elusive. Thompson et al. (2002) conducted a series of experiments on rotating
convection in a cylinder of aspect ratio y = 11.8 filled with water of Prandtl number
o = 4.5. They worked in a slow rotation regime (£2 < 28) in order to keep the Froude
number small (F < 0.016) as they wanted to keep the effects of centrifugal buoyancy
small. For their slow rotations, the onset of convection is to a bulk Kiippers—Lortz
mode rather than the wall mode found at onset for faster rotations. By harmonically
modulating the rotation of the cylinder, they were able to suppress the Kiippers—
Lortz mode and replace it by an axisymmetric target pattern. This target pattern,
achieved by modulation of the rotation, was always observed to travel radially inward.
They were unable to determine the cause of the inward drift of the patterns. They
considered the large-scale circulation driven by the centrifugal buoyancy, but decided
that this was an unlikely cause since their Froude number was so small. Theirs is the
only experiment we are aware of in which sustained radially travelling target patterns
have been observed in Rayleigh-Bénard convection.

Numerically, axisymmetric radially travelling target patterns have been found by
Tuckerman & Barkley (1988), Siggers (2003) and in the present study. Tuckerman &
Barkley (1988) considered non-rotating convection with y = 5, o = 10, with rigid
no-slip boundaries and a non-insulating sidewall. Their non-rotating results are very
similar to our F = 0 rotating results, with the conduction state losing stability to
steady cellular ring states via a pitchfork bifurcation, and these undergoing a SNIC
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bifurcation with another set of unstable cellular ring states which bifurcate from
the unstable conduction state in a secondary pitchfork bifurcation as R is increased.
Following the SNIC bifurcation, a limit-cycle state results which is very similar to
the F = 0 travelling wave we report here. In particular, the pattern travels radially
inward, as do ours and that found experimentally by Thompson et al. (2002).

On the other hand, the target patterns computed by Siggers (2003) travel radially
outward. In those computations, the top and bottom boundaries were stress-free,
there was no rotation, a small Prandtl number o = 0.1 was used, and the aspect ratio
was varied in the range y € [4, 10]. Not only did the direction of travel differ, but
the onset was either via a Hopf bifurcation or a homoclinic saddle-loop bifurcation
with reflection symmetry. This is in contrast to the SNIC bifurcation for onset of the
travelling waves found by Tuckerman & Barkley (1988) and in this study.

Clearly, there is still much to learn about these travelling wave states. They are
particularly interesting because they are patterns that travel in a direction which is
neither periodic nor translation invariant. They have been computed to originate
via a variety of bifurcations: SNIC bifurcations (Tuckerman & Barkley 1988, and
us) and by Hopf and homoclinic/heteroclinic bifurcations (Siggers 2003), in rotating
(Thompson et al. 2002, and us) and non-rotating systems (Tuckerman & Barkley 1988;
Siggers 2003), and we have shown here that centrifugal buoyancy is not necessary
for their onset or existence (our F = 0 results), but that even for moderately small
F > 0.17, centrifugal buoyancy qualitatively changes the nature of the dynamics.

Our computational results presented here have imposed axisymmetry, and in the
limit F — O it is well known that in the R, £, y, o parameter regime studied
the flows are unstable to three-dimensional instabilities and hence would not be
observable in a physical experiment. However, it is still unknown whether for non-
zero Froude number that is still the case. The large-scale circulation driven by the
centrifugal force for non-zero Froude number has the potential to quench three-
dimensional instabilities, in much the same way that the time-periodic large-scale
circulation driven by the modulated rotation in the experiments of Thompson et al.
(2002) quenches the three-dimensional flow, and so one may observe some of the
axisymmetric dynamics reported here in parts of parameter space.
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the Spanish Ministry of Science and Technology grant FIS2004-01336, and Spanish
Ministry of Education and Science grant SAB2003-0172.
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