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Numerical simulation of vorticity waves in the nearshore 

A. Falqu6s and V. Iranzo 
Departament de Ffsica Aplicada, Universitat Polit•cnica de Catalunya, Barcelona, Spain 

Abstract. A numerical method based on spectral expansions is given for the 
computation of vorticity waves arising from shear instability of a longshore current. 
This method allows for any mean flow profile and any beach topography (remaining 
constant alongshore and with a straight shoreline). The shallow-water equations are 
considered without any assumption about the sea surface (such as rigid lid), and 
dissipative terms accounting for bottom friction and/or eddy viscosity are included. A 
numerical simulation for some flow profiles that are quite realistic in the surf zone and 
for several bathymetries is presented. For inviscid flow the predictions of the Bowen 
and Holman (1989) analytical model for a very simplified geometry are found to give 
rise to the main features. However, the details in the flow and depth profiles are found 
to significantly influence the instability curves, especially for a barred beach. For the 
fastest growing mode, the wavelength is between 1.7 and 2.7 times the width of the 
mean current l. Frequencies of about 0.09œ•, where œ• is the maximum shear at the sea 
face of the current profile, and an e-folding time of the exponential growth that is 
roughly equal to the wave period are obtained. The phase speed is between 0.5 and 0.7 
of the mean current peak. Dissipation has a considerable effect on the wavenumber 
span and the growth rate of the instability, so reasonably constant values of the eddy 
viscosity and realistic values of the Chezy coefficient can entirely remove the 
instability. The phase speed of neutral shear waves is analytically found to be equal to 
the mean flow velocity at the cross-shore location where the potential vorticity has an 
extremum. This velocity is found to give an estimate of the phase speed of growing 
modes. We found that the rigid-lid assumption tends to overestimate the growth rates 
by an amount which depends on the maximum Froude number of the mean flow. The 
instability curves and the dispersion lines for a free surface converge towards the rigid- 
lid ones when the Froude number decreases, and the rigid-lid assumption is therefore 
valid for a low Froude number. 

1. Introduction 

Waves at subincident frequencies in the nearshore have 
long been considered to be solely gravity waves, either leaky 
modes or trapped edge modes. Recently, a new class of 
alongshore progressive waves, named shear or vorticity 
waves, has been recognized, with the potential vorticity of 
the mean longshore flow instead of gravity as the restoring 
force. These waves therefore appear only in the presence of 
strong longshore flows [Oltman-Shay et al., 1989; Howd et 
al., 1991 a, b]. Their periods and alongshore wavenumbers 
are of the order of 102 s and 102 m, respectively, and for a 
given frequency f their wavelength A is substantially shorter 
than the gravity wave wavelength, that is, A < #13/2rcf 2, 
where/3 is the beach slope, and # is gravitational accelera- 
tion. These waves are very coherent and energetic, domi- 
nating the f < 0.01 Hz frequency band or far-infragravity 
band. While the amplitude of the surface oscillations is 
small, O(1 cm), the horizontal velocity amplitudes can be 
greater than 30 cm/s. These waves have little dispersion, and 
they propagate downstream with a phase speed of about half 
the mean current peak. As suggested by Bowen and Holman 
[1989] (hereinafter referred to as BH), vorticity waves may 
play an important role in cross-shore mixing and mean 

Copyfight 1994 by the American Geophysical Union. 

Paper number 93JC02214. 
0148-0227/94/93 JC-02214505.00 

longshore current dissipation. In addition, a more extensive 
analysis by Putrevu and Svendsen [1992] indicates that this 
mixing is mainly located shoreward of the breaker line. 

BH proposed a simple model for vorticity waves as 
resulting from shear instability of a steady mean longshore 
current. Their approach considers a plane horizontal bot- 
tom, and under the assumption of a rigid-lid (nondiver- 
gence), the linear inviscid shallow-water equations are trans- 
formed into the Rayleigh equation of the classical shear 
instability theory. Then, assuming a mean flow with piece- 
wise linear shear, a growing (or unstable) mode can be 
obtained analytically. This analytical solution matches the 
properties of the observed vorticity waves fairly well. A 
natural frequency scaling by rs, the maximum shear at the 
sea face of the longshore current, is found, with a represen- 
tative frequency given by f • O. 07rs. Wavelengths are of the 
order of 2/, where I is the width of the longshore current, and 
a phase speed roughly equal to Vmax/3 is found. Similar 
results were obtained by Dodd and Thornton [1990] for a 
somewhat less simplified geometry with a piecewise planar 
bathymetry. 

These analytical models give rise to the main features of 
the instability because the basic structure of the actual 
potential vorticity profile is preserved. However, the influ- 
ence of considering realistic flow and depth profiles instead 
of idealized ones and the influence of dissipation or removing 
the rigid-lid assumption may have some importance. Solving 
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the governing equations to account for the effects of realistic 
conditions requires numerical procedures. To this end, Pu- 
trevu and Svendsen [1992] solved the governing equations 
numerically with a rigid-lid and for inviscid flow, allowing for 
any smooth current profile and for any bathymetry. Their 
numerical technique cuts off the semi-infinite domain of the 
cross-shore coordinate (imposing the far offshore boundary 
condition at a finite distance instead of at infinity) and 
considers a finite-difference scheme to transform the govern- 
ing equation into an algebraic linear eigenproblem. A con- 
siderable sensitivity to variations in the bottom topography 
unnoticed by the previous analytical models was found. This 
sensitivity is especially striking for barred beaches. More- 
over, larger growth rates of the instability for barred beaches 
than for monotone ones were in general obtained. As op- 
posed to the analytical results for simplified geometries, 
more than one instability mode was found, and the instability 
curves were found to have an (0, 0) intercept, so they did not 
have a minimum positive unstable wavenumber. Phase 
speeds of about 0.5 to 0.6 times the mean current peak were 
obtained. 

A similar numerical work was carried out by Dodd et al. 
[1992] using mean flow and bathymetry from two real 
beaches, a barred one at Duck, North Carolina (SUPER- 
DUCK experiment), and a plane one at Santa Barbara, 
California (Nearshore Sediment Transport Studies (NSTS)). 
Dodd et al. included bottom friction in their model equa- 
tions. Its effect was found to be important, resulting in a 
decrease in the span of unstable wavenumbers and in growth 
rates. Their paper provides a comparison between numerical 
simulation and field data, which were found to be in good 
quantitative agreement at SUPERDUCK. Results from 
NSTS were less conclusive. In line with Putrevu and Svend- 

sen [1992], Dodd et al.'s results suggest that shear instabil- 
ities may be a more common feature on barred beaches than 
on plane ones. 

Like the articles by Putrevu and Svendsen [1992] and 
Dodd et al. [ 1992], the present paper is aimed at providing an 
analysis of shear instability with more realistic conditions by 
means of numerical simulation. A smooth mean current 

profile is also considered, as are a number of depth profiles 
including nonplanar topography. Frequency against wave- 
number and growth rate against wavenumber curves are 
given. The spatial structure of the waves, including flow 
pattern, surface elevation, and phase shifts between fluid 
variables, is investigated. As opposed to the previous ap- 
proaches, the rigid-lid assumption is removed and the effects 
of dissipation are included by means of a simple model with 
a constant eddy viscosity. A term accounting for bottom 
friction through a Chezy coefficient is also included in the 
governing equations (this bottom friction modeling is implic- 
itly based on the strong-current assumption, as opposed to 
the weak-current assumption used by Dodd et al.). In 
addition, our numerical method is quite different from the 
previous methods. This is very interesting, because the 
coincidence between the results from different numerical 

models allows us to reach a higher level of numerical 
evidence for these results. We essentially follow a technique 
similar to that used for edge wave calculation in the presence 
of longshore current [Falqugs and Iranzo, 1992] but with 
some improvements. The shallow-water equations are trans- 
formed into a linear algebraic eigenproblem by means of 
spectral expansions. Owing to longshore periodicity, discret- 

ization in this direction is achieved by trigonometric func- 
tions (in fact, because of linearity, longshore wavenumbers 
are decoupled, and only one Fourier mode is needed in each 
expansion). Cross-shore, a domain decomposition technique 
is used, cutting the whole [0, •) interval into two parts: a 
finite one and a semi-infinite one. Then Chebyshev polyno- 
mials are used in the former, and rational Chebyshev func- 
tions are used in the latter. This technique makes it possible 
to obtain a maximum resolution where the maximum 

strength of the instability is located and gives rise to greater 
efficiency than the similar rational Chebyshev collocation 
method previously used in edge wave computation. The 
present numerical technique has also been found to be more 
efficient than the finite-difference schemes previously used. 
Near the transition, because the governing equations be- 
come singular, this method loses its accuracy for almost 
neutral waves (and this is so also for the approaches of 
Putrevu and Svendsen [1992] and Dodd et al. [1992]. In this 
case we use an overshooting technique but take into account 
the singularity at the cross-shore location where the mean 
flow velocity equals the phase speed of the wave. In addition 
to this numerical work, an analytical estimate of the phase 
velocity is given by using some asymptotic analysis and an 
energy identity obtained in previous work [Falqu•s and 
Iranzo, 1992]. Moreover, the classical energy analysis of the 
Drazin and Howard semicircle theorem [Drazin and Reid, 
1981] is extended to allow for a free upper surface. 

2. Formulation 

Cartesian axes are chosen with the mean free surface as 

the (x - y) plane, with x pointing offshore, y being directed 
along a straight shoreline, and z pointing upward. Consider 
the shallow-water equations for momentum and mass con- 
servation [van Rijn, 1987]' 

It t q- lttt x q- Vbly = --gTIx q- 7'x/p -I- E(blxx -I- blyy) (la) 

U t q- blU x q- UUy = --•lIly q- •'y/p -I- E(Uxx -I- Uyy) (lb) 

S t q- (Sbl)x q- (SV)y -- 0 (lc) 

where u and v are the horizontal depth-averaged velocities, 
and p and •7 stand for water density and gravity acceleration, 
respectively. The free surface and the bottom are given by z 
= ,/(x, y, t) and z = h(x, y); hence s = ,/ - h stands for 
the height of the water column. The external forces are 
assumed to be 

P•/ 2) 1/2 sC 2 //(//2 A- v 

/9•/ 2) 1/2 ry = r sy S• • iV(tt 2 + iV 
(2) 

allowing for bottom friction by means of the Chezy coeffi- 
cient C, where 'rs are the driving forces balancing dissipation 
due to wind stresses or radiation stresses from wave break- 

ing. Finally, e stands for a constant viscosity coefficient. Let 
us now assume a beach given by z = -H(x) with H(0) = 0 
and H(x) > 0 x > 0 and a basic steady flow given by u = 
0, v = V(x) with an undisturbed free surface •/• 0. When 
we consider dissipation, this steady flow is possible if there 
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is an external net longshore force given by ry = -peVxx and 
no cross-shore net stresses rx = 0. 

Assume now a small perturbation of the basic flow with 
the form of a longshore progressive wave: 

u = u'(x) exp [ik(y - ct)] 

v = V(x) + v'(x) exp [ik(y - ct)] 

•q = •q'(x) exp [ik(y - ct)] 

where c = c r q- ici, and A = 2rr/k is the wavelength. The 
phase speed is given by Cr, the frequency is given by (.o r -- 
2rrf = crk , and the growth rate is given by •0 i -- cik. 

Then, taking into account (2) and upon linearization with 
respect to the perturbation, from (1) we obtain 

a 2)u' + an • = 0 ik(V- c)u' + •-• Vu' + e(k 2- 0 x (3a) 

Vxu' + ik(V- c)v' + 2 
g 

HC 

q- t•(k 2 - 0x2)V ' q- ikg•q' = 0 (3b) 

(Hu')• + ikHv' + ik(V- c)•q' = 0 (3c) 

Henceforth, for simplicity we drop the prime on the pertur- 
bations u', v', and r/'. If we assume inviscid flow, that is, 
e = 0 and g/C 2 = 0, we have from (3) 

g g gV• 

u = i k(V- c) *Ix v = (V- c) •q k2(V_ C)2 •x 
(4) 

Then, by dropping u and v, a single governing equation 
follows' 

(V- c) 2 r/x + 1 -- (V- c) 2' k2r/ -- 0 (5) 
x 

x [0, 

Equation (5) was obtained in a previous paper [Falqu•s and 
Iranzo, 1992], but it was handled only for neutral waves, 
ci --O. 

In all the previous works, the rigid-lid assumption, that is, 
r/t is negligible with respect to horizontal fluxes, was con- 
sidered. Under this hypothesis, (lc) allows us to use a 
stream function. 

Hu = - ½ y Hv = gt • 

Then, assuming inviscid flow, one can also find a single 
governing equation from (3a) and (3b)' 

(V- c)(½x x - (6) 

In the case of a plane horizontal bottom, H• = 0, this 
equation reduces to the Rayleigh equation of the classical 
shear flow instability theory [Drazin and Reid, 1981]. 

Let us now see what boundary conditions must be applied 
to system (3). For inviscid flow, these equations can be 
converted into the single equation (5). The origin, x = 0, is 
a singular point of this equation, and, as appeared in edge 

wave calculation [Iranzo and Falqu•s, 1992], the proper 
equation may be considered a boundary condition at this 
point, giving correct results. Therefore we have imposed the 
proper equations (3) at x = 0 as boundary conditions for 
inviscid flow. Taking into account the Chezy terms does not 
modify the order of the equations, and the same boundary 
conditions have thus been considered. In dealing with eddy 
viscosity, the boundary conditions to be applied at the 
shoreline are not clear. Since u and v are depth-averaged 
velocities, owing to the mobility of the shoreline the no-slip 
condition, which may be applied at the sea bottom for 
three-dimensional modeling, is not obvious. After some 
trials we chose the equations without the viscosity terms as 
boundary conditions at x = 0. This choice led to a numer- 
ically well-posed problem insofar as it gave stable results for 
an increasing number of discretization nodes. At infinity, 
u(o•) = v(o•) = r/(o•) = 0 have been taken in all the cases, 
according to the nature of the shear instability. For (6) the 
matter is much simpler, and according to a vanishing mean 
flow of the wave, we have taken •0) = •o•) = 0. 

3. Analytical Estimates 

In this section the classical energy analysis of the Drazin 
and Howard semicircle theorem [Drazin and Reid, 1981] will 
be extended to allow for a free upper surface. In addition, an 
analytical expression for the phase speed of neutral vorticity 
waves will be given. To this end, let us multiply (5) by • (- 
means complex conjugate) and integrate by parts. We easily 
obtain the energy identity 

r2 gH k2 •xC2 ( 1 (V- C) 2 I•xl2dx- 1 - 1 
(V- C) 2 Iw12dx 

gH 

(V -- C) 2 C• •xlxX• (7) 
with x• and x2 being any two points in [0, o•) and c being the 
complex phase speed. 

Let us first assume c i • O. Then V(x) - c does not 
vanish, the integrand in (7) is bounded, and we can perform 
the integral in the whole [0, o•) interval. As H(0) = 0, 
assuming that H•r/x(o•) = 0, the right-hand side of (7) with 
x• - 0 and x2 = o• vanishes. Then, by taking real and 
imaginary part in (7), we obtain 

•: ( V- Cr) 2 q- ci 2 D 2 Q dx = k 2 f: I12 dx (8) 

C i D2 Q dx = 0 (9) 

where 

_ 2) 2 Q(x) = gn(Iw•l 2 + k21w12), O(x) 2 ((V -- Cr) 2 q- C i 
2 2 

+ 4ci(V- Cr) 

Owing to (9), since c i • 0 and Q > 0, V(x) - C r must 
vanish somewhere, and then the Rayleigh condition 

Vmin < c r < V max (10) 
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Figure 1. Mean flow profile according to (14) with n = 3, 
a = 0.019 s - l, and b - 0.008 m- 1; bathymetry from Duck, 
North Carolina [after Bowen and Holman, 1989], and con- 
sequent potential vorticity profile. The critical locations Xc• 
and Xc2 for an arbitrary phase speed c are pointed out. 

follows. Now we may continue by following the classical 
method of proof of the semicircle theorem for the Rayleigh 
equation. So, from 

•-ff (V- Vmin)(V- Vmax) dx-< 0 

and taking into account (8) and (9), after some standard 
calculations we obtain 

Vmin d- Vmax 2 Vmax - Vmi n _ _c/2_< Cr 2 2 

We therefore obtain a region in the complex c plane bounded 
by a hyperbola instead of the inner part of a circle that one 
can obtain for the Rayleigh equation or for (6) [see Dodd and 
Thornton, 1990]. Thus because (11) is less restrictive than 
(10), the only limitation we can find on the c spectrum by this 
method is the Rayleigh condition (equation (10)). Obviously, 
this does not imply that stronger estimates could not be 
obtained by other methods. In fact, for the cases studied, the 
computed spectra verify the semicircle bound. 

Let us now consider neutral waves, that is, c i = 0. Let us 
assume a structure of the mean flow like that shown in 

Figure 1, with the peak located at /0, V(lo) - Vma x, and 
where for Vmi n = 0 • c • Vma x the relative velocity (V(x) 
- c has only two simple roots, Xc• < Xc2. Let us define 

p(x) = 
where Vx/H is the potential vorticity. We suppose a struc- 
ture of the bathymetry and the potential vorticity like that in 
Figure 1, where potential vorticity is a decreasing cross- 
shore function at the first root, yielding to p(xc•) • 0, and 
where H(x) -• H(10) for x ) x•2. Finally, if F - [V(x)/ 
(gH(x)) •/2 is the maximum local Froude number of the max 

mean flow, F ( 1 is assumed. Under such a hypothesis, if 
p(x•2) % 0 and because the velocity field must be bounded, 
it was shown in a previous paper [Falqu•s and Iranzo, 1992] 
that (5) has only solutions vanishing for x -• x•l. These 
solutions were numerically computed and were shown to be 
edge waves. Instead, ifp(x•2) - 0, there may be a second 
class of solutions extending beyond x• and behaving like 

] ß /(x) = b0 1 - •- (x - Xc2) 2 d- ''' (12) 
near x c2. Then, if the potential vorticity has an extremum at 
X a in the sea face of the velocity profile (see Figure 1), we 
have p(x a) - 0, and there can therefore be a solution of the 
second class with 

C = Cne -- g(xa) (13) 

This solution is a neutral vorticity wave and will be numer- 
ically computed in section 5. Moreover, we will see that 
though (13) holds only for neutral waves, it gives rise to an 
estimate of the phase speed of growing modes. 

4. Numerical Methods 

Eigenvalue Problem 

The present method computes the spectrum of complex 
phase speeds c - Cr + ici and the cross-shore structure of 
the waves for any wavenumber k by transforming (3) or (6) 
into a linear algebraic eigenvalue problem. For inviscid flow, 
handling the single equation (5) would be more advantageous 
than dealing with system (3). However, this does not seem 
possible, because c does not appear in (5) as a linear 
eigenvalue. For the computation of edge waves on a long- 
shore flow [Falqu•s and Iranzo, 1992], this difficulty was 
overcome by taking the phase speed as a velocity scale or as 
a parameter for the dispersion curves. But in dealing with 
growing vorticity waves, this treatment is not possible, 
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because c is complex. At least for neutral vorticity waves, 
considering (5) in a way similar to that for edge waves would 
seem possible. But now another difficulty appears: since the 
solution extends over the whole interval [0, •) and c is real, 
V(x) - c may vanish somewhere in the integration domain, 
yielding to singularities. A direct standard discretization of 
this equation that ignores the singularities is therefore ill- 
advised. Thus we have dealt with (5) only for neutral waves 
but by using the overshooting method. For the eigenvalue 
problem we have handled system (3) or (6). 

To obtain an algebraic eigenvalue problem approximating 
(3) or (6), the first method used was a rational Chebyshev 
collocation scheme [Boyd, 1987]. This method was proved to 
be very efficient in several test problems [Iranzo and 
Falqu•s, 1992] and in computation of edge waves [Falqu•s 
and Iranzo, 1992]. This is so because the largest concentra- 
tion of collocation nodes is at x = 0, and then the resolution 
is maximum near the shoreline and decays monotonically 
offshore in a way similar to that of the cross-shore structure 
of edge waves. On the other hand, shear instability simula- 
tion requires the highest resolution not near the shoreline but 
at the peak and at the sea face of the mean velocity profile. 
So we found a domain decomposition technique to be more 
efficient (fewer base functions to obtain a given error bar). 
The procedure is as follows. The integration domain is cut 
into two parts, [0, l•] and [/•, •). Then Chebyshev collo- 
cation is used in the finite part, and rational Chebyshev 
collocation is used in the infinite part. Continuity of the 
solution and of its first derivative is imposed at the matching 
point, x = l•. To this end let us consider the maps from the 
[0, l•] and [l•, •) intervals into the [-1, 1) one, given by 

ll 

x = = - r) 

ifx E [0, l•] and by 

x= •b2(s c)=1•+12 

if x E [/•, o•). Functions are expanded in each interval as 
N1 N1 

f(x) = Z anTn(•) = Z anTn(cbi -•(x)) 0 -< x -< l• 
n=0 n =0 

N2 N2 

f(X)-- Z bnTn(•)= Z bnTn(c• -l(X)) 
n =0 n =0 

ll _< X 

From the Gauss-Lobatto nodes 

COS i = 0 ''' N• 
N• 

•ri 

•i = COS i = 0 ''' N 2 
N2 

discretization of differential equations follows from coloca- 
tion at the transformed nodes: 

xi= cb•(•i) i=O ... N•- 1 

Xi-- •>2(•N-i) i= N 1 ''' N- 1 

where N = N• + N 2. Note that x 0 - 0, xN• = l•, and 
xN = •. The first and second derivatives at the nodes of any 
function f(x) are computed by means of 

df(x) 
ax = Z (O•)jkfk j = O ''' N• 

x =xj k=0 

df(x) 

dx 

d2f(x) 
dx 2 

X =Xj 

X 

N-1 

= •'• (D2)jkf• 
k=N• 

N1 

= • (D12)j•f• 
k=O 

j=N•...N-1 

j=O...N• 

e2f(x) 
dx 2 = •'• (D22)j•fk j = N•''' N- 1 

x =xj k=N• 

where f• = f(x•). (We are assuming that f(x) vanishes at 
infinity, so the xN node does not have to be considered.) 
Owing to the chain rule, the derivative matrices are given by 

1 

(D 1)j• = • • (•j) Djk 

_ 
j,k=O'"N• 

and similar expressions for the second interval (but with 
index shifts), • and •2 being the Chebyshev derivative 
operators [Canuto et al., 1988]. The continuity of the solu- 

tion at the matching point x• = l• is automatically guaran- 
teed, because only one value of the solution at this point is 
handled, whether it was considered to belong to [0, 1 • ] or to 
[l•, •). On the other hand, continuity of the first derivatives 
must be explicitly imposed by 

N• N-1 

• (O,)N,•fk - •'• (O2)N,•f• = 0 
k=0 k=N• 

replacing the differential equations at this node. In summary, 

at x0 = 0 boundary conditions, at x•'"xN,_•, and at 
x/v•+• "' xN-j, we impose the differential equations, and 
at xN,, we impose the continuity conditions. The conditions 
at infinity, u(o•) = v(•) = r/(o•) = 0, are fulfilled simply by 
dropping the xN = o• node as usual in rational Chebyshev 
developments. 

As is known, discrete approximations of eigenvalue prob- 
lems may exhibit spectral pollution; that is, the appearance 
of spurious eigenvalues that do not converge to the correct 
value when the mesh density is increased [Llobet et al., 
1990]. Hence one has to carefully handle the computed 
spectrum, and some test is always a must. The numerical 
model was tested by application to the well-known problem 
of edge wave propagation on a plane sloping beach without 
mean flow, giving a similar accuracy to rational Chebyshev 
collocation [Falqu•s and Iranzo, 1992]. Another test was 
yielded from the stability of the results to an increasing number 
of base functions. In the presence of a mean current, most 
modes in the spectrum show large variations when N is varied. 
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Figure 2. Numerical efficiency of the unbounded interval 
numerical method compared to the cutting-off approach. 

These solutions may therefore be spurious modes. They also 
may correspond to true solutions of the differential equations 
which are poorly described by our discrete method because 
they have strong gradients or too many oscillations [Iranzo and 
Falques, 1992]. Anyway, these numerical solutions cannot be 
considered with certainty as approximations to true solutions 
of the physical problem. However, we also found solutions 
showing stability to an increase in N. Some of them, with real 
c, were identified as advected edge waves, and the remaining 
ones, with complex conjugate eigenvalues c = c, -+ ic i, could 
be identified as shear waves. 

The previous method addressed by Putrevu and Svendsen 
[1992] cuts off the [0, oo) interval and thus enforces the 
boundary condition not at infinity but at a finite distance 
from the shoreline. Such an approximation is justified be- 
cause the solution dies far offshore. Nevertheless, handling 
an interval two or more times larger than the cross-shore 
range of the solution is then necessary, with the result that 

half or more of the discretization nodes are wasted because 

they are located where the solution has died. Instead, 
rational Chebyshev expansions expend very few nodes in 
this zone. For this reason the present method is more 
efficient. In Figure 2 the complex frequency computed by the 
present method or by Chebyshev collocation in a finite 
interval (3.6 times the curre. nt width) is represented against 
the number of nodes N. We can see how the present method 
achieves convergence with a third to half of the nodes 
required by the other method. In addition, as is known 
[Canuto et al., 1988;'Boyd, 1989], convergence of spectral 
methods is faster than any power of N, and thus the present 
method is likely to require less than a third of the nodes 
required for the finite-difference method of Putrevu and 
Svendsen in order to reach a given accuracy. 

Overshooting Method 

The overshooting method has been used by several au- 
thors [Howd et al., 19•2; Dodd et al., 1992; Falqu•s and 
Iranzo, 1992] to solve eigenvalue problems in a semi-infinite 
interval [ x a , o•). It considers an initial value problem for the 
differential equations sta, rting from x a . Then the eigensolu- 
tion is selected by enforcing the solution to die away as x --• 
•. We have used it in order to find neutral solutions to (5) in 
the [ x a , o•) interval, x a being the location of the minimum of 
the potential vorticity. We started at X a + •, with e being a 
small distance to avoid the singularity at X a. As the initial 
condition we enforce matching with the analytic solution 
near X a, (12), up to fourth order, where the coefficients can 
be seen in the work of Falqu•s and Iranzo [1992]. Finally, 
we pick c given by (13), and then we find k and •/(x) for x -> 
x a d- E. In this way we cou.!O accurately compute the critical 
wavenumber k c2, above wh, ich there is no shear instability. 
The procedure is as follows. For dimensionless variables in 
the case of a plane sloping beach (see section 5), we choose 
e = 0.05 and try to minimize w/(xoo) with xoo = 6. Then we 
proceed for lower values of e up to e = 0.001, obtaining 
convergence of k for e --• 0. Despite that, because of 
numerical inaccuracies arising from the singularity at x a , for 
very low e the solution diverges. Nevertheless, we can 
reasonably choose a kc2 value within an error bar of 0.5% 
(see Table 1). Curiously, we found neutral shear waves only 
for one wavenumber, kc2, whereas the BH model gives rise 
to two neutral waves for every k above kc2 and below kcl. 

5. Instability Curves and Dispersion 
Relations 

For the numerical simulation we considered several cases. 

The cross-shore profile of the mean longshore flow was 
chosen to be in all cases 

V(x) = ax exp [-(bx) n] (14) 

with a peak given by 

a 

gmax = • (err) -1/n 
located at 

lo = (n)-I/nb -• 

and a maximum backshear of magnitude given by 
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fs = na exp [-(n + 1)/n] 

so that for fixed a, b or for fixed/0, Vmax, the maximum 
backshear rs can be increased by increasing n. According to 
BH, this profile with n = 3 may be quite realistic in the surf 
zone. Regarding the bathymetry we considered several 
options. 

Case A: Plane sloping beach, H(x) = lSx. In order to 
make an exploration for any beach slope/• for any flow with 
the form (14) and n = 3, equations (3) were scaled by taking 
L = l•/b and T = l•/a as length and time scales. The gravity 
acceleration # was then replaced by the dimensionless 
parameter 

/•b# (2en) -1/n 
2 -- a F 2 

where F = [Iv(x)l/(aH(x))1/2]max is the maximum Froude 
number of the mean flow. For n = 3, we have g* = 
0.394/F 2. The wavenumber and the (complex) phase speed 
were replaced by the dimensionless magnitudes k/b and 
bc/a. According to BH, the natural scaling of shear insta- 
bility is provided by the maximum shear at the seaward face 
of the mean current profile fs, the width of the longshore 
current, and the peak longshore current Vma x. Then the 
former scales can be related to the latter by T = 0.790813/f s 
and L = 1.442/3/0. The velocity scaling is provided by a/b 
= 2.013Vmax. Note that the dissipative parameters are 
replaced by 

b 2 e g 
e*=me =0.380f702 /x*= a /•C 2 

Case B: Flat bottom. In order to explore the influence of 
different current profiles, we took a flat-bottom beach, H(x) 
= H 0, and the velocity profile given by (14) with Vma x = 1.2 
m s -1 and l0 = 90 m for several n. 

Case C: Exponential profile with finite depth at infinity Hoo 
and a slope at the shoreline •:H(x) = Ho•[1 - exp 
(-13x/Hoo)]. For this depth profile we considered a fixed 

Table 1. Computation of Cutoff Wavenumber k c2 
by Using the Overshooting Method 

e L k 

0.08 

0.06 

0.04 

0.02 

0.00 
0.00 

Figure 3. Typical instability curve for a plane sloping 
beach with inviscid flow. Near the transition for the highest 
unstable wavenumber, there is a lack of numerical accuracy, 
so the curve computed by the eigenproblem (dashed curve) 
is no longer reliable. The solid curve has been obtained by 
interpolation between the last reasonably accurate (k, •o•) 
point and (kc2, 0), with kc2 being obtained by the overshoot- 
ing method. 

flow given by (14) with n = 3 anda peak longshore current 
Vma x = 1.2 m s -• located at l0 = 90 m. 

Case D: Barred beach. In order to use a realistic ba- 

thymetry, we took an H(x) function interpolated from field 
data reported by BH and belonging to a barred beach (Duck, 
North Carolina; see Figure 1). The velocity profile was 
chosen as the latter case, so its peak is roughly 5 m offshore 
of the bar. 

For each beach profile, computations were worked out 
with or without the rigid-lid assumption by solving (6) or (3). 
Most of the calculations were carried out for inviscid flow, 
that is, e = 0 and #/C 2 = 0. However, in order to find the 
influence of the bottom friction, we made some trials with a 
Chezy coefficient C between 30 to 100 m •/2 s -! which 
according to van Rijn [1987] are reasonable values for real 
beaches. Also, in order to find the influence of turbulent 
dissipation, we considered the simplest case of a homogeneous 
and isotrope eddy viscosity. Again, following van Rijn, reason- 
able values of e of about 0.1 to 1 m 2 s -• were taken. 

0.00001 4.0 2. 22238941 
0.0001 4.0 2.65731100 
0.0005 4.0 2.66151479 
0.0007 4.0 2.66161364 
0.001 6.0 2.66168046 
0.003 6.0 2.66187429 
0.005 4.0 2.66204656 
0.005 6.0 2.66204651 
0. 006 6.0 2. 66213656 
0. 007 6.0 2. 66222981 
0.009 6.0 2.66242635 
0.01 6.0 2.66252990 
0.02 6.0 2.66376708 
0.03 6.0 2.66539852 
0.04 6.0 2.66746126 
0.05 6.0 2.66999164 

Plane sloping beach, inviscid flow, F = 0.14. 

Case A 

We performed an exploration in the case of a rigid lid and 
in the case of a free surface for#* = 0.5, 1, 20, 100, which 
correspond to F = 0.89, 0.63, 0.14, 0.063. The patterns 
we found for these cases were similar. Among the computed 
complex eigenvalues for each k there are only two conjugate 
eigenvalues, c = C r --+ ici, that converge when N increases. 
In the search for growing modes, only the solution with c i > 
0 was taken into account. Comparing its order of magnitude 
and the spatial structure of the corresponding eigenmode 
with those arising from the analysis of BH revealed that this 
eigensolution was a vorticity wave. The growth rate •o i 
against wavenumber k curves without dissipation start from 
the origin (0, 0), increase up to an absolute maximum at kM, 
and then decrease up to kc2, where •o i - 0 and the instability 
ceases (see Figure 3). The kM wavenumber where •o i 
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Figure 4. (a) Dispersion lines and (b) instability curves for 
inviscid flow and free surface on a plane sloping beach for 
several Froude numbers (F). The corresponding rigid-lid 
computations are also shown. The dispersion line of the 0th 
upstream edge mode is plotted in Figure 4a to show that for 
high Froude number the frequencies of shear waves and 
gravity waves may become mixed. 

reaches its absolute maximum, corresponding therefore to 
the fastest growing mode and being expected as the most 
easily seen in natural beaches, is called the dominant wave- 
number. The critical wavenumber k c2 is the cutoff one above 
which there is no shear instability. This pattern is qualita- 
tively similar to that found by BH and Dodd and Thornton 
[1990], except that for the inviscid flow case we do not find 
a lower critical wavenumber kc• > 0 below which there is no 
shear instability. Values of the discretization parameters l• 
and 12 that were roughly similar to the width of the mean 
current profile were picked. Some trials were made, and we 
finally preferred to include the region of the main variation of 
solutions in the finite interval, leaving for the semi-infinite 
interval only the far offshore monotone decay to zero. So, 
for instance, for a plane beach with peak mean velocity at x 
= 0.69 and width current profile of about 1.69 (approximate- 

ly, from Figure 1; in fact the current width would be infinite), 
we took I• = 1.2, 12 = 1, N• = 100, and N2 = 20, giving 
rise to a high resolution at the sea face of the current profile. 
Usually, the numerical accuracy was very good except near 
kc2 or near kc• = 0. For example, with a plane sloping 
beach, k = 0.01 m -• I• = 160 m, 12 = 60 m N• = 50 and 
N 2 = 20, we get an error bar of less than 0.002%. Instead, 
near kc2 the accuracy strongly decreases, and before oo i has 
fallen to zero, the true eigenmode can hardly be identified in 
the spectrum, resulting in a rather irregular, probably spuri- 
ous behavior of the instability curve near kc2 (see Figure 3). 
Thus the central parts of the instability curves were usually 
computed With N = 70, and the extrema were computed 
with N = 120. For the barred beach case, because of the 
sharp variations in H(x), a greater resolution was needed 
(the same as for edge waves [Falqud's and Iranzo, 1992]), and 
the whole instability curve was computed with N - 120. 

The dispersion relations are quite linear (Figure 4), show- 
ing little dispersion, and the phase speed is about 0.5 to 
0.7Vma x for k near kM. For very low wavenumbers, the 
phase speed tends in all cases to Vma x. It appears that though 
we are dealing with growing modes, the phase speed for 
neutral waves, (13), gives rise to a good approximation 
within 4% for the dominant wavenumber in this case (plane 
beach with flow profile given by (14)). 

As we can see in Figure 4, decreasing the Froude number 
causes the instability curves to lift up and tend to the rigid-lid 
curve (except near kc• or kc2, where some differences may 
arise). So, it becomes apparent that the rigid-lid assumption 
tends to overestimate the instability. Nevertheless, for rea- 
sonably strong currents with F of 0.14 to 0.63, the error in oo i 
is small, between +0.5% and + 12%. The rigid-lid assump- 
tion also tends to overestimate the frequency but by a 
smaller amount of +0.1% to +2% for F between 0.14 and 

0.63 (see Table 2). For F -< 0.63, the dominant wavenumber 
is kM = 1.44b, with a frequency of oo r = 0.4717a and a 
growth rate of oo i = 0.0764a. This gives rise to a dominant 
wavelength of AM = 6.29/0, a frequency of oo r = 0.596fs, a 
growth rate of oo i = 0.0966fs, and a phase speed of Cr = 
0.659Vma x. Assuming a mean current width of about 2.6/0, 
the dominant wavelength is 2.5 times this width, in rough 
agreement with the BH model. 

The cutoff wavenumber k c2 was computed by means of 
the overshooting method as outlined in section 4 (see Table 
1). For F = 0.14, we found a cutoff wavelength of A c2 = 
3.41/0, that is, about 1.35 times the mean current width. 
Hence, in Figure 4 we have drawn the instability curves, 
replacing their upper (spurious) parts with an interpolation 
between the last (k, oo i) reasonably accurate point and (kc2 , 
0) (see Figure 3). 

The influence of eddy viscosity on the dispersion lines and 
growth rate curves is shown in Figures 5a and 5b for e* = 
0.005. For Vmax - 1.2 m s -• and 10 "• 90 m, this would 

Table 2. Errors Due to the Rigid-Lid Assumption 

F Wr,% Wi,% 

0.14 +0.1 +0.5 
0.63 +2 +12 
0.89 +4 +28 

Plane sloping beach, inviscid flow. 
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correspond to an eddy viscosity of e --• 1.6 m 2 S -1 which is 
quite strong but still realistic. Similarly, the effect of bottom 
friction is shown for/x* = 0.078. For a bottom slope of/3 - 
0.05/x* corresponds to a Chezy coefficient of C = 50 m 1/2 
s-1 which is also in the range of reasonable values. In both 
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0.08, 

0.06 

0 04 

o 02 

/x = 0.078 
Inv linc ld flow 
• = 0. 005 

I,,ll, 

1.2E-3 
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Inv true td ?•o 
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Figure 5. Influence of dissipation (a) on the dispersion line 
and (b) on the instability curve for a plane sloping beach with 
F - 0.14 (variables and parameters are dimensionless 
according to section 5), and (c) the influence on the instabil- 
ity curve for a barred beach and for the flow given by (14) 
with n = 3, Vma x = 1.2 m s -1, and l0 = 90 m is shown in 
Figure 5c. 
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Figure 6. Influence of a constant eddy viscosity on the 
growth rate of the instability. Plane sloping beach, free 
surface, F = 0.14. Viscosity has been scaled to a/b 2. 

cases we found a significant decrease in the growth rates but 
little variation in the dominant wavenumber. We also see 

that taking into account bottom friction as well as eddy 
viscosity results in the existence of a critical wavenumber kc• 
> 0, below which there is no instability. Moreover, as ex- 
pected, the whole wavenumber range of the instability is 
reduced. The presence of dissipation also produces a small 
decrease in frequencies. For these values of the parameters, 
eddy viscosity yields a decrease of about 9% in the phase 
speed, and bottom friction yields a decrease of about 4%. As 
we can see in Figure 6, by increasing eddy viscosity the 
instability can be removed. This occurs for e* = 0.008. Then, 
according to the scaling introduced, a stability condition 

• > o. 02 •fsto 2 (•5) 

follows. Similarly, concerning bottom friction, the transition 
is obtained at/x* = 0.14. Therefore the basic flow will be 
stable when 

1 9 

• C2 > 0.14 (16) 
All of these calculations have been performed for a plane 
beach with the flow profile given by (14) and for F = 0.14. 
However, the results are expected to hold as an estimate for 
any reasonable Froude number, because as we have seen, 
for moderate Froude numbers the instability shows almost 
no dependence on F. 

Case B 

An exploration for n = 2, 3, 4, 5 with a rigid lid has been 
carried out. Figure 7 shows the flow and the potential 
vorticity profiles corresponding to these n exponents. The 
instability curves for n - 3, 4, 5 displayed in Figure 8 show 
two relative maxima at k•4• and kM2, with k•4• < kM2. The 
second maximum is the absolute one; it has an important 
increase with n, showing a quite linear dependence of fs, 
whereas the first maximum has little variation with n. We 

found maximum growth rates of 0.12fs, O. 14fs, and 0.15fs 
for n = 3, 4, 5, respectively. The dominant wavenumber 
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Case C 

In order to make a comparison with the case of barred 
beach, we took Hoo - 4.5 m and a slope at the shoreline of 
/• - 0.05, similar to the real topography but without the bar. 
The instability curve, with a maximum growth rate of toi - 
0.099fs, can be seen in Figure 10b. This depth profile with 
Hoo - 1 m fixed and with several/• was also used in order to 
simulate the transition from a flat bottom (/• -- o•) to a nearly 
plane slope at the peak of the current profile (/• --• 0.01). As 
we can see in Figure 9, for high slope at the shoreline/• - 
0.5, 0.19, we found a curve very similar to that for a flat 
bottom, showing two maxima. On the other hand, when/• 
decreases, the instability curves tend toward those of a plane 
sloping beach, with only one maximum. This can be seen for 
/• - 0.02, for example. For intermediate values the curve 
shows an inflexion similar to that in the barred beach case 

(see Figure 10b and the curve corresponding to/• - 0.1 in 
Figure 9). 

Case D 

Now we will compare the results of the direct numerical 
simulation of a barred beach quoted above with the results of 
other available approaches. First, if we want to make a 
comparison with the BH model, we must define Vmax, the 
current width l, and 8 - lo/l. From Figure 1 we see that 
reasonable values may be Vma x -- 1.2 m s-1 l - 220 m, and 
8 - 0.39. The instability curves for the three depth profiles 
quoted above for cases A and B and for the BH model are 
displayed in Figure 10b. For the barred beach we find AM - 
2.20/, whereas the other approaches give rise to somewhat 
larger dominant wavelengths of nearly AM • 2.60/. We also 
see that the growth rates are of the same order: to i •- 0.063fs 
for a barred beach, tO i -- 0.086fs for a plane beach, and to i 
- 0.088fs for B H. We see that the dominant wavenumber 
for a barred beach and a free surface (case C) falls between 

5E- 3 

4E-3 
Figure 7. Mean flow and potential vorticity profiles for a 
flat-bottom beach and for some n exponents, with the same 
current peak (Vma x -- 1.2 m s -1) located at the same place 
(10 = 90 m). 3E-3 

shows a gentle increase with n according to a quite linear 
relation between AM2 and the current width given by AM2/l 
--• 1.7-1.8. On the other hand, as can be seen in Figure 8, for 
n = 2 there is only one maximum, with A M = 3.9/and to i = 
0.08rs. Some calculations with n = 1 showed that in this 
case there is also just one maximum, and for high wavenum- 
bers the instability curve falls rapidly without the kink 
present in the n = 2 case. All the curves corresponding to 
any n exponent tend to coincide for low wavenumbers, 
showing that the details in the flow profile become unimpor- 
tant for very long waves. In addition, some calculations 
without rigid lid were made for n = 3 and F = 0.14. Thus 
the validity of the rigid-lid assumption for the low Froude 
number found in case A was corroborated. 
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0E-0 
• •0 

n = 5 

. 

. 

. 
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Figure 8. Instability curves for several n exponents, with 
Vma x -- 1.2 m s -• and l0 - 90 m, assuming a flat bottom, 
rigid lid, and inviscid flow. For n -> 3 we can see a fairly 
linear relationship between the maximum growth rate and 
the maximum backshear and between the dominant wave- 
length and the mean current width. 
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the two maxima appearing for a flat bottom (case B). It is 
also apparent that the maximum growth rate for case C is 
similar to the secondary maximum in case B and consider- 
ably lower than the absolute maximum. Figure 10a displays 
the dispersion relations. We see that all the curves for the 
flow given by (14) are quite close together and considerably 
higher than the BH curve. Intriguingly, the former curves 
tend to coincide with one branch of the B H curve and with 

the straight line to r = Cne k for low wavenumbers, and for k 
--> 0 we have in all cases C r --> Vmax. Figure 11 a displays the 
phase speeds. For the dominant eigensolution we find C r = 
0.46Vma x for case B, Cr = 0.55Vma x for case C, and Cr = 
0.63 Vma x for case A, whereas for BH we had a lower phase 
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Figure 9. Influence of flatness on the appearance of a 
secondary maximum in the instability curve. Inviscid flow, n 
= 3, Vma x = 1.2 m s -1 and l0 = 90 m. Exponential depth 
profiles for a number of slopes at the shoreline. 
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Figure 10. (a) Dispersion curves and (b) instability curves 
for inviscid flow on a barred beach in comparison with other 
depth profiles. The mean flow profile is that shown in Figure 
9. In order to compare with Bowen and Holman [1989] 
(B-H), a finite mean current width x0 - 220 m has been 
assumed, leading to 8 -• 0.39. The estimate based on neutral 
modes, which according to (13) leads to f.O r -- V(xa)k, has 
also been plotted in Figure 10a. 

speed c r -- 0.30Vma x. The analytical expression (13) gives a 
higher value, Cne -- 0.73 Vmax. 

The influence of dissipation on growth rates for a barred 
beach is shown in Figure 5c for a Chezy coefficient of C = 
100 m u2 s - • or an eddy viscosity of e = 1 m 2 s - •. Again, we 
see that dissipation does not have a great effect on k M. In 
this case, if eddy viscosity increases, the basic flow reaches 
stability for e = 2.4 m 2 s -• almost the same as for a plane 
beach (case A) with 10 = 90 m and fs = 0.015 s -•. 
Therefore the estimate given by (15) appears to be fairly 
independent of the beach profile. If the Chezy coefficient is 
lowered, the flow reaches stability at C = 52 m u2 s-•. 
According to (16), this would correspond to a plane beach 
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Figure 11. (a) Phase speeds of computed vorticity waves 
on a barred beach for inviscid flow compared with results by 
Bowen and Holman [ 1989] (B-H) and experimental data from 
work by Oltman-Shay et al. [1989]. The comparison with 
field data is difficult because the current peak value is not 
available, and only the mean current measure at the trough 
of the longshore bar was reported. In spite of this, by means 
of a reasonable estimate of Vma x we can see a good agree- 
ment between the experimental phase speed and the com- 
puted one. (b) Influence of dissipation on the phase speed. 

with slope/3 = 0.03, which could be considered a mean slope 
of this barred beach. So, this stability condition could also be 
considered an estimate for nonplanar beaches by taking/3 to 
be something like an overall mean slope. Finally, in Figure 
1 lb we can see how dissipation results in a small phase 
speed decrease of about 6% or less. Note also that the effect 
of eddy viscosity on frequencies is, similarly to the effect on 
a plane beach, more important than the effect of bottom 
friction. 

For a barred beach, the instability curve was computed 

with or without the rigid-lid assumption, with the result that 
the difference between the two computations was quite small 
(see Figure 12). Note that in this case the maximum Froude 
number is F = 0.29. 

6. Spatial Structure of the Waves 
The spatial structure of the waves is obtained from the 

eigenfunctions of (3). First, Figures 13, 14, and 15 show the 
real and imaginary components of (u(x), v(x), rl(x)) for 
plane sloping topography with F = 0.14 and for three 
wavenumbers. We took N = 120 base functions, and the 
nodes were marked in order to point out the quality of the 
discretization. Every eigenfunction was scaled so that max 
{Ur(X), ui(x), Vr(X), Vi(X)} = 1, and we see that this 
maximum velocity is always reached by the longshore 
velocity v. It appears that r/(x) is quite smooth, but the 
velocities can have strong gradients. This appears dramati- 
cally for k = 2.4 near the cutoff wavenumber k c2, where 
internal boundary layers clearly arise. Obviously, this is the 
reason for the poor numerical accuracy obtained for this 
wavelength. In Figure 14 we can see how singularities 
appear for x = Xc• and x = Xc2 that are clearly due to the 
fact that when c i • O, V( x) - c almost vanishes at X c such 
that V(xc) = c r- For the dominant wavenumber and higher 
wavenumbers, the perturbation is bounded between the 
shoreline and 1.4 to 1.7 times the mean current width. For 

low wavenumbers, k = 0.1, the longshore velocity v is 
located roughly on the width of the mean flow profile, but the 
cross-shore velocity u and the surface elevation extend 
farther offshore, beyond 2.2 times this width. We see that a 
typical peak free-surface elevation is 0.006. Then, according 
to the scaling made for a plane beach, we have r/ --• 
O.006/3v/a, and assuming a --• 0.019 s -• /3 --• 0.05 and v --• 
30 cm s -• we find that r/--• 0.5 cm. 

The entire spatial structure of the wave is easily obtained 
by making 
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Figure 12. Influence of the rigid lid on the instability curve 
for a barred beach with inviscid flow. For these flow param- 
eters (Figure 9) and for this bathymetry, the Froude number 
is F = 0.29. 
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f(x, y) = Re[(fr(X) + ifi(x))e iky] = (fr(X) 2 

+ f•(x)2)•/2 cos (/•y + 0 (x)) 

where f(x, y) is any of the functions (u, v, •/), and 

0 = tan - • (fi/fr) 

0.1 

-0.0 

0.1 

0.2 

-0.3 

Re(u) 

•J Im(u) 0.2 

0.10 -0.4 -0. 

D 0.1 

0. 
. 

0.41 ........................................ 

Re(v) 
1.0 

0.0 1.0 2.0 3.0 4.0 
0.0 

1. Re(v) t i• /Ira,'(v) 
-0.5 I,, ,'•M" .... ,' .................... 

0.0 1.0 x 2.0 3.0 0. 

> e. •E-S :x o Im(•?) 
4E-3, 

-0. 

3E-3, 

1.0 
0.0 1.0 2.0 3.0 4.0 PE-3. ' 

1E-3 

6E-3 
. 

,•E- S-: 

2E-3 

OE+ 0 
0, 

) 

x 

Figure 13. Eigensolutions of (3) for inviscid flow on a plane 
sloping beach with F = 0.14 and k = 1.4 near the dominant 
wavenumber. The calculation was made with N = 120. 

Note the suitable distribution of the collocation nodes, with 
a high concentration where the fastest variations of the 
solution occur and a lower concentration where the solution 

monotonically falls to zero. 

0E+0 
o 

I 

o 2.0 3.0 

x 

Figure 14. Eigensolutions of (3) for inviscid flow on a plane 
sloping beach with F = 0.14 and k = 2.4 near the transition. 
The calculation was made with N = 120. Note how strong 
velocity gradients arise near the critical points Xc• and Xc2. 
On the other hand, the sea surface elevation appear to be 
quite smooth. 

is a phase shift. The local phase relationships between wave 
variables are often used in field observation. Figure 16 shows 
the relative phase between cross-shore and longshore veloc- 
ities and between cross-shore velocity and sea surface 
elevation for both our numerical model (plane sloping beach, 
F = 0.14) and the BH model. Interestingly, despite the 
numerous differences between the two models, the struc- 
tures of the relative phases are very similar. Figure 17 
displays the streamlines of vorticity waves (only the velocity 
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Figure 15. Eigensolutions of (3) for inviscid flow on a plane 
sloping beach with F = 0.14 and k = 0.1. For such low 
wavenumbers, the solution is almost real (real longshore 
velocity and sea surface elevation; purely imaginary cross- 
shore velocity). 

field of the perturbation, without mean flow), showing a 
structure similar to that yielded by the BH model. Along- 
shore we find a vortex each half wavelength, with their 
rotation directions alternating. Cross-shore there can be one 
or three vortices skewing towards the longshore downstream 
direction. The streaming of the entire flow pattern (mean 
current plus perturbation) can be seen in Figure 18, where 
the perturbation has been scaled so that its peak magnitude 
equals the peak longshore current. All of these flow patterns 
are progressing longshore in the mean flow direction. 

7. Discussion and Conclusions 

As expected because of the similar structure of the poten- 
tial vorticity profile, in broad outline our numerical simula- 
tion for realistic conditions lends support to the simplified 
geometry model given by BH or Dodd and Thornton [1990]. 
A similar longshore-progressing wave pattern consisting of a 
series of vortices is found, so adding the basic current to the 
flow of the perturbation results in a meandering on the 
perturbed flow. Typically, the longshore component of the 
wave field velocity is larger than the cross-shore component. 
The oscillations of the sea surface due to the wave are small; 
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Figure 16. Relative phase (a) between longshore and 
cross-shore velocities and (b) between cross-shore velocity 
and sea surface elevation for inviscid flow, plane sloping 
beach, and F = 0.14 compared with results by Bowen and 
Holman [1989] (BH). We see a similar cross-shore structure. 
In all cases the relative phase tends to -r r/2 near the 
coastline and to rr/2 far offshore. 
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Figure 18. Resulting streamlines of the vorticity wave su- 
perposed on the mean flow. The arbitrary amplitude of the 
eigensolution has been taken so that the velocity field of the 
wave has the same amplitude as the mean current. Inviscid 
flow, barred beach, dominant mode (k = 0.014 m- 1). The 
distances are in meters. 

for waves with a longshore velocity amplitude of 30 cm s-1, 
we find an elevation amplitude of about 1 cm. The same 
cross-shore structure and even almost the same values as 

those found by BH are found for the phase lags between 
longshore and cross-shore components of the velocity and 
between surface elevation and cross-shore velocity. The 
perturbation has an offshore extension of the order of 1.5 
times the width of the mean flow profile. 

The validity of the usual rigid-lid assumption has been 
• examined. We found that this approximation tends to over- 

estimate the growth rate of the instability, so the free surface 
seems to produce a stabilizing effect on the flow. Frequen- 
cies are also overestimated but to a lesser extent. The 

differences between the free-surface and the rigid-lid solu- 
tions have been parametrized by the maximum local Froude 
number of the basic flow F and decrease with a decreasing 
Froude number. For reasonably strong currents with F = 
0.6, these differences can reach about 12% for the growth 
rate and 2% for the frequency. Numerical simulation for the 
barred beach where shear waves were first observed, with F 
= 0.29, proved that the rigid-lid assumption is indeed 
applicable (see Figure 12). As we can see in Figure 4, the 
rigid-lid assumption gives rise to appreciable errors only 
when the current is so strong that the frequency of some 

•ooo • 0 eee advected gravity modes (upstream edge waves) can reach 
y ( •1 ongehoro) 

Figure 17. Streamlines of the vorticity wave for the fastest 
growing mode. The entire pattern is progressing longshore in 
the positive y direction with the phase speed. (a) Inviscid 
flow, plane sloping beach, F = 0.14, k = 1.4. (b) Inviscid 
flow, barred beach, k = 0.014 m -• The distances are in ß 

meters. (c) Inviscid flow, barred beach, very low wavenum- 
ber k = 0.005 m -•. The distances are in meters. 

the shear mode range. The explanation for this, in line with 
previous considerations by Dodd and Thornton [1990] and 
Putrevu and $vendsen [1992], is as follows. According to the 
beginning of section 5, F 2 is proportional to Vmaxfs/•lm. The 
frequency of edge waves with a wavenumber k scales as 
oo a • gmk. Shear waves scale as O,s • fs and ws/k • Vma x. 
So, we have Ws/W a • F. Therefore F << 1 corresponds to 
the observed situation in which gravity waves have a shorter 
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period than shear waves, and then the rigid-lid assumption 
gives rise to a good approximation. On the other hand, when 
F << 1 does not hold, the two time scales may be similar, 
with the result that both classes of motion may interact and 
the rigid-lid assumption may no longer be applicable. 

The maximum backshear and the current width clearly 
provide suitable time and length scales. So, the fastest 
growing wavelength A M is between 1.7 and 2.7 times this 
width, and the maximum growth rate t0 i is found to be 
between 0.06 and 0.15 times the maximum backshear. These 

results have the same order of magnitude as the previous 
analytical results of BH (for example, they give t0 i = 
0.088fs for 5 = 0.39). Inviscid numerical simulation leads to 
a larger wavenumber span of the instability than the analyt- 
ical models without a minimum positive unstable wavenum- 
ber (in agreement with Putrevu and $vendsen [1992].) Thus 
for inviscid flow the existence of a minimum unstable 

wavenumber could be a consequence of a nonsmooth cur- 
rent profile. 

As expected, the effect of dissipation is important, result- 
ing in a decrease in the span of unstable wavenumbers and a 
decrease in growth rates. There is also a small decrease in 
frequencies. For bottom friction or eddy viscosity giving rise 
to similar damping, the decrease in frequencies arising from 
eddy viscosity is greater than that produced by bottom 
friction. It is found that reasonable values of eddy viscosity 
or the bottom friction coefficient can entirely remove the 
instability in plane as well as barred beaches. For example, 
by using field data from Duck Beach (case D in section 5), we 
found that stability needs an eddy viscosity larger than 
2.4 m 2 s -1. Thinking of Leadbetter Beach, Santa Barbara 
[Dodd et al., 1992], we could choose a peak velocity of Vma x 
--• 0.5 m s -• located at l0 - 23 m offshore, leading to fs = 
0.024 s -• . Then according to (15), we would have a signif- 
icantly smaller critical eddy viscosity, e --• 0.27 m 2 s-•. So, 
regarding wave-generated turbulence and assuming a similar 
eddy viscosity in both beaches, the flow and bathymetry at 
Santa Barbara would be less conducive to shear instability 
than those from Duck, which seems to be in agreement with 
experimental observations [Doddet al., 1992]. Anyway, 
these results indicate that a much more realistic modeling of 
eddy viscosity and bottom friction than the rough approach 
used is a must for future research. 

Although the scaling and properties of the instability 
curves quoted above are quite generic, the details of these 
curves depend largely on the details of the current and depth 
profiles. For a plane sloping beach the instability curves are 
very smooth, with a monotone increase below kM and a 
monotone decrease above kM. Instead, for a flat-bottom 
beach, secondary maxima are found and a mode swap 
similar to that found by Putrevu and Svendsen [1992] seems 
to exist. Nevertheless, the absence of any jump in the 
dispersion curves suggests that there are not two crossing 
modes but just two maxima and one minimum belonging to 
one mode. In fact we found (reliably) only one unstable 
mode in all the cases. This is in contrast with results 

obtained by Doddet al. [1992] and Putrevu and Svendsen 
[1992], who found more than one unstable mode in some 
cases. This behavior might be due to the potential vorticity 
profiles with more than one finite extrema that they consid- 
ered. Our profile for a plane sloping beach has only one finite 
minimum, whereas for a fiat-bottom beach we also have a 
finite maximum at the coastline. Anyway, because of spec- 

tral pollution, one has to handle the numerical spectrum 
carefully, as not all the computed modes correspond to 
physical solutions. In the case of a barred beach, we do not 
find secondary maxima, but a clear inflexion appears for 
some wavenumbers, k < k M. Moreover, considering sim- 
plified topographic profiles such as flat bottom, plane slope, 
etc., instead of the real barred one may give rise to variations 
of 50% in the growth rate and 20% in the dominant wave- 
length. Such results are in rough qualitative agreement with 
the much more extensive analysis of the influence of topog- 
raphy given by Putrevu and Svendsen. In general, they 
found a maximum instability for barred beaches, but some- 
times this behavior could be reversed. In fact, in their Figure 
6, some barred bathymetries have smaller growth rates than 
plane slopes. Anyway, we can conclude that there is a 
greater influence of bathymetry for barred profiles than for 
monotone ones. Our results are also in agreement with the 
suggestions by Putrevu and Svendsen that this influence 
comes almost exclusively from the bathymetry at the sea 
face of the current profile (at the backshear) and that neither 
the overall beach steepness nor the depth profile far from the 
backshear has a great influence. The kinks and humps in the 
instability curves appearing for a flat-bottom beach might 
seem to be caused by the artifact of a vertical wall at the 
shore. However, by handling exponential beach profiles with 
several slopes at the coastline (case C in section 5), we found 
a continuous transition from instability curves with a sec- 
ondary maximum to the smooth ones for a plane sloping 
beach. The details of the current profile may also signifi- 
cantly influence instability curves. This can be seen in 
Figures 7 and 8, where, for example, going from n = 3 to n 
= 2 inverts the absolute and secondary maxima. This is in 
agreement with results obtained by Dodd et al. [1992] 
(Figure 6), where for very similar current profiles they get a 
quite different pattern. We conclude that these kind of kinks 
and humps in the instability curves are probably due to the 
flatness of the bottom near the peak and at the backshear of 
the mean flow profile but also have a great sensitivity to the 
actual flow profile in this area. 

Quite linear dispersion relations similar to that obtained by 
BH and that observed by Oltman-Shay et al. [1989] are 
found. However, as in the numerical simulations mentioned 
above, the dispersion curves have a (0, 0) intercept, in 
contrast to the experimental ones. As was pointed out by 
Dodd et al. [1992], this difference appears to be an artifact of 
the experimental data analysis (finite frequency bin width). 
Concerning the phase speed of the waves, we found a phase 
velocity of about 0.5 to 0.7 times the mean longshore current 
peak, which was larger than values determined by BH, 
giving rise to 0.3Vma x for a piecewise linear shear flow 
similar to our smooth profile. According to the phase speed 
larger than that in BH, we also obtain larger frequencies for 
the fastest growing mode f, that is, about 0.08 to 0.1 times rs. 
The possible phase speeds of neutral shear waves were 
analytically shown to be given by the velocity of the mean 
flow at the cross-shore locations where the potential vortic- 
ity has some extremum. Although this statement is valid 
only for neutral waves, for the cases under study we found 
that the phase speed of growing modes is not far from this 
value, with the result that this velocity gives rise to an 
estimate of the phase velocity of growing shear waves. The 
estimated velocity exceeds the phase speed of the fastest 
growing mode by 13% for a plane sloping beach and by 30% 
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for the barred beach considered. Dissipation does not have a 
great influence on the frequencies and the phase speed. We 
found a small decrease of less than 9% in the phase speeds of 
growing modes. 

Field data reported by Oltman-Shay et al. [1989, Table 1] 
show phase speeds of between 0.71 and 0.80 times the mean 
current at the trough of the longshore bar. If the actual 
current profile were like that shown in Figure 1, we might 
expect the velocity at this location to be about 0.7Vma x. 
Hence we can consider experimental data to exhibit a phase 
speed of 0.51 to 0.58 times the mean current peak, whereas 
our numerical simulation for the true beach topography gives 
0.55Vma x. Very similar results were obtained by Putrevu 
and $vendsen [ 1992] in their numerical simulation (0.5 to 0.6 
times Vmax). Nevertheless, a more accurate current profile 
modeling [Dodd et al., 1992] gives rise to a higher ratio 
between the velocity at the trough of the bar and the current 
peak. So, higher cr/Vma x ratios (between 0.6 and 0.9) are 
obtained. Numerical simulation by these authors gave rise to 
ratios of 0.6 to 0.8. In summary, according to the current and 
beach profiles chosen for the numerical simulation, there is a 
great deal of variability of cr/Vmax, between 0.5 and 0.8. On 
the other hand, field observation does not give accurate 
ratios because of the large error bars in the current profile 
and in Vma x. So, giving an accurate prediction of Cr/Vmax is 
very difficult. 

Finally, the classical energy analysis of the Drazin and 
Reid [1981, p. 142] semicircle theorem has been extended to 
allow for a free upper surface. By this method we could not 
obtain a semicircle bound on c but only the Rayleigh 
condition Vmi n < c r • Vma x when c i • O. Nevertheless, by 
numerical simulation we could not find any counterexample 
against the semicircle bound either. 
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