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We investigate the local self-sustained process underlying spiral turbulence in
counter-rotating Taylor–Couette flow using a periodic annular domain, shaped as a
parallelogram, two of whose sides are aligned with the cylindrical helix described
by the spiral pattern. The primary focus of the study is placed on the emergence of
drifting–rotating waves (DRW) that capture, in a relatively small domain, the main
features of coherent structures typically observed in developed turbulence. The transitional
dynamics of the subcritical region, far below the first instability of the laminar circular
Couette flow, is determined by the upper and lower branches of DRW solutions originated
at saddle-node bifurcations. The mechanism whereby these solutions self-sustain, and the
chaotic dynamics they induce, are conspicuously reminiscent of other subcritical shear
flows. Remarkably, the flow properties of DRW persist even as the Reynolds number is
increased beyond the linear stability threshold of the base flow. Simulations in a narrow
parallelogram domain stretched in the azimuthal direction to revolve around the apparatus
a full turn confirm that self-sustained vortices eventually concentrate into a localised
pattern. The resulting statistical steady state satisfactorily reproduces qualitatively, and
to a certain degree also quantitatively, the topology and properties of spiral turbulence as
calculated in a large periodic domain of sufficient aspect ratio that is representative of the
real system.

Key words: Taylor–Couette flow, bifurcation, intermittency

1. Introduction

Nonlinear shear flow instabilities often lead to intermittency, a phenomenon that involves
the coexistence of laminar and turbulent flow regions. The resulting turbulent–laminar
patterns take either the form of localised turbulent patches surrounded by otherwise
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laminar flow or, surprisingly more orderly, of coherent stripes that exhibit sharp interfaces
tilted with respect to the main direction of the flow. A well-known archetype for coherent
intermittency in rotating shear flows is the so-called spiral turbulence (SPT) regime that
appears in Taylor–Couette flow (TCF), i.e. the fluid flow between independently rotating
coaxial cylinders. The SPT regime consists of a turbulent helix that forms a coil within the
apparatus gap with a well-defined pitch and rotates at a fairly constant angular speed. This
peculiar flow structure, first discovered in the 1960s (Coles & Van Atta 1967) and declared
a puzzling phenomenon by Feynman himself (Feynman 1964), had not been reproduced
numerically until rather recently by means of very costly direct numerical simulations
(DNS) (Dong 2009; Meseguer et al. 2009b; Dong & Zheng 2011).

Similar oblique laminar–turbulent stripe patterns are common in other shear flows
featuring two extended space directions (Prigent et al. 2002; Duguet, Schlatter &
Henningson 2010; Tuckerman et al. 2014). For a thorough review on the rich variety
of existing intermittent shear flow phenomena, we refer the reader to the monograph
by Tuckerman, Chantry & Barkley (2020) and references therein. Recent attempts at
elucidating the stripe formation mechanism have mostly been confined to relatively simple
parallel shear flows such as plane Couette or plane Poiseuille flows. Both problems exhibit
subcritical transition to turbulence, namely transition in the absence of a linear instability
of the base flow, which is best tackled employing dynamical systems theory. In this
framework, simple solutions to the Navier–Stokes equations, often called exact coherent
structures (ECS), are shown to naturally play a central role in organising the transitional
and turbulent dynamics (Kerswell 2005; Eckhardt et al. 2007; Kawahara, Uhlmann & Van
Veen 2012; Graham & Floryan 2021).

The last three decades have witnessed overwhelming scientific activity in the search for
ECS in many subcritical shear flows (Nagata 1990; Clever & Busse 1992, 1997; Faisst
& Eckhardt 2003; Waleffe 2003; Wedin & Kerswell 2004), following the discovery of
a self-sustained process (SSP) for coherent structures in the absence of linear instability
of the laminar flow (Waleffe 1997). The process, which occurs at relatively short length
scales and can therefore be observed in small periodic domains, consists in a cyclic
feedback mechanism whereby streamwise vortices generate streaks through the lift-up
mechanism, which in turn become unstable to three-dimensional waves that feed energy
back into the streamwise vortices (Boberg & Brosa 1988; Hamilton, Kim & Waleffe 1995;
Grossmann 2000). The instability of the streaks responds to an inviscid mechanism by
which three-dimensional waves are strongly amplified at a critical layer, i.e. where the
streak speed coincides with the wave speed (Wang, Gibson & Waleffe 2007; Hall &
Sherwin 2010; Deguchi & Hall 2015).

For relatively small periodic boxes, the relationship between the exact solution and
the dynamics is understood to some extent. Of the ECS emanated from saddle-node
bifurcations, the lower (or saddle) branch typically dictates the topology and amplitude
of flow perturbations that are capable of triggering transition, while the upper (or nodal)
branch generally regulates – or at least participates in – the formation of the turbulent set.
In the subcritical transition problem, the infinite-dimensional Navier–Stokes phase space
typically contains two stable (or metastable) invariant sets: the steady laminar base flow
and the chaotic/turbulent state. The basins of attraction of these two sets meet along a
codimension-1 manifold, usually known as the edge of chaos (Itano & Toh 2001; Skufca,
Yorke & Eckhardt 2006; Schneider et al. 2008), where the lower-branch solutions belong.
The upper branch ECS are almost always unstable and their participation in the generation
of the chaotic set is not easily dissected. Occasionally, however, upper-branch ECS are
linearly stable, if only within sufficiently small domains or tightly constrained symmetry
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conditions, in a neighbourhood of the saddle-node bifurcation (Clever & Busse 1997;
Mellibovsky & Eckhardt 2011, 2012). In these cases, further theoretical progress can be
made as the path towards chaotic dynamics admits a simpler analysis that can draw from a
parallel with low-dimensional dynamical systems (Kreilos & Eckhardt 2012; Mellibovsky
& Eckhardt 2012; Lustro et al. 2019).

Transition and pattern formation in TCF are more involved than for parallel shear
flows due to the interplay of shear and rotation (Andereck, Liu & Swinney 1986).
A notable difference with respect to merely shear-driven flows is that SPT also persists
in the supercritical regime of counter-rotating TCF, beyond the linear instability of the
laminar circular Couette flow (Prigent et al. 2002; Meseguer et al. 2009b). Therefore,
both the shear and the centrifugal instabilities contribute their share to the generation of
streamwise vorticity, but this fact has gone largely unnoticed in the literature, where the
origin of the stripe can be solely explained by the stability of both the basic flow and
the autonomous vortex emerged from the SSP. The mechanism we are interested in is
also fundamentally different from that of wavy vortex flow (WVF) (Martinand, Serre &
Lueptow 2014; Dessup et al. 2018), for which the roll–streak system is almost exclusively
driven by the centrifugal instability of circular Couette flow (CCF), with shear playing but
an accessory and marginal part in the sustainment.

The aim of this paper is to investigate the dynamics induced by ECS driven by the
SSP and to ascertain whether they may be held responsible for the formation of the SPT
regime observed in the centrifugally unstable region of parameter space. The most natural
place to look for nonlinear solutions is at the linear critical point of the base flow, CCF
in our case. However, the nonlinear spiral solutions thus identified by Meseguer et al.
(2009a) are only very mildly subcritical, which implies that it is the centrifugal instability
rather than the SSP that drives them. A wealth of solutions predicted by weakly nonlinear
theory (Chossat & Iooss 1994) followed the discovery of the subcritical spirals (Deguchi
& Altmeyer 2013), but none contributed to enlarging the known region of subcriticality.
Shortly after, however, a highly subcritical three-dimensional rotating-wave solution was
found by Deguchi, Meseguer & Mellibovsky (2014), although its dynamical relevance was
not investigated.

As noted earlier, the computation of laminar–turbulent banded patterns is very costly,
such that using narrow orthogonal domains suitably tilted to align with the stripes has been
decisive to the study of this kind of laminar–turbulent patterns (Barkley & Tuckerman
2005; Shi, Avila & Hof 2013; Reetz, Kreilos & Schneider 2019; Paranjape, Duguet & Hof
2020). The approach is easily undertaken for parallel shear flows, as a mere change in the
direction of the base flow suffices, but more fundamental code modifications are necessary
for cylindrical and annular geometries. The required coordinate change was generalised by
Deguchi & Altmeyer (2013) to compute ECS in parallelogram-shaped domains wrapped
within an annular geometry. Since their method of directly solving the nonlinear algebraic
equations was only applicable to travelling-wave solutions, developing a DNS code in
generalised parallelogram-shaped periodic domains is requisite to efficiently capture SPT
dynamics, but has hitherto not been attempted to our best knowledge.

The outline of the paper is as follows. The problem formulation is given in § 2,
alongside a description of the generalised parallelogram-shaped domain, its application
to the spectral space discretisation, and the numerical methods employed for evolving the
equations in time, and the coupling of the time stepper with a Poincaré–Newton–Krylov
solver. Then § 3 briefly summarises the geometrical and physical parameters used for
the numerical calculations, and justifies the specific choice of the domain shape. Since
the rotating-wave solutions found by Deguchi et al. (2014) were computed in a classical
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orthogonal small periodic domain, the initial task in § 4 is the exploration of bifurcation
scenarios leading to solutions of the same family in small parallelogram domains. In § 5,
the dynamical relevance of the solution is first analysed in the subcritical regime to identify
the SSP and the onset of chaotic dynamics. The possible relevance of these solutions to
the supercritical SPT regime is then discussed. Finally, the main findings are summarised
in § 6 along with concluding remarks.

2. Formulation of the problem

Consider an incompressible fluid of dynamic viscosity μ and density � (kinematic
viscosity ν = μ/�) completely filling the gap between two concentric rotating cylinders
whose inner and outer radii and angular velocities are r∗

i , r∗
o and Ωi, Ωo, respectively.

A full set of independent dimensionless parameters characterising the problem are the
radius ratio η = r∗

i /r∗
o , which fixes the geometry of the annulus, and the CCF inner and

outer Reynolds numbers Ri = dr∗
i Ωi/ν and Ro = dr∗

oΩo/ν, where d = r∗
o − r∗

i is the gap
between the cylinders. Henceforth, all variables will be rendered dimensionless using d,
d2/ν and ν2/d2 as units for space, time and the reduced pressure (p = p∗/�), respectively.
The Navier–Stokes equation, and the incompressibility and the zero axial net massflux
conditions become

∂tv + (v · ∇)v = −∇p + ∇2v + f ẑ, (2.1)

∇ · v = 0, (2.2)

Q(v) =
∫ 2π

0

∫ ro

ri

(v · ẑ) r dr dθ = 0, (2.3)

where the axial forcing term f = f (t) in (2.1) is instantaneously adjusted to fulfil the
constraint imposed by (2.3), v = (U, V, W) = U r̂ + V θ̂ + W ẑ is the velocity of the fluid
expressed in cylindrical coordinates (r, θ, z), which satisfies no-slip boundary conditions
at the cylinder walls

v|r=ri = (0, Ri, 0), v|r=ro = (0, Ro, 0), (2.4a,b)

with

ri = r∗
i
d

= η

1 − η
, ro = r∗

o

d
= 1

1 − η
, (2.5a,b)

the non-dimensional inner and outer radii, respectively. The basic, laminar and steady CCF
is

vb = Ub r̂ + Vb θ̂ + Wb ẑ =
(

Ar + B
r

)
θ̂ , pb(r) =

∫
V2

b
r

dr, fb = 0, (2.6a,b)

with A = (Ro − ηRi)/(1 + η) and B = η(Ri − ηRo)/[(1 − η)(1 − η2)]. In what follows
we express the velocity and pressure fields as

v = vb(r) + u(r, θ, z; t), p = pb(r) + q(r, θ, z; t). (2.7a,b)

The fields q and u = u r̂ + v θ̂ + w ẑ are the deviations from the equilibrium CCF solution
that, after formal substitution of (2.7a,b) into (2.1), satisfy

∂tu = −∇q + ∇2u − (vb · ∇)u − (u · ∇)vb − (u · ∇)u + f ẑ, (2.8)

∇ · u = 0, (2.9)

Q(u) = 0. (2.10)
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ζ = 2π

ξ = 2π

z

n
1 θ +

 k
1 z = 2π

n
1 θ +

 k
1 z = 0

n
2θ + k

2 z = 2π
n
2θ + k

2 z = 0

ζ

ξ

θ

Figure 1. Sketch of the parallelogram domain introducing the new variables (ξ, ζ ) that replace the usual
azimuthal and axial coordinates (θ, z).

Although this solenoidal boundary value problem is naturally formulated in cylindrical
polar coordinates (r, θ, z), the coherent flows addressed in this work are better captured
and more efficiently represented numerically on parallelogram domains such as the one
depicted in figure 1. These types of domains have been recently vindicated as minimal
flow units to capture mixed spiral modes and rotating–travelling waves with arbitrary
axial-azimuthal wavefront orientation in TCF (Deguchi & Altmeyer 2013; Deguchi &
Hall 2015; Ayats et al. 2020a). The parallelogram domain is bounded by two consecutive
(2π-shifted) wavefront loci and might be naturally parametrised by introducing the new
coordinates

ξ = n1θ + k1z, ζ = n2θ + k2z, (2.11a,b)

or, conversely,

θ = k2ξ − k1ζ

n1k2 − n2k1
, z = −n2ξ + n1ζ

n1k2 − n2k1
. (2.12a,b)

Henceforth, we reformulate the boundary value problem ((2.8)–(2.9)) within the
parallelogram assuming the pressure and velocity fields q and u are 2π-periodic in the
two new coordinates ξ and ζ , thus satisfying

q(r, ξ + 2π, ζ ; t) = q(r, ξ, ζ + 2π; t) = q(r, ξ, ζ ; t), (2.13)

u(r, ξ + 2π, ζ ; t) = u(r, ξ, ζ + 2π; t) = u(r, ξ, ζ ; t). (2.14)

In what follows, we numerically discretise q and u within the annular–parallelogram
domain

(r, ξ, ζ ) ∈ [ri, ro] × [0, 2π] × [0, 2π], (2.15)

where the inner and outer radii of the cylinders are explicitly given in (2.5a,b). We
characterise flows by their associated normalised torque at the inner and outer cylinders,
τi and τo,

τi,o = 1 + ∂r(r−1v̄)

∂r(r−1vb)

∣∣∣∣
r=ri,ro

, (2.16)

where v̄ is the averaged azimuthal velocity in the angular and axial directions. Similarly,
we will also characterise the flows by the normalised kinetic energy of the perturbation
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velocity field,

κ = E(u)

E(vb)
, (2.17)

where E(v) is the volume-averaged kinetic energy of any velocity field v, defined as

E(v) = 1
2V

∫ 2π

0

∫ 2π

0

∫ ro

ri

v · v r dr dξ dζ , V =
∫ 2π

0

∫ 2π

0

∫ ro

ri

r dr dξ dζ. (2.18a,b)

With these definitions, τi = τo = 1 and κ = 0 for CCF.

2.1. Direct numerical simulations in the annular–parallelogram domain
The nonlinear boundary value problem ((2.8)–(2.9)) is discretised using a solenoidal
Petrov–Galerkin scheme formerly formulated by Meseguer et al. (2007), and suitably
adapted to the annular–parallelogram domain (2.15). In the transformed domain, the
solenoidal velocity perturbation is approximated by means of a Fourier × Fourier ×
Chebyshev spectral expansion us of order N × L × M in ξ × ζ × r, respectively, of the
form

us(r, ξ, ζ ; t) =
L∑

�=−L

N∑
n=−N

M∑
m=0

a(1)
�nm(t)Φ(1)

�nm(r, ξ, ζ ) + a(2)
�nm(t)Φ(2)

�nm(r, ξ, ζ ). (2.19)

Our aim here is to derive the dynamical system satisfied by the coefficients a(ı)
�nm(t), as

symbolically represented by the 2 × (M + 1) × (2L + 1) × (2N + 1)-dimensional state
vector a(t). The binary superindex ı = {1, 2} and the factor 2 in the count of unknowns
follow from the two degrees of freedom per grid point that remain after taking into
consideration that the three velocity components are not independent, but linked by the
solenoidal condition. The vector fields Φ

(ı)
�nm constitute the elements of the trial basis of

solenoidal vector fields of the form

Φ
(ı)
�nm(r, ξ, ζ ) = ei(nξ+�ζ )u(ı)

�nm(r) = ei(nξ+�ζ )(u(ı)
�nm, v

(ı)
�nm, w(ı)

�nm), (2.20)

where u(ı)
�nm, v

(ı)
�nm and w(ı)

�nm are the radial, azimuthal and axial components of u(ı)
�nm(r),

respectively. Each element of the trial basis satisfies the divergence-free condition (2.9)
that, in the (r, ξ, ζ ) variables, explicitly reads

(
∂r + 1

r

)
u(ı)
�nm + i

r
(n1n + n2�) v

(ı)
�nm + i (k1n + k2�) w(ı)

�nm = 0. (2.21)

Since u represents the perturbation of the velocity field, it must therefore vanish at the
inner (r = ri) and outer (r = ro) walls of the cylinders. Therefore, Φ

(ı)
�nm must also satisfy

the homogeneous boundary conditions

Φ
(ı)
�nm(ri, ξ, ζ ; t) = Φ

(ı)
�nm(ro, ξ, ζ ; t) = 0. (2.22)

In what follows, we define the transformed radial coordinate

x(r) = 2r − 1 + η

1 − η
, (2.23)
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that maps the radial domain r ∈ [ri, ro] to the interval x ∈ [−1, 1]. In addition, we define
the radial functions

hm(r) = (1 − x2)Tm(x), gm(r) = (1 − x2)2Tm(x), (2.24a,b)

where Tm(x) is the Chebyshev polynomial of degree m. Finally, we introduce the
Chebyshev weight function w(x) = (1 − x2)−1/2, defined over the interval (−1, 1). The
functions introduced in (2.24a,b) satisfy

hm(ri) = hm(ro) = gm(ri) = gm(ro) = Dgm(ri) = Dgm(ro) = 0, (2.25)

where D stands for the radial derivative d/dr. The solenoidal spectral method consists in
devising complete sets of vector fields (trial functions) satisfying (2.21) and (2.22). For
nn1 + �n2 = 0, two such vector fields are

u(1)
�nm(r) = (0, hm, 0), u(2)

�nm(r) = (−i(nk1 + �k2)rgm, 0, D[rgm] + gm), (2.26a,b)

with the third component of u(2)
�nm replaced by hm whenever nk1 + �k2 = 0. Finally, for

nn1 + �n2 /= 0, the solenoidal basis is

u(1)
�nm(r) = (−i(nn1 + �n2)gm, D[rgm], 0), (2.27)

u(2)
�nm(r) = (0, −i(nk1 + �k2)rhm, i(nn1 + �n2)hm), (2.28)

except that the third component of u(2)
�nm is replaced by hm when nk1 + �k2 = 0. The

Petrov–Galerkin solenoidal weak formulation is completed by introducing the Hermitian
product of two arbitrary solenoidal trial and dual fields Φ and Ψ , respectively, over the
annular–parallelogram domain (2.15)

(Ψ , Φ) =
∫ 2π

0

∫ 2π

0

∫ ro

ri

Ψ † · Φ r dr dξ dζ. (2.29)

Accordingly, we consider the dual basis for the projection space. In particular, the basis
for the case nn1 + �n2 = 0 is

ũ(1)
�0m(r) = w(0, rhm, 0), (2.30)

ũ(2)
�0m(r) = r−2w(i(nk1 + �k2)gm, 0, D+gm + 2r−1(1 − x2 + rx)hm), (2.31)

where D+ = D + r−1, and the third component of ũ(2)
�0m is replaced by rhm if nk1 + �k2 =

0. Similarly, the basis for the case nn1 + �n2 /= 0 is

ũ(1)
�nm(r) = w((nn1 + �n2) rgm, rD+[rgm] + 2xr2hm, 0), (2.32)

ũ(2)
�nm(r) = w(0, i(nk1 + �k2)r2hm, −i(nn1 + �n2) rhm). (2.33)

These projection basis elements contain the Chebyshev weight function w(x) so that
the resulting radial integration involved in (2.29) can be computed exactly by suitable
quadrature formulae (Moser, Moin & Leonard 1983; Meseguer et al. 2007; Canuto et al.
2007, 2010; Meseguer 2020).

Formal substitution of the spectral expansion (2.19) into (2.8), followed by Hermitian
projection onto each one of the dual basis elements leads to

(Ψ
(ı)
�nm, ∂tuS) = (Ψ

(ı)
�nm, ∇2u − (vb · ∇)u − (u · ∇)vb − (u · ∇)u + f ẑ), (2.34)

for � = −L, . . . , L, n = −N, . . . , N, m = 0, . . . , M and ı = 1, 2. The pressure deviation
field drops upon projection, (Ψ

(ı)
�nm, ∇q) = 0, by virtue of Stokes’ theorem and has
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therefore been omitted. Equation (2.34), subject to the constraint (2.3), constitutes a
dynamical system

Apqr(ı)
�nm(j) ȧ(j)

pqr = Bpqr(ı)
�nm(j) a(j)

pqr + [N(a)](ı)�nm + fF(ı)
�nm, (2.35)

Qra(2)
00r = 0, (2.36)

for the axial forcing f (t) and amplitudes a(ı)
�nm(t), where repeated indices must be

interpreted following the index summation convention. The zero-net-massflux constraint
reduces to a mere linear equation for the n = l = 0, ı = 2 coefficients upon substitution
of (2.19). The quadratic form [N(a)](ı)�nm appearing in (2.35) corresponds to the projection
of the nonlinear convective term, (Ψ

(ı)
�nm, (u · ∇)u), which is computed pseudospectrally

using Orszag’s 3/2-dealiasing rule (Canuto et al. 2007, 2010). Overall, the resulting stiff
system of ordinary differential equations is integrated in time by means of a fourth-order
linearly implicit backwards differentiation scheme with explicit polynomial extrapolation
of the nonlinear terms, conveniently started with a fourth-order Runge–Kutta method.

2.2. Computation and stability analysis of invariant solutions
In the (ξ, ζ ) coordinate system, a travelling wave is represented by the spectral expansion

us(r, ξ, ζ ; t) =

=
L∑

�=−L

N∑
n=−N

M∑
m=0

[ǎ(1)
�nmΦ

(1)
�nm(r, ξ, ζ ) + ǎ(2)

�nmΦ
(2)
�nm(r, ξ, ζ )]ein(ξ−cξ t)ei�(ζ−cζ t),

(2.37)

where cξ and cζ are the unknown wave speed components in the ξ and ζ directions,
respectively, so that the Fourier–Chebyshev spectral coefficients of this particular type
of solution read

a(ı)
�nm(t) = ǎ(ı)

�nme−incξ te−i�cζ t, (2.38)

with the complex constant ǎ(ı)
�nm representing the wave shape unambiguously except for

arbitrary rotations and shifts. In this case, formal introduction of expansion (2.37) in (2.8)
followed by Hermitian projection leads to the following system of nonlinear algebraic
equations for the travelling wave coefficients ǎ(ı)

�nm (ǎ for brevity):
[
Bpqr(ı)

�nm(j) + i(ncξ + �cζ )A
pqr(ı)
�nm(j)

]
ǎ(j)

pqr + [
N(ǎ)

](ı)
�nm + f̌F(ı)

�nm = 0, (2.39)

Qrǎ(2)
00r = 0, (2.40)

where ǎ appearing in the nonlinear term is the state vector representing the
Fourier–Chebyshev coefficients ǎ(ı)

�nm of the travelling wave, and f̌ is the axial pressure
gradient required to enforce the zero-net-flux condition. The azimuthal and axial
degeneracy of solutions, associated with drift speeds cξ and cζ , is removed using
two additional phase constraints in the same way as is done for the computation of
rotating–travelling waves in pipe flow (Mellibovsky & Eckhardt 2011). The system is
solved using a matrix-free Newton–Krylov method (Kelley 2003), implicitly using the
generalized minimal residual method (GMRES) as a matrix-free solver (Trefethen &
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Sustainment of coherent structures in Taylor–Couette flow

Bau 1997). The converged nonlinear solutions are tracked in parameter space using
pseudoarclength continuation schemes (Kuznetsov 2004).

The linear stability of a travelling-wave solution of (2.39) is formulated by
adding disturbances of very small amplitude |ε(ı)

�nm| � |ǎ(ı)
�nm| to its Fourier–Chebyshev

coefficients following

a(ı)
�nm(t) = (ǎ(ı)

�nm + ε
(ı)
�nmeσ t)e−incξ te−i�cζ t, (2.41)

f (t) = f̌ + φeσ t, (2.42)

and the forcing perturbation |φ| � |f̌ | is such that coefficient perturbations comply also
with the zero-massflux condition Qrε

(2)
00r = 0. Formal substitution of the perturbed solution

(2.41) in (2.35), and subsequent neglect of quadratic perturbation terms, leads to the
constrained generalised eigenvalue problem

(
σ − incξ − i�cζ

)
Apqr(ı)

�nm(j)ε
(j)
pqr = Bpqr(ı)

�nm(j)ε
(j)
pqr + [

DaN(ǎ)
]pqr(ı)
�nm(j)

ε(j)
pqr + φF(ı)

�nm, (2.43)

Qrε
(2)
00r = 0, (2.44)

where DaN(ǎ) is the linear action of the Jacobian of N evaluated at the travelling-wave
solution ǎ, and ( p, q, r, j) ∈ [0, L] × [−N, N] × [0, M] × {1, 2}. This linear action
therefore allows formulation of the generalised eigenvalue problem (2.43) in a matrix-free
form, so that Arnoldi methods (Trefethen & Bau 1997) can be applied to compute the
leading eigenvalues σj and their associated eigenvectors εj = {ε(ı)

�mn}j.
To compute relative periodic orbits (i.e. modulated travelling waves) beyond their

region of linear stability, a Poincaré–Newton–Krylov method is devised. The method is
essentially an adaptation of the one used for the computation of modulated travelling
waves in plane Poiseuille flow (Mellibovsky & Meseguer 2015). In this case, the method
solves the nonlinear system of equations resulting from root finding for the map defined
by consecutive crossings of a Poincaré section P, as follows:

a → ã = P(a) = T (�ξ, �ζ)ϕ(a; T), (2.45)

where ϕ(·; t) is the action of the uniparametric group or flow generated by (2.35), T is the
modulation period of the relative periodic orbit, and

[T (�ξ, �ζ)a](ı)�nm = e−in�ξ e−i��ζ a(ı)
�nm (2.46)

is a double-shift operator, removing the drift of the relative periodic orbit in the
two homogeneous parallelogram coordinates ξ and ζ . Finally, the above-described
time-stepping formulation, as well as the travelling wave and relative periodic orbit solvers,
are enforced to satisfy zero net flux condition for the perturbation field.

3. Choice of geometrical and physical parameters

The present study is done for the same cylinder radius ratio of η = 0.883 as employed
by Andereck et al. (1986) in their Taylor–Couette apparatus. The outer Reynolds number
is fixed to Ro = −1200, at which Meseguer et al. (2009b) found numerically that SPT
is sustained within sufficiently large domains for values of the inner cylinder Reynolds
number ranging in Ri ∈ [540, 640] (see line Γ2 in figure 3 of that paper). Below the lower
threshold for SPT, spot-like intermittency is observed for an interval and, beneath it, a
regime of interpenetrating-spirals that prevails in the range Ri ∈ [450, 480].
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(b)

(a) (c)

z

0
0

2πrm

2πrm

2πrm/n1

2π/k2

2πrm/n1
θrm

θrm

θrm

θrm

0

0

Λ

(i)

(ii)

Figure 2. Instantaneous fields of statistically steady states obtained with DNS for (η, Ro, Ri) =
(0.883, −1200, 600). All panels show radial vorticity ωr ∈ [−4000, 4000] colourmaps at the intermediate
radius rm = (ri + ro)/2 ≈ 8.05. (a) The SPT in the full orthogonal domain of periodic aspect ratio Λ = 31.4,
with spectral resolution (L, N, M) = (322, 322, 42) (see Supplementary Movie 1 available at https://doi.org/
10.1017/jfm.2022.828). The white dashed line indicates the tilt of the stripe and of the minimal narrow
domain that can capture SPT (solid red enclosure). (b) The SPT in a narrow long parallelogram domain
(n1, k1, n2, k2) = (1, 0.2, 0, 4.5) with resolution (L, N, M) = (18, 322, 42) (see Supplementary Movie 2). The
solid cyan parallelogram delimits the minimal domain required for self-sustained turbulent dynamics and
used throughout the paper. (c) Turbulent (i) and laminar (ii) snapshots at different time instants along the
same simulation within a narrow and short parallelogram domain (n1, k1, n2, k2) = (10, 2, 0, 4.5), using
(L, N, M) = (18, 32, 42) spectral modes (see Supplementary Movie 3).

The critical point above which CCF becomes linearly unstable with respect to
non-axisymmetric perturbations occurs at Ri = 447.35. The bifurcating nonlinear
spiral-wave solution branches found by Meseguer et al. (2009a) can only be continued
down to Ri = 445.65, which makes them qualify as only mildly subcritical. While none
of the mixed-mode solutions detected by Deguchi & Altmeyer (2013) reached this value
of Ri, the subcritical rotating waves computed by Deguchi et al. (2014) do indeed exist in
a much wider region of the linearly stable regime, extending to as low as Ri > 377.3.

Figure 2(a) shows radial vorticity, ωr = (∇ × v)r, colourmaps for a snapshot of
the statistically steady SPT obtained at Ri = 600 in a sufficiently large computational
domain following Meseguer et al. (2009b). The unwrapped domain is a rectangle in
the θ–z plane as usually employed in SPT calculations, and its height-to-gap aspect
ratio is Λ ≈ 31.4 (corresponding to an axial wavenumber k = 2π/Λ = 0.2). Within the
turbulent stripe, wavy vortices of relatively short axial and azimuthal wavelength emerge.
These small-scale flow structures seem to decorrelate rather fast along the spiral slope
direction. This statistical property of SPT suggests that a narrow periodic domain winding
horizontally around the full apparatus gap but sheared to preserve the tilt of the spiral
(dashed white line in figure 2a) would in principle suffice to capture minimally its main
topological and dynamical features.

In fact, a localised turbulent stripe arises when DNS is performed in an azimuthally long
but axially narrow parallelogram domain such as shown in figure 2(b), whose comparative
size is indicated in figure 2(a) as the enclosure bound by a red line. The corresponding
generalised wavenumbers for this domain (see figure 1) were chosen as follows. First,
we note that the pitch of SPT is enforced by the dimensions of the full domain through
the ratio k/n = 2π/Λ. A periodic parallelogram domain that can sustain spirals of the
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Sustainment of coherent structures in Taylor–Couette flow

same pitch must have the slope of two of its sides prescribed by azimuthal and axial
wavenumbers keeping the same ratio k1/n1 = k/n = 0.2. Picking n1 = 1, and therefore
(n1, k1) = (1, 0.2), the parallelogram domain winds exactly once around the apparatus
circumference, with its two opposing sides that are aligned with the slope of the spiral
falling on the same helical surface. The other pair of sides, defined by the values (n2, k2),
can be chosen arbitrarily at this stage. For simplicity we take n2 = 0, thus forcing the
parallelogram to extend horizontally and align with the azimuthal coordinate ξ ≡ θ .
Notice that the axial height of the domain is then simply specified as 2π/k2. Inspecting
the typical size of flow structures in figure 2(a), shows that k2 = 4.5 is an adequate choice
for the narrow domain size to fit exactly one streak most of the time.

We note here that in the full domain, the symmetry of the system in the axial direction
allows for a turbulent spiral band structure with an opposite tilt. However, in the narrow
but long parallelogram domain, the symmetry is broken. The choice of the wavenumber
ratio k1/n1 = 0.2 makes the realisation of the opposite spiral impossible, which could be
computed using instead the wavenumber ratio k1/n1 = −0.2.

Finally, if the focus is to be placed exclusively on the small-scale flow structures
that exist within the core of SPT rather than on the large-scale interactions that result
in intermittency and laminar–turbulent interfaces, but want to keep at the same time
the potential influence of the characteristic tilt of the spiral pattern, the long domain
of figure 2(b) can be further reduced by shortening it along the azimuthal direction
into the small parallelogram enclosed by the solid cyan/blue line. The two snapshots
of figure 2(c) illustrate the dynamics in the small parallelogram domain. The flow
is temporally chaotic and alternates rather quiescent, spatially coherent and smoothly
evolving laminar phases (figure 2cii), with sudden bursts of violent, spatially disordered
and rapidly fluctuating (i.e. spatiotemporally chaotic) turbulent transients (figure 2ci). The
former periods are seemingly representative of the laminar regions of SPT, while the latter
display characteristic features typical of the vortical flow structures found in the core of
turbulent spirals. Here we have chosen to shorten the coiling length of the long domain by
setting an azimuthal wavenumber n1 = 10 following Deguchi et al. (2014), such that the
first pair of wavenumbers is replaced by (n1, k1) = (10, 2.0) and a periodical tiling of the
parallelogram along the coil fits exactly 10 times.

It is precisely this minimal domain of figure 2(c), with k2 = 4.5, that we employ
in studying the ECS in § 4, although some continuation in the k2 parameter has also
been performed to elucidate the complex bifurcation scenario of drifting–rotating waves
(DRW). The DNS results shown in figure 2(b,c) will be discussed in § 5.

4. Bifurcation scenarios of (relative) equilibria

Figure 3 summarises the collection of ECS that we have managed to capture in the small
parallelogram domain described above (see figure 2c), including stationary, drifting and
rotating–drifting wave solutions. Solution branches have been tracked via Newton–Krylov
arclength continuation. The spectral resolutions used lie within the range (L, N, M) ∈
[8, 16] × [8, 16] × [24, 50], always ensuring that no further increase resulted in qualitative
or significant quantitative variation as to flow properties or bifurcation scenarios.

Of particular interest in figure 3 is a family of three-dimensional travelling-wave
solutions that have non-zero phase speeds in both the azimuthal and axial directions
and which we refer to as DRW (black). Continuation reveals that DRW branches are
remarkably subcritical, with the corresponding saddle-node points (SN1 and SN3) located
at inner Reynolds numbers Ri

SN1 = 391.5 and Ri
SN3 = 372.9 preceding by far the linear
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Figure 3. Bifurcation diagram of ECS in the small box of figure 2(c). Shown are solution branches of
stationary Taylor vortex flow (TVF, blue) and drifting Taylor vortex flow (DTVF, red), as well as of DRW
(black). White bullets denote saddle-node (SN), pitchfork (P), Hopf (H), azimuthal invariance breaking (IBθ )
and axial-modulational subharmonic (SHz) bifurcation points. The number of unstable real eigenvalues (R+)
and complex conjugate pairs (C+) of some solutions along the branches are given in parentheses.

instability of the base flow (CCF) at Ri = 447.35. We will see later that, by tuning the
geometrical parameters that define the domain size and shape, the DRW solution can be
shown to essentially bifurcate from TVF, which in turn bifurcates from CCF, a multistage
bifurcation scenario that was already reported by Deguchi et al. (2014). In our particular
choice of domain, however, the bifurcation details are more involved.

The TVF solution branch (dark blue curve) bifurcates subcritically from CCF for k2 =
9 following an axisymmetric centrifugal instability at Ri = 484.7. The branch evolves
for a short Ri-range and turns in a saddle-node at Ri = 470.8 before undergoing an
axial-modulational subharmonic bifurcation (SHz) at Ri = 483.8, whence another branch
of TVF (light blue), of fundamental wavenumber k2 = 4.5, is issued. Systematical Arnoldi
linear stability analysis along the TVF branches shows that the k2 = 9 solution stabilises
briefly across the saddle-node, and that this stability is transferred to the k2 = 4.5 solution
at the supercritical SHz point. The k2 = 4.5 TVF solution, which bifurcates at Ri = 508.4
from CCF at the other end, exhibits a pichfork bifurcation (P) halfway along the branch
(Ri

P = 492.1) that breaks the Z2 axial reflection symmetry and produces a pair of mutually
symmetric branches of DTVF solutions (red). The DTVF branch soon undergoes an
azimuthal invariance-breaking bifurcation (IBθ ) that generates the highly subcritical DRW
(black). The IBθ bifurcation that breaks the axisymmetry is formally a Hopf bifurcation,
given that a complex conjugate pair of eigenvalues crosses into the positive-real-half of
the complex plane, but it introduces no dynamics other than the solid body rotation along
the group orbit corresponding to azimuthal drift.

The flow topology of the k2 = 9 and k2 = 4.5 TVF solutions is illustrated in figure 4 at
points SHz and P, respectively, through a couple of azimuthal vorticity (ωθ ) isosurfaces.
They both possess a reflectional symmetry in the axial direction that blocks all possibility
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TVF
at SHz

TVF
at P

DTVF
at IBθ

DRW
at SN1

(b)
(a)

(c) (d )

Figure 4. Distinct types of ECS at specific points labelled in figure 3. Shown are positive (yellow) and negative
(blue) isosurfaces of azimuthal vorticity at ωθ = ±100 for (a) TVF at SHz, (b) TVF at P and (c) DTVF at IBθ ,
and at ωθ = ±600 for (d) DRW at SN1.

of axial drift, which, in combination with azimuthal invariance, keeps them stationary.
Although the k2 = 4.5 TVF preserves the vortical arrangement of the k2 = 9 solution,
contiguous vortex pairs are no longer identical as a consequence of the two-fold axial
modulation enacted by the SHz bifurcation. The reflectional symmetry is nonetheless
preserved and the solutions remain stationary.

The symmetry is finally broken at the pitchfork point P, such that the resulting solution
drifts axially, as expected from bifurcation theory in the presence of symmetries (Chossat
& Iooss 1994). Azimuthal invariance is preserved and the flow structure is still very much
like that of Taylor vortices, which accounts for its being dubbed DTVF. The final breaking
of the mirror symmetry is clear from the ωθ isosurfaces of figure 4 for DTVF.

All these axisymmetric flows are characterised by the presence of vortical structures
in the vicinity of the inner cylinder, the reason being that the centrifugal instability is
confined to r < rn = √−B/A, according to Rayleigh’s stability condition. Here rn is the
neutral radius, where A and B are the constants in the base flow (2.6a,b). On the other hand,
the three-dimensional structures of the DRW, also depicted in figure 4 at SN1, exhibit
remarkably different properties that will be discussed in the next section.

A second, seemingly unrelated branch of DRW is laid out in figure 3 that bifurcates in
a saddle-node SN3 at Ri

SN3 = 372.9. The two apparently disconnected families of DRW
are, in point of fact, one and the same, as evinced by continuation in the k2 parameter in
figure 5. Increasing the axial wavelength to k2 = 5 (figure 5a) the lower-torque branch of
the SN3-related wave approaches the higher-torque branch of the SN1-related solution. At
slightly higher k2 the two branches collide in a straightforward codimension-2 double-zero
bifurcation point, where each splits in two separate segments that are spliced in a new
arrangement. As a result, two mutually facing saddle-node points arise, SN2 and SN4,
which are illustrated for k2 = 5.1 in figure 5(b). This type of structural instability of
pairs of saddle-nodes with respect to small changes in the size of the domain has also
been identified in other shear flows (Deguchi & Nagata 2011; Mellibovsky & Meseguer
2015; Ayats, Meseguer & Mellibovsky 2020b). The new branch containing SN4 becomes
disconnected, while the other one exhibits a triplet of saddle-nodes and connects directly
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Figure 5. Bifurcation diagram of ECS for (a) k2 = 5, (b) k2 = 5.1 and (c) k2 = 4. Colour coding and labels
as for figure 3.

to k2 = 5.1 TVF at the azimuthal invariance breaking point IBθ . The transfer of IBθ from
the DTVF to the TVF branch, which follows a codimension-2 Hopf-pitchfork bifurcation,
has in fact already been effected at k2 = 5, as is clear from the inset of figure 5(a). In fact,
the subharmonic TVF branch (light blue) has outdone, in terms of subcriticality, the TVF
branch from which it bifurcates (dark blue). And to complicate things further, the branch
has also bent to include a second saddle-node that moves fast towards higher Ri as k2 is
increased.

Another interesting phenomenon also occurs when k2 of DRW is reduced from 4.5.
The branch associated with SN1 disconnects from DTVF and becomes a closed loop as
illustrated in figure 5(c) for k2 = 4 (black line). In addition, the Reynolds number at which
SN3 occurs increases, making it disappear from the range of the diagram.

We conclude from the above parametric study that although the topological arrangement
of solution branches is rather sensitive to small changes in k2, their amply subcritical nature
is a robust feature of DRW solutions.

5. Structure and stability of DRW, and their role in the dynamics

We shall see presently some evidence that DRW solutions appear to play a central role
in organising the flow dynamics both in the subcritical and supercritical regimes of
counter-rotating TCF. In § 5.1 we discuss the particular flow structure of DRW and relate it
to the SSP. We then analyse in § 5.2 the stability of the waves and their contribution to the
formation of a chaotic set in the subcritical regime. Finally, we inspect in § 5.3 the early
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DRW
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DRW
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DRW
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(a) (i) (ii)

(i) (ii)

(i) (ii)
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Figure 6. Three-dimensional flow structure of DRW solutions at subcritical Ri = 450, corresponding to points
(a) A, (b) B and (c) C of figure 3. Shown are positive (yellow) and negative (blue) isosurfaces of (i) perturbation
azimuthal velocity v, and (ii) azimuthal vorticity ωθ . The corresponding isosurface levels are v = {−100, 250}
and ωθ = ±1000 (solution A), v = {−100, 250} and ωθ = ±600 (B), and v = {−40, 90} and ωθ = ±300 (C).

supercritical regime in order to gauge the part DRW solutions play in driving supercritical
turbulent dynamics.

5.1. Flow structure of DRW
Let us begin with a detailed analysis of the flow structure and properties of the several
coexisting DRW solutions in the k2 = 4.5 domain at subcritical Ri = 450. Figure 6
provides the three-dimensional characterisation of the flow structure of DRW at the
representative points labelled A, B and C in figure 3. Of the solutions ensuing, saddle
node SN1, point C is chosen to represent the lower-torque branch. Two isosurfaces of the
azimuthal perturbation velocity (v) shown in figure 6(ci) reveal the presence of a low-speed
streak close to the inner cylinder. For the higher-torque branch (point B, figure 6bi),
this slow streak induces a strong velocity distortion that reaches the middle of the gap,
an effect that is all the more pronounced for the solutions originated at saddle-node
SN3. For the solutions related to SN3, only point A (figure 6ai) on the higher-torque
branch is shown, as the corresponding lower-torque solution is very similar. Another
characteristic feature of the flow field is the presence of a vortex sheet, which is visualised
in figure 6(ii) through a couple of azimuthal vorticity (ωθ ) isosurfaces. The position of
the sheet does not change much in the azimuthal direction, but the sign of the vorticity
fluctuates in a sinuous fashion. It is precisely the interaction of these two fields, the
fluctuating vortex layer and the quasiazimuthally invariant streak, that might be held
responsible for the self-sustainment of DRW in the absence of a linear instability of CCF.
The physical reasons for the requirement of a feedback mechanism from the wave to the
streak field can be ascertained by examining the centrifugally unstable region adjacent
to the inner cylinder, bounded by ri < r < rn. Although the Rayleigh criterion predicts
centrifugal inviscid instability of CCF in this region, the laminar base flow remains stable
because the effective Taylor number is still slightly short of the critical threshold (Esser
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Figure 7. Comparison of (i) the streak field as signified by azimuthally averaged distribution of total angular
azimuthal velocity 〈V〉θ /r ∈ [−1200, 450], (ii) the roll field, exposed through the azimuthally averaged
azimuthal vorticity field 〈ωθ 〉θ ∈ [−1000, 1000] and (iii,iv) the wave field, represented by azimuthal vorticity
ωw

θ = 〈ωθ 〉θ − ωθ ∈ [−1000, 1000], at θ = 0 (iii) and θ = π/n1 = 0.314 (iv), for DRW solutions labelled
(a) A, (b) B and (c) C in figure 3. Lines indicate the location of the critical layer (solid) and the nodal radius rn
(dashed).

& Grossmann 1996; Deguchi 2016). The roll–streak field of DRW must therefore be
supported by some other mechanism, which, as we will argue, is none other than the SSP.
Following the usual definitions for parallel flows (Waleffe 1997), the total velocity field
(base flow plus perturbation) may be additively decomposed into a streamwise-averaged
field (the roll–streak), and the rest (the wave). The roll–streak is then further split into
its streamwise (streak) and cross-stream (roll) velocity components, respectively. In TCF,
the streak and roll fields are the toroidal (azimuthal velocity) and poloidal (radial-axial
velocity) components, respectively, of the axisymmetric part of the total velocity field.
Figure 7 illustrates the roll–streak–wave decomposition of DRW solutions A, B and C.
The streak and roll components are naturally represented through their angular azimuthal
velocity (〈V〉θ /r) and azimuthal vorticity (〈ωθ 〉θ ) field colourmaps, respectively, on any
arbitrary r–z cross-section (see figure 7i,ii). For the wave component, azimuthal vorticity
(ωw

θ = ωθ − 〈ωθ 〉θ ) has been employed in figure 7(iii,iv), corresponding to two r–z
cross-sections at θ = {0, π/n1}, exactly half an azimuthal wavelength apart.
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Figure 8. The role of the wave component in sustaining DRW at B of figures 3, 6(b) and 7(b). (a) Time
evolution of kinetic energy κ starting from either the DRW (solid blue line) or only its roll–streak components
(dashed black). (b) Azimuthal vorticity colourmaps at θ = 0 (bi) and π/n1 = 0.314 (bii) of the only unstable
eigenmode of the roll–streak system.

In the case of parallel shear flows, the rolls are energised by the Reynolds stress field of
the waves, the streaks are generated by the lift-up effect from the rolls and the waves are
driven by the instability of the streaks. However, in TCF the interaction between rolls and
streaks is two-way, because they are coupled by the Coriolis force term. To prove that the
SSP is at work, we must therefore verify that the roll–streak component triggers the wave
component and is, at the same time, regenerated by it.

A numerical experiment has been devised to substantiate the essential part that the wave
component plays in the sustainment of the roll–streak components. Starting a simulation
from the DRW solution at B with the wave-component (all modes with n /= 0) removed
results in the rapid and monotonic decay of the roll–streak field, as clear from figure 8(a)
(black dashed line). Using the full flow field as the initial condition, has the roll–streak
components endure for a considerable lapse of time (blue line).

The origin of the wavy field in DRW can in turn be explained by a linear instability of
the roll–streak component. The stability analysis method of (2.43) can be applied on any
desired background flow field, not necessarily an exact solution of (2.39). In doing so, one
is simply assuming that an appropriate forcing term is added to (2.39) that turns this flow
field into an exact solution. As expected, the roll–streak component of DRW has a pair
of unstable complex conjugate eigenvalues. At B, the imaginary part of the eigenvalue
portends the phase speed of the unstable wave as c̃θ ≈ 26.1, which is close to that of
the actual solution (cθ = 28.1). Furthermore, the flow field of the unstable eigenmode,
shown in figure 8(b) through azimuthal vorticity colourmaps at θ = 0 (figure 8bi) and
π/n1 (figure 8bii), closely resembles the wave component of DRW at B (figures 7biii,biv).
This provides solid evidence that the SSP is in place.

The solid curves shown in figures 7(iii,iv) and 8(b) mark the critical layer, which will
be defined shortly. The observation of the flow around this layer contributes yet another
means of endorsing the SSP hypothesis. The critical layer is formally a singularity of the
inviscid linear stability problem and the high Reynolds number asymptotic theory shows
that the amplitude of the wave must surge around it. In parallel flows, the nature of this
wave amplitude growth in ECS is well known (Wang et al. 2007; Hall & Sherwin 2010;
Deguchi & Hall 2014). The critical layer is the place at which the streak velocity coincides
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with the phase speed of the wave. There the advection term becomes small and tends to
vanish, such that the inviscid approximation breaks (Lin 1955; Drazin & Reid 1981).

In defining critical layers in the Taylor–Couette problem, we note that subtle differences
arise from the parallel flow cases. We first note that the velocity field of DRW solutions
can be rewritten as a function of r and two phase variables θ − cθ t and z − czt, where
the constants cθ and cz can be computed easily from cξ and cζ . The axial phase velocity
cz is small and hence the critical layer is approximately determined by comparing the
azimuthal phase velocity cθ alone with the streak field. As it happens, the spanwise phase
velocity of drifting waves can be shown to vanish in the asymptotic limit of increasing
Reynolds number for parallel shear flows, and the same may presumably be expected when
the geometry is curved. Since cθ is an angular velocity, the angular velocity 〈V〉θ /r of
the streak must be used in defining the critical layer as the location where 〈V〉θ /r = cθ .
In the streak representation of figure 7(i), the critical layer naturally coincides with
one of the angular velocity contours. The azimuthal cross-sections of ωw

θ colourmaps
at θ = {0, π/n1} (figure 7iii,iv) unequivocally show that the vortex sheet amplitude is
strongest precisely around the critical layer. The same holds for the unstable eigenmode
of the roll–streak component in figure 8(b), furnishing compelling evidence that the
instability is of an inviscid nature.

The magnitude of ωw
θ increases as the critical layer shifts radially outwards (see

figure 7). According to Rayleigh’s stability condition, the closer to the outer cylinder
one looks, the more centrifugally stable the flow is locally, and a stronger local wave
amplitude is therefore required to sustain the streak field. Rayleigh’s condition is based
on the CCF profile, so that weak Taylor vortices may still arise due to nonlinearly driven
mean-flow-field distortions in the vicinity of the inner cylinder. This is the case of solution
C (see figure 7cii) and provides a physical explanation as to why the connections between
DTVF and DRW occur in the way discussed in § 4.

The SSP revealed here is fundamentally different from what happens with WVF (Dessup
et al. 2018). In WVF, energy exchanges occur among the roll, streak and wave components
and, as noted earlier by Jones (1985) and Martinand et al. (2014), the wave indeed arises
from a linear instability of the streak. However, the roll feeds essentially on the centrifugal
instability of the base flow, and the feedback effect from the waves is only second order
(Dessup et al. 2018). The azimuthal average of WVF is barely different from the TVF
whose instability triggers it, and which evidently persists even in the absence of waves.
While, as we have shown, in the subcritical parameter regions of counter-rotating TCF,
the roll–streak system of DRW solutions cannot be sustained without waves. Moreover,
even in the supercritical regions, the roll–streak fields look different with and without
SSP.

5.2. Stability of DRW and the onset of chaotic dynamics
Let us now turn our attention to the stability of DRW solutions and their role in
engendering a chaotic set. The count and type of eigenvalues, as computed through
linear stability analysis, are indicated in brackets for a number of sampled solutions
along the various DRW branches in figure 3. From saddle-node SN1 onwards, the
higher-torque branch is stable while the lower-torque solutions have a single real unstable
eigenvalue. This result, which is a must for one-dimensional dynamical systems exhibiting
a saddle-node bifurcation, is nevertheless rarely encountered in high-dimensional systems
such as TCF. In fact, the same (or closely related) DRW solutions present a higher
number of unstable eigenvalues when considered in the usual orthogonal domain (Deguchi
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Figure 9. Onset of P-DRW solutions. (a) The bifurcation diagram near the saddle-node SN1 shown in figure 3.
Line styles denote DRW branches with different stability properties: stable (solid), one unstable real eigenvalue
(dashed) and one unstable complex pair (dash–dotted). The small black circles indicate the maximum and
minimum τi attained by the relative periodic orbit P-DRW, whose oscillation amplitude is delimited by
the shaded blue region. The P-DRW emerges supercritically at the Hopf bifurcation point H, such that the
amplitudes obey locally a square root fit (grey dashed curve). (b) The (τo, τi)-phase map projections of upper
and lower branches of DRW (bullets and crosses, respectively) and the P-DRW limit cycles (solid curves) for
different values of Ri.

et al. 2014) or in parallelograms of size k2 other than 4.5. Our choice of domain is therefore
expressly convenient for the simplest possible exploration of the onset of chaotic dynamics.

The stability of the higher-torque DRW branch emerged from SN1 is lost in a Hopf
bifurcation at Ri

H = 392.85 (point H in figure 3), as implied by the crossing of a pair of
complex eigenvalues into the positive-real-half of the complex plane. The resulting relative
periodic orbit has a structure similar to DRW but is subject to time-periodic amplitude
oscillations (P-DRW). The Poincaré–Newton–Krylov method described in § 2 has been
deployed to perform natural continuation of the P-DRW solution branch. Figure 9(a)
signifies the oscillation amplitude of the P-DRW as the area (shaded blue region) bounded
by the maximum and minimum inner torque τi along a full cycle (black dots). The solution
amplitude obeys a square root law of the form Aτi = τmax

i − τmin
i ∼ (Ri − Ri

H)1/2, as
revealed by the least-squares fit (grey dashed line) to a few of the closest points to the
Hopf bifurcation (H). This attests to the supercritical nature of the Hopf bifurcation.
As a result, solutions are stable at onset and could therefore have been computed by
mere time stepping. The evolution of P-DRW with Ri is more clearly illustrated by the
outer-versus-inner torque (τo, τi) phase-map projections of figure 9(b). With each increase
in Ri, the lower-torque (crosses) and higher-torque (circles) DRW solutions become farther
apart in phase space. A small limit cycle (P-DRW) clearly orbits the higher-toque DRW at
Ri = 393, and its amplitude grows as Ri is further increased.

In order to establish the dynamical connections among the various solutions, DNS
from small perturbations to the lower-torque DRW solution have been run. The initial
condition has been set by scaling the exact solution following (1 + γ )aDRW , with |γ | � 1.
Figure 10(a) shows the (τo, τi)-phase map projections of a couple runs at Ri = 392. As
we have already noted, the lower-torque DRWLT solution has only a single real unstable
eigenvalue, so that the diagram reflects but a close approximation to its one-dimensional
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Figure 10. Phase-map projections of trajectories issued from the unstable lower-torque DRWLT solution on
the (τo, τi)-plane at inner Reynolds number (a) Ri = 392 and (b) Ri = 394. The represented solutions are CCF
(square), lower-torque (DRWLT , cross) and higher-torque (DRWHT , circle) DRW solutions, and P-DRW (blue
line). The red/black lines depict DNS trajectories starting from initial conditions taken by scaling DRWLT by
(1 + γ ), with γ = ±10−4, respectively.

unstable manifold. For γ = −10−4, the flow uneventfully departs towards CCF (black
line), while for γ = 10−4 the flow is captured by the linearly stable higher-torque DRWHT
solution (red line). The lower-torque DRW solution is therefore acting as an edge state
(Itano & Toh 2001; Skufca et al. 2006), separating the basins of attraction of CCF on
one side and the higher-torque DRWHT solution on the other. The dynamics remain
qualitatively the same as illustrated here within the parameter range 391.52 < Ri <

392.85, while the upper branch solution preserves its linear stability.
Slightly above the Hopf bifurcation (Ri > Ri

H = 392.85), the higher-torque DRWHT
solution has become unstable and the stable P-DRW has popped up into existence, as
illustrated at Ri = 394 by figure 10(b). The dynamics are qualitatively unaltered as regards
CCF or DRWLT , which remains an edge state, but the phase-map trajectory that previously
led to DRWHT is now only able to transiently approach it to some extent before being
repelled towards P-DRW (blue line) in a spiralling fashion. The simulation eventually
converges onto P-DRW, now the local attractor on this side of phase space. The insets
clarify the nature of DRWHT , which remains a focus across the Hopf bifurcation, but
switches from stable to unstable. Sufficiently close to SN1 the solution is instead a node,
stable within a neighbourhood of k2 = 4.5, but unstable beyond a certain threshold. These
facts put together suggest that the saddle-node and Hopf bifurcations are in fact constituent
pieces of a codimension-2 Takens–Bogdanov bifurcation (Kuznetsov 2004).

At even higher Reynolds number Ri = 395.5, P-DRW has become unstable and the
new stable limit cycle makes two similar but not identical revolutions in phase space
before closing on itself. The resulting period-doubled P2-DRW solution (black line) is
shown, along with the unstable P-DRW limit cycle, at the same Ri = 395.5 (dashed red)
in figure 11(a). The period doubling that occurs just short of Ri = 395.5 is followed by a
number of ensuing period-doublings upon further increasing Ri that eventually lead to the
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Figure 11. Two stages of the period-doubling cascade of P-DRW as illustrated by phase-map projections on
the (τo, τi) plane at (a) Ri = 395.5 and (b) Ri = 395.7816. Shown are the stable attractor (black line) along
with the unstable P-DRW solution (red dashed line).

chaotically modulated DRW (CH-DRW) of figure 11(b) at Ri = 395.7816. The transition
route to chaos observed here is suggestive of a period-doubling cascade scenario, as has
been reported for several other parallel shear flows (Kreilos & Eckhardt 2012; Lustro et al.
2019). The stable state at Ri = 395.7816 is only mildly chaotic and the unstable P-DRW
solution provides a fair approximation of the attractor properties. Several complex global
bifurcations can be identified along the period-doubling cascade that are determinant to
the dynamics, but their nature will be discussed elsewhere on account of the associated
intricacies.

The stability analysis reflected in figure 3 reveals at least two more Hopf bifurcations of
the already unstable DRW as Ri is increased beyond the value for the onset of CH-DRW.
Solution branches issued from these Hopf points and subsequent bifurcation cascades
like the one we report may probably contribute, along with CH-DRW, through global
bifurcations involving crises and mergers, to the formation of the strange set that sustains
spatiotemporally chaotic dynamics at higher Ri (Krygier, Pughe-Sanford & Grigoriev
2021).

5.3. Turbulent dynamics at Ri = 600
As shown in figure 12 at Ri = 600, the dynamics in the short parallelogram domain
exhibits wild fluctuations alternating rather low-torque/low-kinetic-energy, ostensibly
dormant, laminar phases with actively turbulent stages (see also Supplementary Movie 3).
If these turbulent transients are governed by the coalescence of a number of temporally
chaotic sets such as CH-DRW, it is to be expected that the periodic orbits at their
origin should contribute their part to the dynamics. Unfortunately, current computational
resources have not allowed continuation of the P-DRW branch this far up in Reynolds
number. Nonetheless, existing DRW solutions at Ri = 600 (points D, E and F indicated
in figure 3), all of them unstable, seem to still play a role in scaffolding the transient
turbulent state. The only solution that remains of those issued from SN1 (DRWD, blue)
has a perturbation kinetic energy κ somewhat larger than the mean for the statistically
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Figure 12. Chaotic dynamics at Ri = 600 in the short parallelogram domain of figure 2(c) (n1, k1, n2, k2) =
(10, 2, 0, 4.5). (a) Phase-map projections on the (τo, τi) plane. Grey bullet and error bars denote mean and
root-mean-square of the fluctuations, respectively. (b) Time series of normalised kinetic energy κ . The grey line
indicates mean kinetic energy. The colour circles/squares and lines indicate DRW, TVF and DTVF solutions
labelled in figure 3.

steady turbulent state. The other two solutions, resulting from SN3 (higher-torque solution
DRWE in green and lower-torque solution DRWF in red), have smaller perturbation energy
and torque. We will argue that, in spite of their misleadingly high torque and kinetic energy
values, the laminar stages of the dynamics are indirectly linked to the TVF (magenta) and
DTVF (cyan) solutions.

Interesting new phenomena occur when the computational domain is extended in the
azimuthal direction to cover the whole circumference of the annulus. Figure 13 shows DNS
results in the long computational domain of figure 2(b) characterised by (n1, k1, n2, k2) =
(1, 2, 0, 4.5). The flow field has been initialised with a 10-fold azimuthal replication of the
DRWF solution and thence left to evolve freely. The simulation deviates very slowly from
DRWF in the beginning, such that snapshot T1, taken at t = 0.2, is still indistinguishable
from DRWF. Soon after, instability leads to a sudden surge of kinetic energy. Snapshot T2
is taken at the peak and, as clear from figure 13(b), still markedly preserves the wavelength
of the original pattern. The instability driving the burst is therefore superharmonic.
However, as the vortex collapses and the energy of the disturbance drops, the wavelength
becomes strongly modulated as illustrated by snapshot T3 at the valley of the decay.
From this point on, the azimuthal inhomogeneity of the flow field becomes increasingly
pronounced as time evolves. Snapshots T4 and T5 show how this inhomogeneity gradually
develops into strong localisation. After all remnants of transient dynamics, the statistically
turbulent state exhibits azimuthal localisation as exemplified by the instantaneous snapshot
T6.

The flow structure of the instantaneous snapshot of the statistically steady state
T6 is examined in greater detail in figure 14. The basic structure within the
turbulent region locally displays sinuous wavy vortices resembling DRW but the
wavelength exhibits azimuthal modulation. The turbulent band moves from right to
left with mean azimuthal phase speed 〈cθ 〉t = −35.4 and root-mean-square of the
fluctuations

√
〈(cθ − 〈cθ 〉t)2〉t = 15.2, while the local wave propagation speed is strongly

location-dependent, as the travelling-wave solutions that are intermittently and locally
approached have each their own characteristic phase speed. This behaviour of the flow field
is typical of localised solutions in shear flows (see for example Avila et al. 2013; Brand
& Gibson 2014; Zammert & Eckhardt 2014; Mellibovsky & Meseguer 2015), and may be
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Figure 13. Transient stages of the development of SPT in the long parallelogram domain of figure 2(b)
(n1, k1, n2, k2) = (10, 2, 0, 4.5) at Ri = 600, starting from a 10-fold azimuthal replication of DRWF (red bullet
in figure 12a). (a) Time series of normalised kinetic energy κ . (b) Selected snapshots of radial vorticity
ωr ∈ [−4000, 4000] fields at the mid gap rm. Subpanels T1–T5 correspond to the points indicated in (a),
while T6 is taken beyond all transients for t 
 1. See Supplementary Movie 4.
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Figure 14. An instantaneous snapshot of the statistically steady SPT state in the long domain at Ri = 600.
(a) A close up of snapshot T6 of figure 13(b) at mid gap rm. (b) Azimuthal vorticity ωθ distribution in the
r–z plane at azimuthal cross-sections θ1 = 0.5 (bi), θ2 = 2.3 (bii), θ3 = 3.1 (biii) and θ4 = 4.3 (biv) (black
vertical lines in panel a). Colour ranges between ωθ ∈ [−1500, 1500]. From left to right, the black curves in
(b) correspond to selected isocontours with (bii) V/r = {−20, −80}, (biii) V/r = {0, −30, −100}, (biv) V/r =
0. See Supplementary Movie 5, showing a cross-sectional sweep of the instantaneous flow field along the full
perimeter.

mathematically justified by a Wentzel–Kramers–Brillouin-type approach (see Bender &
Orszag 1999, for example). The relation between the stability of small-domain solutions
and large-domain flow structure have been the object of recent analysis (Barnett, Gurevich
& Grigoriev 2017; Ritter et al. 2018).
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Figure 15. The morphology of SPT within the centrifugally unstable region of the annulus gap. Same
as figure 2, but at r = rcu = (ri + rn)/2 = 7.705 < rn. Colour ranges between ωr ∈ [−4000, 4000]. See
Supplementary Movies: (a) Movie 1; (b) Movie 2; and (c) Movie 3.

The local appearance of SSP-related flow structures in streamwise-extended domains
has been reported by Deguchi & Hall (2014) in plane Couette flow when analysing the
high-Reynolds number asymptotic development of nonlinear equilibria. The observation
of the local SSP must in this case be based on the strong correlation existing between the
vortex sheet and a critical layer defined by the local (rather than the streamwise-averaged)
streamwise velocity field. A similarly high correlation is observed in figure 14 despite the
flow being turbulent. The azimuthal vorticity colourmap on a r–z azimuthal cross-section
near the trailing edge of the turbulent stripe (figure 14biv) reveals a vortex sheet in the
vicinity of the inner cylinder. Its spatial arrangement is closely outlined by an appropriate
choice of V/r contour (black line), which is also true for figure 14(bii,biii). In the core
of the turbulent band, several strong vortex sheets are visible (figure 14biii), while only
those close to the outer cylinder seem to persist towards the leading edge (figure 14bii).
This supports the shear-driven, rather than centrifugally driven, nature of SSP. The
presence of vortex sheets at various radial locations is consistent with the multiplicity
of DRW solutions existing at this value of Ri, which suggests that each one of them might
participate locally in the deployment of the SSP.

The basic flow is linearly unstable at Ri = 600, which would in principle be at odds with
the observation of a laminar flow region in figure 14(a,bi). Note, however, that the θ−z
cross-section corresponds to mid gap, while the centrifugal instability is known to develop
in the close neighbourhood of the inner cylinder. In fact, examination of the cross-section
of figure 14(bi) reveals the presence of weak vortices there. The structure of these nonlinear
vortices is best understood by examining an unwrapped θ−z section of the full domain
simulation at r = rcu = (ri + rn)/2 = 7.705, in the midst of the centrifugally unstable
region (figure 15a). A spiral-like flow topology clearly arises away from the turbulent
stripe. Despite the dislocations and irregularities, the vortical structures in the laminar
region compare favourably with exact spiral (SPI) solutions (Meseguer et al. 2009b) of
the right axial-azimuthal wavenumbers (and therefore tilt). The base CCF is unstable to a
wide range of axial and azimuthal wavenumbers for (η, Ri, Ro) = (0.883, 600, −1200),
including axisymmetric perturbations with k ∈ [2.44, 14.26] and spirals modes with
n ≤ 8.84 (< 9 if the pattern is to fit exactly an integer number of times around
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Figure 16. Examples of centrifugally driven exact solutions in the three domains for (Ro, Ri) = (−1200, 600),
visualised through ωr ∈ [−4000, 4000] colourmaps at r = rcu = (ri + rn)/2 = 7.705 < rn. Here (a) (n, k) =
(5, 7.4) SPI ; (b) (n, k) = (6, 5.7) SPI; (c) k = 9 TVF (ci) and k = 4.5 DTVF (cii).

the apparatus). Figure 16 shows a selection of centrifugally driven states that fit exactly
in either of the three domains considered.

In particular, figure 16(a) shows one such solution for (n, k) = (5, 7.4), evincing that
the tilted vortical structures in the laminar region of SPT could well be the result of the
interaction of a continuum of spiral solutions of varying wavenumbers around those of
the state shown here. The same holds upon inspection of the same θ−z section for the
narrow long domain in figure 15(b), for which dislocated spiral patterns of wavenumbers
compatible with those of the exact SPI of figure 16(b), corresponding to (n, k) = (6, 5.7),
also show up away from the turbulent spiral. The azimuthally extended nature of both
domains, combined with the spatially adjusting role of the turbulent spiral and, to a lesser
degree, of defects and dislocations, allows for the formation of spirals not necessarily
restricted to n ∈ Z. As a result, one must not expect that the spirals observed in the laminar
region of SPT conform to a superposition of exact solutions, each one strictly fitting in the
domain.

In the small domain (figure 15c), however, quasiaxisymmetric TVF-like structures
arise during the laminar stages of the time evolution (figure 15cii) instead of SPI
patterns. While SPI solutions of tilt and wavenumbers compatible with those observed
in the time evolution exist in the full orthogonal (figure 16a) and narrow but long
parallelogram (figure 16b) domains, such solutions do not exist in the short and narrow
parallelogram domain (figure 16c). Unstable modes of CCF are exclusively axisymmetric
in the small parallelogram, which explains why the laminar stages of DNS display TVF-
and DTVF-like structures in the centrifugally unstable region and not spirals. The laminar
phases of the time evolution, however, reach well below the torque and kinetic energy
levels that are characteristic of TVF or even DTVF. This suggests that it is not the exact
states themselves that are being approached but the unstable manifolds of CCF that lead
towards them. Axisymmetric modes with k = 4.5, 9 and 13.5 are the only three unstable
modes of CCF in the small parallelogram domain at (Ro, Ri) = (−1200, 600). The one
fitting twice in the domain (k = 9) is by far the most unstable, followed by that fitting just
once (k = 4.5). Mode k = 13.5, which fits three times in the domain, is only marginally
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unstable and therefore difficult to observe. As the flow decays from turbulent towards CCF,
it is repelled along the direction of one of these modes and the phase-map trajectory aligns
with the corresponding manifold. As this occurs, the flow fields adopt the shape of one of
the unstable modes of CCF and undergo a quasimodal growth that eventually deforms into
the nonlinear manifolds connecting to TVF or DTVF. This is what is actually observed
during the laminar period of the time evolution. If the centrifugally driven solutions were
stable (or only marginally unstable), the approach would be consummate (or at close
quarters), but since they are strongly unstable, the trajectory is again repelled well before
the actual TVF or DTVF solution can be reached in any of their unstable directions.
Supplementary Movie 3, clearly shows how the energy-growing quasiaxisymmetric flow
fields of the laminar stages of time evolution indeed undergo a wavy destabilisation before
eventually triggering the turbulent burst.

Cyclic turbulent bursts similar to those observed in our small parallelogram have been
reported by Coughlin & Marcus (1996) in TCF at similar values of the parameters and
slightly smaller radius ratio using an orthogonal computational domain that, though
extended in the azimuthal direction, was incapable of sustaining SPT due to an insufficient
axial height. In their computations, a laminar pattern of dislocated/defective spirals
forms in the centrifugally unstable region following the linear instability of CCF. These
spirals are in turn unstable to a modulational instability that reaches beyond rn into the
centrifugally stable region, which, at these values of the parameters, happens to behave
as a subcritically unstable shear flow. When the modulational instability exceeds a certain
threshold, a gap-filling turbulent burst is triggered. During the laminar part of the cycle a
fair amount of energy has been stored in the flow’s differential rotation but, as the turbulent
burst develops, the energy is quickly transferred to the smaller scales and dissipated by
viscosity. Once the mean flow energy has been depleted, the turbulent state has no energy
source to rely upon and decays. As the flow relaminarises, the system tries to restore
the basic CCF and clutches onto the unstable manifold that leads towards SPI, thereby
recommencing the cycle. The same process seems to apply to the dynamics in the narrow
and short parallelogram domain presented here, but the spiral instability of CCF is in
our case replaced by an axisymmetric instability connecting to TVF due to our restricted
azimuthal size. The interplay between the inner (centrifugally unstable) and outer (stable)
regions have been shown to also be at play in a recent follow-up paper by Crowley et al.
(2020) that provided experimental and numerical evidence of a subcritical transition to
turbulence in low aspect-ratio TCF. In their set-up, transition is mediated by the interim
appearance of yet another type of laminar solutions, namely interpenetrating spirals.

The flow structure associated with the centrifugally unstable modes is manifestly
different from that of a vortex sheet resulting from the SSP, and both together constitute
the fundamental pieces of the SPT pattern in supercritical counter-rotating TCF. The
large-scale laminar–turbulent stripe patterns decisively depend on the high-wavelength
azimuthal Fourier modes engendered by the SSP, as suggested by various DNS
simulations started from the same SPT state of figure 15(b), but gradually reducing the
azimuthal resolution. Truncating to N = 15 azimuthal Fourier modes, quickly smears the
laminar–turbulent interfaces after some initial transients (see Supplementary Movie 6),
while the banded pattern subsists permanently when relaxing to N = 30 (Supplementary
Movie 7).

The formation of the large-scale pattern may be understood, to some extent, in the light
of a heteroclinic loop that connects the laminar with the turbulent state (and back) spatially
in the circumferential direction, rather than temporally. Exact localised solutions in shear
flows can be interpreted as homoclinic orbits of the base laminar solution if the problem
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is tackled as a dynamical system with the extended coordinate playing the role of the
(time-like) independent variable (Kirchgässner 1982; Iooss & Pérouème 1993). This is
justified by the fact that a linearised analysis can be applied to the localised solution tails
(Barnett et al. 2017; Ritter et al. 2018). However, numerical and asymptotic analyses at high
Reynolds numbers also back the notion that such spatial orbits locally approach the SSP in
short streamwise-periodic domains (Deguchi & Hall 2014). The linear tails are therefore
passive and actually driven by the nonlinear mechanism that sustains the core region of
localised turbulence, which can therefore be safely studied even in small periodic domains.

This scenario is of course analogous to what happens for subcritical parallel shear flows,
where alternating bands of the laminar and turbulent states conform the stripe pattern.
However, there is one essential difference between the two types of banded structures.
For parallel shear flows, both the laminar and turbulent flows are stable solutions of
the equations when considered in minimal flow units (small periodic domains). The
realisation of the banded pattern can therefore be explained by the local bistability of
the system, a fact that has been recently used as the basis for a statistical approach
employing directed percolation theory (Lemoult et al. 2016). One might thus expect,
by analogy, that both a permanent (or at least long-lived) shear-driven turbulent regime
and a stable spiral-like state of centrifugal origin must exist in TCF when considering
a suitably small parallelogram domain. However, detection of bistability at Ri = 600
turns out to be utterly elusive. Instead, the laminar and the turbulent states, the former
in the shape of axisymmetric TVF-like structures instead of SPI due to modal selection
in the minimal flow unit, seem to be embedded in some sort of heteroclinic cyclic loop
that drives the dynamics in a chaotic cycle approaching, yet never fully relaxing onto,
either state. It would therefore appear that the formation of SPT in supercritical flows
might be the result of some sort of large-scale interaction, something that would then
be at odds with the current understanding of pattern formation in parallel shear flows.
One might speculate that the heteroclinic cycle the dynamics shadow in time within the
small domain, is instead deployed in space for azimuthally long domains. As observed
by Coughlin & Marcus (1996), the centrifugally driven laminar state feeds a subcritical
shear instability that triggers a turbulent burst. The resulting turbulent state relies on the
pre-existence of a laminar flow field from which energy can be extracted for its long-term
sustainment while, at the same time, gap-filling turbulence suppresses the centrifugal
instability that drives the laminar state. As a result, the turbulent state is short-lived and
cannot self-sustain. In the small domain this can only happen by alternating the laminar
and turbulent states in time, while SPT patterns can arise in azimuthally long domains as
turbulence continuously decays and forms at either one of the laminar–turbulent interfaces.
The azimuthally long domain of Coughlin & Marcus (1996) should then, in principle, be
capable of sustaining laminar–turbulent patterns. It might be the case that the tilt of the
laminar–turbulent interfaces, which is not compatible with their narrow axially periodic
orthogonal domain, is essential to equilibrating the rates of turbulence production and
decay. If the characteristic lifetime of the turbulent state is long in comparison with the
growth rate of the laminar-state instability that triggers the bursts, no spatiotemporal
coexistence can be expected.

In view of the reported observations so far, the narrow long domain is capable of
qualitatively reproducing the SPT regime of the full domain, but nothing has been claimed
so far as to quantitative accuracy. The large length scale associated with the spiral tilt
has been straightforwardly addressed by the use of the parallelogram-shaped domain, and
the short length scales of the underlying DRW solutions and the even shorter associated
with turbulence are captured by a right choice of k2 and sufficient resolution, respectively.
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Case Full domain Long narrow domain
(n1, k1, n2, k2) (1, 0, 0, 0.2) (1, 0.2, 0, 4.5)

(L, N, M) (322, 322, 42) (18, 322, 42)

estimator 〈•〉 σ• =
√

〈(• − 〈•〉)2〉 〈•〉 σ• =
√

〈(• − 〈•〉)2〉
κ 0.0854 ± 0.0002 0.0031 ± 0.0002 0.0887 ± 0.0005 0.0027 ± 0.0001
τi 1.657 ± 0.002 0.0200 ± 0.0007 1.689 ± 0.003 0.0182 ± 0.0005
τo 1.657 ± 0.002 0.0234 ± 0.0009 1.690 ± 0.004 0.0209 ± 0.0006
cθ −34.23 ± 0.07 3.47 ± 0.07 −35.4 ± 0.2 3.2 ± 0.2

Table 1. Statistics of several time signals (mean 〈•〉 and root-mean-square of the fluctuation component σ• =√
〈(• − 〈•〉)2〉, this latter corrected for domain size) of the statistically steady turbulent state as computed in the

full orthogonal domain and in the azimuthally long but axially narrow parallelogram domain. The uncertainty
margins correspond to 95 % confidence intervals obtained through stationary bootstrapping.

There might, however, be intermediate length scales related to a modulational instability
of DRW along the helical direction. If such intermediate scales play an important role in
SPT, the elongated domain must be wide enough for the associated coherent structures to
decorrelate, as would happen in an infinitely (or sufficiently) long apparatus.

The degree to which the statistics of turbulent signals converge as the domain and/or
resolution are modified provides a means of quantifying the inaccuracies associated with
domain shape, size and discretisation. Here we have used the kinetic energy (κ), inner
(τi) and outer (τo) torque, and azimuthal propagation speed (cθ ) signals in the comparison
of full domain and narrow-long domain results. The simulations were run for 20 viscous
time units past all foreseeable transients to reach the statistically steady turbulent state
and then run for an additional 30 and 100 viscous time units, for the full and narrow-long
domain, respectively, to collect statistics. A similar resolution density was kept from one
domain to the other. All signals were positively checked for stationarity via the augmented
Dickey–Fuller test (Dickey & Fuller 1979, 1981) and the mean and root-mean-square of
the fluctuation component (standard deviation) computed. Using stationary bootstrapping
(Politis & Romano 1994), 95 % confidence intervals for the two statistics estimators have
been determined with automatic block size optimisation (Politis & White 2004; Patton,
Politis & White 2009). Since fluctuation amplitude depends on domain size (note that a
system of infinite aspect ratio would present no fluctuations on account of the averaging
properties of normalised aggregate quantities as we are monitoring here), the signal
variance needs to be scaled accordingly. This is the same as assuming that the signal
fully decorrelates over the height of the domain, and that the variance is therefore the
composition of the variances of as many independent, randomly distributed, identical
signals as times the narrow domain fits in the full domain. Fluctuation amplitudes are
therefore dependent on domain size, and must be scaled. Results are summarised in table 1.

The runs are long enough for the mean to be converged to within 1 % for all time
series. The uncertainty in the root-mean-square is larger, ranging from 3 % to 9 %. In any
case, it is sufficient to claim, with 95 % certainty, that the narrow and long parallelogram
domain produces results that are quantitatively different from the full domain. Taking the
mean of the statistic (mean or root-mean-square) as the best estimate, however, bounds the
inaccuracy to within 5 % for the mean and 10 % for the root-mean-square, which is fair but
not extremely precise. While the narrow long domain of figure 2(b) provides reasonable
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quantitative agreement, wider parallelogram domains would be required to further enhance
accuracy, particularly so regarding second-order statistics.

6. Conclusions

We have identified numerically three-dimensional nonlinear-wave solution branches
that spread over a wide parameter-space region of both subcritical and supercritical
counter-rotating TCF. The states have been computed in suitable minimal parallelogram-
shaped domains incorporating the oblique pseudoinvariance of the spiral SPT regime,
as observed both experimentally (Coles & Van Atta 1967) and numerically (Dong 2009;
Meseguer et al. 2009b; Dong & Zheng 2011). We have undertaken here to ascertain their
dynamical relevance as precursors of SPT.

The waves, which mainly rotate in the azimuthal direction but possess also a mild
axial drift, spring from saddle-node bifurcations that considerably anticipate the primary
instability of the base laminar flow. The lower-torque-waves branch is indirectly connected
to CCF through an intricate succession of intervening secondary solutions progressively
breaking the symmetries of the base flow in a complex bifurcation scenario. The sequence
involves the subharmonic bifurcation of slightly subcritical Taylor vortices, an axial
symmetry breaking that introduces the axial drift, and a rupture of the azimuthal invariance
that sets the wave into rotation. The actual arrangement of solution branches and the way
they connect with one another is highly dependent on the width of the parallelogram
domain, as also are the stability properties of the solutions themselves.

The strong subcriticality of these waves implies that some mechanism, other than
centrifugal instability, must be accountable for their self-sustainment. Axisymmetric
solutions bifurcated directly from the base flow cannot be continued far into the subcritical
region, which suggests that the three-dimensional streamwise-dependent component
of the DRW holds the key to self-sustainment. The origin of the three-dimensional
wave might be explained by the inviscid instability of the streak, understood as the
axisymmetric component of the azimuthal velocity field. Compelling evidence that this
is the underlying mechanism at play is provided by the strong wave-like vortex sheet
that concentrates around the critical layer, where the inviscid problem becomes singular.
It is precisely this vortex sheet that drives the axisymmetric roll–streak field through
the action of the Reynolds stresses, thereby closing the interaction feed-back loop
between the axisymmetric and three-dimensional components. This is reminiscent of the
roll–streak–wave cycle that is characteristic of parallel shear flows (Waleffe 1997; Wang
et al. 2007; Hall & Sherwin 2010), except that the streak and the roll mutually interact
through both the lift-up and Coriolis effects, and not only the former. The latter coupling
term might probably affect the formal asymptotic structure, a detailed analysis of which is
beyond the scope of this paper.

Arnoldi stability analysis and direct numerical time integration of the Navier–Stokes
equations reveal that the lower-torque branch of DRW acts as an edge state separating the
basin of attraction of the base CCF from that of non-trivial nonlinear states. Moreover,
in a neighbourhood of the saddle-node and for suitably chosen streamwise width of the
parallelogram domain, the higher-torque branch happens to be initially linearly stable. This
situation is very convenient in that it can be fruitfully exploited to one’s advantage for the
detailed analysis of the onset of chaotic motion as the governing parameter is increased
further (Kreilos & Eckhardt 2012; Mellibovsky & Eckhardt 2012; Lustro et al. 2019).

In the case under scrutiny, the route to chaos commences with a supercritical Hopf
bifurcation of the DRW that issues a branch of stable time-periodic solutions. We have
found evidence that this relative periodic orbit undergoes a period-doubling cascade that
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eventually engenders a chaotic set. As the supercritical regime is approached, the DRW
undergoes a succession of additional linear instabilities whence a number of bifurcation
cascades akin to the one just mentioned are expected to ensue. It is the concurrent action
of several chaotic sets thus generated that would ultimately beget turbulent dynamics.
Notably, DRW, albeit unstable, can be continued all the way up to the supercritical
region of parameter space where SPT is ubiquitous. A comparison of these solutions
with turbulence as computed in the small parallelogram domain for the same values of
the parameters suggests that the former are fairly descriptive of the SSP that drives the
complex dynamics of the latter.

Simulations within a narrow parallelogram domain, extended in the azimuthal direction
to wrap completely around the apparatus gap, have been deployed to explore the
relationship between the localised turbulent stripe and the SSP. In the elongated
domain, streamwise inhomogeneity naturally arises in the form of banded localisation
of turbulence. The final statistically steady state captures reasonably well the features
of SPT as computed in the full orthogonal domain, both qualitatively and, to a large
extent, also quantitatively. The active part of inhomogeneous turbulence within SPT is
characterised by the SSP, where streaks and vortex layers, analogous to those we report
in small periodic domains, are also observed. Meanwhile, in the apparently quiescent
flow region, spiral vortices arise in the close proximity of the inner cylinder following
the centrifugal instability to which this region is subject.

Unlike what happens for subcritical parallel shear flows featuring laminar–turbulent
patterns, SPT is observed in supercritical counter-rotating TCF despite the instability of
the base laminar flow. In the case of parallel flows, the laminar–turbulent banded pattern
alternates patches of the laminar and the turbulent states, both stable in suitably chosen
small computational domains. Present results show that this seems to not be the case
for mildly supercritical counter-rotating TCF. Neither the laminar nor the turbulent states
can be considered permanent, and therefore stable, in minimal flow units. In particular,
no stable state has been found that may account for the spiral-like waves that appear
in the laminar region of ST due to the centrifugal instability. Instead, the dynamics in
small domains are invariably chaotic, and alternate in time short relaxation periods onto
some sort of centrifugally driven axisymmetric laminar state resembling Taylor vortex
flow, and sudden bursts into short-lived shear-driven turbulence. To some extent, this
behaviour is similar to that identified by Coughlin & Marcus (1996) in axially narrow
orthogonal domains for a slightly wider gap, except that the laminar transients consisted of
a dislocated spirals pattern instead of axisymmetric TVF-like vortices. This might require
reconsidering the mechanisms that underly laminar–turbulent pattern formation when
centrifugal effects are at stake. To give but one example, directed percolation theory, which
has been lately employed in explaining subcritical turbulence in parallel flows (Lemoult
et al. 2016; Sano & Tamai 2016; Chantry, Tuckerman & Barkley 2017), does not apply to
the supercritical regime. It might therefore be worthwhile examining how the theory is
affected by the centrifugal instability.

The exact spiral solutions found by Meseguer et al. (2009a) are highly unstable within
the small periodic domain, so that TVF-type axisymmetric modes take the lead in
governing the nearly laminar phases of the chaotic dynamics. Nevertheless, it might still
be the case that spiral-like structures govern the dynamics within the laminar regions in
azimuthally extended domains, and that the patterns observed therein, including wave
dislocations, arise from the competition of a continuum of such spirals of varying
wavelength and tilt. The key point is that, since neither full-fledged turbulence nor stable
centrifugally driven exact solutions are to be observed in the supercritical regime within
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the small periodic domain, some large-scale effect must be responsible for the permanent
sustainment of turbulence in localised bands and for the stabilisation of laminar spiral
patterns within the laminar patches of SPT. Large-scale pattern formation such as that
observed in these laminar regions is sometimes explained by amplitude equations derived
from weakly nonlinear theory, together with some external noise term (Prigent et al. 2002;
Berghout et al. 2020). Whether this artificial noise term can somehow be replaced by the
highly nonlinear and autonomous SSP structures observed here remains unclear.

Another question that arises naturally is whether the long but narrow domain can
accommodate exact solutions that may be capable of explaining the actual topology
of laminar–turbulent patterns. Exact localised solutions resulting from subharmonic
bifurcation of periodic wave-train solutions sharing with the laminar–turbulent stripes
their main large-scale features, have been found for several parallel shear flows (Reetz
et al. 2019; Paranjape et al. 2020). These solutions typically develop from modulational
instability of some subcritical wave to long-wavelength perturbations (Chantry, Willis &
Kerswell 2014; Mellibovsky & Meseguer 2015), and their nonlinear evolution leads to the
formation of localised wavefronts that connect a patch of the non-trivial state with the base
flow at either side. Besides direct stability analysis and branch continuation, edge-tracking
has emerged as a powerful method to compute boundary states. Unfortunately, this
approach requires stable laminar and turbulent states, something that is missing in
supercritical TCF as investigated here.

Whether one employs a deterministic or a statistical approach, the parallelogram-shaped
domain we have developed here opens the path to a more detailed yet affordable analysis
of a wide variety of problems in TCF that could hitherto only be addressed for parallel
shear flows and, therefore, in the absence of centrifugal effects.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.828.
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