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The transition from laminar to complex spatio-temporal dynamics of plumes due to a
localized buoyancy source is studied numerically. Several experiments have reported
that this transition is sensitive to external perturbations. Therefore, a well-controlled
set-up has been chosen for our numerical study, consisting of a localized heat
source at the bottom of an enclosed cylinder whose sidewall is maintained at a
fixed temperature which varies linearly up the wall. Restricting the dynamics to the
axisymmetric subspace, the first instability is to a puffing state. However, for smaller
Grashof numbers, the plume becomes unstable to three-dimensional perturbations and
a swirling plume spontaneously appears. The next bifurcation, viewed in the rotating
frame where the plume is stationary, also exhibits puffing and suggests a connection
between the unstable axisymmetric puffing solution and the swirling plume. Further
bifurcations result in quasi-periodic states with a very low-frequency modulation, and
these eventually become spatio-temporally complex.
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1. Introduction
Plumes with swirl are of much interest due to their natural occurrence, such as

hydrothermal plumes which rise through a weakly stratified ocean until they reach
their level of neutral buoyancy (Speer & Marshall 1995; Woods 2010), as well as
dust devils and fire whirls. Modelling of such plumes dates back to the seminal work
of Morton, Taylor & Turner (1956), who developed a simple model by making a few
assumptions, namely that the plume is fully turbulent and that its long-time average
is self-similar in the vertical and axisymmetric. The model provides much insight into
turbulent plumes and allows one to infer, for example, the strength of the buoyancy
source based on observations of the plume’s height and an estimate of the buoyancy
frequency characterizing the stratified ambient. However, the simple model is not
able to account for the swirl component observed in some plumes. The scales of
these plumes are generally too small for the Coriolis force to be directly responsible
for their swirl (Morton 1966; Carroll & Ryan 1970), and there has been a long
discussion concerning the source of their vertical vorticity (Maxworthy 1973; Snow
1987; Battaglia, Rehm & Baum 2000; Fiedler & Kanak 2001). While it is generally
accepted that background vorticity in the boundary layer can be concentrated and
turned into the vertical direction by the localized buoyancy source initiating the
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plume, it is not clear that this is either a necessary nor unique mechanism. When
the buoyancy source is uniformly distributed, such as in Rayleigh–Bénard convection,
thermal plumes with a strong vertical component of vorticity have been observed in
numerical simulations with no imposed mean flow and, therefore, under zero mean
shear conditions (Cortese & Balachandar 1993). This is in contrast to the widely
held view that the source of swirl is the interaction between buoyancy-induced
vertical flow and shear associated with a mean horizontal flow. Also, in studies based
on reduced equation models of Rayleigh–Bénard convection, again with zero mean
shear, decomposed into toroidal and meridional components, it was found that vertical
vorticity naturally arises from symmetry breaking (Murphy & Lopez 1984; Massaguer
& Mercader 1988; Massaguer, Mercader & Net 1990).

While most laboratory experiments simulating these natural plumes use imposed
swirl, such as rotating outer screens (Emmons & Ying 1967; Muraszew, Fedele &
Kuby 1979; Snow 1987), there is also at least one experiment that we are aware of
where a swirling plume was observed in a stationary enclosure (Torrance 1979). That
study was experimental, using flow visualization together with axisymmetric numerical
simulations. In certain parameter regimes, where the background stratification was not
too large and not too small, non-axisymmetric disturbances were observed once the
Grashof number, parameterizing the localized heat source, exceeded a critical value.
Unfortunately, the details concerning the swirling plume state were very limited.
The swirling states that were observed experimentally were not reproduced by the
axisymmetric simulations and the origin of the swirl and non-axisymmetric nature
of the experimentally observed flow remained unexplained. These open questions
motivate the present study. We have used a similar geometry, consisting of a
completely enclosed circular cylinder with prescribed temperature on all walls (details
are given in the following section), and have indeed found a regime in which swirl is
spontaneously generated as a result of symmetry breaking. The subsequent bifurcations
for moderate Grashof numbers are also analysed, and comparisons are made with a
similar enclosed problem but without the imposed background stratification (Torrance,
Orloff & Rockett 1969; Torrance & Rockett 1969; Lopez & Marques 2013). In order
to characterize the bifurcations from the steady basic state to complex spatio-temporal
behaviour, dynamical systems theory has been used (Strogatz 1994; Kuznetsov 2004),
and in particular bifurcations with symmetry, which are relevant to many fluid
problems (Crawford & Knobloch 1991; Chossat & Lauterbach 2000).

2. Governing equations and numerical technique
Consider the flow in a circular cylinder of radius R and length L, with no-slip

boundary conditions, and with an imposed temperature profile at the cylinder wall.
The bottom endwall has a fixed temperature T∗0 except for a disk of diameter D at the
bottom centre with a hotter temperature T∗h . The top endwall is kept at a temperature
T∗t , and the temperature varies linearly along the sidewall between T∗0 at the bottom
and T∗t at the top, resulting in a stable stratification, but for the hot spot at the bottom.
There are horizontal and vertical temperature gradients, driven by the differences T∗h −
T∗0 and T∗t − T∗0 respectively. Figure 1(a) shows a schematic of the cylinder. The
boundary conditions for the temperature (not considering the hot disk) result in a
stable stratification ρ(z∗)= ρ0(1− α(T∗(z∗)− T∗0 ))= ρ0(1− α(T∗t − T∗0 )z

∗/L), and the
corresponding Brunt–Väisälä frequency NBV is

N2
BV =−(g/ρ0)dρ(z∗)/dz∗ = ρ0α(T∗t − T∗0 )/L, (2.1)

where α is the coefficient of thermal expansion and ρ0 is the density at temperature T∗0 .
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FIGURE 1. (Colour online) (a) Schematic of the apparatus with contours of non-
dimensional temperature T showing a laminar thermal plume emerging from the localized
heating at the base centre for Gr = 105, σ = 7, Ar = Az = 2 and AT = 1. (b) Radial
temperature profile at the bottom wall (2.7) along a diameter, for the same geometry as
(a), C= 7.4 and ε = 1/3.

The Boussinesq approximation is implemented, treating all fluid properties as
constant except for a linear variation of density with temperature in the gravitational
buoyancy term. The system is non-dimensionalized using L as the length scale, L2/κ
as the time scale (κ is the thermal diffusivity), T∗h − T∗0 as the temperature scale, and
κ2ρ0/L2 as the pressure scale. The non-dimensional governing equations are

(∂t + u · ∇)u=−∇p+ σ∇2u+N2 Tez, (2.2)
(∂t + u · ∇)T =∇2T, ∇ · u= 0, (2.3)

where u = (u, v, w) is the velocity in cylindrical coordinates (r, θ, z) ∈ [0, Ar/Az] ×
[0, 2π] × [0, 1] = D , the corresponding vorticity is ω = ∇ × u = (ξ , η, ζ ), p is the
dynamic pressure, ez = (0, 0, 1) is the vertical unit vector in the z-direction and T =
(T∗ − T∗0 )/(T

∗
h − T∗0 ) is the non-dimensional temperature, while T∗ is the dimensional

temperature. N is the non-dimensional Brunt–Väisälä frequency N = NBVL2/κ . The
non-dimensional parameters are

Grashof number Gr= αgD3(T∗h − T∗0 )/ν
2,

Prandtl number σ = ν/κ,
cylinder to hot spot radial ratio Ar = R/D,
axial aspect ratio Az = L/D,
temperature ratio AT = (T∗t − T∗0 )/(T

∗
h − T∗0 ),

 (2.4)

where ν is the kinematic viscosity and g is the acceleration due to gravity. We have
introduced a Grashof number based on the hot-spot diameter D, as is typically done
in natural convection problems due to localized heating (Torrance 1979), rather than
a dimension of the container. The relationship between the Grashof number and the
non-dimensional Brunt–Väisälä frequency is

N2 = σ 2ATA3
z Gr. (2.5)



446 F. Marques and J. M. Lopez

The boundary conditions are:

r= Ar/Az: T = ATz, u= v =w= 0,
z= 1: T = AT, u= v =w= 0,
z= 0: T = Tb(r), u= v =w= 0.

 (2.6)

The temperature profile at the bottom wall has been regularized so that instead of a
step function, it is of the form

Tb(r)= 1

1+ exp
(

C
ε

(
Azr− 1

2

)) , r ∈ [0, Ar/Az], (2.7)

where 1/(2Az)= D/(2L) is the non-dimensional radius of the hot disk, and ε is the
non-dimensional length where most of the temperature variation takes place. We have
taken C= 7.4 so that 95 % of the temperature variation takes place in an interval of
length ε centred at the hot-disk radius, r ∈ [(1− ε)/(2Az), (1+ ε)/(2Az)]. Figure 1(b)
shows the radial temperature profile imposed at the bottom wall, for ε = 1/3, which
is the value used for the simulations. In practice it is impossible to maintain a sharp
temperature jump, so the regularization (2.7) mimics the real physical situation, and
also helps to improve the convergence of the spectral method used in the numerical
simulations.

The main parameter that controls the validity of the Boussinesq approximation is
α(T∗t − T∗0 ), which is independent of the other governing parameters; validity requires
α(T∗t − T∗0 ) � 1 (Busse 1967; Gray & Giorgini 1976). For the Grashof numbers
considered in this study, Gr63.5×105, this requirement is easily satisfied with typical
laboratory-scale experiments. For example, using water and D= 3 cm (corresponding
to a cylinder of radius and height of 6 cm), and T∗t −T∗0 < 8 ◦C, Gr∼ 4.5× 105 can be
achieved while α(T∗t − T∗0 ) < 2× 10−3� 1. For air, using D= 12 cm (corresponding
to a cylinder of radius and height of 24 cm), and T∗t − T∗0 < 2 ◦C, Gr ∼ 5× 105 can
be achieved while α(T∗t − T∗0 ) < 7 × 10−3 � 1. Of course, using a larger apparatus
and/or different fluids, there is ample room for reaching even larger Grashof numbers
while maintaining the validity of the Boussinesq approximation.

The governing equations have been solved using a second-order time-splitting
method, with space discretized via a Galerkin–Fourier expansion in θ and Chebyshev
collocation in r and z. The spectral solver is based on that described by Mercader,
Batiste & Alonso (2010) and it has recently been used in our previous study of
plumes in an isothermal (non-stratified) ambient (Lopez & Marques 2013). For the
solutions presented here, with Ar = Az = 2 and AT = 1, we have used up to nr = 256
and nz = 128 Chebyshev modes in the radial and axial directions and nθ = 36
azimuthal Fourier modes. The number of Chebyshev spectral modes is high in order
to well-resolve the plume structure and the rapid variation of the temperature and
the boundary layer forming at the bottom wall. The solution is well-resolved with at
least four orders of magnitude of decay in the modal energies.

The L2-norms of the azimuthal Fourier modes of a given solution,

Em = 1
2

∫ z=1

z=0

∫ r=γ

r=0
um · u∗m r dr dz, (2.8)

where um is the mth Fourier mode of the velocity field and u∗m is its complex
conjugate, provide a convenient way to characterize the non-axisymmetric states. For
axisymmetric states, E0 is the non-dimensional kinetic energy of the flow.
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The governing equations and boundary conditions are invariant under arbitrary
rotations around the cylinder axis and reflections about meridional planes. These
symmetries (orthogonal transformations) act simultaneously on the points in the fluid
domain and also on vector fields. If S is the matrix of one of these symmetry
transformations, its action τ(S) on the velocity field u(r) is given by τ(S)u(r) =
Su(S−1r) (see Chossat & Lauterbach 2000, § 1.2.4), or equivalently τ(S)u(Sr) =
Su(r). These equations say that in order to obtain the symmetrically related velocity
field, τ(S)u, of a given field u, one takes the velocity vector at a point r, transforms it
according to S, and translates the result to the transformed point Sr. Using cylindrical
coordinates and the cylindrical components of the velocity field, the action of the
two symmetries in our problem is given by

τ(Rα)(u, v,w)(r, θ, z, t)= (u, v,w)(r, θ − α, z, t), (2.9a)
τ(Kβ)(u, v,w)(r, θ, z, t)= (u,−v,w)(r, 2β − θ, z, t), (2.9b)

where α and β are arbitrary angles, Rα is the rotation of angle α about the cylinder
axis, and Kβ is the reflection about the meridional plane θ = β. Rα and Kβ do not
commute (KβRα = R−αKβ), and generate the group O(2) (orthogonal matrices in
two dimensions) acting on the periodic azimuthal θ -direction. The action of these
symmetries on the vorticity is given by

τ(Rα)(ξ , η, ζ )(r, θ, z, t)= (ξ , η, ζ )(r, θ − α, z, t), (2.10a)
τ(Kβ)(ξ , η, ζ )(r, θ, z, t)= (−ξ, η,−ζ )(r, 2β − θ, z, t). (2.10b)

A vector field is S-symmetric, or equivariant under S, if τ(S)u(r) = u(r), i.e. it
coincides with the S-transformed field; an equivalent expression is Su(r) = u(Sr).
As a consequence, the basic steady flow, which possesses all the symmetries of the
problem, is axisymmetric (independent of θ ), and also equivariant under meridional
reflections Kβ . A field that is equivariant under Kβ is said to be parity symmetric.

Another useful quantity is the helicity He of a given solution, defined as the integral
over the fluid domain D of the scalar product of the velocity and vorticity fields:

He=
∫

D

u ·ω dV. (2.11)

The local helicity u ·ω is invariant under rotations Rα, but is not invariant under parity
(the action of Kβ):

τ(Kβ)u ·ω(r, θ, z, t)=−u ·ω(r, 2β − θ, z, t). (2.12)

An important consequence is that parity-symmetric solutions (invariant under Kβ) have
zero helicity, and therefore He is a good measure of the parity breaking processes that
are related to the spontaneous generation of swirl.

3. Basic state
For moderate values of the Grashof number, Gr, the solution of the governing

equations is a steady and axisymmetric basic state, BS. For the results presented here,
we have fixed all the other parameters at Ar = 2, Az = 2, AT = 1 and σ = 7, and have
varied Gr over several decades. The choice of AT = 1 means that the centre of the
hot spot on the bottom is at the same temperature as the top endwall, and so the
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neutral buoyancy level of a well-developed plume will be roughly halfway between
the top and bottom. Keeping AT fixed means that the strength of the stratification is
then proportional to Gr, and this is reflected in the buoyancy frequency squared being
proportional to Gr. The Prandtl number σ = 7 nominally corresponds to water as the
working fluid. The solutions are quantitatively dependent on the geometric parameters
Ar and Az but, for reasonable variations, the results are qualitatively independent of
these.

The localized heating in the centre of the bottom endwall means that there is a
non-zero radial temperature gradient for any non-zero Gr. This radial temperature
gradient locally produces azimuthal vorticity resulting in a meridional circulation
drawing fluid radially inward above the heated portion of the lower endwall and
upward along the axis, eventually forming a thermal plume for larger Gr. The
vertical extent of this axial plume is limited by the vertical stratification, and the
diffusion of both temperature and vorticity.

Figure 2 shows the structure of the base state in terms of isotherms and
streamlines at Gr = 10, 103 and 105. In this range of Gr, the base state is
stable and there are substantial changes in the flow structure. The streamlines are
isolevels of the streamfunction ψ , where the meridional velocity components are
(u, w) = (−∂ψ/∂z, ∂ψ/∂r)/r. For Gr = 102 and smaller, the flow is conduction
dominated; the velocity is very small, as can be observed from the values of the
streamfunction and the spacing between the streamlines, and the hot-spot temperature
diffuses throughout the whole domain. For larger Grashof numbers (Gr ∼ 103) the
velocity intensifies above the hot spot and a thermal plume begins to form. As
the plume fluid rises, its temperature dissipates, and when the temperature of the
rising fluid matches the ambient temperature, it stops rising and spreads out radially,
creating a large-scale circulation in the bottom half of the container (up to the neutral
buoyancy level), while in the upper part of the container the fluid is essentially
stagnant and linearly stratified.

By Gr= 105, a well-developed plume has formed (see figure 2e,f ). The temperature
in the plume still drops as the fluid rises, as in the lower-Gr cases, but now as the
plume fluid reaches the neutral buoyancy level it retains upward momentum resulting
in an overshoot beyond the neutral buoyancy level before it stagnates vertically, falls
back to the neutral level and continues to flow out radially. In the upper part, the flow
is essentially stagnant and linearly stratified, matching the imposed linear temperature
profile imposed on the sidewall. In the lower part, the return flow of the plume
generates a meridional circulation. The meridional circulation generates a thermal
boundary layer at the sidewall, and between this boundary layer and the plume, the
temperature is essentially linearly stratified, but with a slightly different stratification
from the imposed linear profile at the sidewall.

Figure 3 shows vertical profiles at the axis of the temperature T(r = 0, z) and
the vertical velocity w(r = 0, z). We have used these profiles for a quantitative
measurement of the plume height, zPH , defined as the stagnation point of the plume
where w(r = 0, zPH) = 0, and the neutral buoyancy level zNB, defined as the height
at which the plume temperature (and density) equals the ambient temperature. The
long-dashed lines in figure 3 are the T- and w-profiles at mid-radius (r = 0.5Ar).
Figure 4 shows the variations in zPH and zNB over a range of Gr for which the base
state is stable. For small Gr . 103, the plume is not well-developed and so the plume
height is ill-defined (see figure 3a,d where there is a global meridional circulation
driven by the hot spot, but the flow does not stagnate on the axis except at the
top and bottom endwalls). The neutral buoyancy level is lower than the top endwall
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FIGURE 2. (Colour online) Isotherms (a,c,e) and streamlines (b,d,f ) of the steady
axisymmetric basic state BS at Ar = 2, Az = 2, AT = 1, σ = 7 and Gr as indicated. There
are 10 contour levels with T ∈ [−0.5, 0.5], and ψ ∈ [−0.042, 0.042] for Gr = 10, ψ ∈
[−0.92, 0.92] for Gr= 103, and ψ ∈ [−3.5, 3.5] for Gr= 105; solid lines (red) are positive
and dashed lines (yellow) are negative.

for Gr > 10 and decreases with increasing Gr for small Gr until the flow begins
to undergo the transition from being conduction dominated to convection dominated
and the plume begins to be well-established, at approximately Gr= 300. With further
increases in Gr, the neutral buoyancy level grows monotonically with Gr. The plume
height is always larger than the neutral buoyancy level; it decreases with increasing
Gr until Gr ≈ 2 × 104, suggesting that the transition regime from conduction- to
convection-dominated flow is broadly between Gr = 300 and Gr = 2 × 104. The
weaker stratification below the neutral buoyancy height, mentioned earlier, is clearly
seen in figure 3(c) by comparing the vertical temperature profile in the ambient
(at mid-radius, drawn as a dashed grey curve, red online) to the imposed linear
temperature profile at the sidewall (drawn as a solid grey line).

4. Axisymmetric puffing plume

By increasing the Grashof number above 105 and keeping the simulations
axisymmetric, the basic state ceases to be stable, and a periodic solution appears.
In terms of dynamical systems theory, we say that the basic state undergoes a
Hopf bifurcation. The instability is due to the development of a buoyancy anomaly
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FIGURE 3. (Colour online) Profiles of temperature T(z) and vertical velocity w(z) of the
steady axisymmetric basic state BS at Ar= 2, Az= 2, AT = 1 and σ = 7, for Gr as indicted.
The solid black lines are the profiles at the plume centre, r = 0. The dashed grey (red
online ) lines are the profiles at mid-radius r= 0.5 Ar. The grey line in (c) is the imposed
temperature profile at the sidewall, r= Ar, and the vertical short-dashed line at w= 0 in
(d–f ) is the vertical axis to help assess the rising or descending flow in the ambient.
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FIGURE 4. Variation of the plume height, zPH , and neutral buoyancy level, zNB, with Gr
for Ar = 2, Az = 2, AT = 1 and σ = 7.

near the hot spot; this develops into a localized blob of fluid which rises faster
than the fluid in the plume in the underlying unstable steady solution. This
limit-cycle mode from an axisymmetric instability is very much the same as in
the non-stratified ambient localized heating problem (Lopez & Marques 2013),
the so-called puffing plume. The onset of the puffing plume, for the parameters
considered here, is at Gr ≈ 2.84 × 105. Figure 5 shows four snapshots over one
puffing period at Gr= 3.5× 105; the supplementary movies 1 and 2 available online
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(a) (b)

FIGURE 5. (Colour online) Isotherms (a) and azimuthal vorticity contours (b) of the
axisymmetric periodic puffing plume state at Gr = 3.5 × 105, Ar = 2, Az = 2, AT = 1 and
σ = 7 at four equispaced phases over one puffing period 2π/ω0 ≈ 3.9× 104; there are 20
contour levels with T ∈ [−0.5, 0.5] and η ∈ [−105, 105]; solid lines (red) are positive and
dashed lines (yellow) are negative. See associated online movies 1 and 2.

at http://dx.doi.org/10.1017/jfm.2014.628 clearly shows the development of the puffs.
For a range of Gr following the Hopf bifurcation, the puffing frequency, ω0, grows
monotonically with Gr, as does the buoyancy frequency N (N ∼√Gr); ω0 is larger
than N (ω0 ∼ 1.4N), and so the puffing plume does not drive internal waves. From
both the online movies 1 and 2 and figure 5, it is clear that the azimuthal vorticity is
localized on the hot spot and in the plume up to about the neutral buoyancy height,
as are the radial temperature gradients.

At Gr ≈ 4.7× 105, the puffing plume undergoes a period-doubling bifurcation: the
blob in the plume develops into a vortex ring whose radius expands while the central
plume column remains intact. At the next cycle the remains of the ring are still there,
impeding the subsequent blob developing into a ring, and the blob instead travels up
the central column which overshoots the neutral buoyancy level higher than in the

http://dx.doi.org/10.1017/jfm.2014.628
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(a) (b)

FIGURE 6. (Colour online) Isotherms (a) and azimuthal vorticity contours (b) of the
axisymmetric periodic puffing plume state at Gr = 1 × 106, Ar = 2, Az = 2, AT = 1 and
σ = 7 at four phases over one period 2π/ω ≈ 4π/ω0 ≈ 4.1 × 104; there are 20 contour
levels with T ∈ [−0.5, 0.5] and η ∈ [−2× 105, 2× 105]; solid lines (red) are positive and
dashed lines are negative. See associated online movies 3 and 4.

previous cycle. The next cycle coincides with the previous one, resulting in a period-
doubling bifurcation. Figure 6 shows four equispaced snapshots of the period-doubled
puffing plume, over one period at Gr= 1× 106; the first two snapshots clearly show
the formation of the vortex ring, which rises to about half the neutral buoyancy height.
The last two snapshots, corresponding to the next puffing cycle, do not have an outer
ring, and the central plume rises higher. The movies 3 and 4 available online shows
further details of the period-doubled state.

Figure 7 shows time series of the global kinetic energy E0 after transients had
died down, for various values of Gr. Figure 7(a) is for a periodic puffing state at
Gr = 3.5 × 105 with (primary) frequency ω0, where each peak corresponds to a
puffing event. Figure 7(b) shows the period-doubled state at Gr= 6× 105. Each peak
corresponds to a puffing event, but the energy of consecutive puffs is different due
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FIGURE 7. Times series of E0 over a time interval of 0.01, taken some time after
transients had died down, for various values of Gr as indicated.

to the detachment between the outer ring and the central hot column, and so the
state shown is periodic, with a (primary) frequency of half the puffing frequency.
In figure 7(c) at Gr = 8 × 105 the frequencies associated with the central column
and outer ring are not in a rational ratio, so the resultant regime is quasi-periodic.
These states have a primary frequency close to ω0/2 and an additional low beating
frequency. In figure 7(d) at Gr = 1 × 106 they have synchronized again, and the
primary frequency is ω0/2.

The period doubling results in the time-dependent flow having a frequency peak
at half the puffing frequency. This new frequency peak is lower than N and internal
waves result. Figure 8 shows how the frequency varies with Gr, and compares
it to N. For Gr > 4.8 × 105, the flow is quite complicated temporally, becoming
quasi-periodic and then synchronizing, then quasi-periodic again, with some very
long-period modulations over short intervals in Gr, suggesting that there are resonant
dynamics at play. Nevertheless, there is a strong temporal signal such that the
associated frequency, ω0/2, results in internal waves at approximately 40◦ to the
vertical. This angle comes from the dispersion relation for internal waves, and is
given by arccos(ω0/2N), although in actuality it is the local buoyancy frequency
rather than that corresponding to the imposed sidewall boundary temperature profile
that is relevant. From figure 3 we see that these two buoyancy frequencies are quite
similar in the region above the neutral buoyancy height. This is consistent with many
experimental observations of internal waves emerging from regions with localized
instabilities and turbulence into a stratified region having frequencies in a narrow
band about the local buoyancy frequency divided by

√
2 (Munroe & Sutherland

2014), and Sutherland & Linden (1998) have shown using a linear theory that
internal waves within this band of frequencies are the most efficient in extracting
energy from the turbulent region and transporting it through the stratified region. They
also suggest that these waves feed back upon the turbulent region and modify its
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FIGURE 8. (a) Variation of the primary frequency of the axisymmetric puffing plumes
ω versus Gr; the curve is the non-dimensional buoyancy frequency N, the open symbols
correspond to limit cycle puffing states and the filled symbols are various puffing states
that are generally quasi-periodic, but some have frequency locked to being periodic. The
puffing frequency is ω0. (b) The same results scaled by N; the three horizontal lines are
at ω0/N = 2/

√
2, 1, and 1/

√
2.

mean properties to the extent that waves in this preferred frequency band are further
enhanced. Similar mechanisms seem to be in play in the puffing plume regime.

5. Spontaneous generation of swirl

The puffing plume dynamics described in the previous section were from
simulations restricted to the axisymmetric subspace. When the dynamics is not
restricted and general three-dimensional perturbations are allowed, the base state BS
loses stability at Gr lower than that for the onset of the axisymmetric puffing mode.
For the parameter values studied here, instability to three-dimensional flow occurs at
Gr≈ 1.18× 105.

It is well-known (Crawford & Knobloch 1991; Knobloch 1996) that breaking O(2)
symmetry can result in either standing or rotating waves if the bifurcating eigenvalue
is complex (symmetry-breaking Hopf bifurcation), and which one occurs is very much
problem dependent. Moreover, due to the reflection symmetry, the rotating wave’s
sense of rotation can be positive or negative; both solutions bifurcate simultaneously,
and which one is observed depends on the initial conditions. In our problem, the base
state becomes unstable and a periodic solution in the form of a rotating wave with
azimuthal wavenumber m= 1 appears. Figure 9 shows the modal energies E0 and E1

of the solutions obtained up to Gr= 4× 105. The rotating wave solution branch RW
undergoes a number of subsequent bifurcations as Gr is increased, which are described
below. We begin by describing the characteristics of the rotating wave state.

Figure 10(a) shows the variation of the absolute value of the precession frequency
ωpr, scaled by N, with Gr. It shows that |ωpr|/N ∼ 1/

√
2, and so internal waves are

excited by the rotating wave state, RW, and are emitted at approximately 45◦, much
like the internal waves in the period-doubled axisymmetric puffing plume. The RW
state has non-trivial swirl, as measured by the helicity. Figure 10(b) shows how He
grows from zero at the Hopf bifurcation at which RW emerges. Near onset, |He| ∼
Gr ∼ N2, and since He is a quadratic quantity, the bifurcating velocity perturbation
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FIGURE 9. (Colour online) Variation of the modal energies (see (2.8)), E0 and E1, with
Gr of the various states as indicated.
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FIGURE 10. Variations of (a) precession frequency scaled by N and (b) helicity with Gr
of the rotating wave state RW, showing the supercritical character of the Hopf bifurcation
(absolute values are shown as RW come as conjugate pairs with opposite senses of
rotation).

magnitude scales with
√

Gr∼N, in agreement with the theory of a supercritical Hopf
bifurcation (Kuznetsov 2004).

Figure 11 shows isotherms and contours of azimuthal vorticity in a meridional
plane for the RW state at Gr= 2× 105. It clearly shows that the plume is tilted, and
therefore the reflection symmetry is broken. As is well-known from bifurcation theory
(Knobloch 1996), a Hopf bifurcation breaking axisymmetry from an O(2)-symmetric
state may result in rotating waves when the reflection symmetry is broken, or standing
waves when it is preserved. Figure 12(a) show isosurfaces of azimuthal vorticity
η of this solution, indicating that it has azimuthal wavenumber m = 1, and the
online movie 5 shows that it is a rotating wave: the plume does not change shape,
but precesses about the vertical axis at a constant rate ωpr, given in figure 10(a).
The RW solutions come in pairs, one rotating clockwise and the other rotating
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(a) (b)

FIGURE 11. (Colour online) Snapshots of (a) isotherms and (b) azimuthal vorticity
contours in a meridional plane, at an instant in time of the rotating wave state RW
at Gr = 2 × 105, Ar = 2, Az = 2, AT = 1 and σ = 7. There are 10 contour levels with
T ∈ [−0.5, 0.5] and η ∈ [−5× 104, 5× 104]; solid lines (red) are positive and dashed lines
(yellow) are negative.

(a) (b) (c)

FIGURE 12. (Colour online) (a) Three-dimensional isosurfaces of azimuthal vorticity η, at
an instant in time of the rotating wave state RW at Gr= 2× 105,Ar= 2,Az= 2,AT = 1 and
σ = 7, and the isosurface levels are at η=±103. The online movie 5 show the isosurfaces
over one precession period 2π/ωpr ≈ 5 × 10−4. Three-dimensional isosurfaces of vertical
vorticity ξ of the same state, at levels (b) ξ =±2000 and (c) ξ =±4000.

counter-clockwise. This symmetry-breaking process is responsible for the spontaneous
generation of swirl. Figure 12(b) shows the structure of the plume: the isosurfaces
of axial vorticity at ξ = ±2000 show that the plume consists of two intertwined
vortices with opposite sense of rotation. Both vortices have positive vertical velocity,
but opposite ξ , therefore their local helicities are of opposite sign. Figure 12(c)
shows isosurfaces of axial vorticity at higher ξ = ±4000, illustrating that the two
vortices are of different strengths. The strongest vortex is the light grey (yellow
online) isosurface, corresponding to negative ξ , and therefore the total helicity of this
solution is negative, corresponding to a clockwise precession of the thermal plume,
as can be seen in the online movie 5.

5.1. Bifurcations of the precessing plume
By further increasing the Grashof number, the rotating wave undergoes a sequence
of bifurcations to more complicated time-dependent states, as shown in figure 9. The
first bifurcation results in a quasi-periodic state (termed MRW in figure 9) illustrated
in figure 13, showing temperature contours in the inertial frame (figure 13a) and in
the frame precessing with the plume (figure 13b). In the precessing frame, the plume
is periodic, and the new periodicity corresponds to a puff of hot fluid propagating
upwards along the tilted plume. The puffing frequency ωpu is easily computed from
the time series of the kinetic energy of MRW. Since the kinetic energy is a global
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(a) (b)

FIGURE 13. (Colour online) Isotherms of MRW at Gr = 2.5 × 105 in the inertial
(stationary) frame (a) and a precessing frame (b) with frequency ωpr = 7435.0. There
are 10 contour levels with T ∈ [−0.5, 0.5]; solid lines (red) are positive and dashed lines
(yellow) are negative.

measure, the precession frequency disappears from its time series and the energies are
purely periodic (see figure 15 below). The result is ωpu = 1.414× 104, which is very
close to, but not exactly equal to, twice the precession frequency (2ωpr= 1.487× 104).
The two frequencies can be observed in figure 14, which shows time series of the
temperature at three different points in the inertial frame: Tm at the centre of the cell
(r, θ, z)= (0, 0, 0.5γ ), and T1 and T2 at (r, θ, z)= (0.1, 0, 0.5γ ) and (0.1, 0, 0.05γ ),
close to the axis and near the top and the base of the plume, respectively. The time
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FIGURE 14. (Colour online) Time series of the temperature at various points (r, θ, z):
T1=T(0.1, 0, 0.5γ ) (dashed line with circles), Tm=T(0, 0, 0.5γ ) (solid line with squares),
and T2= T(0.1, 0, 0.05γ ) (dot-dashed line with diamonds); the symbols correspond to the
isotherm plots shown in figure 13.
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FIGURE 15. (Colour online) Time series of E0 (a) and E1 (b) for the states RW, MRW
and VLF.

series of Tm is periodic with the period of the puffing τpu = 2π/ωpu because the
cylinder axis does not precess. The time series of T1 and T2 show a periodicity of
τpr = 2π/ωpr ≈ 2τpu, the precession period, but the periodicity is only approximate
because ωpu and ωpr are not in a rational ratio. As a result, the successive peaks are
not of the same size and the time series is quasi-periodic. The precessing and puffing
plume, MRW, lies on a two-torus and is a modulated rotating wave state.

The puffing phenomenon in MRW is closely related to the puffing we have
observed when the computations are restricted to the axisymmetric subspace. In fact,
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the precessing and puffing plume at Gr = 2.5× 105, described in figures 13 and 14,
has a puffing frequency of ωpu = 1.414× 104 that lies on the extension of the curve
of the axisymmetric puffing ω0 in figure 8(a). This strongly suggests that the two
puffing mechanisms, in the axisymmetric subspace and in the full three-dimensional
space, are the same. The axisymmetric puffing appears at Gr ≈ 2.84 × 105, while
the puffing plume MRW appears at Gr ≈ 2.35 × 105. This fact, together with the
proximity between ωpu and 2ωpr, suggests that the axisymmetric puffing mechanism
is excited by the precessing plume before, but close to, it becoming unstable in the
axisymmetric subspace, in an approximate 1:2 resonance between the puffing and the
precessing frequencies.

On further increasing the Grashof number, the quasi-periodic state MRW develops
an additional very low frequency at approximately Gr≈ 2.8× 105 (see figure 9). This
new very low-frequency state VLF is clearly apparent in figure 15, showing time
series of E0 and E1 for the states RW and MRW that have already been described,
and the new VLF state at Gr = 3 × 105. At this particular Gr, the new frequency
is approximately sixteen times smaller than the puffing frequency. Notice that the
precession frequency does not appear in the energy time series because it is a global
measure (integrating over the whole domain), and therefore the precession does not
change the energy values. This VLF state, having three incommensurate frequencies,
lies on a three-torus. It is well-known (Ruelle & Takens 1971; Newhouse, Ruelle &
Takens 1978) that three frequencies usually means chaos. However, this is not the case
here because of the symmetries of the problem. One of the frequencies, the precession
frequency ωpr, is associated with the rotational invariance of the cylindrical container
and can be removed by changing to a reference frame rotating with ωpr, where the
VLF state becomes a two-torus. In fact stable three-tori states have been observed
in other hydrodynamics problems with rotational invariance (Lopez & Marques 2000;
Marques, Lopez & Shen 2001; Marques, Lopez & Iranzo 2002; Lopez & Marques
2003; Marques & Lopez 2006; Lopez 2006; Avila et al. 2007; Lopez & Marques
2009; Altmeyer et al. 2012).

The VLF state, as is apparent from figure 15, alternates between a state very
similar to the precessing puffing plume MRW (near the minima of E0), and another
state where the axisymmetric component measured by E0 is substantially stronger,
while the non-axisymmetric energy is smaller that that of MRW (near the maxima
of E0), i.e. they resemble axisymmetric puffing states. In fact, the axisymmetric
puffing state becomes stable (in the axisymmetric subspace) at about the same value
of Gr at which the VLF state appears. This suggests that the VLF state is close
to a heteroclinic cycle alternately visiting the MRW solution (now unstable) and
the axisymmetric puffing state (stable in the axisymmetric subspace, but unstable to
three-dimensional perturbations; the state denoted BSu in figure 9). The bifurcation
giving rise to the VLF state would then be associated with the bifurcation producing
the axisymmetric puffing state; it is a global bifurcation of heteroclinic type.

Figure 16 shows four snapshots from a movie of the VLF state, showing the
precession of the plume and the puffing process. In figure 16(a) the flow is close
to axisymmetric, and the tilting of the plume is difficult to see; in figure 16(d), the
tilting is more apparent, illustrating the VLF excursions between the axisymmetric
puffing state and the non-axisymmetric puffing state MRW.

On further increasing the Grashof number, the dynamics becomes more complicated;
we have observed a period doubling of the VLF state (the state denoted VLFpd in
figure 9) and regions of coexistence of the VLF and MRW states, before the flow
becomes temporally chaotic. These additional states have been included in figure 9
up to Gr= 4× 105, but we have not pursued further analysis of these complex states.
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(a) (b)

(c) (d )

FIGURE 16. (Colour online) Three-dimensional isosurfaces of azimuthal vorticity η, at
four equispaced times relative to the online movie, of the VLF state at Gr=3.5×105,Ar=
2, Az = 2, AT = 1 and σ = 7. The isosurface levels are at η=±103. See associated online
movie.

6. Discussion and conclusions
This study was motivated by the long-standing puzzle that for many plumes,

including some geophysical plumes, swirl is sometimes observed, and yet there is
not a generally accepted explanation of where it comes from, particularly for plumes
whose scales are such that the Coriolis force is not expected to be a primary factor.
For the most part, explanations rely on the focusing and amplification of background
rotation or shear near the ground by the updraft from the plume. The important
issue is to determine if the swirl arises due to extraneous effects (ambient rotation
or ambient shear) or due to intrinsic effects. The only way to determine this is to
eliminate external disturbances, and this is done by employing an enclosed geometry.
The laboratory experiments of Torrance (1979) considered a plume in a completely
enclosed cylinder driven by a localized hot spot on the bottom boundary. In a
parameter regime where the ambient stratification is not too weak or too strong, the
onset of swirl in a plume was observed, but no details of the flow nor any explanation
of what the swirl was due to were offered. Nevertheless, the completely enclosed
experiments suggest that the onset of swirl could be intrinsic to the plume dynamics.

In order to investigate this idea, we have simulated the flow in a stationary fully
enclosed cylinder driven by a localized hot spot at the bottom, in a stratified ambient
that is maintained by a linearly decreasing fixed temperature up the sidewall. We fix
the ratio of the temperature difference between the top and bottom of the sidewall to
the temperature difference between the centre of the hot spot and the bottom of the
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side to be AT = 1 (this results in the plume’s neutral buoyancy level being at about
the cylinder half-height), as well as fixing the geometry and fluid (water), and we
explore the dynamics of the plume as the Grashof number Gr is increased. Increasing
the Grashof number corresponds to increasing the temperature of the centre of the
hot spot relative to the temperature of the bottom of the sidewall, and since AT = 1
this also means that the buoyancy frequency of the ambient stratification is increased
proportionally with

√
Gr.

When the simulations are restricted to being axisymmetric, the steady plume flow
loses stability to a puffing mode via a Hopf bifurcation at Gr ≈ 2.84 × 105. The
features of the puffing mode are very similar to those of the puffing mode in an
isothermal ambient (Lopez & Marques 2013), with the one notable difference being
that the plume in the stratified ambient does not penetrate all the way to the ceiling.
In both the isothermal ambient and the present stratified ambient cases, the steady
axisymmetric plume state loses stability to three-dimensional disturbances at Gr
significantly lower than the critical Gr for the axisymmetric puffing mode instability.
However, the manner in which axisymmetry is broken in the two cases is very
different. They both break the invariance to rotations, Rα, but while the plume in
an isothermal ambient preserves parity, Kβ , parity is broken in the stratified ambient
case. It is this parity-breaking Hopf bifurcation which results in the swirling plume.
Near onset (Gr & 1.18 × 105), the swirling plume is a rotating wave possessing
non-zero mean helicity, and its precession frequency is approximately 1/

√
2 times

the buoyancy frequency, and so internal waves are emitted at approximately 45◦. On
further increasing Gr > 2.4 × 105, the swirling plume is modulated. The modulation
is due to a puff of hot fluid propagating upwards along the tilted swirling plume. We
find that the precession frequency is exciting the puffing mode subharmonically
at Gr values a little below where the puffing mode sets in in the absence of
the swirl; the precession frequency is about half the puffing frequency. As Gr is
increased beyond approximately 2.8 × 105, the plume is further modulated by a
very low frequency. We show that this results from a global bifurcation and this very
low-frequency modulated plume is close to a heteroclinic cycle where the flow slowly
drifts from a state resembling the axisymmetric puffing mode to a state resembling
the rotating wave swirling plume. In summary, swirl results spontaneously from an
intrinsic instability breaking parity symmetry. Subsequent instabilities lead to quite
complicated spatio-temporal behaviour. These results provides a new perspective with
which to re-visit the question of how do naturally occurring plumes, such as dust
devils, acquire their swirl.

Acknowledgements
This work was supported by the National Science Foundation grants DMS-0922864

and CBET-1336410, and the Spanish Ministry of Education and Science grant (with
FEDER funds) FIS2013-40880.

Supplementary movies
Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2014.628.

REFERENCES

ALTMEYER, S., DO, Y., MARQUES, F. & LOPEZ, J. M. 2012 Symmetry-breaking Hopf bifurcations
to 1-, 2-, and 3-tori in small-aspect-ratio counterrotating Taylor–Couette flow. Phys. Rev. E
86, 046316.

http://dx.doi.org/10.1017/jfm.2014.628


462 F. Marques and J. M. Lopez

AVILA, M., MARQUES, F., LOPEZ, J. M. & MESEGUER, A. 2007 Stability control and catastrophic
transition in a forced Taylor–Couette system. J. Fluid Mech. 590, 471–496.

BATTAGLIA, F., REHM, R. G. & BAUM, H. R. 2000 The fluid mechanics of fire whirls: an inviscid
model. Phys. Fluids 12, 2859–2867.

BUSSE, F. H. 1967 The stability of finite amplitude cellular convection and its relation to an
extremum principle. J. Fluid Mech. 30, 625–649.

CARROLL, J. J. & RYAN, J. A. 1970 Atmospheric vorticity and dust devil rotation. J. Geophys. Res.
75, 5179–5184.

CHOSSAT, P. & LAUTERBACH, R. 2000 Methods in Equivariant Bifurcations and Dynamical Systems.
World Scientific.

CORTESE, T. & BALACHANDAR, S. 1993 Vortical nature of thermal plumes in turbulent convection.
Phys. Fluids A 5, 3226–3232.

CRAWFORD, J. D. & KNOBLOCH, E. 1991 Symmetry and symmetry-breaking bifurcations in fluid
dynamics. Annu. Rev. Fluid Mech. 23, 341–387.

EMMONS, H. W. & YING, S.-J. 1967 The fire whirl. In Proceedings 11th International Symposium
on Combustion, pp. 475–488. Combustion Institute.

FIEDLER, B. H. & KANAK, K. M. 2001 Rayleigh-Bénard convection as a tool for studying dust
devils. Atmos. Sci. Lett.; doi:10.1006/asle.2001.0043.

GRAY, D. D. & GIORGINI, A. 1976 The validity of the Boussinesq approximation for liquids and
gases. Intl J. Heat Mass Transfer 19, 545–551.

KNOBLOCH, E. 1996 Symmetry and instability in rotating hydrodynamic and magnetohydrodynamic
flows. Phys. Fluids 8, 1446–1454.

KUZNETSOV, Y. A. 2004 Elements of Applied Bifurcation Theory, 3rd edn. Springer.
LOPEZ, J. M. 2006 Rotating and modulated rotating waves in transitions of an enclosed swirling

flow. J. Fluid Mech. 553, 323–346.
LOPEZ, J. M. & MARQUES, F. 2000 Dynamics of 3-tori in a periodically forced Navier–Stokes flow.

Phys. Rev. Lett. 85, 972–975.
LOPEZ, J. M. & MARQUES, F. 2003 Small aspect ratio Taylor–Couette flow: onset of a very-low-

frequency three-torus state. Phys. Rev. E 68, 036302.
LOPEZ, J. M. & MARQUES, F. 2009 Centrifugal effects in rotating convection: nonlinear dynamics.

J. Fluid Mech. 628, 269–297.
LOPEZ, J. M. & MARQUES, F. 2013 Instability of plumes driven by localized heating. J. Fluid

Mech. 736, 616–640.
MARQUES, F. & LOPEZ, J. M. 2006 Onset of three-dimensional unsteady states in small aspect-ratio

Taylor–Couette flow. J. Fluid Mech. 561, 255–277.
MARQUES, F., LOPEZ, J. M. & IRANZO, V. 2002 Imperfect gluing bifurcation in a temporal glide-

reflection symmetric Taylor–Couette flow. Phys. Fluids 14, L33–L36.
MARQUES, F., LOPEZ, J. M. & SHEN, J. 2001 A periodically forced flow displaying symmetry

breaking via a three-tori gluing bifurcation and two-tori resonances. Physica D 156, 81–97.
MASSAGUER, J. M. & MERCADER, I. 1988 Instability of swirl in low-Prandtl number thermal

convection. J. Fluid Mech. 189, 367–395.
MASSAGUER, J. M., MERCADER, I. & NET, M. 1990 Nonlinear dynamics of vertical vorticity in

low-Prandtl number thermal convection. J. Fluid Mech. 214, 579–597.
MAXWORTHY, T. 1973 A vorticity source for large-scale dust devils and other comments on naturally

occurring columnar vortices. J. Atmos. Sci. 30, 1717–1722.
MERCADER, I., BATISTE, O. & ALONSO, A. 2010 An efficient spectral code for incompressible

flows in cylindrical geometries. Comput. Fluids 39, 215–224.
MORTON, B. R. 1966 Geophysical vortices. Prog. Aerosp. Sci. 7, 145–194.
MORTON, B. R., TAYLOR, G. & TURNER, J. S. 1956 Turbulent gravitational convection from

maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 1–23.
MUNROE, J. R. & SUTHERLAND, B. R. 2014 Internal wave energy radiated from a turbulent mixed

layer. Phys. Fluids 26, 096604.
MURASZEW, A., FEDELE, J. B. & KUBY, W. C. 1979 The fire whirl phenomenon. Combust. Flame

34, 29–45.

http://dx.doi.org/10.1006/asle.2001.0043


Spontaneous generation of a swirling plume 463

MURPHY, J. O. & LOPEZ, J. M. 1984 The influence of vertical vorticity on thermal convection.
Austral J. Phys. 37, 41–62.

NEWHOUSE, S., RUELLE, D. & TAKENS, F. 1978 Occurrence of strange axiom-A attractors near
quasi-periodic flows on Tm, m > 3. Commun. Math. Phys. 64, 35–40.

RUELLE, D. & TAKENS, F. 1971 On the nature of turbulence. Commun. Math. Phys. 20, 167–192.
SNOW, J. T. 1987 Atmospheric columnar vortices. Rev. Geophys. 25, 371–385.
SPEER, K. G. & MARSHALL, J. 1995 The growth of covective plumes at seafloor hot springs.

J. Mar. Res. 53, 1025–1057.
STROGATZ, S. 1994 Nonlinear Dynamics and Chaos. Addison-Wesley.
SUTHERLAND, B. R. & LINDEN, P. F. 1998 Internal wave excitation from stratified flow over a

thin barrier. J. Fluid Mech. 377, 223–252.
TORRANCE, K. E. 1979 Natural convection in thermally stratified enclosures with localized heating

from below. J. Fluid Mech. 95, 477–495.
TORRANCE, K. E., ORLOFF, L. & ROCKETT, J. A. 1969 Experiments on natural convection in

enclosures with localized heating from below. J. Fluid Mech. 36, 21–31.
TORRANCE, K. E. & ROCKETT, J. A. 1969 Numerical study of natural convection in an enclosure

with localized heating from below – creeping flow to the onset of laminar instability. J. Fluid
Mech. 36, 33–54.

WOODS, A. W. 2010 Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42, 391–412.


	Spontaneous generation of a swirling plume in a stratified ambient
	Introduction
	Governing equations and numerical technique
	Basic state
	Axisymmetric puffing plume
	Spontaneous generation of swirl
	Bifurcations of the precessing plume

	Discussion and conclusions
	Acknowledgements
	References




