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UNIVERSITAT POLITÈCNICA DE CATALUNYA

DEPARTAMENT DE FÍSICA APLICADA

November 2014



c© 2014 Jose Manuel Lopez Alonso
ALL RIGHTS RESERVED



3



NUMERICAL MODELING OF SIMPLE LABORATORY EXPERIMENTS OF
ROTATING FLOWS
Jose M. Lopez, Ph.D.
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Despite the large amount of research which has been conducted on turbulent flows, a
full understanding of their dynamics as well as the mechanisms involved in the onset
of turbulence is still missing. Experimental studies of transition to turbulence are gen-
erally carried out in setups with simple geometries which allow isolating the physical
mechanisms underlying the dynamics. However, in spite of the simplicity of the models,
the problem is extremely complex and it is difficult to reach definitive conclusions on
many of the observed dynamical features. Since a few decades ago numerical simulations
complement laboratory experiments, significantly accelerating the scientific progress and
improving the quality of investigations. In order to compare experimental and numerical
results, it is essential to carry out a calibration process in which the possible discrepan-
cies are identified and adjustments (typically modifications in the numerical formulation
of the problem) are made in order to minimize them as far as possible.
The results of this thesis are primarily intended as an aid in the calibration process
of rotating flows in presence of a temperature gradient, which are of great interest in
multiple industrial, geophysical and astrophysical applications. Numerical simulations of
the flow enclosed in rotating cylindrical and annular cavities subjected to either a vertical
or horizontal temperature gradient (rotating Rayleigh–Bénard convection and laterally
heated Taylor–Couette flows) have been performed. Several techniques of numerical
analysis such as direct simulation of the governing equations, linear stability analysis,
continuation methods or time–series analysis have been used for the completion of the
thesis.
Three sources of discrepancies between experimental and numerical results have been
investigated. First, we show a detailed study of how symmetry-breaking due to experi-
mental imperfections may modify the dynamics of the idealized systems used in numer-
ical simulations. An example in rotating Rayleigh–Bénard convection is illustrated in
which simulations only capture the experimental behavior when this symmetry-breaking
is introduced in the formulation of the problem, i.e. through the boundary conditions.
Second, we consider the influence of centrifugal effects which are often neglected in
theoretical and numerical studies of rotating flows. This may result in substantial dif-
ferences with experimental results in those ranges of parameters in which centrifugal
buoyancy plays a significant dynamical role. To this extent, we provide a straightfor-
ward Boussinesq-type approximation which allows for considering centrifugal effects in
an inertial reference frame, including secondary effects stemming from differential rota-
tion or strong internal vorticity, which had not been previously considered in any other
formulation. Third, the influence of axial end walls in the dynamics of simple models
for the study of baroclinic flows is discussed. The objective of this study is to identify
the degree to which simulations in axially periodic systems, with a lower computational
cost, can be used to reproduce experimental results. A strong stabilizing effect, which
increases significantly at high temperature differences between the cylinders, results from
the boundary layers and cause large discrepancies with the onset of instability in the case
of axially periodic boundary conditions. Finally, a numerical study of a recently reported
experimental bifurcation scenario in isothermal Taylor–Couette flow is also presented.



We focus on the dynamics of flow patterns characterized by large amplitude oscillations
that are localized only in some vortex-pairs. In this case, experimental and numerical
results are in full agreement.
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CHAPTER 1

INTRODUCTION

1.1 Rotating flows

Before going into detail with mathematical intricacies and physical interpretations, it is

convenient to lead the reader into the subject matter of the thesis: the rotating flows.

To this extent, this chapter begins with a brief overview which highlights the main

applications of the theory of rotating flows in various scientific fields, spanning from

engineering to geophysical and astrophysical flows.

Rotating flows are found in a wide range of industrial applications, such as pump and

compressor impellers, gas turbines engines, rotating heat exchangers, rotational viscome-

ters, cyclone separators, brakes, gears or computer storage devices (see e.g. Shepherd

(1956); Childs (2011); Rhodes (1998); Lappa (2012)). The understanding of the dy-

namics is essential to ensure the proper design, maintenance and performance of these

industrial appliances. Let us see a couple of examples.

In figure 1.1 the schematic of the simplest case of a cyclonic particles separator is illus-

trated. In such devices a gaseous stream is separated from solid particles or fine droplets

of liquid. The fluid mixture enters the container (cyclone) through the inlet at the top

and results in swirling motion. The denser (heavier) particles are then centrifuged radi-

ally outward, and collide with the wall, falling for gravity towards the bottom end of the

container where they are removed. By contrast, the lighter clean gaseous stream rises

and exits the cyclone through the outlet at the top. As the flow goes downward the

conic section reduces and the rotational speed increases, allowing for a better efficiency

in removing particles of smaller sizes. Cyclonic separators often incorporate a secondary

air flow which directs particles towards the collector bin, thus making particles collec-

tion more efficient and improving abrasion resistance. Practical applications of cyclonic

separators include elimination of pollutants in manufacturing plants, gas-liquid separa-

tion in oil refineries, kitchen ventilation or vacuum cleaners (see Rhodes (1998) for an

extensive treatment of the subject).

In figure 1.2 a schematic drawing of a gas turbine engine is shown. This device is widely

used as a propulsion system for aircraft, ships and trains, as well as in power generation

plants. The air stream is accelerated by the rotating blades of the compressor so that

the pressure increases and the air volume reduces. High-pressure air passes through a

combustion chamber where fuel is added, and the mixture ignites at a constant pressure.
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Figure 1.1: Schematic of a simple cyclone separator. Courtesy of C. Barnett.

Figure 1.2: Schematic of a gas turbine engine. Courtesy of Houghton Mifflin Harcourt
Publishing Company.

The high speed gases resulting from the combustion spin the turbine, turning the kinetic

energy of the gaseous stream into mechanical energy in the form of shaft power. One

of the major concerns for designers of gas turbine engines is the cooling of the rotating

turbine. In turbines the flow expands through alternating rotating and stationary discs,

which form small cylindrical cavities between them. Impurities may accumulate in these

cavities, resulting in performance deterioration and limiting the lifetime of the turbine.

This problem is mitigated through the injection of cool air which cleans the cavity.

However, this lowers the cavity temperature and obstructs the access of gas, hence the

turbine performance is significantly reduced. Understanding the turbulent dynamics of

the flow in these cavities in order to optimize this process is an example of a very active

field of research on industrial rotating flows (Launder et al., 2010).

2



Figure 1.3: Image of a low-pressure system over the southwestern coast of Iceland taken
by the Aqua MODIS instrument on September 4, 2003. Courtesy of NASA.

Geophysical fluid dynamics is one of the main application areas of the theory of rotating

flows. The large scale flows of the Earth are dominated by the influence of planetary

rotation which, along with buoyancy effects due to solar heating, leads to the occurrence

of a wide variety of natural phenomena, such as atmospheric cyclones or anticyclones,

mesoscale eddies in ocean currents or tsunamis (Pedlosky, 1982; Vallis, 2006). It also

applies to the study of the complex atmospheres of the giant planets in the solar system,

such as Jupiter, Saturn or Neptune (Sanchez-Lavega, 2011).

Figure 1.3 is a photograph of a cyclone formed in the mid-latitudes of the atmosphere.

This type of cyclones, which are refer to as extra-tropical cyclones, generally arise as a

result of baroclinic instabilities, and play an essential role in the weather variability. It

is for this reason that they are the research focus of numerous investigatory teams in the

realm of geophysical flows (see e.g. chapter 10 in Ackerman & Knox (2003) for further

information about extra-tropical cyclones).

In figure 1.4 two mesoscale eddies in an oceanic current are illustrated. The size of

oceanic mesoscale eddies ranges from a few kilometers up to hundreds of kilometers.

They occur as a consequence of multiple physical mechanisms, ranging from the interac-

tion between the current and obstacles such as islands or headlands along the coastline,

to instabilities stemming from strong horizontal shear motions or baroclinicity (Collins,

2004). Mesoscale eddies are responsible for the transport of heat and salt around the

ocean, and thus are believed to play a relevant role in the climate change (Collins, 2004;

Boning et al., 2008; Farneti et al., 2010). They are a relatively recent finding (early

1960’s) and, despite significant progress is being made, there are still many questions to

3



Figure 1.4: Radar image taken by the Shuttle Imaging Radar-C showing two large ocean
eddies next to sea ice in the Weddell Sea, Antarctica, on October 5, 1994. Courtesy of
NASA.

be answered about the generation mechanisms of these oceanic structures and their role

in the general circulation (we refer to Siedler et al. (2013) for an extensive review on

oceanic circulation).

Finally, attention should also be drawn to rotating flows in an astrophysical context

(see Tassoul (2000) for extensive information). The figure 1.5 illustrates an accretion disk

around a black hole. Accretion disks are considered as the precursors for the formation

of planetary systems. They are composed by a mass of heterogeneous gases (around a

99% of the disk) and solid particles of different sizes (from millimeters to kilometers) and

appear surrounding massive celestial objects such as black holes or stars in the universe.

As the flow of gases becomes turbulent, angular momentum is transferred outward so

that matter flows towards the inner disk layers where accretes onto the central object as a

result of gravitational attraction. Although the assumption of turbulence as the element

needed to enhance the accretion process is unquestioned, the mechanisms responsible

for it are still unclear. This subject, which has generated substantial controversy in

recent years (Balbus, 2011), remains one of the biggest challenges for astrophysicists

and fluid dynamicists in our days (Klahr et al., 1999; Balbus, 2003; Avila, 2012; Klahr

& Bodenheimer, 2003; Lesur & Papaloizou, 2010; Paoletti & Lathrop, 2011; Petersen

et al., 2007).
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Figure 1.5: Illustration of an accretion disk surrounding a black hole, taken from Drake
(2009).

1.2 Transition to turbulence

The study of rotating flows carried out in this thesis primarily focuses on the transition

from the laminar to the turbulent regime. Hence, an introductory chapter cannot fail

to include a few lines concerning the most relevant concepts on this subject.

The process of transition to turbulence consists of a series of bifurcations taking place

as a certain control parameter is varied, which involves the transition from the basic or

laminar flow to a turbulent state in which the fluid exhibits complex and chaotic be-

havior. This problem was first formulated in a formal way by Osborne Reynolds (1883),

who investigated the laminar-turbulent transition of water in circular pipe. Despite the

time elapsed and the significant amount of work that has been done, it is still one of the

most important unsolved problems of classical physics.

A distinction must be made between the two possible bifurcation scenarios that may

occur: supercritical and subcritical transitions. In a supercritical scenario, the base

flow becomes unstable through infinitesimal disturbances which grow exponentially after

the control parameter surpasses a certain critical value. Further increasing the control

parameter, the flow undergoes a finite sequence of bifurcations towards more complex

spatio-temporal states, which eventually ends up with the appearance of fully developed

turbulence. This is the usual bifurcation scenario in Taylor–Couette flows (Golubitsky

& Stewart, 1986) and will be discussed in detail in subsequent chapters. In contrast,

in a subcritical scenario, the basic flow is linearly stable and becomes unstable through

non-linear instabilities that occur due to finite amplitude disturbances. A subcritical

bifurcation scenario is typical of shear flows such as plane Couette flow, Poiseuille flow

or pipe flow (Eckhardt et al., 2007; Romanov, 1973; Nishioka & Asai, 1985). It will be
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Figure 1.6: Schematic of the experimental setups considered in this thesis. (a) Cylin-
drical cavity used to study rotating Rayleigh-Bénard convection. (b) Taylor–Couette
system.

addressed in chapter 3 in the case of rotating Rayleigh-Bénard convection.

The intermediate flow patterns that occur between the laminar and turbulent states in a

supercritical scenario are often due to symmetry-breaking bifurcations, so their features

are closely linked to the recipient or environment in which the fluid is contained. The

dynamical systems theory provides a symmetry-based approach to study bifurcations

and pattern formation in fluids. Thus, experiments on canonical flows are not only used

as simple models of complex real flows, but also as a testbed for ideas of the dynamical

systems theory which allow further development of the hydrodynamic instability theory.

1.3 Simple models of rotating flows

The laminar-turbulent transition is an extremely complex problem and its study re-

quires of simple models capable of capturing the relevant physics of the real flows to be

investigated. For this reason, experiments on rotating fluids are typically performed in

cylindrical and annular cavities, which are easily realizable in the laboratory and allow

for a straightforward spatial discretization when a numerical approach is accomplished.

In particular, the research conducted in this thesis is based upon the experimental setups

schematized in figure 1.6.

Figure 1.6 (a) shows a conventional experimental facility for the study of rotating
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Rayleigh-Bénard convection. The fluid is confined to a vertical cylinder of radius R

and height H which rotates uniformly at constant angular velocity Ω. The bottom lid

is maintained at a higher temperature than the top lid, resulting in axial motion due to

thermal buoyancy effects. Early studies on rotating Rayleigh-Bénard convection were

done by Veronis (1959) and Chandrasekhar (1961), who theoretically investigated the

onset of instability in a simple model consisting of an infinite horizontal layer of fluid

heated from below. The first laboratory experiments using the setup illustrated in fig-

ure 1.6 (a) were carried out by Rossby (1969). He found that, when the fluid is enclosed

in a finite geometry, the onset of instability occurs at substantially lower values of the

vertical temperature difference than those predicted by the linear stability analysis in

a horizontally unbounded domain. Subsequent experiments attributed the discrepan-

cies to the emergence of alternating cold and warm fluid cells localized on the sidewall

boundary layer, which were called wall convection modes (Zhong et al., 1991, 1993; Ning

& Ecke, 1993). By simplicity, the influence of centrifugal buoyancy was neglected in all

theoretical and numerical studies, and the experiments were designed to minimize cen-

trifugal effects in relation to buoyancy effects. Nevertheless, considering the effect of

centrifugal buoyancy is an essential ingredient for the study of rotating fluids. When

the centrifugal term is included in the governing equations, the basic state is not trivial,

but consists of a large-scale circulation in which cold denser fluid is centrifuged towards

the sidewall, and warm lighter fluid is centrifuged towards the cylinder axis (Homsy &

Hudson, 1969; Hart, 2000). The stability of this basic state was first studied by Homsy

& Hudson (1971) for axisymmetric disturbances in the asymptotic limit of infinite Cori-

olis force, and subsequently extended to finite values of Coriolis and non-axisymmetric

instability modes by Marques et al. (2007). The non-linear dynamics stemming from the

interplay between centrifugal and gravitational forces (keeping the Coriolis force fixed)

was reported by Lopez & Marques (2009); Lopez et al. (2006). They found that cen-

trifugal effects play a significant stabilizing role which leads to the axisymmetrization of

the flow.

In figure 1.6 (b) a Taylor-Couette apparatus is depicted. The fluid is constrained to

the gap between two vertical and concentric cylinders of height h and radii ro and ri,

which may rotate independently with angular velocities Ωo and Ωi. This setup was in-

troduced by Couette (1888) to determine the fluid’s viscosity from measurements of the

torque applied to the cylinders. Taylor (1923) first addressed the stability of the flow

contained in that system. He established the onset of instability both theoretically and

experimentally, showing an excellent agreement between both results. After this pio-

neering work, there has been a vast amount of studies focused on this geometry, turning

7



Taylor–Couette flow in a paradigm for the study of instabilities in fluids and non-linear

dynamics in general. The simplest case, which has probably received more attention, is

that with the inner cylinder rotating and the outer cylinder at rest. Here, the control

parameter used to delimit the different flow regimes is the inner cylinder Reynolds num-

ber, Rei = Ωirid
ν

, where d denotes the gap size d = ro− ri and ν stands for the kinematic

viscosity of the fluid. In the case of infinite long cylinders the base flow consists in a

purely azimuthal velocity profile, known as circular Couette flow CCF, which remains

stable for low values of Rei. The presence of axial end walls in finite systems introduces

radial and axial velocities in the base state, nevertheless, if the apparatus is sufficiently

tall, the finite-length effects are confined near the lids and barely modify the CCF. As

Rei is increased, the base flow becomes unstable and results in pairs of axisymmetric

counter rotating toroidal vortices, the so-called Taylor vortices TVF (Taylor, 1923). For

the infinite cylinders idealization, these vortical structures occur due to a centrifugal

instability at a precise critical value ReTV F . In contrast, in systems of finite length they

emerge smoothly from the end walls at Rei ≈ ReTV F (Benjamin, 1978; Coles, 1965;

Alziary de Roquefort & Grillaud, 1978). Various steady TVF states, with a different

number of vortices N or changes in the sense of rotation, may coexist for the same

values of Rei (Benjamin & Mullin, 1982). Further increasing Rei, the TVF undergoes a

sequence of secondary instabilities which eventually leads the flow to a turbulent regime.

The flow exhibits a very rich and complex dynamics along this transition which strongly

depends on the geometric parameters of the system: the ratio between the radii of the

inner (ri) and outer (ro) cylinders (η = ri
ro

) and the length-to-gap aspect ratio (Γ = h
d
).

Although varying η and Γ results in a vast variety of bifurcation scenarios and therefore

it is not possible to establish a general sequence of flow transitions, the so-called Ruelle-

Takens scenario is usually considered as a standard route to spatio-temporal chaos in

TCF (Golubitsky & Stewart, 1986). According to the Ruelle-Takens scenario, when Rei

is increased above a certain critical value ReWV F , the azimuthal symmetry of the TVF

is broken via a Hopf bifurcation, giving rise to rotating waves that preserve a discrete

rotational invariance under rotations of angle 2π
n

, where n is the azimuthal wavenum-

ber. The transition towards these flows, commonly known as wavy vortex flow WVF,

depends on the number of vortices of TVF and has been extensively studied both ex-

perimentally (Coles, 1965; Mullin, 1985; King & Swinney, 1983; Andereck et al., 1986)

and numerically (Jones, 1985; Marcus, 1984). Subsequently increasing Rei a new Hopf

bifurcation occurs at ReMWV F . The resulting quasi-periodic flow is referred to as mod-

ulated wavy vortex flow MWVF (Coughlin & Marcus, 1992; Gorman & Swinney, 1982).

Finally, as increasing Rei from the MWVF regime, the flow begins to lose its spatio-

temporal structure and becomes chaotic (Brandstater & Swinney, 1987). The curvature
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of the system, given by η, significantly affects the values at which these transitions occur.

There exist simple analytical expressions to obtain the critical ReTV F as a function of

η (Esser & Grossmann, 1996). DiPrima et al. (1984) collected data from the transition

to WVF in different experiments and concluded that the onset of WVF is stabilized as

the system approaches the limit η → 1. The number of studies regarding MWVF is not

as plentiful as for the preceding flows, thus it is not easy to draw relevant conclusions

on the influence of η. Nevertheless, it is quite common to find qualitatively different

behaviors in systems with wide (η < 0.78) and narrow (η > 0.78) gaps. The role of

Γ is particularly significant, since it does not only affect the critical conditions for the

transitions, but also the global dynamical behavior. Whereas in apparatuses with small

Γ the dynamics is entirely dominated by the interaction between flow and end walls,

in systems with moderate or large Γ the end effects are mitigated, and the dynamics

results from the competition between the different flow states that coexist in parameter

space (Dutcher & Muller, 2009).

When a radial temperature gradient is included, a Taylor–Couette system is a suitable

model for some of the geophysical, astrophysical and industrial flows described in sec-

tion 1.1. For example, a baroclinic environment in an atmospheric context, in which a

cold air mass originating in high latitudes is trapped into a warmer equatorial air mass,

can be approximated in the laboratory when the outer cylinder is maintained at a higher

temperature than the inner cylinder and both cylinders rotate at a constant angular ve-

locity, which accounts for the planetary rotation (see e.g. Hide (1958)). In contrast, in

the context of accretion disks, since the inner layers (often near stars) are considerably

hotter than the outer layers, the inner cylinder is set to a higher temperature than the

outer cylinder. Both cylinders rotate with different angular velocities following a quasi-

Keplerian profile, in which the angular velocity decreases and the angular momentum

increases radially outward (Petersen et al., 2007). Taylor–Couette flows with a radial

temperature gradient are widely discussed in chapters 4 and 5.

1.4 Laboratory experiments against numerical simulations

At this point, the reader may wonder whether there is any need to perform numerical

simulations of models that have been specifically conceived to be implemented in the

laboratory. A numerical analyst would surely argue that numerical simulations need a

considerable minor economic cost, and at the same time, offer a high degree of flexi-

bility; they allow for performing multiple simultaneous experiments, rapid modification
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of boundary and initial conditions, easy access to quantitative data at any point of

the fluid domain, isolating the effect of a certain physical mechanism by switching off

some terms in the governing equations and remove the restrictions for selecting the in-

put parameters existing in laboratory experiments. In response to these arguments,

an experimentalist would say that a numerical simulation is based on a mathematical

approximation of the physical reality, and as such, its validity can only be confirmed

after its results are satisfactorily tested against those in a real experiment. Furthermore,

numerical simulations are extremely limited by hardware restrictions and the scalability

of the algorithms, so they usually operate in a smaller parameter range than laboratory

experiments. Ultimately, it might be objected that there exist diverse possible causes of

error such as programming mistakes, compiler failures, insufficient spatial resolution or

problems related to numerical methods, which may lead to misleading results.

Nevertheless, on the basis of the preceding reasoning, it is not difficult to realize that

numerical simulations and experiments are complementary activities which mutually

benefit one another. Numerical simulations in simple laboratory models may suggest

new measurements or experiments and set the bounds of the parameter range where

experiments are going to be performed. They allow to explore in greater detail the areas

of the parameter space where changes in the dynamics are observed, facilitating the

understanding of the underlying physical mechanisms as well as the sort of bifurcations

taking place. Most importantly, the comparison between simulations and experiments

is essential to detect possible deficiencies either in experimental facilities or numerical

codes, which may significantly alter the results of the investigation. Improving this mu-

tual calibration process is the primary objective of this thesis. In particular, simulations

have mainly focused on identifying potential sources of discrepancies between numerical

and laboratory experiments in the particular case of rotating fluids in presence of tem-

perature gradients. Let us briefly summarize the topics to be developed in subsequent

chapters.

Experimental imperfections result in imperfect symmetries which often modify the dy-

namical behavior of the idealized systems employed in numerical simulations. In SO(2)

equivariant systems, such as rotating cylinders or Taylor–Couette flows, imperfect sym-

metries manifest in the emergence of the so-called pinning region, in which rotating

waves with precession frequency near zero are stopped by the imperfections and turn

into steady states (Abshagen et al., 2008). Numerical simulations are unable to capture

the pinning region unless additional changes in the boundary conditions, modeling the

effect of imperfections, are introduced (Pacheco et al., 2011). This subject is addressed

in chapter 3. An analysis of the symmetry-breaking of the normal form associated
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with a Hopf bifurcation of zero frequency is presented. It is shown that the pinning

region results from the breaking of the rotational invariance as a consequence of the

imperfections. This phenomenon is illustrated in the case of rotating Rayleigh-Bénard

convection, where the SO(2) symmetry of the system is broken by imposing a linear

temperature profile at the top lid. It is worth noting that, unlike other pinning regions

in fluid dynamics problems, this occurs in a region of the parameter space where the

bifurcations are subcritical.

In some cases discrepancies between experiments and numerical simulations occur be-

cause the governing equations do not include all physical mechanisms which play signif-

icant dynamical roles. A typical example in rotating systems is the absence of the cen-

trifugal term in the Navier-Stokes equations. Barcilon & Pedlosky (1967) warned about

neglecting the centrifugal buoyancy: “Many theories proceed under the assumption that

the centrifugal force is sufficiently small compared to the gravitational force. . . With this

approximation, the basic stratification is linear and there is no resulting relative mo-

tion. Nevertheless, in any experiment some effect of the centrifugal force will be felt,

and for rapidly rotating fluids the effect may not be negligible.” In fact, they included

the centrifugal term in their analysis. The reasons for not including this term are clear:

without centrifugal buoyancy the base state is trivial (fluid at rest), and the domain

can be considered horizontally periodic, allowing the use of standard analytical tools

and low-dimensional models in infinite domains. Including the centrifugal term makes

some treatments more difficult: the base state is not trivial and exhibits a centrifugally-

driven large-scale circulation that is not amenable to an explicit closed form. Moreover,

the centrifugal buoyancy depends explicitly on the radial coordinate, and this invali-

dates any horizontal periodicity assumption. The parameter which measures the rela-

tive strength between centrifugal and gravitational buoyancy is the rotational Froude

number, F = Ω2L/g, where Ω is the angular velocity, L is a characteristic dimension of

the container and g is the acceleration due to gravity. There have been many studies on

rotating convection neglecting centrifugal buoyancy, and the results are very often satis-

factory and in good agreement with experiments. If the Froude number is small, it seems

reasonable to neglect centrifugal buoyancy, and in fact many experiments have been de-

signed and conducted so that the Froude number is very small. However, the centrifugal

buoyancy is the only force acting in radial direction, so it is always the dominant force in

this direction. The gravitational buoyancy acts orthogonally, in the axial direction, and

so comparing their relative magnitudes (using F for example) is not necessarily a good

criterion for determining if one dominates over the other (Barcilon & Pedlosky, 1967;

Homsy & Hudson, 1969; Hart, 2000; Rubio et al., 2009). From the numerical simulation
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point of view, the inclusion of the centrifugal buoyancy term requires a minimal effort,

both in code preparation and execution. For these reasons, the centrifugal term should

always be included in the simulations (Randriamampianina et al., 2006), and whether

it is dynamically significant or not should be determined a posteriori.

The manner in which centrifugal effects are incorporated into the governing equations

requires special consideration. Flows with small density variations are customarily ap-

proximated as incompressible whilst retaining the leading order effects due to the density

variations, thus avoiding issues associated with acoustic waves. The classical approach

is the Boussinesq approximation which was originally motivated by the desire to account

for gravitational buoyancy effects. Nevertheless, in commonly used formulations of the

Boussinesq approximation centrifugal buoyancy effects related to differential rotation,

as well as strong vortices in the flow, are neglected. These may play an important

role in rapidly rotating flows, such as in astrophysical and geophysical applications, and

also in turbulent convection. In chapter 4 a straightforward approach resulting in a

Boussinesq-type approximation that consistently accounts for centrifugal effects is pro-

vided. Its application to the accretion-disk problem is discussed. The new approach is

numerically compared to the typical one in fluid flows confined between two differen-

tially heated and rotating cylinders. The results justify the need of using the proposed

approximation in rapidly rotating flows.

Laboratory experiments are usually designed to work in parameter ranges as close as

possible to the real context they seek to approximate. Thus, experimental results can

be extrapolated to the real flow with some degree of success. Yet, economic and tech-

nological limitations sometimes prevent the experiments from functioning in the desired

ranges. For example, although experiments on accretion disks operate with very high

rotational speeds Re ∼ O(106), in real accretion disks Re ∼ O(1012) are expected (Pao-

letti & Lathrop, 2011; Ji et al., 2006), thus the results must be carefully interpreted and

extrapolated. This problem becomes worse in numerical simulations where it is often

impossible to reproduce the full operating range of a laboratory experiment. An accu-

rate numerical computation of the boundary layers, which in rotating fluids are refer to

as Ekman and Stewartson layers, involves a substantial increase in computational cost

as the values of the control parameters are increased. The assumption of axial period-

icity provides a way to reduce the computational needs and simulate higher and more

significant values of the control parameters. In doing so, the Ekman layers that form

at the axial end walls completely disappear, and the Stewartson layers at the lateral

boundaries merge with the base flow. Moreover, under this assumption variables can be

expanded as a Fourier series in axial direction, which greatly simplifies the numerical
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approach, allowing for faster and more efficient solvers. Nevertheless, boundary layers

play a crucial dynamical role in many fluid systems (Avila et al., 2008). It is therefore

essential to identify how the boundary layers can modify the dynamics of axially periodic

systems before comparisons with real experiments are established.

Such analysis is considered in chapter 5 for the case of a laterally heated differentially

rotating annulus, which is a canonical experiment for the study of baroclinic flows and

heat transfer in engineering. The onset of instabilities and turbulence in such flows

by using both periodic and physical no-slip boundary conditions in the axial direction

are investigated. It is shown that geometry and axial end walls play a key role in

determining the dynamics of baroclinic flows and the mechanisms of heat transfer. First,

a setup with rotating inner cylinder and fixed outer cylinder, which is a simple model

for cooling of rotating machinery, has been considered. If the lateral heating is small the

dynamics with periodic and no-slip boundary conditions is very similar. However, as the

temperature gradient increases there is in the latter a significant stabilizing effect due to

the combination of frictional effects and stable vertical stratification resulting from the

Ekman boundary layers. Second, a setup with cylinders and end walls rotating at the

same angular speed, which is a simple model for atmospheric flows, is presented. Here

even the laminar flow is significantly altered by the axial end walls and the mechanisms

of transition are entirely different when periodic boundary conditions are used.

Unlike previous chapters simulations presented in chapter 6 do not focus on the compar-

ison between numerical simulations and experiments, but are intended to complement

the results of a series of laboratory experiments (Abshagen et al., 2012; von Stamm

et al., 1996; Gerdts et al., 1994). The flow is confined in a wide gap (η = 0.5) isothermal

Taylor–Couette system, with a rotating inner cylinder and length-to-gap aspect ratio

restricted to 0.86 < Γ
N
< 0.95, being N the total number of vortices. For these values

a complex experimental bifurcation scenario, differing from the classical Ruelle-Takens

route to chaos, has been reported. The wavy vortex flow becomes quasi-periodic due to

an axisymmetric mode that occurs at a very low frequency. This mode plays a key role

in the dynamics of the system, leading to the occurrence of chaos via a period-doubling

scenario. Further increasing the rotation of the inner cylinder results in the appearance

of a new flow pattern which is characterized by large amplitude oscillations localized in

some of the vortex pairs. The purpose of chapter 6 is to study numerically the dynam-

ics of these axially localized states, paying special attention to the transition to chaos.

Frequency analysis from time series simultaneously recorded at several points has been

applied in order to identify the bifurcations taking place. It has been found that the

very low frequency mode is also essential to explain the behavior associated with the
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transitions either between different axially localized states or to the chaotic regime.

A wide range of mathematical tools such as linear stability analysis, fully non-linear

computations, Newton methods, continuation methods or time-series analysis has been

applied to carry out the aforementioned studies. This, together with the variety of

experimental setups considered along the thesis, has required implementation of several

numerical codes. The governing equations, numerical methods, temporal and spatial

discretizations, paralellization strategies and other relevant features of these numerical

tools are comprehensively described in chapter 2.

Finally, the main results of the thesis, along with some notes about their relevance

concerning future works on rotating fluids, are collected in chapter 7.
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CHAPTER 2

GOVERNING EQUATIONS AND NUMERICAL METHODS

2.1 Introduction

A significant fraction of the time spent to complete this thesis has been invested in

designing, implementing and verifying the numerical tools needed to carry out the com-

putations. Some of them are mere extensions of previously existing numerical codes in

order to include the effect of the temperature (those described in 2.3 and 2.4), or mod-

ifications of some subroutines to implement new numerical methods, as is the case of

the continuation code for rotating waves in cylindrical cavities exposed in 2.6. In these

cases, we do not provide an extensive description of the code, but briefly mention the

numerical method utilized and highlight the novelties introduced. The reader is referred

to the literature of the original code for a comprehensive overview. In this chapter we

pay special attention to the parallel code implemented to solve three dimensional flow

in a finite annular cavity which, in contrast to the other numerical tools, has been fully

developed during this thesis, and is responsible for a substantial amount of the results

shown in subsequent chapters. Section 2.2 offers a detailed description of the spatial

and temporal discretizations, numerical methods and parallelization strategy chosen to

implement this numerical tool.

All codes have been written in FORTRAN, either 90 or 77, and due to the simplicity of

the geometries considered (see figure 1.6), we use in all cases pseudo-spectral methods

that allow us for a fast convergence with excellent error properties. We only study the

dynamics of incompressible fluids so that the equation ∇·v = 0, where v is the velocity

vector, is satisfied in all cases. The rest of governing equations only differ between codes

considering cylindrical and annular cavities, since different reference frames and nondi-

mensionalization have been used. The boundary conditions vary among the different

systems studied in each chapter and are conveniently specified in each case.

2.2 Solver for the three-dimensional flow in a finite annular

cavity with a radial temperature gradient.

This code solves the Navier-Stokes equations in primitive variables for the flow enclosed

in a finite annular domain, including the influence of the thermal gradient caused by the
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temperature difference between the inner and outer walls.

2.2.1 Governing equations

We consider an incompressible fluid of kinematic viscosity ν and density ρ confined

between two concentric cylinders of length h and inner and outer radii ri and ro. A

thermal gradient in radial direction is set due to the temperature difference between

the cylinders ∆T . The system is non-dimensionalized using the gap width, d = ro − ri,
as the length scale, the viscous time, d2/ν, as the time scale, ∆T as the temperature

scale and (ν/d)2 as the pressure scale. The Boussinesq approximation is used to include

the effect of the density variation due to changes in the temperature. However, we do

not use the classical Boussinesq approximation, but a new approach which also includes

the centrifugal effects and will be extensively discussed in chapter 4. The dimensionless

governing equations are

(∂t + v · ∇)v = −∇p+∇2v +GT ẑ + εTv · ∇v, (2.1a)

(∂t + v · ∇)T = σ−1∇2T, (2.1b)

∇ · v = 0, (2.1c)

where v denotes the velocity field vector and T is the deviation of the temperature with

respect to the mean temperature Tc. Cylindrical coordinates (r, θ, z) are used. The

geometry of the container is fixed with the dimensionless geometric parameters

Radius ratio η = ri/ro, (2.2a)

Aspect ratio Γ = h/d (2.2b)

Three additional dimensionless numbers appear:

Grashof number G = αg∆Td3/ν2, (2.3a)

relative density variation ε = α∆T = ∆ρ/ρ0, (2.3b)

Prandtl number σ = ν/κ, (2.3c)

where κ and α are respectively the thermal diffusivity and the coefficient of volume ex-

pansion of the fluid, ∆ρ is the density variation associated with a temperature change of
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∆T and g is the gravity acceleration which is assumed to be uniform and vertical. The

term εTv · ∇v accounts for the centrifugal buoyancy, including secondary effects stem-

ming from differential rotation or strong internal vorticity. For the study of isothermal

flows, as is the case in chapter 6, it is enough to set G and ε to zero and switch off the

equation 2.1b.

The Reynolds number enters the equations through the boundary conditions and it is

typically used as a control parameter.

Re =
Ωrd

ν
, (2.4)

where Ω is the angular velocity of the system at the radial position r.

When the end walls are steady, the boundary conditions are discontinuous at the junction

where the end walls meet the rotating cylinder, (r = ri, z = ±Γ/2). In a physical

experiment there are small but finite gaps at these junctions where the azimuthal velocity

adjusts rapidly to zero. For an accurate use of spectral techniques, a regularization of

these discontinuities is implemented of the form:

v(r, θ,±Γ/2, t) = Re exp
(ri − r

β

)
, (2.5)

where β is a small parameter that mimics the small physical gap (we have used β = 0.01).

The use of β 6= 0 regularizes the otherwise discontinuous boundary conditions; see Lopez

& Shen (1998) for further details on the use of this technique in spectral codes.

2.2.2 Numerical formulation

Spatial discretization

The spatial discretization of the set of equations in 2.1 is accomplished via a Galerkin-

Fourier expansion in θ and Chebyshev collocation in r and z

ri =
1

2

(
cos(iπ/L) + ri + ro

)
, i = 0, · · · , L zj =

h

2
cos(jπ/N), j = 0, · · · , N. (2.6)

so that the variables of the problem are expressed as

17



(u,w, p, T )(r, θ, z) =
L∑
l=0

N∑
n=0

M∑
m=−M

al,n,mTl(r)Tn(z)eimθ =
M∑

M=−M

Fm(r, z)eimθ

(2.7a)

v(r, θ, z) = i
L∑
l=0

N∑
n=0

M∑
m=−M

al,n,mTl(r)Tn(z)eimθ = i

M∑
M=−M

Fm(r, z)eimθ (2.7b)

where L and N denote respectively the number of collocation points in the radial and

axial directions and M stands for the number of Fourier modes. The different choice of

v allows to decompose each equation in (2.1) into two independent equations, containing

the real and imaginary parts of the complex functions Fm(r, z). Therefore, a system of

Poisson and Helmholtz equations results for each Fourier mode, being the total number of

equations to be solvedM×2×4. The Helmholtz equations for u and v are then decoupled,

according to Orszag & Patera (1983), by inserting the new variables u+ = u + iv and

u− = u−iv. Note that due to this decomposition, the boundary conditions for the radial

and azimuthal velocities must be of the same type. The resulting system of equations is

efficiently solved by using a complete diagonalization of the operators in both the radial

and axial directions. This technique, which was first described by Zhao & Yedlin (1994),

requires the previous computation of the eigenvalues and eigenvectors of these matrices,

which is performed as a preprocessing step before the integration begins.

Temporal scheme

The governing equations are advanced in time via a second-order time-splitting method (Hughes

& Randriamampianina, 1998; Mercader et al., 2010) that results in the following tem-

poral scheme

3vi+1 − 4vi + vi−1

2∆t
+ 2N i

L(v)−N i−1
L (v) = −∇pi+1 + ∆vi+1 +GT i+1êz, (2.8a)

3T i+1 − 4T i + T i−1

2∆t
+ 2N i

L(T,v)−N i−1
L (T,v) = σ−1∆T i+1 (2.8b)

where ∆t denotes the time step and NL refers to the non-linear terms. This is a semi-

implicit method, with NL being treated explicitly, whereas the laplacian operator ∆ and

the rest of linear terms are considered implicitly. The fractional steps carried out at

each iteration are listed below

1. Solve the system of Helmholtz equations resulting from (2.1b) to obtain T i+1

σ−1(∇2 − 3

2∆T
)T i+1 = 2N i

L(v, T )−N i−1
L (v, T )− 4T i − T i−1

2∆t
(2.9)
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2. Obtain a predictor for the pressure p̂i from the Poisson equation

∂p̂i = ∇ · [−2N i
L(v) +N i−1

L (v) +GT i+1êz] (2.10)

with a consistent Neumann boundary condition obtained from (2.8a)

∂np̂
i|r=ri,o = n · [−3vi+1 + 4vi − vi−1

2∆t
−2N i

L(v)+N i−1
L (v)+GT i+1êz]r=ri,o (2.11)

3. Solve the system of Helmholtz equations resulting from (2.1a) to obtain a predictor

for the velocity field v̂i+1

(∇2 − 3

2∆v
)v̂i+1 = ∇p̂i + 2N i

L(v)−N i−1
L (v)− 4vi − vi−1

2∆t
−GT i+1êz (2.12)

4. The velocity is corrected to ensure the free divergence condition ∇ · vi+1 in all

points of the fluid domain. This is accomplished by means of an intermediate

variable φ = 2∆t
3

(pi+1 − p̂i) which leads to a Poisson equation

∆φ = vi+1 (2.13)

with a homogeneous Neumann boundary condition. After solving (2.13) velocity

and pressure are updated as follows

pi+1 = p̂i +
3φ

2∆T
(2.14a)

vi+1 = v̂i+1 −∇φ (2.14b)

5. The non-linear terms are computed from the values just obtained, vi+1 and T i+1,

and a new iteration starts.

Parallelization strategy

A MPI (Message Passing Interface) parallelization of the code has been accomplished

by distributing the total number of azimuthal nodes nn = 2 ∗M among the number

of processors Np used in each calculation. This arrangement, which is known as slab

decomposition, is possible because the system of equations resulting from the discretiza-

tion is independent for each Fourier mode. In other words, for each variable, v, T and

p, the grid points (nr, nz, nn) = (L + 1, N + 1, 2 ∗M) are divided into Np submatri-

ces of the same size (nr ∗ nz, nn/Np) which are assigned to each processor (see left

hand side of figure 2.1) so that the mathematical operations regarding each subset of
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Figure 2.1: Schematic of the distribution of the grid points (nr, nz, nn) into the Np

processors used in each calculation ( left hand side matrix) and matrix resulting from
the global transposition using MPI ALLtoALL statements (right hand side)

data are carried out independently by the corresponding processor, thus avoiding the

very time consuming communication among processors. Nevertheless, communication

is sometimes useful to improve the efficiency in some parts of the code. This is the

case of the non-linear term calculation, which is performed in physical space through a

pseudospectral technique involving the use of fast Fourier transforms (FFTW) to con-

vert the spectral coefficients into values in physical space. An efficient use of FFTW

requires all azimuthal nodes to be contained in each processor, therefore it is needed to

transpose the global matrix (nr ∗ nz, nn) corresponding to each variable of the prob-

lem, and then distribute it again as submatrices (nn, nr ∗ nz/Np) for each processor,

as shown in the right hand side of figure 2.1. This global matrix transposition, which

would otherwise be a major bottleneck, is efficiently performed by using all-to-all com-

munication among processors. After the non-linear term calculation is complete, the

matrices are transposed back, again using all-to-all communication, to proceed solving

the equations. As a consequence of this methodology, the total number of processors

to be used not only has to be divisible by nn, but also by nr ∗ nz. Since nr ∗ nz is

typically larger than nn in our problems, the maximum number of parallel tasks to be

perform must be ≤ nn. These collective communications restrict the code scalability,

however this is compensated with the gain in efficiency when using FFTW. In order to

check the right performance and scalability of the code we have done a strong scaling

test, consisting in measuring the time spent by the code in 10 iterations of the time

stepper for two different spatial resolutions, (a) (nr, nz, nn) = (106, 512, 256) and (b)

(nr, nz, nn) = (106, 512, 512), as the number of processors is increased. The results of
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this test, which was performed in a HPC (high-performance-computing) platform using

4 nodes with 80 processors each interconnected with Infiniband, are shown in figure 2.2.

The black line (circles) denotes the scaling for the lowest spectral resolution nn = 256,

whereas the red line (squares) represents the case with nn = 512. If the code main-

tained 100% parallel efficiency, the computation time would scale as 1/NP . This ideal

situation is also reflected in figure 2.2 through the green and blue lines for nn = 256

and nn = 512 respectively. Note that a log-log diagram has been chosen to make easier

the comparison between real and ideal behaviors. It is observed an excellent scaling as

long as the number of processors, which in this case is equivalent to the number of MPI

tasks, is less or equal than 80, that is, while only a single machine is used. When Np is

increased above 80, and thus more than one machine come to play, the time consumed in

collective communications becomes much longer than the computation time saved when

reducing the amount of data to be handled for each processor, resulting in a deviation

from the ideal scaling. This is a hardware-related limitation concerning the speed with

which data can be transmitted from one machine to the other, therefore it is expected a

substantial improvement of the scalability in other platforms with a higher bandwidth.

It is also important to note that since tests are not performed over a realistic computa-

tion time, the possible overhead occurring during the course of the run, which might be

a significant part of the real work, is not considered. The parallel efficiency is extremely

dependent on the problem size. Indeed, if we compare the scaling for both resolutions,

a slightly different behavior can be seen in both cases as NP is increased. For nn = 256,

the amount of time consumed in 10 iterations of the numerical integrator progressively

increases with Np. Nevertheless, the shortest time in the case of nn = 512 is obtained

when NP = 256. Despite the scaling is not good (there is a sharp difference with the

ideal scaling and little time is saved with respect to NP = 64), this indicates that as the

spectral resolution increases and consequently the number of equations to be solved by

each processor becomes larger, computation time overtakes communication time as the

biggest bottleneck, resulting in an improvement of the code scalability. The performance

of the code could be significantly improved with the inclusion of OPENMP directives to

parallelize the operations inside each MPI task (Shi et al., 2015). This technique allows

for overlapping calculations and communications tasks, which substantially increase the

code scalability.
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Figure 2.2: Code scalability test. Time spent in 10 iterations of the time stepper vs
number of processors Np.

Validation tests

Multiple tests have been performed to verify the scientific validity of the results. There

exist a large number of numerical studies which consider the isothermal case, so it is

easier to establish a direct comparison with previously reported results in this case.

The first validation was the onset of Taylor vortices for several values of η, obtaining

an excellent agreement with the analytical expression given by Esser & Grossmann

(1996). As a second test, we have satisfactorily reproduced the results in Marques

& Lopez (2006), where the onset of three-dimensional states in a small aspect ratio

(Γ = 1) Taylor–Couette system was numerically investigated. The figure 2.3 illustrates

one of these tests, showing an isosurface of angular momentum for a rotating wave with

azimuthal wavenumber n = 2 at Re = 1200, which was originally shown in figure 9 of

Marques & Lopez (2006). The onset of instability for the experimental setups used in

Maryland and Princeton to carry out the study of quasi-Keplerian flows has also been

computed. The table 2.1 shows these values, which are in agreement with those reported

in Avila (2012). Finally, the results described in chapter 6 can be also considered as

an excellent validation test, since they accurately reproduce the bifurcation scenario

obtained in a series of experiments.

The non-isothermal version of the code has been verified by reproducing the results of

the linear stability analysis in Lewis & Nagata (2004), some of which are shown in table

2.2, as well as some of the flow transitions reported in Kuo & Ball (1997), which will be
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(a) (b)

Figure 2.3: Isosurface of angular momentum rv = 340 for a n = 2 rotating wave at
Re = 1200. This state was reported in Marques & Lopez (2006), see figure 9, and has
been used here to validate the numerical code. (a) Lateral view. (b) Top view.

Validation test (Res) Avila (Res)
Maryland 349 352
Princeton 1146 1448

Table 2.1: Onset of instability (Res, Reynolds shear number) for quasi-Keplerian flow
in the experimental facilities of Maryland and Princeton. Comparison with the results
in Avila (2012).
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discussed in chapter 5.

Ω Validation test (∆T ) Lewis and Nagata (∆T )
0.8 0.371 0.375
1.0 0.355 0.378
0.65 0.403 0.411

Table 2.2: Critical stability values for the onset of instability in a baroclinic annulus. Ω
and ∆T are angular velocity and temperature difference between the cylinders respec-
tively. Comparison with the values reported in Lewis & Nagata (2004). Note that finite
differences of second order are used in Lewis & Nagata (2004), so for the same resolution
there exist small differences between the values obtained in both cases.

2.3 Solver for the three dimensional flow in an infinite annular

cavity with a radial temperature gradient

This solver is an extension of the code written by Shi et al. (2015) to consider the effect

of a radial thermal gradient in an axially periodic Taylor Couette flow. The governing

equations, with the obvious exception of the axial boundary condition, and the temporal

scheme are the same as in 2.2. The main difference between both codes lies in the spatial

discretization. Since the axial and azimuthal directions are periodic, the variables are

expanded in Fourier series along these directions,

(u, v, w, T, p)(r, θ, z) =
L∑

l=−L

N∑
n=−N

al,n(r)einkθθeilkzz, (2.15)

where kθ and kz are respectively the azimuthal and axial wavenumbers. Four-order

central finite differences are used to approximate the radial derivatives, with the radial

nodes distributed as

ri =
1 + η

2(1− η)
+
sin−1(−αcos(πi/M))

2sin−1α
, i = 0, · · · ,M (2.16)

The resulting system of Helmholtz and Poisson equations is composed of banded matrices

which are easily solved using the LU method. The LU decomposition of the operators

is accomplished in a preprocessing stage, so the total number of operations required

to solve the M -dimensional system of equations at each time step is O(M). This is a

significant difference with the solver in 2.2, where the diagonalization technique used

to deal with the equations involves using O(M2) operations in both radial and axial

direction. A hybrid OPENMP-MPI strategy was used to parallelize the code. The MPI
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tasks distribution was performed with a slab decomposition slightly different to that

illustrated in figure 2.1 (see figure 2 in Shi et al. (2015)) . Each MPI task is additionally

parallelized using OPENMP directives, which allows for a considerable increase in the

code scalability. Adding the temperature equation is straightforward and does not pose

any inconvenience to maintain the performance of the code, apart from the subsequent

increase in the execution time, which is about 20% longer than in the original code.

The code has been satisfactorily tested by comparison with the linear stability results

computed with the code described below.

2.4 Linear stability analysis in an axially periodic annular cav-

ity with a radial temperature gradient

The linear stability can be easily infer from the modal kinetic energy in non-linear

calculations, and thus we could use the code described in 2.3 to this effect, nevertheless

the axial periodicity assumption notably simplifies the numerical approach, allowing for

a straightforward resolution of the eigenvalue problem resulting from the linearization

of (2.1). This hugely reduces the computational resources and time required in the

computations, and allows us to reach very large values of the control parameters, which

would otherwise be unachievable. The main aspects of the code implemented to this

end are outlined below.

2.4.1 Basic flow

An analytical solution for the base flow can be found by assuming only radial dependence

for the variables of the problem. We also use the zero axial mass flux condition to fix

the axial pressure gradient, i.e.:∫ ro

ri

rwb(r)dr = 0. (2.17)
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The resulting steady basic flow is given by:

ub(r) = 0, (2.18a)

vb(r) = Ar +
B

r
, (2.18b)

wb(r) = G

(
C(r2 − r2

i ) +
(
C(r2

o − r2
i ) +

1

4
(r2
o − r2)

) ln(r/ri)

ln η

)
, (2.18c)

Tb(r) =
1

2
+

ln(r/ri)

ln η
, (2.18d)

p(r, z) = po +G
(

4C +
1

2
− 1

ln η

)
z +

∫ r

ri

(
1− εTb(r)

)
v2
b (r)

dr

r
, (2.18e)

where (u, v, w) are the radial, azimuthal and axial components of the velocity field,

and cylindrical coordinates (r, θ, z) are being used. vb is the azimuthal velocity for the

classical Taylor–Couette problem (Chandrasekhar, 1961), whereas wb and Tb correspond

to convection in a conductive regime and appeared for the first time in (Choi & Korpela,

1980). The pressure varies linearly with the axial coordinate z, but the pressure gradient

depends only on r, and therefore it is periodic in the axial direction. This axial pressure

gradient mimics the presence of distant endwalls in any real situation, by enforcing the

zero mass flux constraint (2.17). It is possible to give an explicit closed expression for

p by integrating (2.18e), but it is quite involved and it does not appear in the problem

solution. The expressions for the parameters A, B and C are:

A =
Reo − ηRei

1 + η
, B = η

Rei − ηReo
(1− η)(1− η2)

, (2.19)

C = − 4 ln η + (1− η2)(3− η2)

16(1− η2)
(
(1 + η2) ln η + 1− η2

) , (2.20)

where (2.19) define the pure rotational flow in the azimuthal coordinate and C gives

the axial component of the velocity field. The non-dimensional radii of the cylindrical

walls are given by ri = η/(1 − η), ro = 1/(1 − η). Note that the presence of the new

centrifugal buoyancy term, proportional to ε, does not modify the basic flow’s velocity

field, but only its pressure.

2.4.2 Linearized equations

We perturb the basic flow with infinitesimal perturbations which vary periodically in

the axial and azimuthal directions,

v(r, θ, z, t) = vb(r) + ei(nθ+kz)+λtu(r), (2.21a)

T (r, θ, z, t) = Tb(r) + ei(nθ+kz)+λtT ′(r), (2.21b)
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where vb = (0, vb, wb) and Tb(r) correspond to the base flow (2.18); u(r) = (ur, uθ, uz)

and T ′(r) are the velocity and temperature perturbations, respectively. The boundary

conditions for both u and T ′ are homogeneous: u(ri) = u(ro) = T ′(ri) = T ′(ro) = 0.

The axial wavenumber k and the azimuthal mode number n define the shape of the

disturbance. The parameter λ is complex. Its real part λr is the perturbation’s growth

rate, which is zero at critical values, and its imaginary part λi is the oscillation frequency

of the perturbation.

Using the decomposition (2.21) in the equations (2.1) and neglecting high-order terms,

we obtain an eigenvalue problem, with eigenvalue λ. It reads

λur =
1

r

∂

∂r
(r
∂ur
∂r

)− ur[
n2 + 1

r2
+ k2 + i(

nvb
r

+ kwb)(1− εTb)]

+
2vb
r

(1− εTb)uθ −
2in

r2
uθ −

εv2
b

r
T ′, (2.22a)

λuθ =
1

r

∂

∂r
(r
∂uθ
∂r

)− uθ[
n2 + 1

r2
+ k2 + i(

nvb
r

+ kwb)(1− εTb)]

− (
∂vb
∂r

+
vb
r

)(1− εTb)ur +
2in

r2
ur, (2.22b)

λuz =
1

r

∂

∂r
(r
∂uz
∂r

)− uz[
n2

r2
+ k2 + i(

nvb
r

+ kwb)(1− εTb)]

+
∂wb
∂r

(εTb − 1)ur +GT ′, (2.22c)

λT ′ =
1

σr

∂

∂r
(r
∂T ′

∂r
)− T ′[ 1

σ
(
n2

r2
+ k2) + i(

nvb
r

+ kwb)]−
∂Tb
∂r

ur. (2.22d)

Note that here the continuity equation and pressure terms are omitted because the

Petrov–Galerkin method chosen to solve the resulting system of equations automatically

satisfies the continuity equation and eliminates the pressure by using a proper projection

(see next subsection).

2.4.3 Numerical method

In order to solve numerically the eigenvalue problem described in the previous subsection,

a spatial discretization of the domain must be made. This is accomplished by projecting

the equations (2.22) onto a basis carefully chosen to simplify the process,

V3 = {v ∈ (L2(ri, ro))
3 | ∇ · v = 0, v(ri) = v(ro) = 0}, (2.23)

where (L2(ri, ro))
3 is the Hilbert space of square integrable vectorial functions defined

on the interval (ri, ro), with the inner product

〈v,u〉 =

∫ ro

ri

v∗ · u rdr, (2.24)
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where * denotes the complex conjugate. For any v ∈ V3 and any function p, using the

incompressibility condition, the boundary conditions and integrating by parts,

〈v,∇p〉 =

∫ ro

ri

(v∗ · ∇p)rdr =

∫ ro

ri

rv∗r∂rp dr = rpv∗r |rori −
∫ ro

ri

p∂r(rv
∗
r)dr = 0. (2.25)

This consideration allows us to eliminate the pressure from the equations as we project

them onto the basis (Canuto et al., 2007). Moreover, the continuity equation is satisfied

by definition of the space V3. For the temperature perturbation the appropriate space is

V1 = {f ∈ L2(ri, ro) | f(ri) = f(ro) = 0}. (2.26)

We expand the variables of the problem as follows

X =

[
u(r)

T ′(r)

]
=
∑
j

ajXj Xj ∈ V3 × V1, (2.27)

and projecting (2.22) onto V3 × V1, we arrive at a linear system of equations for the

coefficients aj.

The solution of the system is performed by means of a Petrov-Galerkin scheme, where

the basis used in the expansion is different from the one used in the projection. The

bases are composed of functions built on Chebyshev polynomials satisfying the boundary

conditions. A detailed description of the method as well as the basis and functions used

for the velocity field can be found in Meseguer & Marques (2000) and Meseguer et al.

(2007), respectively. The basis functions for the temperature (last component of Xj in

2.27), and for the projection (with ˜) are:

hj(r) = (1− y2)Tj−1(y), h̃j(r) = r2(1− y2)Tj−1(y), (2.28)

where y = 2(r − ri) − 1 and Tj are the Chebyshev polynomials. As a result of this

process, we obtain a generalized eigenvalue system of the form

λM1x = M2x, (2.29)

where x is a vector containing the complex spectral coefficients(aj) and the matrices

M1 and M2 depend on the parameters of the problem, the axial wavenumber k and

the azimuthal mode n. This system is solved by using LAPACK. The numerical code

written to perform this work implements the described method and analyses a range of

k, n and G provided by the user for a fixed Re number, searching for the critical values

(<λ = λr = 0). The code has been tested by computing critical values for several cases

in (McFadden et al., 1984) and (Ali & Weidman, 1990), obtaining an excellent agreement

with their results, as shown in table 2.4.3: the critical values computed coincide up to

the last digit shown with those in the mentioned references. In both cases the outer

cylinder is at rest (Reo = 0).
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Parameters Critical values
η σ Ta Gc kc nc λi c = |λi|/kc

(a) 0.99 0.71 0 8038.0 2.80 0 0.25424
0.60 0.71 0 8512.4 2.75 0 13.39899
0.60 3.5 0 8347.5 2.75 0 12.97744
0.99 3.5 0 7857.1 2.75 0 0.24673

(b) 0.6 4.35 2591.0 50.0 3.15 0 −0.50294
0.6 4.35 380.3 700.0 1.88 −3 18.66889
0.6 15 111.1 280.0 1.68 −2 6.58916
0.6 15 26.88 700.0 0.77 −4 7.19973

Table 2.3: Code testing. The cases computed correspond to parameter values in (a)
(McFadden et al., 1984, table 1), and (b) Ali & Weidman (1990, table 1, pg 67). Ta =
2(1− η)Rei/(1 + η) is the Taylor number, λi = =[λ] is the imaginary part of the critical
eigenvalue, for which <[λ] = 0, and c is the dimensionless axial wave speed. The sign
of nc in our computation is opposite to that of (Ali & Weidman, 1990) because of the
definition of the normal Fourier modes in (2.21).

2.5 Solver for three dimensional flow in a finite cylindrical cav-

ity heated from below

For the simulations of rotating Rayleigh-Benard convection (finite rotating cylinder

heated from below), we have used the code written by Mercader et al. (2010). The

governing equations differ from (2.1) because they are formulated in a non-inertial ref-

erence frame and utilize a different non-dimensionalization. They read as

(∂t + v · ∇)v = −∇p+ σ∇2v +RaσT êz + 2σΩu× êz −
σFrRa

Γ
(1− z + T )rêr,

(2.30a)

(∂t + v · ∇)T = w +∇2T, (2.30b)

∇ · v = 0, (2.30c)

where v = (u, v, w) denotes the velocity field in cylindrical coordinates (r, θ, z), T is

the deviation from the mean temperature Tc, p is the pressure and êz and êr are the

unit vectors in axial and radial directions respectively. The Boussinesq approximation

is used to deal with the small density variations stemming from changes in T . The

equations are rendered dimensionless by using the height h as length scale, the vertical

thermal diffusion time h2/κ, where κ is the thermal diffusivity, as the time scale and the

temperature difference between the top and bottom lids ∆T as the temperature scale.
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Four dimensionless numbers arise:

Rayleigh number Ra = αg∆Th3/νκ, (2.31a)

Froude number Fr =
ω2R

g
, (2.31b)

Coriolis number Ω =
ωh2

ν
, (2.31c)

Prandtl number σ = ν/κ, (2.31d)

where ω is the angular velocity of the system, R is the radius, g is the gravity accelera-

tion and ν the kinematic viscosity.

The spatial and temporal discretizations as well as the the methodology used to solve the

Helmholtz and Poisson equations are the same as those exposed in 2.2. A major differ-

ence between codes considering annular and pure cylindrical geometries is the presence

of r = 0 in the domain. This poses a problem due to the singularity of the cylindrical

coordinates at this point. This issue is addressed by forcing the proper parity of the

Fourier expansions in the radial direction, so that clustering of collocations points near

r = 0 is avoided (see Mercader et al., 2010, for further details).

2.6 Continuation code for rotating waves in a finite cylindrical

cavity heated from below

The unstable states of the flow , which play a relevant role in understanding the behavior

of dynamical systems, can only be transiently captured when the governing equations

are numerically integrated. Therefore, it is needed to implement additional techniques

in order to compute them, such as Newton-like methods that allow us to iteratively solve

a system of non-linear equations searching for steady states, no matter if they are stable

or unstable.

The purpose of the code here described is to continue branches of unstable rotating

waves, which are time dependent-flows precessing with a certain wave speed ω. That

means that as a first step to apply Newton methods, the equations (2.30) must be

formulated in a reference frame moving with the rotating wave so that these flow struc-

tures become steady. This is easily accomplished with a coordinate change θ̂ = θ − ωt,
such that any variable of the problem is expressed as X(r, θ, z, t) = X(r, θ̂, z). The

resulting steady system of equations shows two differences with respect to that stem-

ming from (2.30). There is an additional term as a consequence of the time derivative
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∂tX = −ω∂θ̂X. It does not pose any numerical challenge since it is treated explicitly

together with the non-linear terms. Nevertheless, it introduces a new unknown ω, and

thus a supplementary equation is required. The simplest choice is to fix the phase of the

solution, which is performed by forcing the real or imaginary part of a certain Fourier

mode for a single point in (r, z) to be zero.

Each iteration of the Newton method used to solve the steady non-linear system of

equations obtained after the change of coordinates can be written as

(L+NX)δX = (L+N)X (2.32a)

X ← X − δX (2.32b)

where X stands for any of the spatially discretized variables of the problem, L and N are

respectively the spatially discretized linear and non-linear operators, NX is the Jacobian

of the non-linear term evaluated at X and δX is the correction to be applied on X.

Given a first -order semi-implicit time scheme such as

X i+1 −X i

∆t
= LX i+1 +NX i = (I −∆tL−1)(L+N)X i (2.33)

where ∆t is the time difference between the steps i and i+ 1 and I denotes the identity

matrix. The linear system of equations (2.32a) can be solved using P = (I − ∆tL−1),

with a sufficiently large value of ∆T , as a preconditioner

(I − δtL−1)(L+NX)∆X = (I −∆tL−1)(L+N)X (2.34)

The matrices B = P (L+N)X and A = P (L+NX), on the right and left hand sides of

(2.34), are straightforward to compute, since they correspond to one step evolution of

(2.33) for the original and linearized systems respectively. The resolution of the system

AX = B is performed by using the GMRES library. Therefore, implementing the new

methodology consists in a simple modification of the code described in section 2.5 to

convert the second order time-stepper into a first order one, and include the GMRES

subroutines needed to solve the resulting system. This method, which was first proposed

by Mamun & Tuckerman (1995) and later implemented by Mercader et al. (2006), al-

lows for efficiently solve (2.32a) since the computation and subsequent inversion of the

Jacobian, which are very time consuming tasks, are avoided. Furthermore, the resulting

system is well conditioned.

For the continuation of the solutions, a predictor-corrector method has been imple-

mented. Given two previous solutions Xj and Xj−1 the next state is guessed using the
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Figure 2.4: Smooth transition between the rotating wave patterns C3 and D3 obtained
in Lopez & Marques (2009). This calculation has been used as a validation test of the
new code. In all cases the deviation of the temperature T is shown in a horizontal section
at mid-height for Fr = 0.3 and (a) Ra = 10000; (b) Ra = 12500; (c) Ra = 13000; (d)
Ra = 13500; (e) Ra = 14000; (f) Ra = 14500.

secant prediction

ˆXj+1 = Xj + hjvj (2.35a)

vj =
Xj−1 −Xj

‖Xj−1 −Xj‖
(2.35b)

where hj is the step size of the continuation. The predicted state ˆXj+1 is then used as

initial condition for the Newton method above described, where it is corrected up to

reach Xj+1 within a specified accuracy. Nevertheless, a continuation method involves

considering a control parameter as a dependent variable, in this case the Rayleigh Ra

or Froude Fr numbers, and since a Newton method can only solve systems where the

number of equations equals the number of unknowns, an extra condition has to be

imposed to carry out this procedure. To this end we apply natural continuation, which

consists in fixing the component of ˆXj+1 that is changing faster, ˆXj+1i = Xj+1i , where

the index i is provided by the largest absolute value in vj. Once Xj+1 is obtained, the

step size is varied depending on the iterations that have been required to converge, that

is, if the solution converges in a few iterations hj is increased, and conversely, hj is

decreased in the case of slow convergence. For further details on continuation methods

we refer to Kuznetsov (1998). The Newton solver and continuation method have been

validated by reproducing the solutions in Lopez & Marques (2009). One of these tests

is illustrated in figure 2.4, showing the smooth transition between two rotating waves,

termed as C3 and D3 in Lopez & Marques (2009), for Fr = 0.3 as Ra is varied. The

same sequence can be found in the figure 5 of this reference.
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CHAPTER 3

BIFURCATIONS WITH IMPERFECT SO(2) SYMMETRY AND

PINNING OF ROTATING WAVES

3.1 Introduction

Dynamical systems theory plays an important role in many areas of mathematics and

physics because it provides the building blocks that allow us to understand the changes

many physical systems experience in their dynamics when parameters are varied. These

building blocks are the generic bifurcations (saddle-node, Hopf, etc.) that any arbi-

trary physical system experiences under parameter variation, regardless of the physical

mechanisms underlying the dynamics. When one single parameter of the system un-

der consideration is varied, codimension-one bifurcations are expected. If the system

depends on more parameters, higher codimension bifurcations appear and they act as

organizing centers of the dynamics.

The presence of symmetries changes the nature and type of bifurcations that a dy-

namical system may undergo. Symmetries play an important role in many idealized

situations, where simplifying assumptions and the consideration of simple geometries

result in dynamical systems equivariant under a certain symmetry group. Bifurcations

with symmetry have been widely studied (Golubitsky & Schaeffer, 1985; Golubitsky

et al., 1988; Chossat & Iooss, 1994; Golubitsky & Stewart, 2002; Chossat & Lauterbach,

2000; Crawford & Knobloch, 1991). However, in any real system, the symmetries are

only approximately fulfilled, and the breaking of the symmetries, due to the presence

of noise, imperfections and/or other phenomena, is always present. There are numer-

ous studies of how imperfect symmetries lead to dynamics that are unexpected in the

symmetric problem (Keener, 1987; Campbell & Holmes, 1992; Knobloch et al., 1995;

Hirschberg & Knobloch, 1996; Dangelmayr et al., 1997; Lamb & Wulff, 2000). However,

a complete theory is currently unavailable. One observed consequence of imperfections

in systems that support propagating waves is that the waves may become trapped by the

imperfections (Keener, 1987; Westerburg & Busse, 2003; Thiele & Knobloch, 2006a,b).

In these various examples, the propagation direction is typically biased. However, a

more recent experiment has considered a case of a rotating wave pinned by symmetry-

breaking imperfections for parameter values near where its sense of precession changes

sign (Abshagen et al., 2008).
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When a system is invariant to rotations about an axis (invariance under the SO(2)

symmetry group), SO(2)-symmetry-breaking Hopf bifurcations result in rotating waves,

consisting of a pattern that rotates about the symmetry axis at a given precession

frequency without changing shape. This frequency is parameter dependent, and in many

problems, when parameters are varied, the precession frequency changes sign along a

curve in parameter space. What has been observed in different systems is that in the

presence of imperfections, the curve of zero frequency becomes a band of finite width

in parameter space. Within this band, the rotating wave becomes a steady solution.

This is the so-called pinning phenomenon. It can be understood as the attachment of

the rotating pattern to some stationary imperfection of the system, so that the pattern

becomes steady, as long as its frequency is small enough so that the imperfection is able

to stop the rotation. This pinning phenomenon bears some resemblance to the frequency

locking phenomena, although in the frequency locking case we are dealing with a system

with two non-zero frequencies and their ratio becomes constant in a region of parameter

space (a resonance horn), whereas here we are dealing with a single frequency crossing

zero.

In the present chapter we analyze the breaking of SO(2) symmetry in a dynamical system

close to a Hopf bifurcation whose frequency changes sign along a curve in parameter

space. The analysis shows that breaking SO(2) symmetry is much more complex than

expected, resulting in a bifurcation of high codimension (about nine). Although it is

not possible to analyze in detail such a complex and high-codimension bifurcation, we

present here the analysis of a specific case in which the SO(2) symmetry is broken by

adding a ε term to the normal form. We find that a band of pinned solutions appears

around the zero frequency curve of the symmetric case, and that this band is delimited by

curves of infinite-period bifurcations. A complicated dynamics with several codimension-

two bifurcations occurring in a small region of parameter space is found in the junction

between the infinite-period bifurcation curves and the Hopf bifurcation curve. We also

present a fluid dynamics example of pinning owing to the SO(2) symmetry breaking

in a rotating cylinder subject to vertical convection. This is a particularly interesting

case, because the symmetry breaking occurs at a subcritical Hopf bifurcation, unlike

previously reported pinning phenomena in Taylor Couette flows (Pacheco et al., 2011;

Abshagen et al., 2008), which always occurred at supercritical bifurcations.

The chapter is organized as follows. In section 3.2 the properties of a Hopf bifurcation

with SO(2) symmetry with the precession frequency crossing through zero are summa-

rized, and the general unfolding of the SO(2) symmetry breaking process is discussed.

The next section, 3.3, explores the particulars of breaking the symmetry at order zero.
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The pinning of rotating waves in a rotating convective cylinder given in section 3.4 il-

lustrates the application of the general theory to a real problem in fluid dynamics. The

governing equations and methodology used to deal with the problem are introduced in

3.4.1, in 3.4.2, the bifurcation scenario is briefly described, and finally, 3.4.3 provides

evidences of the infinite period bifurcation taking place as a consequence of the SO(2)

symmetry breaking. Conclusions and perspectives are presented in 3.5.

3.2 Hopf bifurcation with SO(2) symmetry and zero frequency

The normal form for a Hopf bifurcation is

ż = z(µ+ iω − c|z|2), (3.1)

where z is the complex amplitude of the bifurcating periodic solution, µ is the bifurcation

parameter, and ω and c are functions of µ and generically at the bifurcation point (µ = 0)

both are different from zero. It is the non-zero character of ω that allows one to eliminate

the quadratic terms in z in the normal form. This is because the normal form ż = P (z, z̄)

satisfies (e.g., see Haragus & Iooss, 2011)

P (e−iωtz, eiωtz̄) = e−iωtP (z, z̄), (3.2)

where P is a low order polynomial that captures the dynamics in a neighborhood of

the bifurcation point. If ω = 0, this equation becomes an identity and P cannot be

simplified. The case ω = 0 is a complicated bifurcation and it depends on the details

of the double-zero eigenvalue of the linear part L of P ; as z = x + iy is complex, the

matrix of L using the real coordinates (x, y) is a real 2×2 matrix. If L is not completely

degenerate, that is

L =

(
0 1

0 0

)
, (3.3)

then we have the well-studied Takens–Bogdanov bifurcation, whereas the completely

degenerate case,

L =

(
0 0

0 0

)
, (3.4)

is a high-codimension bifurcation that has not been completely analyzed.

If the system has SO(2) symmetry, it must also satisfy

P (eimθz, e−imθz̄) = eimθP (z, z̄), (3.5)
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where Zm is the discrete symmetry retained by the bifurcated solution. When the group

Zm is generated by rotations of angle 2π/m about an axis of m-fold symmetry, as is

usually the case with SO(2), then the group is also called Cm. Equations (3.2) and (3.5)

are completely equivalent and have the same implications for the normal form structure.

Advancing in time is the same as rotating the solution by a certain angle (ωt = mθ); the

bifurcated solution is a rotating wave. Therefore, if ω becomes zero by varying a second

parameter, we still have the same normal form (3.1), due to (3.5), with ω replaced by a

small parameter ν:

ż = z(µ+ iν − c|z|2). (3.6)

The Hopf bifurcation with SO(2) symmetry and zero frequency is, in this sense, trivial.

Introducing the modulus and phase of the complex amplitude z = reiφ, the normal form

becomes

ṙ = r(µ− ar2),

φ̇ = ν − br2,
(3.7)

where c = a + ib, and let us assume for the moment that a and b are positive. The

bifurcation frequency in (3.7) is now the small parameter ν. The bifurcated solution

RWm exists only for µ > 0, and has amplitude r =
√
µ/a and frequency ω = ν − bµ/a.

The limit cycle RWm becomes an invariant set of steady solutions along the straight

line µ = aν/b (labeled L in figure 3.1) where the frequency of RWm goes to zero; the

angle between L and the Hopf bifurcation curve (the horizontal axis µ = 0) is α0. The

bifurcation diagram and a schematic of the bifurcations along a one-dimensional path is

also shown in figure 3.1. The bifurcation point µ = ν = 0, labeled ZF (zero-frequency

Hopf point) in figure 3.1(a), is a codimension-two bifurcation. It coincides with the

generic Hopf bifurcation, except that it includes a line L along which the bifurcated

solution has zero frequency.

Assuming c 6= 0, we can simplify (3.7) by scaling z so that |c| = 1; we will write

c = a+ ib = ie−iα0 = sinα0 + i cosα0, b+ ia = eiα0 , (3.8)

which helps simplify subsequent expressions. The case a and b both positive, which we

consider in our theoretical approach, corresponds to the fluid dynamics problems that

motivated the present analysis (Abshagen et al., 2008; Pacheco et al., 2011).

For other signs of a and b, analogous conclusions can be drawn. It is of particular interest

to consider the subcritical case a < 0 as it corresponds to the fluid dynamics problem

illustrated in section 3.4. By reversing time and changing the sign of µ and ν, we obtain
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I III− II+
ZF

−− ++ −−

Figure 3.1: Hopf bifurcation with SO(2) symmetry and zero frequency; part (a) shows
the bifurcation diagram, where the thick lines are bifurcation curves, and part (b) shows
the bifurcations along the path A shown in (a). The fixed point curve is labeled with
the signs of its eigenvalues. In regions II− and II+ the limit cycles, born at the Hopf
bifurcations H− and H+, rotate in opposite senses. L is the line where the limit cycle
becomes an invariant curve of fixed points.

exactly the same normal form (3.7) but with the opposite sign of a and b. By changing

the sign of φ and ν, we obtain (3.7) with the opposite sign of b. Therefore, all possible

cases corresponding to different signs of a and b can be reduced to the case where a and

b are both positive.

3.2.1 Unfolding the Hopf bifurcation with zero frequency

If the SO(2) symmetry in the normal form (3.6) is completely broken, and no sym-

metry remains, then the restrictions imposed on the normal form by (3.5) disappear

completely and all the terms in z and z̄ missing from (3.6) will reappear multiplied by

small parameters. This means that the normal form will be

ż = z(µ+ iν − c|z|2) + ε1 + ε2z̄ + ε3z̄
2 + ε4zz̄ + ε5z

2, (3.9)

where additional cubic terms have been neglected because we assume c 6= 0 and that

cz|z|2 will be dominant. As the εi are complex, we have a problem with 12 parameters.

Additional simplifications can be made in order to obtain the so-called hypernormal

form; this method is extensively used by Kuznetsov (2004), for example. Unfortunately,

many of the simplifications rely on having some low-order term in the normal form being

non-zero with a coefficient of order one. For example, if ω 6= 0, it is possible to make c

real by using a time re-parametrization. In our problem, all terms up to and including

second order are zero or have a small coefficient, and so only a few simplifications are

possible. These simplifications are an infinitesimal translation of z (two parameters),

and an arbitrary shift in the phase of z (one parameter). Using these transformations
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the twelve parameters can be reduced to nine. In particular, one of either ε4 or ε5 can be

taken as zero and the other can be made real. By rescaling z, we can make c of modulus

one, as in (3.8). A complete analysis of a normal form depending on nine parameters,

i.e. a bifurcation of codimension of about nine, is completely beyond the scope of the

present study. In the literature, only codimension-one bifurcations have been completely

analyzed. Most of the codimension-two bifurcations for ODE and maps have also been

analyzed, except for a few bifurcations for maps that remain outstanding (Kuznetsov,

2004). A few codimension-three and very few codimension-four bifurcations have also

been analyzed (Chow et al., 1994; Dumortier et al., 1997), but to our knowledge, there

is no systematic analysis of bifurcations of codimension greater than two. Therefore,

the only way we can address this analysis is by considering the five cases, ε1 to ε5,

separately. In the following section, we describe in detail the case in which the SO(2)

symmetry is broken with a ε1 parameter, which provides the theoretical background for

the dynamics illustrated in 3.4. A comprehensive study of the remaining cases can be

found in Marques et al. (2013, 2012).

Before going into detail with the ε1 case, some general comments can be made about

the five cases, which are of the form

ż = z(µ+ iν − c|z|2) + εzqz̄p−q, (3.10)

for integers 0 ≤ q ≤ p ≤ 2, excluding the case p = q = 1 which is SO(2) equivariant

and so ε can be absorbed into µ and ν. By changing the origin of the phase of z, we can

modify the phase of ε so that it becomes real and positive. Then, by re-scaling z, time

t, and the parameters µ and ν as

(z, t, µ, ν)→ (εδz, ε−2δt, ε2δµ, ε2δν), δ =
1

3− p, (3.11)

we obtain (3.10) with ε = 1, effectively leading to codimension-two bifurcations in each of

the five cases. We expect complex behavior for µ2 + ν2 . ε2, when the three parameters

are of comparable size, while the effects of small imperfections breaking SO(2) will

correspond to µ2 + ν2 � ε2. From now on ε = 1 will be assumed, and we can restore

the explicit ε-dependence by reversing the transformation (3.11).

The normal forms corresponding to the ε1, ε2 and ε3 cases have already been analyzed in

contexts completely different to the SO(2) symmetry-breaking context considered here.

The context in which these problems were studied stems from low-order resonances in

perturbed Hopf problems. Gambaudo (1985) studied time-periodic forcing near a Hopf

bifurcation point, analyzing the problem using the Poincaré stroboscopic map. The

normal forms corresponding to the 1:1, 1:2 and 1:3 strong resonances coincide with the
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Figure 3.2: (a) Bifurcations of the fixed points corresponding to the normal form (3.12),
and (b) is a perspective view of the corresponding codimension-three bifurcation in terms
of (µ, ν, ε). See table 3.1 for a glossary.

normal form for cases with only the ε1, ε2 and ε3 terms retained in (3.9), respectively.

Later, motivated by a problem of a nonlinear oscillator with damping and quasi-periodic

driving, a series of papers extended the strong resonances results of Gambaudo (1985) by

studying the semi-global bifurcations for periodically and quasi-periodically perturbed

driven damped oscillators near a Hopf bifurcation (see Wagener, 2001; Broer et al., 2008;

Saleh & Wagener, 2010, and references therein). Nevertheless, the analysis has focused

on the regions where µ, ν and ε are of comparable size; here we will also consider what

happens for µ2 + ν2 � ε2 which is particularly important for the pinning phenomenon.

3.3 Symmetry breaking of SO(2) with an ε term

The normal form in this case is (3.10) with p = q = 0 and ε = 1:

ż = z(µ+ iν − c|z|2) + 1 . (3.12)

The fixed points of (3.12) are given by a cubic equation. The parameter space is divided

into two regions, region III has three fixed points and the rest of parameter space has

one fixed point, separated by a saddle-node curve shown in figure 3.2(a) as a thick black

line. The saddle-node curve is divided into three different arcs SN± and SN0 by two

codimension-two cusp bifurcation points, Cusp±. The fixed points also undergo Hopf

bifurcations along the curves H± shown in grey in figure 3.2(a). Figure 3.2(b) shows

what happens when the ε dependence is restored; what we have is that figure 3.2(a)

just scales with ε as indicated in (3.11), and the pinning region collapses onto the line

L of the perfect case with SO(2) symmetry. For |ν| → ∞, the Hopf curves H± are

asymptotic to the µ = 0 axis, the Hopf curve for ε = 0. The other ends of the H±

curves are the Takens–Bogdanov points TB± on the saddle-node curve. The TB− and

Cusp− codimension-two bifurcation points are very close to each other. For clarity in
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Table 3.1: Glossary of bifurcations.

Codimension-one bifurcations

SN±,0 Saddle-node (also called fold) bifurcations

H±,0 Hopf bifurcations

PF± Pitchfork bifurcations

CF Cyclic fold: two limit cycles are born simultaneously

L, Ll,u Limit cycle becoming a family of fixed points

Hom±,0, Hom Homoclinic collision of a limit cycle with a saddle

Het±,0 Heteroclinic collision of a limit cycle with saddles

SNIC±,0 Saddle-node appearing on a limit cycle

Glu Gluing bifurcation – two limit cycles collide with a saddle

Codimension-two bifurcations

Cusp± Cusp bifurcations

TB±, TB Takens–Bogdanov bifurcations

dPF± Degenerate pitchfork – zero cubic term

Ba Bautin bifurcation – degenerate Hopf with zero cubic term

PfGl Simultaneous gluing Gl and pitchfork PF bifurcations

CfHom Simultaneous cyclic-fold CF and homoclinic collision Hom

CfHet± Simultaneous cyclic-fold CF and heteroclinic collision Hom

SnicHom±,0 Simultaneous SNIC and homoclinic collision

SnicHet±,0 Simultaneous SNIC and heteroclinic collision

the schematics shown in figures 3.2(a) and 3.3, we have exaggerated their separation.

In region I there is a single stable fixed point. It loses stability along the Hopf curves

H±, so in regions II± there exist an unstable fixed point and a stable rotating wave; the

rotating waves in II± rotate in opposite directions, and III is the pinning region where

the rotation stops and we have a stable fixed point. Solutions with ω = 0, that existed

only along a single line in the absence of imperfections, now exist in a region of finite

width.

From the Takens–Bogdanov points, dynamical systems theory says that two curves of

homoclinic bifurcations emerge, resulting in global bifurcations around these points.

Moreover, the stable limit cycles in regions II± do not exist in region III, so they must

disappear in additional bifurcations. Figure 3.3 summarizes all the bifurcation curves

that appear in the present case. There are nine codimension-two points organizing the

dynamics of the normal form (3.12), and most of the bifurcation curves correspond to

global bifurcations of limit cycles; they are described in detail in Marques et al. (2012).
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Figure 3.3: Schematic of the bifurcations of the normal form (3.12). There are seven
curves of global bifurcations, Hom±, Hom0 (homoclinic collisions of a limit cycle with a
saddle), CF (a cyclic-fold), SNIC± and SNIC0, and nine codimension-two points (black
circles). The regions around the codimension-two points have been enhanced for clarity.
See table 3.1 for a glossary.

For large values of µ2 + ν2 the stable limit cycles in regions II± disappear at SNIC±

(saddle-node on an invariant circle) bifurcation curves. On these curves, a saddle-node

bifurcation of fixed points takes place on top of the limit cycle, and the cycle disappears

in an infinite-period bifurcation. What remains, and is observable, is the stable fixed

point born at the saddle-node.

The width w of the pinning region at a distance d =
√
µ2 + ν2 from the origin is

measured transversally to the straight line L. In the case considered here, it is given by

w = 2/
√
d. Restoring the ε-dependence, we obtain w(d, ε) = 2ε/

√
d. The pinning region

becomes narrower with increasing distance from the bifurcation point, and its width is

proportional to ε, the magnitude of the imperfection (see figure 3.2b).

Further details relating to the calculation of the fixed points and bifurcation curves can

be found in Marques et al. (2012).

3.4 Pinning of rotating waves in rotating Rayleigh-Bénard con-

vection

Up to now, we have considered the zero-frequency Hopf problem in the context of a

supercritical Hopf bifurcation. However, in some pinning regions reported in fluid dy-

namics problems, such as Taylor–Couette flow (Pacheco et al., 2011), the zero frequency
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Figure 3.4: (a) Schematic of the Bautin bifurcation, including the path L of frequency
zero bifurcated states in the SO(2) perfect system, shown in a two parameter space (µ, ν)
with A a global measure of the solution. Also shown is the projection of the saddle-node
surface on parameter space. (b) Schematic of the rotating convection apparatus, with
the streamlines of the basic state shown in the inset

occurs quite close to a Bautin bifurcation, at which the Hopf bifurcation switches from

being supercritical to subcritical, and a natural question is what are the consequences of

the zero-frequency occurring on a subcritical Hopf bifurcation. The normal form theory

for the behavior local to the Hopf bifurcation carries over by changing the direction of

time and the sign of the parameters µ and ν as discussed before, but then both the limit

cycle and the pinned state are unstable and not observable in a physical experiment

or direct numerical simulation. The limit cycle becomes observable as it undergoes a

saddle-node of limit cycles (a cyclic fold) bifurcation at the fold associated with the

Bautin bifurcation (see figure 3.4 a), and we expect that the pinned state does likewise

with a saddle-node of fixed points bifurcation along the same fold. We have identi-

fied a rotating convection problem where precisely this occurs (Marques et al., 2007;

Lopez & Marques, 2009), and conducted numerical simulations by introducing a SO(2)

symmetry-breaking bifurcation that produces a pinning region on the upper branch of

the subcritical Hopf bifurcation.

3.4.1 Governing equations and work methodology

The rotating convection problem consists of a fluid-filled cylinder of radius r0 and height

h, rotating at a constant rate ω rad/s. The cold top and hot bottom endwalls are

maintained at constant temperatures T0 ∓ 0.5∆T , where T0 is the mean temperature

and ∆T is the temperature difference between the end walls. The sidewall has zero heat
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flux. Figure 3.4 b shows a schematic of the flow configuration.

Using the Boussinesq approximation that all fluid properties are constant except for the

density in the gravitational and centrifugal buoyancy terms, and using h as the length

scale, h2/κ as the time scale, and ∆T as the temperature scale, the governing equations

written in the rotating frame of reference are:

(∂t + u · ∇)u = −∇p+ σ∇2u+ σRaΘẑ + 2σΩu× ẑ − σFrRa

Γ
(Θ− z)r, (3.13)

(∂t + u · ∇)Θ = w +∇2Θ, ∇ · u = 0 , (3.14)

where u = (u, v, w) is the velocity field in cylindrical coordinates (r, θ, z), p is the

kinematic pressure (including gravitational and centrifugal contributions), ẑ the unit

vector in the vertical direction z, and r is the radial vector in cylindrical coordinates.

Instead of the non-dimensional temperature T , we have used the temperature deviation

Θ with respect to the conductive profile, T = T0/∆T − z + Θ, as is customary in many

thermal convection studies.

There exist five dimensionless parameters: the Rayleigh number, Ra = αgh3∆T/(κν),

the Froude number Fr = ω2r0/g, the Coriolis number, Ω = ωh2/ν, the Prandtl number,

σ = ν/κ, and the aspect ratio, Γ = r0/h, where α is the coefficient of volume expansion,

g is the gravitational acceleration, κ is the thermal diffusivity, and ν is the kinematic

viscosity. The control parameters are Ra and Fr so that flow states are determined

by the competition between gravitational and centrifugal buoyancy. The remaining

parameters have been fixed: Γ = 1, in order to prevent from very high azimuthal

wavenumber modes m, σ = 7.0, which corresponds to water near room temperature

and Ω = 100. Note that Ω depends on ω, and thus it should vary as Fr changes.

Nevertheless, we keep it fixed in order to reduce the complexity of the problem. For any

Fr 6= 0, the system is not invariant to the so-called Boussinesq symmetry corresponding

to invariance to a reflection Kz about the half-height z = 0. The system is only invariant

under rotations about the axis of the cylinder, the SO(2) symmetry.

The governing equations have been advanced in time using the code described in 2.5.

We have used nr = 36, nθ = 40 and nz = 64 spectral modes in r, θ and z and a

time-step dt = 2 × 10−5 thermal time units in all computations. We have checked the

spectral convergence of the code using the infinity norm of the spectral coefficients of

the computed solutions. The trailing coefficients of the spectral expansions are at least

five orders of magnitude smaller than the leading coefficients. In order to compute

the zero-frequency line L in the subcritical region of the Bautin bifurcation, where the

fixed points and limit cycles involved are unstable, we have used the continuation code
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Figure 3.5: (a) Bifurcation curves for Ω = 100, σ = 7 and Γ = 1, where H∓ are the
segments of the Hopf bifurcation with negative and positive frequency, the Bautin point
Ba is where the Hopf bifurcation switches from super- to subcritical and the cyclic-fold
bifurcation curve CF emerges. The lines Ll and Lu are the loci where the rotating
wave(C3) has zero frequency on the lower and upper branches of the cyclic fold. The
rectangle around Lu corresponds to figure 3.7a. The base flow is denoted as C0. (b) The
frequency along the Hopf bifurcation H∓ with the Bautin point and the point ZF, where
the sense of precession changes, marked as open symbols.

outlined in 2.6.

3.4.2 Bifurcation scenario

Figure 3.5(a) shows the parameter region of interest in this convection problem. In the

region of high Froude number we have a stable steady solution C0, consisting of a single

axisymmetric convective roll where the warm fluid moves upwards close to the axis (due

to the rotation of the container), and returns along the sidewall. The figure 3.6 shows

the temperature profile of C0 at Ra = 2 × 104 and Fr = 0.38, plotted in a meridional

plane and in a horizontal section at mid-height. It is clearly illustrated that C0 is SO(2)-

equivariant with respect to rotations about the cylinder axis. The cool (heavier) fluid at

the top is centrifuged radially outward, whereas the hot (lighter) fluid at the bottom is

centrifuged radially inward, forming an upwelling plume near the axis. This base state

loses stability when the Froude number Fr decreases, in a Hopf bifurcation along the

curves H±. The bifurcation is supercritical for Ra < 14 157 and subcritical for higher Ra.

Contours of the temperature of the new state C3 are illustrated in figure 3.8 (a), plotted in

a horizontal section at mid-height. The change from supercritical to subcritical happens

at the codimension-two Bautin bifurcation point Ba, at (Ra, Fr) ≈ (14 157, 0.3684).

The bifurcated limit cycle, a rotating wave with azimuthal wave number m = 3, is

unstable, but becomes stable at the cyclic fold curve CF (a saddle-node bifurcation of

limit cycles). This curve CF originates at the Bautin point Ba. There are other flow
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(a) (b)

Figure 3.6: Contours of the temperature for the base state at Ra = 2×104 and Fr = 0.38
in (a) Meridional section and (b) Horizontal section at mid-height.

states that are stable in this same region (Lopez & Marques, 2009); these additional

states are well separated in phase space and the numerics we describe below are focused

on the base state and the m = 3 bifurcated rotating wave.

Figure 3.5(b) shows the computed frequency of the limit cycle along the Hopf bifurcation

curve. This frequency is negative along H− and positive along H+, and is zero at the

ZF (zero frequency) point. At this point we have precisely the scenario discussed in

the present chapter: a flow (the base state) with SO(2) symmetry undergoing a Hopf

bifurcation that has zero frequency at that point. Figure 3.5(a) also includes the line L

where the frequency of the bifurcated states is zero. This curve has been computed using

continuation methods since the zero-frequency state is unstable in the lower part (Ll)

of the saddle-node CF, and therefore cannot be obtained via time evolution. The zero

frequency state becomes stable upon crossing the saddle-node curve CF and moving to

the upper part Lu of the saddle-node CF, and becomes observable both experimentally

and by numerical simulations advancing the Navier-Stokes equations in time.

3.4.3 Pinned solutions and infinite period bifurcation curves

In order to break the SO(2) symmetry and see if a pinning region appears, an imper-

fection has been introduced, in the form of an imposed linear profile of temperature at

the top lid, Θ(r, θ, z = 0.5) = ε r cos θ, where ε is a measure of the symmetry breaking.

This term completely breaks the rotational symmetry of the governing equations, and

no symmetry remains. Figure 3.7(a) shows that the line L becomes a band of pinned
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Figure 3.7: (a) SNIC bifurcation curves in (Ra, Fr) space bounding the pinning region
for Ω = 100, σ = 7 and Γ = 1. The region shown is the rectangle in figure 3.5a, and
the dashed line is the Lu curve in the perfect case. (b) The period of the rotating wave
C3(black filled circles) as it approaches the SNIC bifurcations at Fr = 0.32 and other
parameters as in (a). Solid and long dashed line represent square root and logarithmic
fits respectively, corresponding to the scaling laws of SNIC and homoclinic bifurcations.

solutions, steady solutions with frequency zero, as predicted by the normal form theory

presented in 3.3. We can also check the nature of the bifurcation taking place at the

boundary of the pinning region. Figure 3.7(b) shows the variation of the period of the

limit cycle approaching the pinning region. The period substantially increases as Ra

comes close to the bifurcation, which points to the existence of an infinite period bifur-

cation. In a system like the one we are presenting here, where a limit cycle bifurcates

into three steady states, two types of infinite period bifurcations become possible. The

first type of bifurcation is a SNIC (saddle node on invariant circle) that occurs when a

saddle node emerges on the limit cycle. The second type corresponds to a homoclinic

bifurcation in which the stable limit cycle merges with a saddle node. The scaling laws

for the period of a limit cycle approaching either a homoclinic or a SNIC bifurcation are

THet =
1

λ
ln

1

µ− µc
+O(1), TSNIC =

k√
µ− µc

+O(1), (3.15)

where λ is the positive eigenvalue of the saddle and k is a constant. In order to distinguish

between these two bifurcations, the computed periods have been fitted with 3.15. The

square root fit (solid line in figure 3.7 (b)) works better than the logarithmic fit (long

dashed line in figure 3.7 (b)), so we estimate that the bifurcation is a SNIC bifurcation,

as the normal form theory presented predicts it should be sufficiently far from the zero

frequency point ZF.

Figure 3.8 shows snapshots of isotherms at mid-height (z = 0) with Ra = 21950 and

Fr = 0.32, which is a parameter point inside the pinning region (see figure 3.7a). Part

(a) shows solution in the symmetric system (ε = 0) and (b) is the pinned solution with

an imperfection of ε = 0.05, corresponding to a maximum variation of temperature of

5%∆T at the top lid. The steady pinned solution has broken the SO(2) symmetry;
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(a) (b)

Figure 3.8: Temperature contours at mid height (z = 0) for Ω = 100, σ = 7, Γ = 1,
Ra = 21950 and Fr = 0.32. (a) is the symmetric solution without imperfection (ε = 0),
and (b) is a pinned solution with an imperfection ε = 0.05. There are 20 quadratically
spaced contours in the interval T ∈ [−0.31, 0.31], with blue (red) for the cold (warm)
fluid.

one of the three arms of the solution is closer to the wall than the other two. The

attachment of the solution to the sidewall, due to the imperfection at the top lid, results

in the pinning phenomenon.

3.5 Summary and conclusions

The aim of this chapter has been to provide a general dynamical systems description

of the pinning phenomenon which is observed in systems possessing two ingredients:

slowly traveling or rotating waves and imperfections. The description boils down to

the unfolding of a Hopf bifurcation in an SO(2) equivariant system about the point

where the Hopf frequency is zero. We have identified some interesting facts. These are

that the curve of zero frequency splits into a region in parameter space of finite width

that scales with the strength of the imperfection, and this region is delimited by SNIC

bifurcations. In the very small neighborhood of the zero frequency Hopf bifurcation

point, where the SNIC curves and the Hopf curve approach each other, the dynamics is

extremely complicated, consisting in a multitude of codimension-two local bifurcations

and global bifurcations. We provide an example in rotating Rayleigh-Bénard convection

to illustrate both the pinning phenomenon and the use of the theory to describe it.

Unlike previously reported pinning areas in other canonical fluid dynamics problems,

the Hopf bifurcation which gives rise to the rotating waves is subcritical. Nevertheless,

this fact does not modify the theoretical prediction, and a pinning region is found when
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the SO(2) invariance is broken and rotating waves are precessing with a frequency near

zero.
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CHAPTER 4

THE BOUSSINESQ APPROXIMATION IN RAPIDLY ROTATING

FLOWS

4.1 Introduction

In 1903 Boussinesq observed that: “The variations of density can be ignored except

where they are multiplied by the acceleration of gravity in the equation of motion for

the vertical component of the velocity vector” (Boussinesq, 1903). This simple approxi-

mation has had a far-reaching impact on many areas of fluid dynamics; it allows us to

approximate flows with small density variations as incompressible, whilst retaining the

leading order effects due to the density variations. Moreover, it is of great importance

both analytically and numerically as it eliminates acoustic modes, which are challeng-

ing to treat. Many problems in fluid dynamics have been tackled with Boussinesq-type

approximations, rendering in most cases successful results in good agreement with ex-

periments. However, some problems feature important physics neglected in the original

Boussinesq approximation. For example, in many investigations of systems subject to

rotation, the centrifugal term in the Navier-Stokes equations is treated as a gradient and

is absorbed into the pressure (Chandrasekhar, 1961). Under this assumption centrifugal

buoyancy enters the hydrostatic balance but does not play a dynamic role, making an

analytical treatment of the equations possible. In contrast, the inclusion of centrifugal

terms in numerical simulations requires a minimal coding and computing effort. There-

fore, it should always be included in the simulations (Randriamampianina et al., 2006),

and whether it is dynamically significant or not should be determined a posteriori.

In systems rotating at angular velocity Ω the dynamical role of centrifugal buoyancy is

straightforward to model. Typically, a term acting in the radial direction and propor-

tional to ρ′Ω2, where ρ′ is the density variation, is added to the Navier-Stokes equation

(Barcilon & Pedlosky, 1967; Homsy & Hudson, 1969). One example where this term

has been included is rotating Rayleigh-Bénard convection. Hart (2000) studied the ef-

fect of centrifugal buoyancy using a self-similar and perturbative approach, confirmed

by numerical simulations in the axisymmetric case (Brummell et al., 2000). More re-

cently, Marques et al. (2007); Lopez & Marques (2009) conducted full 3D simulations in

the same geometry. All these investigations show the relevance of centrifugal buoyancy

in rotating convection. In these studies the imposed temperature gradient is parallel

to gravity, while in the present work both gradients are perpendicular, and additional

centrifugal effects, besides the traditional ρ′Ω2 term, are also included.
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Note that in the traditional approach, described in the previous paragraph, effects due to

differential rotation or strong internal vorticity, of especial importance in rapidly rotating

flows, are neglected. The increasing interest in these flows because of their industrial (e.g.

cyclonic dust collectors or vortex chambers) and scientific (astrophysical and atmospheric

turbulence) applications (see Elperin et al., 1998) motivates the development of a new

approximation, which we here undertake. It is based on the Boussinesq approximation

but it includes additional physical effects stemming from the advection term in the

Navier–Stokes equations. It allows it to accurately cast rapidly rotating flows with mild

variations of density into an incompressible formulation. In section §2, we describe a

systematic way to achieve this, and we provide two different and easy to implement ways

to account for centrifugal buoyancy effects in rotating problems.

We compare the different ways of including centrifugal effects in the Boussinesq-Navier-

Stokes equations by numerically studying the linear stability of fluid between two dif-

ferentially rotating cylinders subject to a negative radial temperature gradient. Apart

from its intrinsic interest, this setting has been widely used to model both atmospheric

(Hide & Fowlis, 1965) and astrophysical flows (Petersen et al., 2007), where the fluid

reaches high rotational speeds. Our simulations show that the traditional Boussinesq

approximation (i.e. with the ρ′Ω2 term) is valid in a wide range of angular speeds. How-

ever, for rapidly rotating flows important centrifugal effects arise. Here even the linear

behavior of the problem is significantly different for both approximations, justifying the

application of our approximation to account for centrifugal effects.

The chapter is organized as follows. After introducing the new approximation in sec-

tion 4.2, we compare it in section 4.3 to other approximations used in accretion disk

models. Section 4.4 gives a description of the system as well as the governing equations

of the problem. In section 4.5 the linear stability of the system considering both ways to

introduce the centrifugal buoyancy is compared. Various cases of interest are analyzed.

In 4.5.1 we consider fluid rotating as a solid body, whereas in 4.5.2 shear is introduced

in the system. We study first a system rotating close to solid body subjected to weak

shear, and subsequently, a quasi-Keplerian rotating fluid is analyzed. Discussion and

concluding remarks are given in section 4.6.

4.2 Boussinesq-type approximation for the centrifugal term

In rotating thermal convection or stratified fluids the Navier-Stokes-Boussinesq equations

are usually formulated in the rotating reference frame, with angular velocity vector Ω.

52



The momentum equation in this non-inertial reference frame includes four inertial body

force terms (Batchelor, 1967), also called d’Alembert forces:

ρ(∂t + u · ∇)u = −∇p+∇ · σ + ρ f − ρ∇Φ

− ρA− ρα× r− 2ρΩ× u− ρΩ× (Ω× r).
(4.1)

Here −ρA is the translation force due to the acceleration A of the origin of the rotating

reference frame, −ρα × r is the azimuthal force (also called Euler force) due to the

angular acceleration α = dΩ/dt, −2ρu×Ω is the Coriolis force and −ρΩ× (Ω× r) is

the centrifugal force (all of them per unit volume). In (4.1), ρ, p and u are the density,

pressure and velocity field of the fluid, r is the position vector of the fluid parcel, and Φ

is the gravitational potential, so −ρ∇Φ is the gravitational force. The term ρf accounts

for additional body forces that may act on the fluid. For a Newtonian fluid the stress

tensor σ reads

σ = −p I + µ(∇u +∇uT ) + λ∇ · u I, (4.2)

where I is the identity tensor, µ is the dynamic viscosity, and λ is the second viscosity.

4.2.1 The Boussinesq approximation in a rotating reference

frame

In the Boussinesq approximation all fluid properties are treated as constant, except

for the density, whose variations are considered only in the “relevant” terms. Density

variations are assumed to be small: ρ = ρ0 + ρ′, with ρ0 constant and ρ′/ρ0 � 1;

the ρ′ term usually includes the temperature dependence, density variations due to fluid

density stratification, density variations in a binary fluid with miscible species of different

densities, etc. With this assumption the continuity equation reduces to ∇ · u = 0 and

the fluid can be treated as incompressible. As a direct consequence the shear stress term

in the momentum equation (4.1) simplifies to the vector Laplacian, i.e. ∇ · σ = µ∇2u.

Identifying the relevant terms in the momentum equation is a more delicate issue. Any

term in (4.1) with a factor ρ splits into two terms, one with a factor ρ0 and the other

with a factor ρ′. If a ρ0 term is not a gradient, it is the leading-order term, and the

associated ρ′ term may be neglected. If the ρ0 term is a gradient, it can be absorbed into

the pressure gradient and does not play any dynamical role, and therefore the associated

ρ′ term must be retained in order to account for the associated force at leading order.

This is exactly what happens with the gravitational term: −ρ0∇Φ = ∇(−ρ0Φ), which is
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absorbed into the pressure gradient term and we must retain the −ρ′∇Φ term to account

for gravitational buoyancy. The same treatment must be applied to the translation and

centrifugal terms, yielding the gradient terms

−ρ0A− ρ0Ω× (Ω× r) = ∇
( 1

2
ρ0|Ω× r|2 − ρ0A · r

)
, (4.3)

as well as −ρ′A and −ρ′Ω× (Ω× r), which must be also retained.

The ρ0 part of the remaining terms in equation (4.1) (so far, we have considered the

gravitational, centrifugal and translational forces) are not gradients, so they are retained

as leading order terms and the corresponding ρ′ terms are neglected, leading to the

Boussinesq approximation equations in the rotating reference frame:

ρ0(∂t + u · ∇)u = −∇p∗ + µ∇2u + ρ f − ρ′∇Φ

− ρ′A− ρ0α× r− 2ρ0Ω× u− ρ′Ω× (Ω× r),
(4.4)

where

p∗ = p+ ρ0Φ− 1

2
ρ0|Ω× r|2 + ρ0A · r, (4.5)

together with the incompressibility condition ∇ · u = 0. Of course, supplementary

equations are often needed; for example, if ρ′ depends on the temperature, an evolution

equation for the temperature must be included.

4.2.2 Formulation in the inertial frame

In many cases the fluid container is not rotating at a given angular speed, but different

parts may rotate independently. For example Taylor-Couette flows with stratification

and/or heating, cylindrical containers with the lids rotating at different angular veloc-

ities, etc. In these flows, there is not a natural or unique angular velocity Ω to use in

(4.4) and it may be more convenient to write the governing equations in the laboratory

reference frame. In this section we first derive the momentum equation in the labora-

tory frame but for the sake of simplicity we assume that the fluid container rotates with

angular speed Ω. Later we show how the formulation is easily extended to account for

the general case where a unique rotating reference frame cannot be identified.
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Formulation in the inertial frame: container rotating at angular velocity Ω

The laboratory frame is an inertial reference frame, so the four inertial terms in (4.1)

are absent, and the momentum equation is

ρ(∂t + v · ∇)v = −∇p+ µ∇2v − ρ∇Φ + ρ f , (4.6)

where we have used v for the velocity field in the inertial reference frame, to distinguish

it from the velocity u in the rotating frame. In order to implement the Boussinesq

approximation, we could näıvely repeat the previous analysis; since the only term which

is a gradient is the gravitational force −ρ0∇Φ, we end up with an equation containing

only the gravitational buoyancy, and the centrifugal buoyancy is absent. This appears

reasonable, because the governing equations do not contain the rotation frequency Ω

of the container. However, Ω appears in the boundary conditions for the velocity, so

it must be taken into account by a careful analysis of the nonlinear advection term.

The easiest way to do this is by decomposing the velocity field as v = u + Ω × r, so

the Ω× r part accounts for the boundary conditions (rotating container); u is precisely

the velocity of the fluid in the rotating reference frame, with zero velocity boundary

conditions. The advection term splits into four parts:

v · ∇v = u · ∇u + u · ∇(Ω× r) + (Ω× r) · ∇u + (Ω× r) · ∇(Ω× r). (4.7)

Using the incompressibility character of u, the dependence of Ω on time but not on the

spatial coordinates, and some vector identities, we can transform the advection term

into

v · ∇v = u · ∇u + 2 Ω× u + Ω× (Ω× r) +∇×
(
u× (Ω× r)

)
. (4.8)

We have recovered the Coriolis and centrifugal terms, and because Ω × (Ω × r) is a

gradient, we must add a centrifugal contribution also in the inertial reference frame.

The last term in (4.8) accounts for the difference between the time derivatives in the

inertial and rotating reference frames respectively. An easy way to see this is by consid-

ering the simple case where the two reference frames have the same origin, and Ω = Ωk̂,

where k̂ is the vertical unit vector and Ω is constant. Using cylindrical coordinates

(r, θ, z), with z in the vertical direction, we obtain

∇×
(
u× (Ω× r)) = Ω∂θu. (4.9)

The change of coordinates between the inertial and rotating frame is

r = r′, z = z′,

θ = θ′ + Ωt, t = t′,

}
(4.10)
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where (r′, θ′, z′) are the cylindrical coordinates in the rotating frame of the same fluid

parcel with coordinates (r, θ, z) in the inertial frame; t and t′ are the times in both

reference frames. From (4.10) we obtain ∂t′ = ∂t + Ω∂θ, so the last term in (4.8),

combined with ∂tu results in the term ∂t′u in the rotating frame. Finally, ∂tv in the

inertial frame contains an extra term, ∂t(Ω× r) = α× r. Therefore, we have recovered

all the inertial forces in the rotating frame (4.1), except for the translation force −ρA,

because in the example considered, (4.10), both reference frames have the same origin,

and the translation is absent; by including a translation term in (4.10) we could also

recover it. Now, the two formulations, including centrifugal buoyancy in both reference

frames (inertial and rotating), fully agree.

In the inertial reference frame, we are interested in a formulation in terms of the velocity

field in the inertial frame v, instead of u as in (4.8). The analysis presented above

considering the advection term results simply in an additional term, the centrifugal

buoyancy. We have also discussed the effect of the decomposition v = u + Ω × r in

the time derivative term. Now it only remains to consider the viscous term. However,

∇2(Ω× r) = 0 because Ω× r is linear in the spatial coordinates and so its Laplacian is

zero. The traditional Boussinesq approximation equations in the inertial reference frame

are

ρ0(∂t + v · ∇)v = −∇p∗ + µ∇2v + ρ f − ρ′∇Φ− ρ′Ω× (Ω× r), (4.11)

where p∗ = p + ρ0Φ − 1
2
ρ0|Ω × r|2, and together with the incompressibility condition

∇ · u = 0.

Formulation in the inertial frame: generalization

We have shown that centrifugal buoyancy enters the governing equations via the bound-

ary conditions and the advection term; no other term is affected in the Boussinesq

approximation. This now suggests a very simple formulation, consisting in keeping the

whole density, ρ = ρ0 +ρ′, in the advection term. This formulation is easy to implement,

and since most time-evolution codes for incompressible flows are semi-implicit (i.e. the

viscous term is treated implicitly, whereas the advection term is treated explicitly), the

speed and efficiency of the codes do not change. The formulation reads

ρ0(∂t + v · ∇)v = −∇p∗ + µ∇2v + ρ f − ρ′∇Φ− ρ′(v · ∇)v, (4.12)

where p∗ = p + ρ0Φ, and allows one to easily handle situations where different parts of

a fluid container rotate independently. In these flows there is not a natural or unique
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angular velocity Ω to use for a rotating reference frame in the formulation (4.11); how-

ever the angular velocities of the problem still enter the governing equations through

the boundary conditions and the advection term. Hence formulation (4.12) provides a

natural way to account for centrifugal buoyancy effects of these rotating flows in the

inertial (laboratory) reference frame. This formulation is also appropriate if additional

equations appear coupled with the Navier-Stokes equations, for example for large den-

sity variations in stratified flows. The treatment of the centrifugal effects can be carried

out exactly in the same way presented here.

Alternative formulation in the inertial frame and physical interpretation

The extra term included in (4.12), ρ′(v · ∇)v, can be expressed in a different way,

providing a closer resemblance to the expression in (4.11). Close to a rotating wall,

the velocity field is v ≈ Ω × r; this expression is exact at the wall (no slip boundary

condition at a rigid rotating wall). The dominant part of the advection term is then

(v ·∇)v ≈ (Ω× r) ·∇(Ω× r) = Ω× (Ω× r) = −∇(
1

2
|Ω× r|2) ≈ −∇

( 1

2
v2
)
. (4.13)

As the dominant term is a gradient, it is necessary to include the ρ′ term in the Boussi-

nesq approximation. Replacing ρ′(v · ∇)v by −ρ′∇(1
2
v2) gives the alternative form for

(4.12):

ρ0(∂t + v · ∇)v = −∇p∗ + µ∇2v + ρ f − ρ′∇Φ + ρ′∇
( 1

2
v2
)
. (4.14)

This centrifugal effect is not only important when we have rotating walls, but also if a

strong vortex appears dynamically in the interior of the domain; therefore it is advisable

to always include this term in the Boussinesq approximation in order to account for all

possible sources of centrifugal instability.

We have presented two different ways, (4.12) and (4.14), of including the centrifugal

buoyancy in rotating problems. One may wonder if there exists a canonical way to ex-

tract from the advection term the part that is a gradient, and then multiply this gradient

by ρ′. The Helmholtz decomposition (Arfken & Weber, 2005), writing a given vector

field as the sum of a gradient and a curl, could serve this purpose, but unfortunately this

decomposition is not unique (it depends on the boundary conditions satisfied by the curl

part), and moreover it is not a local decomposition (i.e., in order to extract the gradient

part, we need to solve a Laplace equation with Neumann boundary conditions). The

two formulations presented here, (4.12) and (4.14), are simple and easy to implement,

and deciding between one or the other is a matter of taste.
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The extra term we have included in (4.14), ρ′∇(1
2
v2), has an important physical inter-

pretation; it is a source of vorticity due to density variations and centrifugal effects.

Taking the curl of (4.14) and using

∇× (v · ∇v) = ∇× (ω × v) = v · ∇ω − ω · ∇v, (4.15)

where ω = ∇× v is the vorticity field, results in an equation for the vorticity:

ρ0(∂t + v ·∇)ω = ρ0ω ·∇v +µ∇2ω+∇× (ρ f)−∇ρ′×∇Φ +∇ρ′×∇
( 1

2
v2
)
. (4.16)

The first three terms in the right-hand-side of (4.16) provide the classical vorticity evo-

lution equation for an incompressible flow with constant density. The last two terms are

the explicit generation of vorticity due to the gravitational and centrifugal buoyancies,

respectively. In the next section we discuss two hydrodynamic approaches to the accre-

tion disk problem in astrophysics, where centrifugal buoyancy is not included, and we

show that it can be easily included in the numerical analysis.

4.3 Centrifugal effects in hydrodynamic accretion disk models

There are other approximations used in the literature, which may be also modified to

include centrifugal buoyancy. Astrophysics is a very active field where these approxi-

mations are used. The book of Tassoul (2000) provides a comprehensive discussion on

rotating stellar flows under the influence of shear and stratification. In this section we

briefly discuss two approximations used in accretion disk theory. The first is the shearing

sheet model (Balbus, 2003; Regev & Umurhan, 2008; Lesur & Papaloizou, 2010), where

the Boussinesq approximation is used in a small domain of the accretion disk. The sec-

ond is the anelastic approximation (Bannon, 1996), used by Petersen et al. (2007) in a

global model of an accretion disk.

In the shearing sheet approximation the governing equations are written in a small thin

rectangular box at a distance r0 from the center of the accretion disk; the coordinates

used are x = r − r0, y = r0θ, and z, where (r, θ, z) are the cylindrical polar coordinates

of the disk. Let Ω(r) be the Keplerian angular velocity profile of the accretion disk, i.e.

its background rotation. The rotating reference frame has Ω = Ω0ez, A = −r0Ω2
0er and

α = 0, where Ω0 = Ω(r0) (see 4.4). In terms of the velocity perturbation with respect

to the background rotation, w = (u, v, w) = u − u0, with u0 = r(Ω(r) − Ω0)ey, the

governing equations (4.4) are

ρ0(∂t+w · ∇ − Sx∂y)w = −∇p∗ + µ∇2w − ρ′∇Φ

− 2ρ0Ω×w + ρ0Suey − 2ρ0Ω0Sxex − ρ′Ω×
(
Ω× (r0ex + r)

)
.

(4.17)
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Here S = −r0dΩ/dr|r0 is a linear approximation of the shear associated with the back-

ground rotation profile Ω(r). We have assumed as customary that x� r0 and expanded

Ω(r) up to first order in x/r0. We can compare (4.17) with the governing equations

in Balbus (2003); Lesur & Papaloizou (2010), and we observe that the centrifugal term

−ρ′Ω × (Ω × r) is absent in these references. The baroclinic term −ρ′∇Φ is the only

buoyancy term considered in these works, and it points into the radial direction for an

axisymmetric mass distribution in the accretion disk. Another source of instability are

the shear terms proportional to S, that are independent of the temperature. When

centrifugal buoyancy is included, additional terms both in the radial and azimuthal di-

rections appear, competing with the gravitational buoyancy and the shear terms. As a

result, the stability analysis and the dynamics of the accretion disk may be modified by

the inclusion of centrifugal buoyancy. If the centrifugal effects of internal strong vortices

or differential rotation are also taken into account, like in (4.12, 4.14), additional terms

may also be included: −ρ′(v · ∇)v or equivalently ρ′∇
(

1
2
v2
)
.

The shearing sheet approximation is local, it models a small rectangular neighborhood

of a point in the accretion disk. In order to perform a global analysis of the disk in

the radial direction, it is necessary to account for large variations in density, which do

not fit into the Boussinesq framework. The anelastic approximation is very useful in

this case. It is assumed that there is a background state ρ0(r), p0(r) in static balance

between centrifugal force, gravity and pressure,

rΩ2(r) =
dΦ

dr
+

1

ρ0

dp0

dr
, (4.18)

and the continuity equation now reads ∇ · (ρ0(r)u) = 0. The velocity field is not

solenoidal, but the governing equations and numerical methods are very similar to those

corresponding to the Navier-Stokes-Boussinesq approximation, and in 2D problems (Pe-

tersen et al., 2007) a streamfunction can still be defined. Because of the strong differential

rotation in the accretion disk problem, the inertial reference frame is usually preferred.

As the centrifugal force is included in the static balance (4.18), it may look like centrifu-

gal effects have been included into the governing equations. However, the static balance

means that the centrifugal term −ρ0Ω × (Ω × r) is a gradient, and therefore terms of

the form −ρ′(v ·∇)v or ρ′∇
(

1
2
v2
)

should be included in the governing equations, as has

been discussed in the preceding section. These terms are not included in studies using

the anelastic approximation (Bannon, 1996; Petersen et al., 2007). Therefore centrifu-

gal effects in many geophysical and astrophysical problems could modify the stability

analysis and the dynamics obtained so far, particularly at large rotation rates.

59



4.4 Description of the system

We consider the motion of a fluid of kinematic viscosity ν contained in the annular

gap between two concentric infinite cylinders of radii ri and ro. The cylinders rotate

at independent angular speeds Ωi and Ωo. A negative radial gradient of temperature,

as in accretion disks, is considered by setting the temperature of the inner cylinder to

Ti = Tc + ∆T/2 and the outer cylinder to To = Tc − ∆T/2, where Tc is the mean

temperature. We fix the radii ratio η = 0.71, a typical value in experimental facilities,

and the Prandtl number σ = 7.16, corresponding to water. In astrophysics σ � 1

because thermal relaxation is dominated by radiation processes, whereas in geophysics

(planetary core and mantle) σ � 1. We assume that the gravitational acceleration is

vertical and uniform, as in typical Taylor-Couette experiments. This is in contrast to

astrophysical stellar flows, where radial gravity plays a prominent role and cannot be

neglected (Tassoul, 2000). For example, the radial buoyancy frequency (absent in our

system) defines the stability of rotating astrophysical objects. Similarly, in accretion

disks the radial Grashof number (also absent in our system) is more relevant than the

vertical one. Another crucial difference is the presence of radial boundaries (cylinders) to

drive rotation. As a result, in the quasi-Keplerian regime (Ωi > Ωo and r2
iΩi < r2

oΩo) the

radial pressure gradient is positive, whereas in accretion disks it may also be negative.

4.4.1 Governing equations

The centrifugal buoyancy in the stationary frame of reference is included as in sec-

tion 4.2.2

ρ0(∂t + v · ∇)v = −∇p∗ + µ∇2v − ρ′∇Φ− ρ′v · ∇v, (4.19)

where p∗ includes part of the gravitational potential, ρ0Φ.

We assume ρ = ρ0 + ρ′ = ρ0(1− αT ), where T is the deviation of the temperature with

respect to the mean temperature Tc, and ρ0 is the density of the fluid at Tc. As the gravity

acceleration is vertical and uniform, the gravitational potential is given by Φ = gz;

cylindrical coordinates (r, θ, z) are used. With these assumptions, −ρ′∇Φ = ρ0αgT ẑ

where ẑ is the unit vector in the axial direction z and α is the coefficient of volume

expansion. The governing equations, including the temperature and incompressibility
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condition, are:

(∂t + v · ∇)v = −∇p+ ν∇2v + αgT ẑ + αTv · ∇v, (4.20a)

(∂t + v · ∇)T = κ∇2T, (4.20b)

∇ · v = 0, (4.20c)

where κ is the thermal diffusivity of the fluid. The equations are made dimensionless

using the gap width d = ro−ri as the length scale, the viscous time d2/ν as the time scale,

∆T as the temperature scale, and (ν/d)2 for the pressure. In doing so, six independent

dimensionless numbers appear:

Grashof number G = αg∆Td3/ν2, (4.21a)

relative density variation ε = α∆T = ∆ρ/ρ0, (4.21b)

Prandtl number σ = ν/κ, (4.21c)

radius ratio η = ri/ro, (4.21d)

inner Reynolds number Rei = Ωirid/ν, (4.21e)

outer Reynolds number Reo = Ωorod/ν. (4.21f)

where ∆ρ is the density variation associated with a temperature change of ∆T . In

this system the Froude number is not particularly useful because we have two different

rotation rates, Ωi and Ωo, so the Froude number definition is not unique.

From now on, only dimensionless variables and parameters will be used. The dimen-

sionless governing equations are:

(∂t + v · ∇)v = −∇p+∇2v +GT ẑ + εTv · ∇v, (4.22a)

(∂t + v · ∇)T = σ−1∇2T, (4.22b)

∇ · v = 0, (4.22c)

The only change needed to recover the traditional Boussinesq approximation is to replace

the centrifugal term εTv · ∇v in (4.22a) by −εΩ2Trr̂, where r̂ is the unit vector in the

radial direction r.

4.4.2 Methodology

The code described in 2.4 has been used to analyze the linear stability of equations

(4.22) when the centrifugal term is included with the new and traditional Boussinesq
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approximations. The base flow, which in this case is calculated analytically, the lin-

earized equations and the numerical method used to deal with the resulting eigenvalue

problem are comprehensively discussed in 2.4. From (2.22) the equations for the tra-

ditional Boussinesq approximation can be easily obtained by setting ε = 0 in all terms

except for −ε(v2
b/r)T

′. The traditional approximation incorporates only one rotating

frame of reference for the system; the expression (2.18b) for the base flow azimuthal

velocity vb(r) = Ar +B/r has two terms, Ar corresponding to solid body rotation, and

B/r corresponding to shear. It is natural to identify A as the frequency of the rotating

frame of reference, Ωr. In fact, if we take Ωi = Ωo = Ω, the Couette flow profile is:

vb(r) = Ar +
B

r
=

Ωor
2
o − Ωir

2
i

r2
o − r2

i

r +
(Ωi − Ωo)(riro)

2

r2
o − r2

i

1

r
= Ωr = Ωrr, (4.23)

and we recover the linearized version of the centrifugal term considered in the tradi-

tional approach, −εΩ2T ′rr̂. In the general case with Ωi 6= Ωo the traditional Boussinesq

approximation is defined in the frame of reference rotating with Ωr = A. This approxi-

mation takes only into account the centrifugal buoyancy acting in the radial direction,

which is obviously its main contribution. However, as we will see in 4.5, for high rotation

rates other terms acting both in the radial and azimuthal directions become important

and change the behavior of the system. Part of the discrepancy stems from the fact that

the effect of differential rotation is entirely neglected in the traditional approximation.

4.5 Stability of differentially heated fluid between co-rotating

cylinders

In this section we present a detailed comparison of the linear stability of the system

using the traditional Boussinesq approximation and the new approximation (2.22). We

consider three different cases, all with η = 0.71 and σ = 7.16. In the first one the

cylinders are rotating at same angular speed, corresponding to fluid rotating as a solid-

body. In the second and third cases the stability of a differentially rotating fluid is

considered in the presence of weak and strong (quasi-Keplerian) shear.

4.5.1 Cylinders rotating at same angular speed

In this case a rotating frame of reference is readily identified and the shear term B/r

in the base flow azimuthal velocity (2.18b) is zero, whereas the term A corresponds to
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Figure 4.1: Critical Grashof number Gc as function of inner cylinder Reynolds number
Rei for fluid rotating as a solid-body. The solid line is the linear stability curve using
the new approximation for the centrifugal buoyancy proposed in this paper, the dashed
corresponds to the traditional Boussinesq approach, whereas the dotted-dashed line
is the case without centrifugal buoyancy, which can only be distinguished from the
horizontal axis in the inset (log-log axes). Different symbols indicate the two distinct
mechanisms of instability. Up and down triangles represent the critical points due to
the mechanism at moderate Rei for the new and traditional approximations respectively,
whereas squares and diamonds correspond to the mechanism at large Rei.
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the angular velocity of the cylinders. Figure 4.1 shows the critical values of G as the

rotation speed, indicated here by the inner cylinder Reynolds number Rei, is increased.

In the case of stationary cylinders instability sets in at G = 8087.42, with kc = −2.74

and n = 0. The emerging pattern is characterized by pairs of counter-rotating toroidal

rolls, that unlike Taylor vortices have a non-zero phase velocity that causes a slow

drift of the cellular pattern upward. Extensive information about natural convection

instabilities can be found in the literature: Choi & Korpela (1980) and McFadden et al.

(1984) for infinite geometries, and de Vahl Davis & Thomas (1969) and Lee et al. (1982)

for finite geometries. Without rotation, traditional (dashed line) and new (solid line)

approximations yield identical results to the case where centrifugal buoyancy is neglected

(dashed-dotted line). For slow rotation the effect of the centrifugal buoyancy is negligible,

and nearly the same critical values are obtained in each case (see inset in figure 4.1).

As rotation is increased, the flow is strongly stabilized by centrifugal buoyancy. Note

that if this is neglected, the onset of instability asymptotically approaches Gc = 172.50

and is qualitatively wrong. The presence of the centrifugal term in any of the ways

considered here, entirely modifies the stability of the problem and consequently is an

essential element to study these flows. No differences between the two approximations in

the linear behavior of the system are observed up to Rei ∼ 5×105, where the two curves

start to depart from each other. Up to this point and after a small initial region where

several azimuthal modes up to n = 6 are involved, the base flow loses stability to an

azimuthal mode n = 1 with small axial wavenumber k ∼ 10−3. The shape of the critical

modes along the stability curve is illustrated in figure 4.2, showing contours of constant

temperature in a horizontal cross-section. The three states correspond to the circles in

figure 4.1 and depict the transition between the lower and intermediate branches as we

consider the new approximation. As we proceed forward along the critical curve the cold

fluid progressively penetrates into the warm fluid and vice versa. The same behavior is

observed when the traditional approximation is used, nevertheless the values of Rei and

Gc required are larger.

As Rei increases beyond 5 × 105 the new terms in our approximation start becoming

important and lead to different behavior in the linear stability of the system. An anal-

ysis of the magnitude of each term in our approximation reveals that the differences

observed in figure 4.1 at high Rei are due to terms involving the product vbuθ, implying

the existence of an important centrifugal force acting in azimuthal direction as high

rotational speeds are reached. This provides evidence that the traditional formulation,

including only the main (radial) contribution of centrifugal buoyancy, is a very good

approximation if slow rotation is involved but other contributions may not be neglected
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(a) (b) (c)

Figure 4.2: Contours of the temperature disturbance T ′ at a z-constant section cor-
responding to the points marked as blue circles in figure 4.1. (a): Rei = 5 × 105,
Gc = 21206.53. (b): Rei = 5.7×105, Gc = 33768.37. (c): Rei = 5.2×105, Gc = 79670.16.
There are 10 positive (dark gray; red in the online version) and 10 negative (light gray;
yellow in the online version) linearly spaced contours. In all cases the critical azimuthal
mode is n = 1 and k = O(10−3).

in rapidly rotating fluids. Once the critical values given by both approximations differ,

we can identify two interesting regions in parameter space. For Rei ∈ [5× 105, 7.7× 105]

the traditional Boussinesq approach yields larger critical G than our approximation,

whereas for Rei > 7.7 × 105 the upper branch of the new approximation yields much

lower critical values. Moreover, the differences keep increasing as Rei grows.

The analysis performed reveals the existence of two mechanisms of instability associated

with the lower-intermediate and upper branches in figure 4.1. Different symbols are

used to represent the critical values corresponding to each mechanism in each problem.

The differences between them are illustrated in figure 4.3, showing the evolution of

the critical axial wavenumber kc and the angle of the spiral modes arctan(kc
n

) versus

Rei. Two regions with distinct characteristics are well-defined. The first mechanism

of instability has already been presented (see figure 4.2). Low azimuthal wavenumbers,

primarily n = 1, and very small axial wavenumbers characterize it. This corresponds

to quasi two-dimensional modes and can be readily seen in figure 4.3(b), showing that

the angle of the spiral modes remains constant at about 90 degrees. The inset shows

the small initial region where the spiral angle increases progressively until it reaches a

vertical position. The second mechanism is characterized by n > 80 and kc ∼ O(1),

also corresponding to quasi two-dimensional modes (see figure 4.3b). Another common

feature between the two types of instabilities is that the rotational frequency coincides

with the angular velocity of the container in both mechanisms and both approximations.

This is in agreement with Maretzke et al. (2014), who have analytically proven that two-
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Figure 4.3: (a) Critical axial wavenumber kc and (b) spiral angle of the modes
arctan(kc/n) as a function of Rei for the curves in figure 4.1. The inset is a close up
at low Rei where the first mechanism stops being dominant and is superseded by spiral
modes with angle far from 90 degrees, indeed 0, corresponding to n = 0, at Rei = 0.

dimensional modes with k = 0 always rotate at speed A (2.18b) in Taylor–Couette flows

without heating. An interesting distinct feature of the second instability mechanism is

localization near the inner cylinder. An example of these wall convection modes is shown

in figure 4.4; the critical disturbances are clearly different in the traditional and in the

new Boussinesq approximations.

4.5.2 Differentially rotating cylinders

The traditional approximation for the centrifugal buoyancy neglects the part of the base

flow containing shear, i.e. the B/r term in (2.18b). To quantify the influence of including

shear in the centrifugal terms, we perform the same analysis as in the previous section

but for differentially rotating cylinders. The amount of shear introduced is characterized

by the ratio of angular velocities β = Ωi/Ωo; the further β is from one, the stronger is

the shear effect considered.

Weak shear: rotation close to solid body (β = Ωi/Ωo = 1.006)

We first consider the case where the container is rotating near solid body. Although

shear may be here expected to play only a secondary role, this case serves the purpose of

illustrating the importance of including shear effects in the centrifugal term. Figure 4.5

shows the neutral stability curve for the two approaches considered and also without

centrifugal buoyancy (dashed-dotted line), which produces qualitatively correct results in
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(a) (b)

Figure 4.4: Contours of the critical disturbance temperature on a z-constant section for
Rei = 700000. (a) Critical mode using the traditional Boussinesq approximation. Here
Gc = 489371.47, kc = 1.81 and n = 150. (b) Critical mode using the new approximation.
Here Gc = 207906.92, kc = 0.54 and n = 116. In both cases, only 1/20 of the domain is
shown. There are 10 positive (darker gray; red online) and negative (light gray; yellow
online) contours.

this instance. Unlike in the solid-body case, the critical values Gc increase monotonically

as Rei grows. Besides shear, centrifugal effects are also important in this configuration.

From Rei & 2×105 on the linear stability curves obtained by using both approximations

become quite different. Similar features with respect to the solid-body case may be

identified. At first the traditional approximation gives lower critical value of the Grashof.

However, this region is smaller than in the solid-body case and ends at Rei ∼ 2.9× 105

where both curves intersect. From that point on, the stability region predicted by the

new approximation is smaller; the differences between the critical values given by both

approximations keep increasing as larger Rei are considered. At the point where both

curves first depart from each other Rei has half the value of that of the solid-body case.

Consequently, the rotational speeds for which the new approximation is necessary are

significantly smaller in the presence of weak differential rotation.

Critical axial and azimuthal wavenumbers exhibit similar behavior to the solid-body case

and so they are not shown here. Two mechanisms of instability are also found. The first

one embraces the region 2 × 105 < Rei and is characterized by kc ∼ 0 and 1 ≤ n ≤ 6.

Modes are similar to those obtained for the first mechanism in the solid body case.

A subtle difference can be nevertheless pointed out. In the solid body situation the

temperature disturbances fill the whole annulus, whereas differential rotation confines

the perturbation towards the central part (see figure 4.6a). The second mechanism

also presents the same features as in the solid body case, high azimuthal modes and
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Figure 4.5: Critical Grashof number Gc as function of inner cylinder Reynolds number
Rei for rotation near solid-body (β = 1.006). Different symbols refer to two distinct
instability mechanisms as in figure 4.1.

kc ∈ [0.5, 1.5], but differences in the flow appear that deserve to be highlighted. In the

traditional approximation the dominant wall modes are located at the inner cylinder, as

it occurs in the solid-body case (figure 4.6b). In contrast, using the new approximation

changes the location of the dominant wall modes to the outer cylinder (figure 4.6c). In

view of these results we can say that considering shear effects in the centrifugal term of

the Navier–Stokes equations may be extremely important: not only regarding the linear

stability boundary but also the shape and location of the critical modes.

Strong shear: Quasi-Keplerian rotation (β = Ωi/Ωo = 1.58)

If 1/η > β > 1 the angular velocity decreases outward but the angular momentum

increases. These flows, known as quasi-Keplerian flows, are used as models to investigate

the dynamics and stability of astrophysical accretion disks. Here we choose a typical

value β = 1.58 and as in the previous sections consider a negative temperature gradient

in the radial direction, as expected in accretion disks. Figure 4.7 shows the neutral

stability curve for the two approximations considered, as well as entirely neglecting

centrifugal effects (ε = 0). The three curves are almost straight lines, that completely

overlap in a plot (Gc, Rei). In order to see the small differences that appear at large

Rei, we have plotted in this case Gc/Rei versus Rei. Shear is the completely dominant

mechanism in this regime, but small differences can be observed for Rei & 2× 105, that

are enhanced in the inset. Surprisingly, shear has a very strong stabilizing effect in this
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(a) (b) (c)

Figure 4.6: Contours of the critical disturbance temperature on a z-constant section.
(a) n = 1, Rei = 178125, Gc = 92987.56. (b)–(c) Comparison of the traditional (b) and
new (c) approximation at Rei = 285000 (near the crossover point in figure 4.5) showing
1/20 of the annulus. (b) Gc = 154864.79, kc = 0.24 and n = 30. (c) Gc = 156547.54,
kc = 0.39 and n = 75. There are ten positive (dark gray; red online) and negative (light
gray; yellow online) linearly spaced contours.

problem: without shear the critical Grashof number is ten times smaller at Rei = 106

than in the quasi-Keplerian case.

Depending on the Reynolds number two mechanisms of instability are again found. The

first mechanism exhibits a similar flow structure to that observed in the previous case.

It also occurs at low Rei and is localized in the central part of the annulus due to

the action of differential rotation. Figure 4.8(a) shows the contours of the disturbance

temperature in an horizontal plane. In contrast to what happens in the weak shear

situation, these modes present a clear 3D structure with kc ∼ −1. Small azimuthal

wavenumbers are involved in this mechanism, ranging from n = 1 to n = 6. More

remarkable differences are found when analyzing the second mechanism. High azimuthal

modes n ∼ 50 arise as this mechanism becomes dominant, but unlike the solid-body and

weak shear situations, the azimuthal mode number decreases as Rei increases. The same

behavior is observed in the axial wavenumber, so that the spiral angle quickly converges

to 90 degrees as observed in the previous sections. Figure 4.8(b) shows that the instability

is characterized by convection wall modes localized at the outer cylinder, as in the case

of weak shear using the new approximation. Nevertheless, in quasi-Keplerian flows the

dominant modes are always localized at the outer cylinder regardless of how centrifugal

terms enter the equations.
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Figure 4.7: Critical ratio Gc/Rei as function of inner cylinder Reynolds number Rei
for quasi-Keplerian rotation (β = 1.58). The three curves differ only by about 1% and
hence are only distinguishable in the inset.

(a) (b)

Figure 4.8: Contours of the critical disturbance temperature on a z-constant section.
(a) Rei = 11681.03 with Gc = 4.1268× 104, kc = −1.05 and n = 1. (b) Rei = 584051.72
with Gc = 1.8511× 104, kc = 8.21 and n = 38. Ten positive (dark gray; red online) and
negative contours (light gray; yellow online) are displayed. Only 1/20 of the domain is
shown in (b).
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4.6 Summary and discussion

We have identified weaknesses in how the Boussinesq formulation is typically used to

account for centrifugal buoyancy in the Navier–Stokes equations. In particular, the

traditional approximation (including only the term ρ′Ω2) neglects the effects associated

with differential rotation or strong internal vorticity. This has motivated us to develop

a new consistent Boussinesq-type approximation correcting this problem. It consists

in keeping the density variations in the advection term of the Navier-Stokes equations

and thus it is very easy to implement in an existent solver. The new approximation

allows accurate treatment of situations with differential rotation or when strong vortices

appear in the interior of the domain, which may cause important centrifugal effects even

in flows without global rotation. The latter may be especially relevant in simulations

at high Rayleigh numbers (as e.g. in the quest for the ‘ultimate regime’, Ahlers et al.,

2009). Thus we argue that our formulation for the centrifugal terms should be always

implemented whenever the Boussinesq approximation is used.

The relevance of the new approximation has been illustrated with a linear stability anal-

ysis of a Taylor–Couette system subjected to a negative radial gradient of temperature.

Three different cases have been studied. First, we have considered the container rotating

as solid-body, i.e. without differential rotation. We note that if centrifugal buoyancy is

entirely neglected, the results are even qualitatively wrong. For both traditional and

new approximations the critical values obtained agree up to Rei ∼ 5.5 × 105, beyond

which discrepancies become significant. Beyond this point the conductive base flow

loses stability to quasi two-dimensional wall modes (aligned with the axis of rotation,

as expected from the Taylor–Proudman Theorem) localized at the inner cylinder. Note

that the large discrepancy in critical Grashof numbers observed at Rei ∈ [5 × 105, 106]

between both approximations makes it possible to test them against laboratory exper-

iments. For example, in the experiments from Paoletti & Lathrop (2011), and Avila

& Hof (2013), which allow for radial temperature gradients, Re = 106 can be reached,

and the required Grashof numbers 5× 105 can be obtained with temperature differences

about half a degree kelvin.

We have also considered the case in which the cylinders rotate at different angular speeds,

thus introducing shear. For weak differential rotation, shear and centrifugal buoyancy

effects compete and the critical values obtained with both approximations differ from

each other at lower Rei ∼ 2 × 105. Moreover, the new approximation gives rise to wall

modes located on the outer cylinder, whereas the traditional approach yields wall modes

on the inner cylinder, as in the solid-body case. In quasi-Keplerian flows, shear is so
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dominant that centrifugal terms may be entirely neglected in the linear stability analysis

(discrepancies inGc are below 1% regardless of how centrifugal terms enter the equations,

if at all). Here the critical modes are always localized at the outer cylinder. Note that

such wall modes, similar to those identified by Klahr et al. (1999), are not relevant to

the accretion disk problem, in which there are no solid radial boundaries. Furthermore,

it is worth noting that testing our differential rotation results in the laboratory is very

difficult because of axial end wall effects. The large Re involved will necessarily trigger

instabilities and transition to turbulence because of the nearly discontinuous angular

velocity profile at the junction between axial end walls and cylinders (Avila, 2012).

Although it may be tempting to suggest that laminar quasi-Keplerian flows are stable

for weak stratification in the radial direction, our analysis has only axial gravity, and

is linear and hence concerned with infinitesimal disturbances only. In more realistic

models of accretion disks, nonlinear baroclinic instabilities have been found in similar

regimes by Klahr & Bodenheimer (2003), and we expect that subcritical transition via

finite amplitude disturbances may occur in the problem investigated here. This remains

a key question for incoming numerical and experimental investigations. In fact, even

in the classical (isothermal) Taylor–Couette problem this possibility remains open and

controversial (see e.g. Balbus, 2011).
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CHAPTER 5

INFLUENCE OF THE BOUNDARY CONDITIONS ON SIMPLE

MODELS OF BAROCLINIC INSTABILITIES

5.1 Introduction

Since the second half of the past century the baroclinic vorticity production driven by

the combination of rotation and thermal gradients has been addressed in an attempt

to understand the dynamics of complex geophysical, astrophysical and industrial flows.

A laterally heated differentially rotating annulus, often called baroclinic annulus, has

been adopted as a simple model to study such flows in the laboratory. The physical

mechanism involved in the onset of the baroclinic instability is nowadays well understood,

and extensive information about the flow regimes, particularly in a geophysical context,

can be found in the literature (see Lappa (2012) for a comprehensive review on this

topic). However, an understanding of the source of many of the observed dynamical

features is still missing and experiments in baroclinic annuli continue to be an active

area of research.

The purpose of this chapter is to analyze the extent to which the stability of baroclinic

flows is influenced by the presence of axial end walls. In particular, it is interesting to

distinguish features of the flow that arise from the differential rotation and temperature,

from those which are determined by end wall boundary layers. To this avail we here

investigate the linear stability of the flow in a baroclinic annulus with rigid flat axial

boundaries and with axially periodic boundary conditions, which do not generate end

wall boundary layers.

We consider the baroclinic annulus in two different contexts depending on the relative

rotation of cylinders and sign of the temperature gradient. If the cylinders and end walls

rotate at the same angular speeds as a solid-body this model is used to study geophysical

flows such as the dynamics of the large-scale flows in the mid-latitudes of the atmosphere

or the mesoscale eddies in ocean currents (Pierrehumbert & Swanson, 1995). Although

there is an extensive theoretical and experimental literature about this setup (see Hide &

Mason (1975) for an excellent review), there are few numerical works mainly focused on

reproducing experimental results. Lewis & Nagata (2004) and Sugata & Yoden (1990)

reproduced some of the experimental features observed by Fein (1973); Fein & Pfeffer

(1976), showing that linear stability analysis correctly predicts the onset of instability

in this system. The sequence of flow transitions (Randriamampianina et al., 2006) or
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the influence of sloping end walls on the flow stability (Larcher et al., 2013) have also

been the subject of recent numerical investigations. The dynamical role of the boundary

layers has been vastly addressed from a theoretical point of view (Barcilon, 1964; Holton,

1965; Williams & Robinson, 1974), and it is well known that they significantly stabilize

the flow. The results presented in this chapter intend to illustrate in a simple and

intuitive way this stabilizing effect, with emphasis being placed in the associated physical

mechanisms.

The case of rotating inner cylinder and stationary outer cylinder and end walls is a model

for industrial applications such as the cooling of rotating machinery, the solidification

of pure metals or techniques of chemical vapor deposition (Kreith, 1968; Singer, 1984;

Vivès, 1988). Experiments in this context are not as plentiful as for the previous setup.

They can be classified in two groups depending on the geometry of the apparatus. The

first group of experiments (Snyder & Karlsson, 1964; Sorour & Coney, 1979; Lepiller

et al., 2008) is characterized by large length-to-gap aspect ratio Γ = h/(ro − ri) � 1

and narrow gap η = ri/ro . 1, where ri and ro are the radii of the inner and outer

cylinder, and h their height. Ali & Weidman (1990) first performed a detailed linear

stability analysis of such flows using axial periodicity and reported on the influence of the

Prandtl number (σ) and the radius ratio (η) on the stability boundaries. The compari-

son of their results with previous experiments showed a reasonably good agreement with

Snyder & Karlsson (1964) and, to a lesser extent with Sorour & Coney (1979). They at-

tributed the discrepancies to the limitations of linear stability theory and infinite-aspect

ratio idealization to capture the experimental details. A similar linear stability analy-

sis (Yoshikawa et al., 2013) reported a good agreement between numerical and related

experimental results (Lepiller et al., 2008). Nonlinear simulations for small temperature

gradients were provided by Kedia et al. (1998) who quantified the heat transfer across

the system. A second group of experiments embraces apparatuses with moderate as-

pect ratio and wide gap. Here, the most remarkable works are due to Ball & Farouk

(1987, 1988, 1989), who reported heat transfer measurements as well as the sequence of

flow transitions using an experimental setup with Γ = 31.5 and η ∼ 0.5. Subsequent

numerical simulations (Kuo & Ball, 1997) for Γ = 10 and η = 0.5 provided insight

on the bifurcations taking place in the system, however the results showed significant

discrepancies with experiments suggesting strong end walls effects.

The simulations shown in this chapter attempt to elucidate the physical mechanisms

causing these discrepancies and also to provide a comparison between these two groups

of experiments. Moreover, numerical simulations of astrophysical flows suggest that

baroclinic instabilities might be an important mechanism of turbulent transport of mo-
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mentum in accretion disks (Klahr & Bodenheimer, 2003). In this context the assumption

of axial periodicity is essential, as it simplifies considerably the numerical approach, al-

lowing it to reach large Reynolds numbers. Moreover, it renders an arguably better

approximation, as astrophysical accretion flows are not bounded axially. Thus the suit-

ability of laboratory experiments to address this problem will be compromised by the

impact of the axial end walls on the dynamics of the flow. The results of this chapter

may help in assessing their importance.

The chapter is organized as follows. In section 5.2 we introduce the governing equations

and dimensionless numbers. The differences between the basic flows of finite and infinite

systems are also discussed. The methodology utilized to deal with the equations is

specified in section 5.3. In section 5.4 the linear stability of a laterally heated annulus

with rotating inner cylinder is considered. A comparison of the critical boundaries when

using rigid flat lids and axial periodicity is presented. The sequence of flow transitions

and the variation of the heat transfer coefficient (Nusselt number) when varying the

control parameters are also illustrated in each case. The stability of a solid-body rotating

laterally heated annulus is shown in section 5.5. A similar comparison to that in 5.4 is

provided. Finally, in section 5.6 the main conclusions and remarks are outlined.

5.2 Specification of the system

We consider the motion of an incompressible fluid of kinematic viscosity ν confined in

the annular gap between two rigid and concentric rotating cylinders of radii ri and ro in

two different experimental setups:

• Industrial setup: the inner cylinder is rotating at an angular velocity Ω, whereas

the outer cylinder and end walls are kept at rest. A radial thermal gradient is

considered by setting the inner cylinder to Ti = Tc + ∆T/2 and the outer cylinder

to To = Tc −∆T/2, where Tc is the mean temperature of the fluid.

• Atmospheric setup: the container is rotated as a solid body with angular velocity

Ω. In this case the system is heated from the outer cylinder so that the tempera-

tures are opposed to the industrial setup, To = Tc + ∆T/2 and Ti = Tc −∆T/2.

In both cases we assume a vertical and uniform gravitational acceleration g. We study

flows with end walls and with periodic boundary conditions. The latter model the
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case of infinitely long cylinders, whereas the former reproduce experimental boundary

conditions (no-slip for the velocity and thermally insulating end walls).

5.2.1 Governing equations

The same set of equations and dimensionless numbers as in chapter 4 (see section 4.4.1)

are considered. Since the outer cylinder is at rest in the industrial setup, Reo = 0. Cen-

trifugal effects are included in the formulation of the problem through the Boussinesq-

type approximation discussed in chapter 4. The control parameters are Rei and G ,

whereas the rest of dimensionless numbers have been fixed according to previous exper-

imental and numerical works.

5.2.2 Basic flow

The assumption of axial periodicity allows to considerably simplify the calculation of

the basic flow. Owing to the missing end walls the radial velocity is zero and the rest

of variables only depend on the radial component. Under these conditions an analytical

solution can be found by imposing the zero axial mass flux condition to fix the axial

pressure gradient. The resulting steady basic flow is given in 2.4.1.

The presence of end walls in the system leads to the appearance of non-zero radial

velocities, modifying the meridional circulation. This strongly affects the base flow

calculation since velocity field and temperature depend now on the radial and axial

components (r, z). This entails a numerical approach and switches on the contribution

of terms which were zero under the axial periodicity assumption. This is especially

important in equation (4.22b). If we develop the advection term (4.22b) reads

∂tTb + ub∂rTb +
vb
r
∂θTb + wb∂zTb = σ−1∇2Tb, (5.1a)

In the infinite case the laminar flow is steady, has no radial velocity (ub = 0) and the

temperature (Tb) depends only on r, so all terms in the left hand side are zero. Conse-

quently the basic flow remains unaffected by changes in the fluid properties (σ effect).

In contrast, the influence of σ may play a significant role in bounded systems, modifying

the basic flow with respect to the idealized periodic situation and thus becoming an

important source of discrepancies between the critical stability values in both cases.
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5.3 Methodology

The onset of instability was determined via linear stability analysis of the basic flow.

Fully nonlinear solutions were also computed in order to obtain the flow patterns occur-

ring in different regions of the parameter space. Here only a brief summary of the codes

used for the simulations is given. Details can be found in chapter 2.

5.3.1 Axially periodic boundary conditions

The linear stability analysis was performed using the Petrov-Galerkin scheme of Meseguer

et al. (2007), which we recently extended to account for non-isothermal flows with the

Boussinesq approximation (see 2.4). Here up to 50 Chebyshev radial modes have been

used to obtain converged results. Fully nonlinear simulations of the three-dimensional

Navier-Stokes equations have been performed using a Boussinesq-extension of the finite-

difference-Fourier-Galerkin (hybrid MPI-OpenMP) code of Shi et al. (2015) (see 2.3).

5.3.2 Rigid flat end walls

For the simulations with physical no-slip boundary conditions at the end walls we have

used the numerical code described in 2.2. The critical stability values are measured from

the slope of the modal kinetic energy along the linear regime

Em =

∫ 2π

0

∫ Γ/2

−Γ/2

∫ ro

ri

umu
∗
mrdrdzdθ , (5.2)

where um is the mth Fourier mode of the velocity field and u∗m is its complex conjugate.

In the simulations presented here the numerical resolution has been chosen to ensure that

the infinite norm of the spectral coefficients decays at least four orders in magnitude.

Time steps as small as δt = 1 × 10−6 have been required for numerical stability and

accuracy of the second-order temporal scheme.

5.4 Rotating heated inner cylinder

We begin by studying the stability of fluid heated at the inner cylinder and cooled at

the outer cylinder. In addition, the inner cylinder rotates at a constant angular speed,

78



(a) (b)

0 20 40 60 80 100

Re
i

0

2000

4000

6000

8000

10000
G

c

finite

infinite

STABLE FLOW

UNSTABLE FLOW

0

3

2

11

2

3

4

II

III

I
A’

A

B’B

TP
2

TP
1

68 69 70 71 72

Re
i

0

100

200

300

400

G
c

TV

SP

1

0

STABLE

Figure 5.1: (a) Critical stability boundaries (Gc vs Rei) in a system with rotating heated
inner cylinder. The numbers that appear on top of the critical curves are the azimuthal
modes associated to the critical perturbations. (Blue) Solid line and squares are used for
the finite cylinders case, whereas (green) dashed line and circles stand for the marginal
stability in the infinite cylinders case. The working fluid is air (σ = 0.71) and the
geometric parameters are η = 0.5 and Γ = 10.0 (in the finite case). (b) Detail of the
marginal curve for low G in the infinite cylinders case. The (black) dashed-dotted line
marks the transition between spiral flow (SP) and Taylor vortices (TV) after the basic
flow is unstable.

whereas the outer cylinder is held stationary. For the analysis we chose the setup used

by Kuo & Ball (1997), who used air as the working fluid (σ = 0.71). The aspect-ratio is

Γ = 10 and the radius ratio is η = 0.5, which fully specifies the geometry.

In a laterally heated system the meridional circulation is responsible for the convective

heat transport between the cylinders. In an infinite system, in which the basic flow has

zero radial velocity, the heat transport is purely conductive as long as the basic flow is

stable. In contrast, in the finite case the presence of end walls results in strong radial

velocities near the lids, commonly referred to as Ekman viscous layers, which enable the

convective heat transfer across the system even for laminar flow (Greenspan, 1968; Hide

& Mason, 1975). In addition to modifying the convective heat transfer rate, the Ekman

layers play an essential role in the dynamics of the flow, especially at large G where

infinite and finite systems show a completely opposite behavior (see figure 5.1(a)).
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5.4.1 Axially periodic boundary conditions

Primary instability

The stability boundary ((green) dashed line in figure 5.1(a)) has been split into 3 regions

corresponding to different mechanisms of instability. Region I is characterized by weak

rotation. As G increases, the conductive heat flux becomes insufficient to exchange heat

and the basic flow becomes unstable to axisymmetric counter-rotating toroidal rolls.

These convection rolls are similar to Taylor vortices, but unlike them, they have an

upward non-zero phase velocity. An extensive characterization of these structures for

the free convection problem can be found in de Vahl Davis & Thomas (1969).

As the rotation increases the primary instability changes from axisymmetric convection

rolls to spiral modes in Region II. This transition occurs for Rei ≈ 32 as the baroclinic

vorticity production becomes increasingly significant, which destabilizes the convective

axial velocity wb (Drazin & Reid, 2004).

Region III is characterized by the competition between the spiral convection rolls and

the centrifugal instability typical of isothermal Taylor-Couette flow. In this region the

stability is often described in terms of the dimensionless Richardson number or mixed

convection parameter (Ri = G
Re2i

) (Ball & Farouk, 1988, 1989), which measures the ratio

between buoyancy and inertial forces. The Grashof number characterizing the onset of

spiral vortices (Gc) and the critical spiral mode (n) progressively decrease as the rotation

is increased, resulting in Taylor vortices for Ri ≈ 0.06. The intersection between the

transition curves for spiral flow SP and Taylor vortices TV is depicted in figure 5.1 (b).

The (black) dashed-dotted line indicates the transition between both flow regimes after

the basic flow is unstable. The value of Ri at which this transition occurs decreases with

increasing Rei, in contrast to the numerical results of Kuo & Ball (1997) in a finite-length

system, in which it takes place at a constant Ri.

Secondary instabilities

The figure 5.2 illustrates the sequence of flow patterns found when Rei = 50 is fixed and

G is increased (path A-A’ in figure 5.1). Color maps of the temperature in longitudinal

sections at r = ro+ri
2

(upper row) and horizontal sections at mid-height (lower row) are

depicted. The axial non-dimensional length Lz = 2π
kz

of the computational domain is

fixed with kz = 0.84. The onset of instability occurs at Gc ≈ 1328 resulting in a spiral

flow pattern with azimuthal mode number n = 2. This state is stable only in the vicinity
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of the critical point. A small increase in ∆T leads to the emergence of a new spiral state

with n = 3 (see figure 5.2 (a)) which remains stable when 1500 . G . 3500. A complex

spatio-temporal dynamics takes place when G is further increased (G > 3500). First,

pure spiral states turn into wavy spiral flow patterns like the ones illustrated in figures

5.2 (b) and (c), corresponding to G = 4000 and G = 5000 respectively. Note that the

dominant spiral mode changes from n = 3 to n = 2 when G is increased, unlike the

primary transition, where n gradually increases with G . The existence of wavy spiral

flow has been reported in both experimental (Lepiller et al., 2008) and numerical stud-

ies (Viazzo & Poncet, 2014) when considering apparatuses with large Γ and η ∼ 0.8.

Subsequently increasing G above the wavy spiral flow regime, the flow becomes com-

pletely irregular, as is shown in figure 5.2 (d).

The sequence of transitions that the flow undergoes when G = 2000 and Rei is increased

(path B-B’ in figure 5.1) is shown in figure 5.3. The different states are illustrated

through an isosurface of the axial velocity (w = −20). Lz is again fixed with kz = 0.84.

The primary instability happens at Rei ≈ 39, leading to spiral flow with n = 3 (figure 5.3

(a)). With the increase of Rei the axial force due to thermal buoyancy loses importance

in favor of inertial forces, which results in secondary transitions towards spiral flow

with decreasing azimuthal mode. The transition from n = 3 to n = 2 takes place at

Rei ≈ 52, whereas the subsequent transition to n = 1 occurs at Rei ≈ 135. The ensuing

flow patterns are reflected in figures 5.3 (b) and (c) respectively. Further increasing the

rotation speed (Rei ≈ 260) the flow becomes quasi-periodic due to the emergence of a low

frequency modulation. The resulting state preserves the spiral structure with n = 1 and

is characterized by the appearance of spatio-temporal defects. An example of these flow

patterns in which the defect is localized on the bottom of the fluid domain is illustrated

in figure 5.3 (d). Finally, a subsequent increase in Rei results in the appearance of Taylor

vortices (see figure 5.3 (e)), which occurs for Rei ≈ 280.

5.4.2 Rigid flat end walls

Primary instability

Even for weak rotation, convection begins locally near the end walls due to the non-

zero radial velocities. Thus, in contrast to the infinite case, the flow remains laminar in

regions I and II. The onset of instability occurs in region III as a result of the competition

between thermal buoyancy and inertial forces. The marginal curve ((blue) solid line in
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(c) (d)

Figure 5.2: Color maps of the temperature in the case of infinite long cylinders with
a rotating heated inner cylinder for Rei = 50.0, σ = 0.71, η = 0.5 and kz = 0.83.
Longitudinal sections (θ, z) at r = ro+ri

2
(upper row) and horizontal sections (r, θ) at

z = 0 (lower row) are depicted in each case. (a) G = 3000, n = 3 spiral flow; (b)
G = 4000, n = 3 wavy spiral flow; (c) G = 5000, n = 2 wavy spiral flow; (d) G = 7000,
irregular flow.
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(a) (b) (c) (d) (e)

Figure 5.3: Evolution of an isosurface of the axial velocity w = −20 as Rei is varied and
G = 2000 in the infinite case. (a) n = 3 spiral flow pattern, Rei = 50; (b) n = 2 spiral
flow pattern, Rei = 70; (c) n = 1 spiral flow pattern, Rei = 100; (d) n = 1 spiral flow
pattern with defects, Rei = 260; (e) Taylor vortices, Rei = 300;

figure 5.1(a)) exhibits two turning points. The first one, TP1 ≡ Ri ≈ 0.083, is equivalent

to the intersection point between spiral flow and Taylor vortices illustrated in figure 5.1

(b) for the infinite case, whereas the second one, TP2 ≡ Ri ≈ 1.58, only appears in the

finite case and is thus directly related to the existence of axial end walls. In presence

of weak radial heating the onset of Taylor vortices, which in the isothermal situation

takes place at Rei ≈ 65, is shifted towards larger values of Rei up to reach TP1. Above

this point, laminar flow is destabilized in the region embraced between TP1 and TP2,

so that spiral flow occurs for lower values of Rei than Taylor vortices. This behavior is

in agreement with the experiments of Snyder & Karlsson (1964) who used an apparatus

with a very large aspect ratio. When G is increased above TP2 the flow is stabilized,

causing the reversal of the marginal curve towards larger Rei. The critical azimuthal

wavenumber of the spiral patterns increases with G .

Secondary instabilities

The figure 5.4 shows color maps of the temperature illustrating the sequence of states

obtained when G is increased and Rei = 50 is fixed (path A-A’ in figure 5.1). The non-

axisymmetric flows are plotted in a longitudinal section at r = ro+ri
2

and a horizontal

section at mid height, whereas the axisymmetric states are represented in a meridional

section. The conductive basic flow (fig 5.4 (a)) remains stable up to reach Gc ≈ 2000,

where the instability sets in resulting in spiral flow (figures 5.4 (c) and (d)). The most

unstable azimuthal mode near the lower critical boundary is n = 3, however, as the

radial heating increases (G ≈ 5000), the critical spiral mode changes to n = 4. The
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(a) (b) (c) (d)

Figure 5.4: Temperature profiles in the finite case at Rei = 50.0, σ = 0.71, η = 0.5
and Γ = 10 ; Figures (a) and (b) correspond to axisymmetric states at G = 2000.0 and
G = 8000.0. They are plotted in a meridional (r, z) section, where the inner cylinder
is on the left hand side. Figures (c) and (d) display spiral flow in a longitudinal (θ, z)
section at r = ro+ri

2
and in a horizontal section (r, θ) at mid-height, corresponding to (c)

G = 2500.0, n = 3 and (d) G = 5000.0, n = 4.

increase of n with G was already described in Kuo & Ball (1997) and attributed to the

stronger axial force acting on the fluid due to thermal buoyancy. Further increase in G

leads to the upper stability boundary. Above this threshold, the spiral patterns settle

down to the axisymmetric state shown in figure 5.4 (b), in which the thermal boundary

layers at the sidewalls are thinner than in 5.4 (a) as a result of the stronger convec-

tive transport. This state is usually termed as convective basic flow (Ali & McFadden,

2005). The transition from spiral flow to this axisymmetric state as ∆T is increased was

experimentally visualized by Ball & Farouk (1989) using an apparatus with Γ = 31.5.

The figure 5.5 illustrates the sequence of flow transitions when the thermal effects are

weak (G = 2000) and Rei is increased (path B-B’ in figure 5.1). Similarly to figure

5.3, the evolution of an isosurface of the axial velocity (w = −10) is depicted. This

bifurcation scenario with the precise geometry and working fluid considered here was

reported by Kuo & Ball (1997). All transitions mentioned in Kuo & Ball (1997) have

been reproduced here, however, we have found a notable difference in the onset of spiral

flow, which occurs for lower Rei in our simulations and corresponds to a critical spiral

mode n = 3 instead of n = 2 in their simulations. The reason for this discrepancy is
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Figure 5.5: Evolution of an isosurface of the axial velocity w = −10 for G = 2000 as
Rei is varied in the finite case. (a) n = 3 spiral flow, Rei = 60; (b) n = 2 spiral flow ,
Rei = 70; (c) n = 1 spiral flow, Rei = 90; (d) n = 1 spiral flow with defects, Rei = 110;
(e) Taylor vortices, Rei = 140.

explained by the assumption made by these authors that neglects the correction of the

velocity field at each timestep. This correction is necessary to ensure that the solution

of the discretized problem has zero divergence in the interior of the domain. Based

on previous studies of similar flows they considered this term to be negligible. Under

this assumption they stated that the onset of spiral flow does not depend on thermal

buoyancy and occurs at a fixed critical Reynolds Rec, slightly lower than Rec in the

isothermal situation. As we adopt the same hypothesis in our simulations the same

results as in Kuo & Ball (1997) are recovered and the primary transition is missed.

The correction of the velocity field is therefore essential to properly predict the onset of

instability in this problem. Nevertheless its relevance diminishes as increasing Rei and

the secondary transitions coincide with those in Kuo & Ball (1997).

The same sequence of flow states as in figure 5.3 has been obtained, differing only in the

values at which the transitions take place. The basic flow loses stability to spiral flow

with n = 3 for Rei ≈ 50 (figure 5.5 (a)). Further increasing Rei results in spiral flow

patterns with decreasing n. The transitions to n = 2 (figure 5.5 (b)) and n = 1 (figure 5.5

(c)) occur for Rei ≈ 63 and Rei ≈ 90 respectively. The transition between spiral flow

and Taylor vortices is also characterized by the presence of defects. Nevertheless, these

are much more pronounced than in the infinite cylinders case, as can be seen in figure 5.5

(d). The onset of Taylor vortices, which are illustrated figure 5.5 (e), takes place for

Rei ≈ 130.
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5.4.3 Convective heat transport rate

In this section we show the variation of the averaged Nusselt number (Nu) along the

inner cylinder when the control parameters are varied for the two systems considered

in this study. This dimensionless number measures the relationship between total and

conductive heat transfer across a surface and is commonly used to characterize the

intensity of convective heat transport in engineering applications. The Nusselt number

along the inner cylinder can be mathematically expressed as

< Nui >t=

∫ 2π

0

∫ Γ/2

−Γ/2
∂rT |ridzdθ

qcond
(5.3)

where < . >t indicates time average and qcond = 2πκ∆T/ln(η) denotes the dimensionless

conductive heat flux. To simplify the notation the subindex i is omitted henceforth. Note

that the Nusselt number along the outer cylinder Nuo can be easily obtained from a

simple heat balance as Nuo = Nuiη.

In figure 5.6 (a) the evolution of Nu with Rei in the finite and infinite cases is com-

pared when G = 2000. It is observed that heat transfer is in both cases independent

of rotation as long as the basic laminar flow is stable (Rei . 50). In the infinite case

heat transfer is purely conductive (Nu = 1), whereas in the finite case, Nu is slightly

higher (Nu = 1.07) due to the heat transfer through the Ekman boundary layers. The

onset of instability enhances the convective heat transport so that Nu increases signif-

icantly as increasing Rei. The scaling behavior is nearly identical in both cases. It can

be described by a power law relationship of the type Nu = AReBi , in which the same

coefficient A = 0.15 is obtained in both cases and the exponent only differs marginally,

B = 0.49 and B = 0.50, in the finite and infinite cases respectively.

Most experiments intended for developing heat transfer correlations operate in forced

convection regime, so that the effect of free convection in heat transfer has received

little attention (Fenot et al., 2011). In order to fill this gap, in figure 5.6 (b) we show the

evolution of Nu with G in the finite and infinite cases for several values of Rei near the

onset of instability, where thermal buoyancy effects prevail over centrifugal forces. The

different dynamical behaviors arising between finite and infinite systems as increasing G

are clearly reflected in the convective heat transfer rate. Obviously, the largest differences

occur for Rei = 20, which corresponds to the first region of figure 5.1 (a). In the

infinite case (circles), Nu = 1 remains constant up to G ≈ 11000, indicating that heat

transport is exclusively conductive up to reach the onset of instability. In contrast, in
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Figure 5.6: Variation of the averaged Nusselt number (Nu) along the inner cylinder
in the case of finite and infinite cylinders plotted agains (a) Reynolds number Rei, for
G = 2000; (b) Grashof G , for several values of Rei.

the finite case (up triangles), the secondary circulation provides an efficient mechanism

to transfer heat, which results in an almost linear increase of Nu with G . Such linear

growth remains in the region of spiral flow, Rei = 50 (left triangles) and Rei = 70 (down

triangles), nevertheless the slope diminishes as Rei is increased. As formerly mentioned

Nu increases with Rei after the basic flow becomes unstable. However, the values of

Nu corresponding to different values of Rei approach each other as G increases. When

G exceeds the value corresponding to the upper part of the marginal curve in figure 5.1

(a) the flow becomes again axisymmetric and Nu solely depends on G . As a result,

curves corresponding to different values of Rei collapse, as can be seen for Rei = 20 and

Rei = 50 when G > 6000. In the infinite case, the behavior of Nu within the region of

spiral flow, Re = 50 (squares) and Re = 70 (diamonds), reflects the transitions described

in 5.4.1. The spiral flow (G < 3500− 4000) resulting from the primary transition is an

excellent heat transfer mechanism, leading to a rapid and linear growth of Nu as G is

increased. In this flow regime the values of Nu in the infinite case are slightly larger

than those in the finite case. The transition towards wavy spiral flow results in a sudden

decrease of the convective heat transport, consistently with the results of Kedia et al.

(1998). After this initial drop, further increasing G towards fully developed turbulent

flow is accompanied by a progressive growth in Nu, which is however significantly lower

than the linear growth in the spiral flow regime. Once the instability of the basic flow

has occurred Nu increases with Re independently of G .
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5.4.4 Comparison of the dynamical behavior of the two systems

The presence of Ekman boundary layers delays the onset of instability with respect to

that in the case of infinite long cylinders, with the exception of the transition to Taylor

vortices, which happens for slightly larger values of Rei in the infinite case. Hot rising

and cold descending fluid are radially transported through the Ekman layers at the

top and bottom lids respectively. This produces a stable axial temperature gradient,

and consequently, a buoyancy force is generated that opposes the convective vertical

motion. This stabilizing force becomes increasingly important as the thermal effects

gain relevance and, for sufficiently large values of G , results in entirely horizontal motion,

suppressing the baroclinic vorticity production. The Ekman layer also acts as a frictional

layer, slowing down the internal flow and causing the marginal curve to shift towards

larger values of Rei than in the infinite case.

For low G , stratification and frictional effects are still weak so that both systems share

the same fundamental dynamics. The marginal curves show a good qualitatively agree-

ment and the same sequence of flow patterns is found in both cases when G = 2000 and

Rei is varied, differing only in the values at which the transitions occur. The stabilizing

effect due to the aforementioned mechanisms causes the primary and first secondary

transitions to occur for slightly larger values of Rei in the finite case. Nevertheless, as

the rotation is increased, the onset of the remaining secondary instabilities is favored by

the presence of axial end walls, taking place at considerably lower values of Rei in the

finite case.

The discrepancies between the marginal curves in both systems grow very substantially

as G is increased. In the finite case, the size of the fluid regions in which vertical motion

is inhibited increases as the axial stratification becomes stronger, thereby reducing the

region of the fluid domain where spiral flow occurs (see figures 5.4 (c) and (d)). The

radial circulation, which is significantly intensified with the increase of G , extends over

the former regions (see figure 5.7) and results in an increase of the friction with the

internal flow, which leads to substantial differences with the onset of instability in the

infinite case. When G is increased above the second turning point TP2, the flow is

strongly stabilized and the marginal curve bends towards larger Rei. This means that,

as increasing G from the spiral flow regime, there exist a threshold from which the

baroclinic vorticity production cannot overcome the damping provided by stable density

stratification and frictional effects. The formation of spiral flow is therefore inhibited

and the flow returns to the axisymmetric state.

88
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Figure 5.7: Isosurfaces of the radial velocity u = −6 (blue) and u = 7 (red) in the finite
case. (a) G = 2000, (b) G = 5000 and (c) G = 8000

In the infinite cylinders case, the absence of meridional circulation results in an addi-

tional mechanism of instability which occurs for very weak rotation speeds and involves

the onset of convective heat transport in the system. The onset of spiral flow is ac-

companied by an abrupt drop of the marginal curve. This is a robust feature in the

case of axially periodic boundary conditions, which has been found either changing the

boundary conditions (relative rotation between the cylinders or sense of the temperature

gradient) or the parameters of the system (η and σ). Despite the difference in geome-

try it is reminiscent of the destabilization of the free convective flow by weak rotation

observed in the Czochralski model (Gelfgat, 2011). When G is increased, the flow un-

dergoes the classical Ruelle-Takens route to chaos, in which the spiral flow bifurcates

first in wavy spiral flow and becomes subsequently irregular.

The σ effect described in 5.2.2 is negligible (σ ≈ 1), so the differences between the fi-

nite and infinite cases can be exclusively ascribed to the role played by the Ekman layers.

5.5 Solid-body rotation with cooled inner cylinder

We consider now the stability of fluid heated at the outer cylinder and cooled at the

inner cylinder. The entire system rotates uniformly at a constant angular speed Ω.

This is the typical experimental setup to study baroclinic instability in an atmospheric
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Figure 5.8: (a) Critical stability curve in the case of solid-body rotation with cooled
inner cylinder. The numbers that appear on top of the critical curves are the azimuthal
modes associated to the critical perturbations. (Blue) Solid line and squares are used for
the finite cylinder case, whereas (green) dashed line and circles stand for the marginal
stability in the infinite cylinders case. The working fluid is water(σ = 7.16) and the
geometric parameters are η = 0.47 and Γ = 1.86 (in the finite case). Note that the
ordinate axis is logarithmic in this case. (b) Marginal curve for the case of finite cylinders
plotted in a log-log Ta-RoT diagram, as it is typically found in the context of geophysical
fluids.

context. Since the atmosphere’s vertical extension is much smaller than the radial one,

experiments are generally carried out in shallow annular containers (Γ ∼ O(1)) which

entails a significant influence of the axial end walls in the dynamics. For the study

presented here, we have considered the experimental setup used by Koschmieder (1972),

where the geometry is defined by η = 0.47 and Γ = 1.86, and the working fluid is water

(σ = 7.16).

The figure 5.8 (a) shows the critical boundaries in the finite (solid line) and infinite

(dashed line) cases. The short aspect ratio results in a basic state with a completely

different axial velocity profile, which leads to extremely large differences (three orders

of magnitude) between the marginal curves in both cases.

5.5.1 Rigid flat end walls

Basic flow

The axial velocity wb is confined to the cylinders, forming the so-called Stewartson layers

(see figure 5.9 (a)). They consist of two opposite vertical circulations near each cylinder
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Figure 5.9: (a) Axial velocity of the basic state in the finite case plotted in a meridional
plane for Rei = 5000, G = 10000, Γ = 1.86, η = 0.47 and σ = 7.16. The inner cylinder is
on the left hand side. (b) Radial dependence of wb at mid-height for the same parameters
as in (a).

which perform different dynamical roles. The inner layer fits the azimuthal velocity to

the sidewall velocity, whereas the outer layer adjusts the radial and axial velocities to

satisfy the no-slip condition at the sidewall. Moreover, the outer layer is also responsible

for the vertical flux between the Ekman layers, creating an overturning circulation which

mimics the tropical atmospheric circulation, known as Hadley cell, and is thus essential

to study baroclinic instability in this context. The dimensionless thickness of the inner

and outer layers is usually expressed in terms of the Ekman number (E = ν
Ωr2

) , being

the outer layer (δ ∼ E1/3) narrower than the inner one (δ ∼ E1/4). The Stewartson layers

are thicker than the Ekman layers resulting at the horizontal end walls (δ ∼ E1/2). The

outer circulation is much more intense than the inner one, as is reflected in 5.9 (b), where

the radial dependence of wb at mid-height is shown for Rei = 5000 and G = 10000. We

refer to Greenspan (1968) for an exhaustive treatment of the Stewartson layers. Due to

the lateral confinement of wb the basic flow splits into two parts, a roughly azimuthal

inner flow and the meridional overturning circulation created by the radial and axial

velocities near the boundaries.

Onset of instability and baroclinic waves

In an atmospheric context the stability boundaries are usually plotted in a logarithmic

Ta−RoT diagram, where Ta = 4Ω2d4

ν2
and RoT = 4GΓ

Ta
are the dimensionless Taylor and

thermal Rossby numbers respectively. Note that RoT depends on Γ and thus is infinite in

the axially periodic case, which is the reason for choosing G for the comparison between
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the finite and infinite cases. In this parameter space, the onset of baroclinic waves

(see figure 5.8 (b)) displays the typical anvil shape which has been extensively reported

in the literature (see i.e. Hide (1958); Lewis & Nagata (2004)). It is characterized by

the existence of an inflexion point that connects two instability branches, commonly

known as upper and lower symmetric transitions. The latter indicates the onset of

instability when the temperature profile of the basic state is essentially conductive (small

∆T ) and progressively decreases towards smaller RoT as Ta is increased. As pointed

out in Lewis & Nagata (2004) and Koschmieder (1972), for high rotational speeds, a

significant destabilizing effect is induced by the centrifugal force, changing the concavity

of the lower transition curve. The upper transition occurs for large ∆T , when the effects

of the stable stratification become strong and higher rotational speeds are required for

the onset of baroclinic waves. The critical azimuthal wavenumber n associated with the

baroclinic waves is shown on top of the (blue) solid line in figure 5.8 (a). It is observed

that n decreases along the upper and lower transitions, existing a local maximum n = 6

in the region near the inflexion point. This behavior is in full agreement with the results

of the linear stability analysis reported in Lewis & Nagata (2004). Figure 5.10 illustrates

in a horizontal section at mid-height the temperature profiles of two baroclinic waves

obtained when Rei = 1000 is fixed and G is varied. As G is increased from the lower

to the upper transition, the azimuthal wavenumber of the wavy patterns progressively

decreases from n = 6 at the onset of instability up to n = 2 near the upper transition

curve. Further increase in G leads to axisymmetric flow patterns with a stably stratified

temperature profile, which are characteristic of the upper symmetric region. When ∆T is

fixed and the rotation is increased, baroclinic waves often exhibit amplitude vacillations

which usually occur before the transition towards a new state with lower n takes place.

Nevertheless, in the parameter range studied here, the same azimuthal wavenumber

remains when Rei is increased, and therefore, only steady waves with a single frequency

have been found.

5.5.2 Axially periodic boundary conditions

Basic flow

The basic flow under the assumption of axial periodicity was generally described in sec-

tion 2.4.1. Here attention is paid to the axial velocity profile and the differences existing

with the finite case. The axial velocity wb consists of two fluid cells that fill the entire

domain. The fluid rises (descends) within the outer (inner) cell reproducing an infinite
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Figure 5.10: Baroclinic waves in the finite case. Color map of the temperature in a
horizontal section at mid-height for Rei = 1000 and (a) G = 8 × 105 and n = 5; (b)
G = 1.6× 106 and n = 3.
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Figure 5.11: (a) Axial velocity wb of the infinite case plotted in a meridional section for
Rei = 5000.0, G = 10000.0, η = 0.47 and σ = 7.16. The inner cylinder is on the left
hand side. (b) Radial dependence of wb for the same parameters as in (a).
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convective loop (see figure 5.11 (a)). The enormous qualitative and quantitative differ-

ences between wb in the finite and infinite cases can be easily seen when comparing the

radial dependence in each case (see figures 5.9 (b) and 5.11 (b) for the finite and infinite

cases respectively). In the case infinite, wb only has radial dependence and its highest

absolute values are approximately in the middle of each cell, at a distance r ≈ ro−ri
4

from

the cylinders. In contrast, the largest values of wb in the finite case are located near the

cylinders and are two orders of magnitude lower than those in the infinite case.

Onset of instability and baroclinic waves

As long as rotation is weak, the marginal curve ( (green) dashed line in figure 5.8 (a))

shows the same dynamical features as in section 5.4 ( (green) dashed line in figure 5.1

(a)). The onset of convection through axisymmetric convection rolls occurs at a nearly

constant value, Gc ≈ 5319, and when Rei = 13 is reached, the marginal curve exhibits

a steep decrease which means the transition to the baroclinic waves regime.

The onset of baroclinic waves slightly decreases with Rei and, similarly to the finite

case, is destabilized due to centrifugal buoyancy. However, for the values of Rei shown

in figure 5.8 (a), this destabilizing effect is still weak, and thus the change is not apparent.

To illustrate the influence of centrifugal buoyancy in the case of infinite long cylinders,

figure 5.12 shows the critical boundaries corresponding to three different situations for

larger values of Rei. The (blue) solid and (black) dashed-dotted lines are the marginal

curves for systems with a positive temperature gradient (heated outer cylinder and

cooled inner cylinder) with and without considering the centrifugal term respectively,

whereas the (green) dashed line is the marginal curve for a system with a negative

temperature gradient (cooled outer cylinder and heated inner cylinder). The centrifugal

term plays a crucial dynamical role as Rei is increased. If it is switched off, the onset

of instability becomes independent of Ω. In contrast, when it is considered, the flow

is destabilized (stabilized) by a positive (negative) temperature gradient. The critical

azimuthal wavenumber also depends on the sense of the temperature gradient, increasing

(decreasing) with Rei in a system with a positive (negative) temperature gradient. These

results qualitatively agree with the experiments conducted by Koschmieder (1972),

using the same fluid and radius ratio. However, the values of Rei for which the marginal

curves corresponding to positive and negative temperature gradients depart from each

other in Koschmieder (1972) are much lower than in the infinite case, which points to

the large centrifugal effects due to the secondary radial circulation.
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Figure 5.12: Influence of the centrifugal force in the infinite case. The (blue) solid
line represents the critical boundary when the system is heated from the outer cylinder
(positive temperature gradient), the (green) dashed line is the critical boundary when the
system is heated from the inner cylinder(negative temperature gradient) and the (black)
dashed-dotted line stands for the marginal curve in a system with positive temperature
gradient when the centrifugal term is neglected.

The axial wavenumber kc of the critical disturbances is approximately zero (kc ∼ O(10−4)).

Consequently, the flow becomes quasi two dimensional, as expected from the Taylor-

Proudman theorem. Figure 5.13 shows the temperature profiles corresponding to the

sequence of states obtained for fixed kz = 4.5×10−2 and Rei = 1000 when G is increased.

The azimuthal wavenumber of the resulting flow patterns gradually decreases from n = 3

at the onset of instability (G = 177) up to n = 1 (G ≈ 4000). Subsequently increasing

G random fluctuations come to progressively dominate the flow, which becomes fully

irregular for G ≈ 6000.

5.5.3 Influence of the aspect ratio

To elucidate how the length of the apparatus affects the stability of the basic flow,

we have computed the critical boundary (Gc) as the aspect ratio Γ is increased and

Rei = 1000 is fixed (see figure 5.14 (a)). As increasing Γ, the basic flow must approach

that in the infinite case, so the instability should ultimately occur at the same values

in both cases. This hypothesis is consistent with the exponential decay of Gc when Γ

is increased from Γ = 1.86 up to Γ ≈ 12 (see inset in figure 5.14 (a)). The gradual
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Figure 5.13: Sequence of states obtained in the infinite case for Rei = 1000 and kz =
4.5× 10−2 as G is increased. (a) Baroclinic wave with n = 3 for G = 250, (b) Baroclinic
wave with n = 2 for G = 600, (c) Baroclinic wave with n = 1 for G = 5550 and (d)
Irregular flow for G = 7500.

approximation between both basic flows is also reflected in figure 5.14 (b), where the

radial dependence of wb is plotted at mid-height for several values of Γ and G = 10000.

It is observed that the maximum and minimum values of wb grow almost linearly as

Γ is increased and progressively approach wb in the infinite case, which is depicted in

figure 5.11 (b) for the same G . Nevertheless, for Γ = 20, wb is still far from that in the

infinite case. From linear extrapolation of the maximum absolute values, it is estimated

that a very tall apparatus (Γ = 204.934) would be required to achieve the value of wb

corresponding to the infinite case. It should be underlined, though, that this is a rough

estimate as wb has axial dependence, and thus the maximum absolute value will change

with z. The exponential decrease of Gc ceases for Γ > 12, resulting in a slight growth

of the marginal curve with increasing Γ. This behavior remains until a turning point

is reached at (Γ,G) ≈ (19.6, 10000), and the marginal curve changes direction towards

larger values of G . The mechanism causing this reversal will be discussed in the follow-

ing subsection. From Γ > 19.6 up to Γ = 60, which is the last value considered in this

study, the axisymmetric flow remains stable. However, it is reasonable to expect that

a new transition, leading to the instability taking place in the infinite case, will occur

with further increase in Γ.

5.5.4 Comparison of the dynamical behavior of the two systems

The dynamics of the finite and infinite cases is profoundly modified by the different axial

velocity profile wb in each case. In the finite case, the strong viscous damping due to the

boundary layers is reflected in a vast shift of the marginal curve towards larger values of
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Figure 5.14: (a) Evolution of the critical Grashof number Gc as increasing the aspect
ratio Γ. (b) Axial velocity wb as a function of the radial coordinate r, at mid height
(z = 0), for G = 10000 and several values of Γ. In (a) and (b), Rei = 1000, η = 0.47
and σ = 7.16.

the control parameters (Rei and G). The basic state loses stability to steady baroclinic

waves, characterized by the presence of a unique phase velocity, which is commonly

known as drift frequency. The azimuthal wavenumber is maximum near the turning

point and decreases along the upper and lower transition curves. When Rei is fixed and

G is increased from the lower transition curve, the azimuthal wavenumber of the result-

ing baroclinic waves progressively decreases until the flow becomes axisymmetric above

the upper transition curve. As in section 5.4, the temperature difference between the

Ekman layers results in a stable vertical density gradient which plays an essential role

in stabilizing the flow for large values of G . Above a certain threshold (upper transition

branch), this stabilizing effect is strong enough to prevent the occurrence of baroclinic

waves. Consequently, the flow returns to an axisymmetric state which is usually termed

as convective basic flow. In the infinite case, despite the quantitative differences in wb

and the frictional effects, baroclinic waves of a similar nature as in the finite case are

obtained. This is not surprising since, as pointed out by Williams & Robinson (1974),

the Ekman layers friction and stable density stratification in a baroclinic annulus only

introduce alterations in the form of the baroclinic waves, which are essentially Eady-like

waves. For fixed rotation the azimuthal wavenumber decreases with the increase of G .

Nevertheless, unlike the finite case, the flow becomes eventually irregular because of the

lack of stabilizing mechanisms in this case. For weak rotation the same dynamical be-

havior as in section 5.4 is observed. The critical value Gc for the onset of convection in

the non-rotating case remains nearly constant as Rei is increased. Beyond a certain crit-
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ical rotation Reic , the marginal curve experiences a strong destabilization which involves

the transition from the initial pure convective instability to the baroclinic instability. As

was mentioned in 5.4, this behavior is inherent to radially heated systems under axially

periodic boundary conditions.

As the aspect ratio Γ is increased, one expects the same instability to occur in the finite

and infinite cases. Initially, there is an exponential decay of Gc, which progressively

approaches the critical value in the infinite case. Nevertheless, as is illustrated in fig-

ure 5.14 (b), increasing Γ is accompanied by a substantial growth of the axial velocity wb

which intensifies the meridional overturning circulation. The resulting friction becomes

increasingly important and results in stabilizing Gc, eventually causing the reversal of

the critical boundary. When Γ is beyond the turning point, the rotational speed is insuf-

ficient to overcome the viscous damping due to the boundary layers, therefore baroclinic

waves disappear and the axisymmetric flow reestablishes. Although the axisymmetric

flow remains stable for the highest value of Γ simulated in this study, a transition to

the instability taking place in the infinite case is likely to occur for larger values of Γ

than those considered here. Lateral friction is systematically neglected in analytical and

numerical models of the baroclinic annulus, which replace the no-slip boundary condi-

tion at the sidewall with a free-slip boundary condition. However, this assumption was

refuted in Mundt et al. (1995), where the dynamical behavior was found to largely

depend on the lateral boundary condition. More recently, Williams et al. (2010), based

on torque-balance considerations, argued that the Stewartson layers drag is of the same

order as the Ekman friction. They stated that although shear stresses due to Stewartson

layers are lower than those for the Ekman layers, the area where the forces act is larger

in the former, and therefore, similar torques result in both cases. In the case presented

here, the torque in the cylinders gradually increases with Γ, which suggests that the

Stewartson layers play a crucial role in damping the instability.

Finally, we also want to mention the influence of σ in the basic flow. As described

in 5.2.2, the basic flow in the infinite case is independent of σ, what could eventually

become a source of discrepancies between simulations in finite and infinite systems. In

order to discern how σ affects the basic flow in the finite case, we have computed several

basic flows for G = 10000, Rei = 1000, 3000 and 5000, and σ = 0.71, 7.16 and 24. We

have observed that the basic flow is only slightly modified for Rei = 1000 and remains

unchanged for Rei = 3000 and 5000. It is therefore concluded that the discrepancies

between the finite and infinite cases are solely due to the boundary layer effect described

along this section.
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5.6 Conclusion

The influence of axial end walls in the stability of baroclinic flows has been investigated

by comparing the linear stability of the flow in a laterally heated differentially rotating

annulus when considering axial periodicity and rigid flat axial boundaries. The aim of

this study is to discern the extent to which simulations in axially periodic systems (with

lower computational cost) can be used to reproduce experimental results, and conversely,

how far axial end walls can modify the dynamics of axially unbounded flows.

First, we have considered a system of moderate aspect ratio Γ = 10 (in the finite case)

and wide gap η = 0.5, with a heated rotating inner cylinder, which is typically used to

study baroclinic instabilities in industrial flows. Air (σ = 0.71) has been chosen as the

working fluid. The onset of spiral flow is stabilized in presence of axial end walls. When

the temperature difference between the cylinders is small, finite and infinite systems

display similar dynamics, differing only in the values at which the transitions take place.

With the increase of heat input, the Ekman layers friction increases and slows down the

inner flow, leading to the progressive stabilization of the marginal curve. For sufficiently

large G , spiral flow is suppressed as a result of strong vertical stratification, resulting

in axisymmetric flow patterns. In the infinite case, owing to the lack of stabilizing

mechanisms, the flow undergoes a sequence of bifurcations as G is increased, which

results eventually in turbulent flow.

The rate of heat convective transport is closely related to the dynamical regimes that

arise in each system. In the finite case, the Ekman layers provide an effective mechanism

of convective heat transfer which operate even for laminar flow. These are enhanced as

G increases, which results in a nearly linear growth of Nu. The onset of instability

does not modify the linear scaling of Nu with G , but the slope decreases as rotation is

increased. In the infinite case, the heat transfer rate due to spiral flow is much higher

than that for the convection rolls arising for weak rotation and large G . As G is increased

from the spiral flow regime, the transition between pure and wavy spiral flow patterns

leads to a significant reduction of Nu, which subsequently increases with G as the flow

becomes irregular. When the effect of thermal buoyancy is weak and both systems

display the same dynamics, Nu varies with Rei as a power law which is nearly the same

in both cases (Nu = 0.15Re0.5
i ). A great number of Nusselt correlations based on a non-

dimensional power law have been suggested in the literature (Fenot et al., 2011; Ball

et al., 1989). Nevertheless, there exist important discrepancies between some of them

and further comparison with numerical results can assist in detecting the sources of these

differences. The exponent of the correlation obtained in this study (B ≈ 0.5) is the same
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as in the analytical correlation provided by Dorfman (1963) for laminar flow. A similar

exponent (B = 0.47) has also been found by Viazzo & Poncet (2014) who numerically

explored a similar region of parameter space to that considered in figure 5.6 (a), using

an apparatus with a different geometry (η = 0.8 and Γ = 80). The experimental

correlation of Bjorklund & Kays (1959), which can be written as Nu = 0.10Re0.5
i when

their data are averaged, is also in very good agreement with our results. These authors

did not observed any change in the heat transfer rate when the radius ratio was varied

between 0.8026 ≤ η ≤ 0.9488. Taken together, these results suggest that, as long as

∆T is small and the rotation speed is not enough to trigger turbulence, convective heat

transfer does not depend on the geometry of the apparatus. Moreover, since the specific

features of the flow patterns vary significantly from wide to narrow gap apparatuses, it

is tempting to state that secondary instabilities resulting in pre-turbulent flow patterns

do not alter the mechanisms of heat transfer. Nevertheless, such conclusions are in

disagreement with the experiments of Ball et al. (1989), who found that the exponent of

the power law relationship increases as the gap size is reduced. In addition, for the three

values of the radius ratio considered by these authors (η = 0437, 0.565 and 0.656), the

exponent is well below 0.5 (B = 0.17, 0.30 and 0.36). The exponent of the correlation

experimentally determined by Gazley (1958) (B = 0.8), using an apparatus with a very

narrow gap (η = 0.99), is also consistent with the trend observed in Ball et al. (1989).

Since all aforementioned studies were performed for the same range of parameters, it is

difficult to suggest a reason for such discrepancies. A numerical study that considers

the influence of the radius ratio in the convective heat transport would therefore be

necessary to clarify this issue.

Second, we have considered the flow in an atmospheric context where the container is

rotating as a solid-body and heated from the outer cylinder. In this case the system

has a short aspect ratio (Γ = 1.86, in the finite case) and wide gap (η = 0.47), and

the working fluid is water (σ = 7.16). The presence of axial end walls substantially

modifies the basic flow, so the onset of instability is entirely different in both cases.

In the finite case, the axial velocity is confined to the sidewall, creating a meridional

overturning circulation along the lateral and vertical boundaries. Similarly to the pre-

vious setup, friction between boundary layers and internal flow results in strong flow

stabilization. As the meridional circulation is enhanced, either increasing G or Γ, there

exist a threshold above which baroclinic vorticity production is not enough to overwhelm

the damping effects and the flow becomes again axisymmetric. In the infinite case, the

baroclinic waves ensuing from the primary transition are quasi-two dimensional. When

G is increased the flow exhibits a sequence of transitions towards baroclinic waves with
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decreasing azimuthal wavenumber n and becomes finally irregular.

Note that the basic flow in the infinite case can be modified to better approach that in

the finite case, for example, by adding an additional term to include the stable vertical

temperature gradient resulting from the meridional circulation(see i.e. Ali & McFadden

(2005)). Nevertheless, the objective of this work is to identify those features which rely

on the existence of axial end walls, and thus a conductive basic flow is considered.

These results provide us with relevant information to undertake a future study of baro-

clinic instabilities in an astrophysical context. The existence of axial end walls is a

major problem when approximating the Keplerian velocity profile of accretion disks in

laboratory experiments (Avila, 2012). The problem seems to have been solved with the

experimental setup employed in Princeton (Ji et al., 2006), consisting in a short aspect

ratio facility where the end walls are split into two independently rotating rings. The

end walls effect is mitigated by properly adjusting the angular velocity of each ring, and

a close approximation to the quasi-keplerian azimuthal flow is obtained. In the absence

of external heating the flow has been found to remain laminar at Reynolds of order

106, thus instabilities of pure hydrodynamics nature have been discarded as the possible

mechanism underlying turbulence in these astrophysical structures. Recent simulations

using more realistic models of accretion disks suggest the existence of subcritical baro-

clinic instabilities in presence of a radial temperature gradient (Klahr & Bodenheimer,

2003; Petersen et al., 2007; Lesur & Papaloizou, 2010). In order to account for this

possibility, experiments using a similar setup with lateral heating seem to be the next

logical step in the investigation. However, the stable vertical stratification resulting from

the meridional circulation poses a significant problem. Although real accretion disks are

axially stratified, experiments and simulations focus on the the physics of the disk’s

mid-plane and thus neglect axial stratification. These conditions might be reproduced

in the laboratory if the temperature difference between the axial end walls is minimized,

for example, by heating the lower boundary, similarly to the experiments carried out

by Stone et al. (1969) to study symmetric baroclinic instabilities. Nevertheless, experi-

ments should only be undertaken very carefully, since the temperature profile near the

bottom is modified and might result in unwanted dynamical behaviors. Since very large

rotational speeds are involved in these experiments, frictional effects are expected to be

negligible. However, testing this assumption is of particular importance in this context,

because small discrepancies due to friction may entirely contaminate the extrapolation

of the results to real accretion disks, where the expected Reynolds numbers are of or-

der 1012. Comparison with simulations in axially periodic systems will be therefore

essential in order to determine the suitability of laboratory experiments to approximate
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quasi-keplerian flows with a radial temperature gradient.
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CHAPTER 6

ON THE DYNAMICS OF AXIALLY LOCALIZED STATES IN TAYLOR

COUETTE FLOWS.

6.1 Introduction

The formation of spatially localized patterns within a homogeneous background state

is a regular feature in a wide variety of pattern forming systems (see Dawes, 2010, and

references therein). In fluid dynamics localized states are particularly relevant in lin-

early stable flows, in which the transition to turbulence occurs subcritically, when the

amplitude of the perturbation exceeds a certain threshold which depends on the control

parameter of the system. Flow patterns in which turbulent patches coexist with lami-

nar flow emerge near the onset of transition and are believed to play a crucial role in

organizing the complex dynamics of such transition. Examples of these localized states

are found in canonical wall-bounded shear flows such as pipe flow (Mellibovsky et al.,

2009; Willis & Kerswell, 2009; Avila et al., 2011; Eckhardt et al., 2007) or plane Couette

flow (Schneider et al., 2010a; Duguet et al., 2009; Barkley & Tuckerman, 2005; Schneider

et al., 2010b).

Spatially localized structures have also been observed in Taylor–Couette flow either

when the transition scenario is subcritical or supercritical. Nevertheless, in contrast

to the above-mentioned canonical flows, localization does not necessarily involve coex-

istence of laminar and turbulent flow, but sometimes manifests in the appearance of

spatially confined regions in which some feature of the global background state is locally

modified. An example of this phenomenon was reported in Heise et al. (2008), who using

a combined experimental and numerical approach found the existence of spiral vortices

with strongly localized amplitude near the end plates in the case of centrifugally stable

counter-rotating cylinders. Also in the same regime of Taylor–Couette flow, Abshagen

et al. (2010) showed the emergence of steady and axisymmetric vortices localized near

the inner cylinder. These vortices appear smoothly in the basic state, resulting in a

multiplicity of localized states which differ among themselves in the total number of

vortices. The presence of a large scale circulation due to the presence of end walls seems

to play a key role in the formation of these vortices. They could be related to a homo-

clinic snaking branch. More recently, axially localized states have been experimentally

reported in the centrifugally unstable regime, in the case of rotating inner cylinder and

stationary outer cylinder (Abshagen et al., 2012). These pre-turbulent states occur for
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sufficiently large values of the inner cylinder Reynolds number (Rei), in systems in which

the ratio between the length-to-gap aspect ratio (Γ) and the number of vortices (N) is

restricted to the range 0.85 ' Γ
N
' 0.95. They are characterized by the existence of

large amplitude oscillations localized in some pairs of vortices. In all of these studies,

despite the differences between the resulting states or the regime of Taylor–Couette flow

considered, the phenomenon of localization results from the finite nature of experimen-

tal facilities, because of the interaction between the bulk flow and the Ekman vortices

generated at the end plates. The competition between states with a different number of

vortices (Eckhaus instability), modulated by the presence of end walls, also plays a role

in the localization. Thus, simulations in axially periodic systems cannot capture this

dynamics. In Abshagen et al. (2010) the background state over which localization takes

place is a boundary-driven-large-scale circulation, which is a major difference with the

laminar states in other linearly stable flows, whereas in Heise et al. (2008) and Abshagen

et al. (2012), localization occurs over a global state, in which the oscillation amplitude

of some vortices differ from that in the background state. In the former, this global

background state consists of spirals propagating from mid-height towards the ends and

viceversa, and in the latter, it is the bifurcated state (wavy vortex flow) resulting after

Taylor-vortex flow (TVF) becomes unstable, which is usually known as Small Jet state

(SJ) (Jones, 1985; Gerdts et al., 1994).

The bifurcation scenario exhibited by the fluid in the experimental setup utilized in Ab-

shagen et al. (2012) (wide gap η = 0.5 and moderate-large Γ) shows some very interesting

dynamical features. A variety of states and transitions between them have been exper-

imentally reported in Gerdts et al. (1994); von Stamm et al. (1996); Abshagen et al.

(2012). There exist additional transitions to the classical Ruelle-Takens scenario de-

scribed in section 1.3. Furthermore, these occurs for all TVF states, as long as the

number of vortices is N > 8, in a wide range of Rei. When Rei is increased above a

certain ReV LF from the SJ state, the flow becomes quasi periodic due to the emergence

of a very low frequency mode. However, in contrast to other modulated wavy flows

(MWVF) (Coughlin & Marcus, 1992; Gorman & Swinney, 1982), this mode is axisym-

metric (n = 0). The very low frequency mode (VLF), as was termed in Gerdts et al.

(1994), plays an essential role in the dynamics of the flow, leading to the occurrence

of chaos through a period-doubling route on T 2 tori (von Stamm et al., 1996). This

chaotic regime vanishes with further increase in Rei and gives rise to the flow regime

characterized by the existence of global states with axially localized large amplitude os-

cillations (Abshagen et al., 2012). In this regime, localization may result in an extremely
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large multiplicity of states which coexist in a wide range of the parameter space Rei−Γ.

The aim of this chapter is to extend the available information on the axially localized

states regime (ALS) by means of a detailed numerical study of the parameter space

in which these states occur. Due to the multiplicity of states, the dynamics is very

complex and numerous sequences of previously unreported transitions have been found

when the control parameters Rei and Γ are varied. The VLF occurs in wide range of

the parameter space and its interaction with the ALS appears to be crucial in most

transitions, either between different ALS or to the chaotic regime. The rest of this

chapter is structured as follows. The governing equations and the numerical method

used to solve them are discussed in section 6.2. In section 6.3 we briefly describe the

sequence of states preceding the ALS regime, paying especial attention to the VLF and

the transition to ALS. The family of ALS found in this particular case is shown in 6.4.1.

Its main features are enumerated and compared with the experimental results. In 6.4.2,

the sequence of states exhibited by the fluid in the transition to chaos when Rei and Γ

are varied are illustrated. Finally, the main remarks are collected in section 6.5.

6.2 Governing equations and numerical method

6.2.1 Description of the system

We consider an incompressible fluid of kinematic viscosity ν confined between two con-

centric cylinders of length h and inner and outer radii ri and ro. The inner cylin-

der rotates at constant angular speed Ω, whereas the top and bottom end walls and

outer cylinder remain at rest. The system is non-dimensionalized using the gap width,

d = ro − ri, as the length scale and the viscous time d2/ν as the time scale. The ra-

dius ratio is η = 0.5. The inner cylinder Reynolds number Rei and the aspect ratio Γ

are the control parameters of the system. The flow is governed by the incompressible

Navier–Stokes equations

∂tv + (v · ∇)v = −∇p+ ∆v, ∇ · v = 0 , (6.1)
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Figure 6.1: Convergence of the spectral coefficients of the axial velocity using the infinity
norm. The flow corresponds to a weakly chaotic state found at Re = 1300 and Γ = 9,
computed with L = 36 Chebyshev radial points, M = 16 Fourier modes and N = 448
Chebyshev axial points. (a) shows convergence in r and θ and (b) in z.

where v = (u, v, w) denotes the non-dimensional velocity field in cylindrical coordinates

(r, θ, z). The no-slip boundary conditions are

v(ri, θ, z, t) = (0, Rei, 0),

v(ro, θ, z, t) = (0, 0, 0),

v(r, θ,±Γ/2, t) = (0, 0, 0).

(6.2)

The governing equations and boundary conditions are invariant under arbitrary rotations

Rφ about the axis, and the reflection Kz about the equatorial plane z = 0. The actions

of these symmetries on the velocity field are:

Rφv(r, θ, z, t) = v(r, θ + φ, z, t), (6.3)

Kzv(r, θ, z, t) = (u, v,−w)(r, θ,−z, t). (6.4)

Together, they generate the symmetry group G = SO(2)× Z2 of the system.

6.2.2 Numerical formulation and methodology

The governing equations (6.1) have been solved using the spectral solver described in 2.2.

We have checked the spectral convergence of the code using the infinity norm of the spec-

tral coefficients (al,m,n) of the computed solutions, defined as ||al||∞ = maxn,m |al,n,m| for
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the radial direction, and analogously for the axial and azimuthal directions. Figure 6.1

shows ||aj||∞, with j = l, n,m, of the axial velocity w for a weakly chaotic state taking

place at Re = 1300 and Γ = 9. This solution has been computed with L = 36 and

N = 448 Chebyshev points in r and z, and M = 16 Fourier modes in θ, ensuring that

the trailing coefficients of the spectral expansion are at least four orders of magnitude

smaller than the leading coefficients. Time steps as small as δt = 5 × 10−6 have been

required for numerical stability and accuracy of the second-order temporal scheme.

Time series of the axial velocity at three different points, w1(r = 1.2, θ = 0, z = Γ/4),

w2(r = 1.2, θ = 0, z = −Γ/4) and w3(r = 1.2, θ = 0, z = 0), are simultaneously recorded.

A subsequent spectral analysis of these data via fast Fourier transform, together with

phase portraits and Poincare sections are used as tools to identify the different transitions

that take place as the control parameters are varied (see Moon, 2008, for a simple

description of these methods).

6.3 Flow patterns and transitions towards the ALS regime

6.3.1 Taylor Vortex Flow

There exist a variety of steady TVF , differing in the number of vortices N present in

the fluid domain, which coexist for the same values of Rei and Γ (Benjamin & Mullin,

1982). They are very sensitive to the initial conditions of the system and thus depend

on the path followed by the fluid in the parameter space. The choice of a certain TVF

as initial state determines in many cases the sequence of transitions exhibited by the

fluid as Rei is increased. However, the complete bifurcation scenario described along

this paper is very robust, taking place in the same region of a normalized parameter

space Rei− Γ
N

, provided that N ≥ 8 (see figure 2 in von Stamm et al. (1996) and figures

5 and 7 in Abshagen et al. (2012)). Here, we focus on a TVF with N = 10 vortices,

which allows us to find a significant number of axially localized states in moderate

aspect ratio systems (8.6 < Γ < 9.5) at an affordable computational cost. In addition,

this complements the experimental work of Abshagen et al. (2012), in which axially

localized states were reported for the cases of N = 8 and N = 12 vortices. Figure 6.2

illustrates the streamlines (a) and angular momentum (b) of this state. Five outgoing

jets emerge from the inner cylinder due to the centrifugal instability. The two cells at

the cylinders ends are larger than the rest of cells due to the Ekman layers resulting

from the interaction between fluid and end walls. The kinetic energy of the fluid is
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Figure 6.2: Axisymmetric 5-jet (10 vortices) TVF state at Rei = 400 and Γ = 9 on a
meridional plane (r, z) ∈ [1, 2] × [−Γ/2,Γ/2] at θ = π . (a) Streamlines. There are 10
positive and negative contours in [−28.45, 28.45]. (b) Angular momentum. There are 20
contours in [−400, 0].

concentrated in the boundary layer at the inner cylinder and in the outgoing jets, which

are thinner and more intense than the return ingoing jets.

6.3.2 Small and Large Jet States

The axisymmetric 5-jets TVF state loses stability at Rei ≈ 425 via a Hopf bifurcation

to a rotating wave with azimuthal wave number n = 1. Figures 6.3 (a) and (b) show

respectively contours of angular momentum of the resulting state at Rei = 700 and

Γ = 9 on cylindrical (θ, z) and meridional (r, z) sections of the apparatus. It is observed

that the oscillations mainly occur at the outgoing jets, while the ingoing jets remain in

the same axial place for all angle values θ. The exception are the two outgoing jets near

the end walls which also remain stationary. A phase difference of 180 degrees between

oscillations in contiguous outgoing jets can be seen in figure 6.3 (a). These features are

in full agreement with experimental observations (Gerdts et al., 1994) as well as with

the numerical work by Jones (1985) in infinite long cylinders. Figure 6.3 (c) shows the

evolution of the axial velocity w over the line r = 1.8, θ = π, z ∈ [−Γ/2,Γ/2], recorded

at 20 different time steps and overlapped on the same plot. The oscillations of the

outgoing jets are reflected in the thicker lines located in the bulk vortices. As a result

of the oscillations the axial velocity in these vortices is larger than that in the Ekman

vortices. Since the outgoing jets are thinner than the ingoing ones, the terminology

small-jet state SJ and small jet instability has been typically used in the literature to

refer to this state. Both the SO(2) rotational symmetry and the Kz reflection symmetry

(z → −z) of the TVF are broken in the Hopf bifurcation to the SJ, but this state still
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Figure 6.3: Small jet mode at Rei = 700 and Γ = 9. Contours of angular momentum
rv, (a) on a cylindrical surface (θ, z) ∈ [0, 2π] × [−Γ/2,Γ/2] at r = 1.5 and (b) on a
meridional plane (r, z) ∈ [1, 2] × [−Γ/2,Γ/2] at θ = π. (c) Overlapped axial velocity
profiles w over the line r = 1.8, θ = π, z ∈ [−Γ/2,Γ/2], corresponding to 20 different
time steps.

retains a discrete spatial Z2 symmetry, the composition of a half-turn (a rotation of π

around the cylinder axis) and the Kz reflection. This symmetry, which can be observed

in figure 6.3 (a), is the central reflection (also called the inversion I) respect to the center

of the cylindrical domain (r = 0 and z = 0). The spatial SO(2) rotational symmetry of

the TVF becomes a spatio-temporal symmetry of the rotating wave: a rotation of angle

α is equivalent to a time evolution of t = α/fp, where fp is the precession frequency of

the SJ. The value of fp varies between 44-48% of the rotation frequency of the inner

cylinder as Rei is increased.

There exist another global wavy vortex flow which coexists with the SJ in a wide region

of the parameter space (for Rei > 700), and is characterized by the large amplitude of

its oscillations. For this reason it is often referred to as Large Jet (LJ) state. In order

to compare the SJ and LJ states, figure 6.4 illustrates the LJ state at Rei = 720 and

Γ = 9.25 similarly to figure 6.3. The main oscillations happen again in the outgoing

jets, showing a substantial increase in the amplitude of the oscillations with respect

to that in the SJ state. Nevertheless, in contrast to SJ, the outgoing jets oscillate

in phase. Oscillations of the ingoing jets can be discerned in this flow pattern. The

amplitude of these oscillations is much lower than that in the outgoing jets and they

occur in antiphase with the oscillations of the outgoing jets. The precession frequency

of the LJ remains around 56% of the rotation frequency of the inner cylinder. All these

observations coincide with previously reported descriptions of this flow pattern (Gerdts

110



(a) (b) (c)

−10 −8 −6 −4 −2 0 2 4 6 8 10

z

−200

−100

0

100

200

w

Figure 6.4: Large jet mode at Rei = 720 and Γ = 9.25. Contours of angular momentum
rv, (a) on a cylindrical surface (θ, z) ∈ [0, 2π] × [−Γ/2,Γ/2] at r = 1.5 and (b) on a
meridional plane (r, z) ∈ [1, 2] × [−Γ/2,Γ/2] at θ = π. (c) Axial velocity profiles w
over the line r = 1.8, θ = π, z ∈ [−Γ/2,Γ/2], recorded for 40 different time steps and
overlapped on the same plot.

et al., 1994). The LJ preserves the same discrete symmetry group Z2 as the SJ.

6.3.3 Very Low Frequency mode

With the increase of Rei there is a small phase shift in the oscillations of contiguous

vortices. This phase difference results in small wavelength-disturbances which slowly

propagate in axial direction, giving rise to the appearance of an axisymmetric mode

n = 0, known as very low frequency mode (VLF). The resulting quasi-periodic state

was first reported in Gerdts et al. (1994), and characterized in detail by von Stamm

et al. (1996) in a subsequent experimental study.

The discrete central reflection retained by the SJ and LJ is broken due to the occurrence

of VLF. This is illustrated in figure 6.5 at Rei = 780 and Γ = 9. It shows contours of

angular momentum on two opposite (differing by an angle of π) meridional planes, being

the second plane (b) vertically reflected (z → −z). If the central inversion symmetry

were preserved, both figures should be identical, however there are small differences,

mainly around the second and fourth outgoing jets.

The dynamical behavior of the VLF is very sensitive to changes in N and Γ. Abshagen &

Pfister (2000) experimentally found a transition between two types of VLF with different

features at Γ
N

= 0.907. Below this value, the onset of the VLF occurs via a homoclinic
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(a)

(b)

Figure 6.5: VLF state at Rei = 780 and Γ = 9. (a) Contours of angular momentum on
a meridional plane (r, z) ∈ [1, 2]× [−Γ/2,Γ/2] and θ = π. (b) The inverse-symmetric of
(a) (θ → θ + π and z → −z). There are 20 contours in [−780, 0]

bifurcation, whereas for Γ
N
> 0.907 it takes place for larger values of Rei through a Hopf

bifurcation, resulting in an oscillation frequency one order of magnitude larger than that

in the homoclinic case. The scenarios of transition to chaos also vary among the different

experimental studies. For example, in von Stamm et al. (1996), the flow undergoes a

period doubling route to chaos, whereas in Abshagen & Pfister (2000), a transition to

chaos via spatio-temporal intermittency was found.

In the study here undertaken, the VLF emerges from a Hopf bifurcation and the flow

approaches chaos via the period-doubling bifurcation cascade which is sketched in fig-

ure 6.6. The sequence of states that occur throughout the period-doubling route to chaos

cannot be identified by visual inspection of the flow patterns, but requires the analysis

of time series recorded over a long simulation time. The different states of this sequence

are shown in figure 6.7. Figure 6.7 (a) illustrates the VLF state near the bifurcation

(Rei = 770). The frequency spectrum (first column) shows the large difference between

the frequencies of the underlying rotating wave, in this case the SJ, and the frequency

of VLF, fp and fV LF respectively. An increase in the power spectral density (PSD) of

the harmonics of fV LF near fp is another distinctive mark of these solutions. The phase

portrait of the trajectories defined by the axial velocities w1 and w2 in the phase plane

is displayed in the second column. It reflects the toroidal structure of the VLF state

due to the actions of fp and fV LF . To facilitate the visual interpretation of the phase

portraits, we have also computed the intersections of these trajectories with a carefully

chosen plane, the so-called Poincare section, in which the action of fp is removed. This

is depicted in the third column, showing a single closed orbit corresponding to the low

frequency motion. The VLF doubles its period (P to P2) for the first time at Rei ≈ 782.

The frequency spectrum in figure 6.7 (b) illustrates the emergence of the new frequency
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Figure 6.6: Schematic of the period doubling route to chaos exhibited by the VLF as Rei
is increased, for Γ = 9. The solutions at the Rei indicated are described in figure 6.7.

fV LF2 = fV LF
2

. Since the dynamics is entirely dominated by the very low frequency

mode, only the low frequency spectrum is shown in this and the subsequent states of the

sequence. The period doubling bifurcation can also be easily observed in the Poincare

section, where a new periodic orbit emerges, with twice the period of the original orbit.

Further increasing Rei, the flow becomes weakly chaotic at Rei ≈ 788, which is illus-

trated in figure 6.7 (c), and remains disordered up to Rei ≈ 810. Here, the flow recovers

the period P2 (see figure 6.7 (d)), however, a comparison between the phase portraits

in figures 6.7 (b) and (d) reveals that the structure of the new state differs from that

before the chaotic regime. A subsequent increase in Rei leads to a new period doubling

(P4), fV LF4 =
fV LF2

2
, which is illustrated in figure 6.7 (e) at Rei = 820. The phase por-

trait resembles that in 6.7 (d), nevertheless, the enlargement of the phase trajectories is

reflected in the fact that, for the same simulation time in both cases, the torus surface

in 6.7 (e) has not been filled yet. The flow becomes chaotic again with further increase

in Rei. This flow regime is shown at Rei = 840 in figure 6.7 (f). Finally, the chaotic

behavior disappears at Rei ≈ 855 and gives rise to the regime of axially localized states

which is discussed in the next section.

6.4 Axially Localized States

6.4.1 Description

A new pre-turbulent flow regime arises for Rei ≥ 855 and 8.6 < Γ < 9.5. The resulting

flow patterns are characterized by the existence of large amplitude oscillations localized

on some of the outgoing jets of the bulk vortices. Due to this particularity we refer to
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Figure 6.7: Power spectral density PSD, phase portrait and Poincare section illustrating
the sequence of period-doubling bifurcations sketched in figure 6.6 at Γ = 9. (a) VLF
at Rei = 770, near the bifurcation; (b) first period doubling P2 of VLF at Rei = 782;
(c) first chaotic solution at Rei = 790; (d) state with period P2 but different structure
at Rei = 810; (e) second period doubling P4 of VLF at Rei = 820; (f) chaotic flow at
Rei = 840.
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Figure 6.8: Three-dimensional contour of the angular momentum (rv = −450) and axial
velocity profiles w recorded at r = 1.8, θ = π and z ∈ [−Γ/2,Γ/2] for 40 different time
steps and overlapped on the same plot. (a) ALS10 at Rei = 920 and Γ = 9, (b) ALS4 at
Rei = 960 and Γ = 9, (c) ALS8 at Rei = 960 and Γ = 9.1, and (d) ALS2 at Rei = 960
and Γ = 9.3. The nomenclature ALSnumber is carefully explained in the text.

these flow structures as axially localized states (ALS). The main consequence of this

localization is the appearance of multiple steady states, differing in the axial position of

the outgoing jet (or jets) showing the large amplitude oscillations. Thus, a remarkably

high number of ALS can be observed when the aspect ratio Γ and the number of vortices

N in the flow are changed. The ALS were found experimentally by Abshagen et al.

(2012), who reported the existence of a wide spectrum of ALS for several N -vortex

flows, many of which coexist in the parameter space, giving rise to a very complex

and intriguing dynamics. They also explored the variation in the wavelength λ of the

different pairs of vortices when Rei changes, concluding that λ increases with Rei in

the pairs of vortices where localization occurs, and decreases with Rei in the Ekman

vortices. In this section, apart from confirming numerically these experimental results,

we focus on the transitions taking place within this region of the parameter space, which

eventually lead to chaotic behavior.

The family of ALS numerically obtained for the N = 10 vortex flow is illustrated in

figure 6.8 through a three-dimensional contour of angular momentum rv = −450, which
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reflects the axial localization of the large jet oscillations, and a plot such as that in figures

6.3 (c) and 6.4 (c), which gives a clear idea of the difference in amplitude between the

localized large jet oscillations and the oscillations in the rest of vortices. As occurred

in Abshagen et al. (2012), not all possible ALS (6 in the case of a 10-vortex flow) have

been found. This could mean that the remaining ALS are unstable, or simply that very

specific sequences of states, which have not been detected in this study, are required to

reach these states. To denote the different ALS, we have adopted the nomenclature used

in Abshagen et al. (2012). Each ALS can be expressed with a binary number where,

the pairs of vortices with large amplitude oscillations are indicated with ones, and the

rest of vortices are denoted by zeros. This binary number is converted into decimal

base, starting from the Ekman vortex at the top, and placed as subscript of ALS. For

example, the binary number corresponding to the state in figure 6.8 (c) is 01000 because

the only pair of vortices oscillating with large amplitude is the second one starting from

the bottom. It is subsequently converted to decimal base (8) and the state is referred to

as ALS8. Depending on the location of the large jet oscillations, the ALS may or not

preserve the axial reflection symmetry. The symmetric states in figures 6.8 (a) and (b),

denoted by ALS10 and ALS4 respectively, can be obtained as a direct transition from

any of the states described in section 6.3. In contrast, the asymmetric states ALS8 and

ALS2, shown in figures 6.8 (c) and (d), are only found when starting the simulation from

other ALS.

Figure 6.9 shows the states achieved in the simulations performed for Rei > 850, over-

lapped in the parameter space with the experimentally measured critical boundaries (Ab-

shagen et al., 2012). There are two different boundaries corresponding to flows with a

distinct number of vortices, N = 8 and N = 12, which are represented as solid and

dashed lines respectively. The region of the parameter space where the ALS occur is

delimited by the lines ALSl and ALSh, being the zone HALS comprised between ALSr

(transition curve from chaotic VLF to ALS when increasing Rei) and ALSh a hysteretic

region. The onset of the LJ state is indicated by the line LJl, whereas similarly to the

ALS, there is also a hysteretic region for the LJ, which is contained inside the curve

LJh. It can be seen that all numerical results lie in parameter space consistently with

experiments. The four ALS found coexist for the same values of Rei and Γ, so that

obtaining each of them critically depends on the path followed in the parameter space.

The ALS10, indicated with diamonds in figure 6.9, is the only one of the computed ALS

where two outgoing jets oscillate with large amplitude. It is the most stable ALS for the

lowest values of Rei (855 ≤ Rei ≤ 1050) in which the regime of ALS takes place. This is

in agreement with Abshagen et al. (2012), where the states with the highest number of
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Figure 6.9: Distribution in the parameter space of the flow patterns obtained when
Rei > 850. The solid lines represent the experimental stability boundaries for the case
of N = 8 (solid line) and N = 12 (dashed line) given in (Abshagen et al., 2012). Circles
(black) and squares (red) stand for the LJ and SJ states respectively, whereas the axially
localized states are denoted as diamonds (green) for the ALS10, down triangles (brown)
for the ALS4, up triangles (dark blue) for the ALS8 and left triangles (soft blue) for the
ALS2.

axially localized large jet oscillations were also found at the lowest values of Rei. Also in

accordance with these experimental results is the fact that all ALS with large jet oscilla-

tions localized on a single outgoing jet have been found. The symmetric ALS4, marked

with down triangles in figure 6.9, is very stable in the range 1050 ≤ Rei ≤ 1280, whereas

the states ALS8 and ALS2, indicated with left and up triangles respectively, are found

when considering longer systems (9.1 ≤ Γ ≤ 9.4). All ALS can be found hysteretically,

coexisting with the SJ in ALSh, and with the LJ in the region of the parameter space

resulting from the intersection of ALSh and LJh.

The formation of a certain ALS obeys to a specific stable arrangement of the wavelengths

of the vortex pairs within a system of finite length. However, the phases of oscillation of

the different ALS exhibit the same coherence as for the LJ state. This can be seen from

figures 6.10 (a) and (b), which show the contours of angular momentum on a cylindrical
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Figure 6.10: Contours of angular momentum rv on a cylindrical surface (θ, z) ∈ [0, 2π]×
[−Γ/2,Γ/2] at r = 1.5 for (a) ALS10 at Rei = 920 and Γ = 9.25; and (b) ALS4 at
Rei = 1260 and Γ = 9.25; (c) and (d) are respectively the power spectral density (PSD)
and phase portrait for ALS10 at Rei = 920 and Γ = 9.25.

surface for the ALS10 and ALS4. In both figures the outgoing jets oscillate in phase

(although it is quite difficult to visually distinguish this feature between contiguous

jets with large and small amplitude oscillation) and weak oscillating ingoing jets are in

antiphase with the oscillations of the outgoing jets. While the ALS preserve this phase

coherence they are found as rotating waves in the parameter space, precessing with the

same oscillation frequency, fp ≈ 55% of the rotation frequency of the inner cylinder, as

the LJ state. Figures 6.10 (c) and (d) show the frequency spectrum and phase portrait

of the ALS10 at Rei = 920 and Γ = 8.85, clearly illustrating its behavior as rotating

wave. As in 6.3.3, the breaking of the phase coherence of the different vortex-pairs leads

to the emergence of the VLF, which coexists with the ALS in a wide range of control

parameters, and plays a crucial role in the transitions to chaos described below.
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Figure 6.11: Power spectral density, phase portrait and Poincaré section illustrating the
sequence of states in the route to chaos when Rei = 920 and Γ is decreased. The initial
state is the ALS10 at Rei = 920. (a) State resulting from the first transition at Γ = 8.83;
(b) State resulting from the second transition at Γ = 8.80; (c) Chaotic flow at Γ = 8.78.

6.4.2 Transition to chaos

As a consequence of the diversity of states coexisting in the parameter space there exist

multiple routes to chaos. Each one is determined by the initial state and the path fol-

lowed in the parameter space, differing from the others in the number of transitions and

types of ALS arising. Nevertheless, despite the complexity introduced by the coexistence

of states, the dynamical behavior associated with the transitions is similar in all cases

and depends essentially on the control parameter that is varied.

Figure 6.11 shows an example of the bifurcation scenario occurring when Γ is reduced.

In this case, Rei = 920 is fixed and the initial state of the sequence is the ALS10 at

Γ = 9.25 (rotating wave with precession frequency fp shown in figures 6.10 (c) and

(d)). This state is stable up to Γ = 8.84, where the transition illustrated in figure 6.11

(a) takes place. The frequency spectrum (PSD) suggests that the coupling between

the oscillations of the different vortex pairs is broken simultaneously with the period
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doubling of the main frequency fp, resulting in the appearance of two frequencies fp21 and

fp22 , with similar amplitudes and equidistant from the value fp2 = fp/2, corresponding

to the frequency of the period doubling. The small difference between fp21 and fp22

results in a very low frequency fV LF which involves, similarly to the VLF described in

section 6.3, the axial propagation of the wavelength-disturbances of the different vortex

pairs. Hence, fp21 and fp22 can be expressed in terms of fV LF and fp, as fp22 = fp−fV LF
2

and fp21 = fp+fV LF
2

. It should be noted that fV LF is in this case nearly twice fV LF in

the VLF state. The fact that there are two frequencies of similar amplitude arising at

the same time is probably related to the existence of two vortex pairs with large jet

oscillations in the ALS10. The new state is therefore a two dimensional torus in the

phase space. Nevertheless, the amplitude of the main frequency is much higher than

that for the additional frequency, so that the phase portrait resembles a limit cycle. The

intersection of the invariant torus with a Poincare section shows a closed orbit which,

similarly to a period-doubling bifurcation, follows two different loops. This reflects

the coupling between the mechanism responsible for the period-doubling of the main

frequency and the oscillation due to the very low frequency mode. Due to the small

region of the phase plane in which the orbit is located, it is quite difficult to distinguish

the full trajectory of the orbit in 6.11 (a). As far as we know this transition has not

been previously reported, however, there exist a few works in the realm of the dynamical

system theory that analyze a problem resembling the transition above described. They

discuss the influence of a periodic perturbation in a non-linear system which is close

to a period-doubling bifurcation (Horner, 1983; Bryant & Wiesenfeld, 1986; Svensmark

& Samuelsen, 1990). In all of these studies, the dynamics is entirely dominated by the

periodic perturbation, which suppresses the period doubling bifurcation. This behaviour

is somewhat similar to that of the aforementioned bifurcation, with fV LF playing the

dynamical role of the periodic perturbation.

When Γ is reduced from 8.84 to approximately 8.81, the amplitudes of fp21 , fp22 and

fV LF gradually increase. For Γ values below 8.81, fp undergoes a second period doubling

bifurcation, which is clearly illustrated in figure 6.11 (b). In this case, unlike the first

period doubling, there is a single frequency arising at fp4 = fp/4, whose amplitude is

substantially larger than that for fp21 and fp22 . This transition seems to help restore

the phase coherence of the initial state. This is reflected in the fact that fp21 and fp22

closely approach fp2 , so fV LF becomes approximately zero. Nevertheless, the flow is still

quasi-periodic, as indicates the limit cycle displayed in the Poincare section. The phase

portrait reveals the same initial spatial structure, which becomes increasingly thicker

as the flow approaches chaos. When we further reduce Γ, the flow becomes suddenly
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chaotic at Γ = 8.78. This behavior is easy to identify in figure 6.11 (c). For example, the

Poincare section clearly shows the loss of periodicity of the previous states, giving rise

to a cloud of points in the phase space. The flow remains chaotic up to Γ ≈ 8.5, where it

bifurcates to a more stable state with N = 8 vortices. It is noticeable that all transitions

happen in a very short range 8.78 ≤ Γ ≤ 8.84. This sequence of transitions to chaos as

Γ is decreased has only been found for Rei ≤ 950, when using ALS10 as initial state. For

higher Rei or a different initial state, the flow approaches chaos similarly when reducing

Gamma or increasing Rei, as is described below.

Figure 6.12 shows the sequence of bifurcations to chaos that occurs when Rei is increased

and Γ = 9.25. The initial state is the same as in the transition described above, the

ALS10 at Rei = 920. This state loses stability at Rei = 948, resulting in a similar state

to that obtained after the first transition when decreasing Γ. The frequency spectrum in

figure 6.12 (a) (corresponding to Rei = 952), displays the same behavior as in figure 6.11

(a). Again, it is observed that two additional frequencies, fp21 and fp22 , arise in the

vicinity of the frequency fp2 = fp/2, corresponding to the period doubling of the main

frequency fp. These frequencies cause the appearance of a very low frequency, fV LF =

fp21 − fp22 , which is about twice fV LF of the VLF state found in section 6.3. The phase

portrait and Poincaré section in figure 6.12 (a) are also qualitatively similar to those in

figures 6.11 (b) and (c). A close-up has been included in the Poincaé section in order

to discern the complex path followed by the periodic orbit. The amplitude of fV LF

grows progressively with the increase of Rei. This fact, which is reflected in figure 6.12

(b) at Rei = 980, might be ascribed to the increasing phase difference between the

oscillations of contiguous vortices with respect to the initial state, which result in larger

wavelength-disturbances. Further increasing Rei the ALS10 becomes weakly chaotic,

and subsequently bifurcates into another axially localized state which is more stable

at higher values of Rei, the ALS4. This transition, which takes place at Rei = 1030,

is illustrated in figure 6.12 (b). The existence of a new state can be seen from the

phase portrait, which reveals an entirely different structure with respect to that in

figures 6.12 (a) and (b). There also exist a low frequency fLF coexisting with the

precession frequency of the rotating wave, which is one order of magnitude higher than

fV LF in the previous state. The dynamics is still on a 2d torus surface, as is reflected by

the single closed orbit shown in the Poincaré section. The amplitude of fLF decreases

with the increase of Rei, so the ALS4 progressively turns into a rotating wave. This

happens at Rei ≈ 1130, where fLF completely disappears and the ensuing flow pattern

is a pure rotating wave with precession frequency fp. This behavior, which is illustrated

in figure 6.12 (d) at Rei = 1260, persists up to Rei ≈ 1275. Note that the Poincaré

121



PSD Phase portrait Poincaré section
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Figure 6.12: Power spectral density, phase portrait and Poincaré section illustrating the
route the chaos when Rei is increased and Γ = 9.25 is fixed. The initial state is the
ALS10 at Rei = 920. (a) State resulting from the first transition at Rei = 952; (b)
Intermediate state before the transition to the ALS4 at Rei = 980; (c) ALS4 with a low
frequency mode at Rei = 1030; (d) ALS4 as rotating wave at Rei = 1260. (e) Emergence
of the low frequency mode at Rei = 1280. (f) Chaotic flow at Rei = 1300.
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section gives in this case a single point in phase space, and thus it has not been plotted.

When Rei > 1275 the coupling between neighboring vortices is again broken, resulting in

a similar mechanism to that described for the first transition. Figure 6.12 (e) illustrates

this state at Rei = 1280. It is observed that, alike the first transition, there arise

two peaks at fp21 and fp22 , which are equidistant to fp/2, and their difference leads

to the appearance of a low frequency fLF . Since the difference between fp21 and fp22

is significantly larger than in the first transition, fLF is approximately one order of

magnitude higher than fV LF . Moreover, the amplitude of fp22 near the bifurcation is

much larger than that of fp21 , in contrast to the first transition, where both frequencies

emerged approximately with the same amplitude. This could be related to the existence

of a single outgoing jet oscillating with large amplitude in the ALS4. Note that, unlike

figures 6.11 (a) and 6.12 (a), the Poincaré section does not reflect a doubled loop, which

is probably due to dominance of fp22 over fp21 . Subsequently increasing Rei, fLF and fp21

increase progressively their amplitude and additional frequencies come into play, causing

eventually the appearance of chaos. The flow becomes first chaotic at Rei = 1300, which

is shown in figure 6.12 (f).

6.5 Conclusion

The bifurcation scenario in a wide gap (η = 0.5) Taylor-Couette apparatus, where only

the inner cylinder is rotating and the length-to-gap aspect ratio is restricted to the

range 8.85 < Γ < 9.95 has been numerically investigated. We focus on the dynamics

of recently reported experimental flow patterns (Abshagen et al., 2012) which exhibit

large amplitude oscillations localized in some of the outgoing jets of the bulk vortices.

We refer to these states as axially localized states ALS.

We find that, for the particular case of a 10-vortex flow, four different ALS coexist in the

parameter space, differing in the axial position where the large amplitude oscillations

take place. We have not found all possible ALS for this flow (6), but consistently with

the experiments, all ALS having a single outgoing jet oscillating with large amplitude

occur. There is only one ALS with large amplitude oscillations in two outgoing jets,

which is the most stable ALS at the lowest values of Rei in the region of the parameter

space where the ALS are located. The states that retains the axial reflexion symmetry

are more stable than the asymmetric states, and thus they are found in larger areas

of the parameter space. These results are also in full agreement with experimental

observations (Abshagen et al., 2012).

123



Each ALS is related to a specific stable coupling of the vortex pairs in a finite-length

system. Varying the control parameters (Γ and Rei) modifies the wavelengths of the

different vortex pairs, generally increasing (decreasing) in those vortex pairs where the

large amplitude oscillations manifest, and in return, decreasing (increasing) in the Ek-

man vortices. While the coupling between the vortices remains, the ALS are rotating

waves with a single precession frequency that coincide with that for the so-called large

jet state LJ (Gerdts et al., 1994), in which all outgoing jets in the bulk flow oscillate with

large amplitude. Nevertheless, when the coupling is broken there arise disturbances in

the wavelength of the different vortex pairs that slowly spread in axial direction, similarly

to the situation described in Gerdts et al. (1994), who termed the resulting axisymmetric

motion as very low frequency mode VLF. The growth of these disturbances determines

the flow transitions occurring as the control parameters are varied, leading to either a

different ALS or the appearance of chaos.

We observed that, in all cases, the VLF seems to emerge almost simultaneously with

the period doubling of the orbit associated with the precession frequency of the ALS

fp, resulting in two frequencies, fp21 and fp22 , in the vicinity of fp/2, and separated ±
fV LF/2 from it. Nevertheless, the frequency spectrum and Poincaré section reveal some

interesting differences between ALS having one or two outgoing jets oscillating with

large amplitude. In the latter case fp21 and fp22 arise with nearly the same amplitude,

and the periodic orbit obtained in a Poincaré section reflects a trajectory that follows

a double loop in a small region of phase space. In contrast, in the former case, fp22 is

higher than fp21 , and a single loop trajectory is obtained in a Poincaré section. After

this transition, the behavior has been found to depend on the control parameter that

is changed. Decreasing Γ (when Rei < 950) results in restoring the phase coherence

between vortex pairs, so fV LF approaches zero and the system undergoes a second period

doubling bifurcation, which precedes the final transition to chaos. In contrast, when Rei

is increased, the value of fV LF as well as its amplitude gradually increase, leading to a

distinct ALS or, at a sufficiently high Rei, to the occurrence of chaos. This behavior is

also observed when decreasing Γ for Rei > 950.

The behavior of the VLF mode is very sensitive to changes in the control parameters. It

has been found to occur through distinct types of bifurcations and its magnitude fV LF

substantially increases with Rei (Abshagen & Pfister, 2000; von Stamm et al., 1996).

There also exist experimental evidences suggesting different dynamical behaviors of the

VLF when the number of vortices in the flow is greater than 20 (von Stamm et al., 1996).

Consequently, it is likely that different transitions to those described in this chapter will

arise in systems with higher Γ. Nevertheless, the computational cost of properly solving
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extended geometries at high values of Rei with our methods is extremely large, if not

impossible in many cases. The implementation of multi-domain methods, such as that

in Viazzo & Poncet (2014), could help cope with this problem, an therefore it will be

considered in the future in order to keep studying the rich and complex dynamics existing

in these systems.
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CHAPTER 7

OVERVIEW

Understanding the dynamics of rotating fluids, and in particular the mechanisms in-

volved in the onset of turbulence, is one the most important challenges facing the Fluid

Dynamics community. Resolving this long-running problem would have a tremendous

impact on a wide variety of industrial, geophysical and astrophysical processes (see sec-

tion 1.1 for an overview), which in most cases are of vital importance to society, the

economy and the environment. Due to the intrinsic complexity of the problem, it is

approached using models based on simple geometries such as cylinders or annuli, which

allow for straightforward laboratory and numerical experiments. The advancement of

scientific understanding in this area will be to a large extent determined by the inter-

action between these two research tools. This thesis is intended to assist in comparing

and interpreting the results provided by experiments and numerical simulations, in some

cases identifying weaknesses of the latter when reproducing experimental results, and in

others, highlighting the advantages that they provide over laboratory experiments.

The numerical approach adopted to deal with the Navier-stokes equations governing

these flows embraces several tools such as direct numerical simulations, linear stability

analysis, Newton and continuation methods or time series analysis. In all cases, sim-

ulations have been performed using spectral codes which have for the most part been

developed during the thesis. They have been discussed in detail in chapter 2. Special

attention has been paid to the solver described in 2.2, which has been entirely designed

and implemented for the completion of this doctoral thesis. Task distribution based

on MPI has been been accomplished, allowing for fast and efficient computations. As

a result, regions of parameter space that were computationally intractable with the

previously existing codes, i.e. the large aspect-ratio facilities of chapter 6, have been

addressed in this thesis. This code is currently being used to successfully simulate ex-

perimental quasi-keplerian flows at large rotation speeds (Edlund & Ji, 2014) and it will

certainly serve as an important tool for the scientific production of the group in the

near future. The performance and scalability of the code can be significantly improved

through a hybrid OpenMP–MPI approach, which will be accomplished over the next

few months. It is also worth briefly mentioning that the spectral-finite-differences solver

for laterally heated axially periodic Taylor–Couette flows delineated in 2.3, which is an

extension of Shi et al. (2015), was granted to participate in the LRZ-Extreme Scaling

workshop in Garching (Germany), showing acceptable weak scalability up to 8 islands

in the SuperMuc computer (8××512× 16 = 65536 cores).
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Chapter 3 focuses on the dynamical changes resulting from symmetry-breaking due to

experimental imperfections. In particular, it considers the pinning phenomenon that

occurs when a rotating wave with precession frequency near zero is stopped by the

imperfections and becomes a steady solution. This happens in a finite region of the

parameter space which is referred to as pinning region. The chapter can be divided into

two parts. In the first one the normal form of a Hopf bifurcation with zero frequency

in which the SO(2) symmetry is broken by adding a ε term has been analyzed. As

a result of this symmetry-breaking, the curve of solutions with zero frequency splits

into two curves, located to the left and right of the former, which delimit the pinning

region. It was found that these curves are infinite period bifurcations (SNIC). As

they approach the Hopf bifurcation curve the dynamics becomes very complex, with

several codimension-two and global bifurcations in a small region of parameter space.

In the second part of the chapter, the theoretical predictions have been tested in the

case of rotating Rayleigh-Bénard convection. In this problem a bifurcation scenario that

fulfills the requirements for the occurrence of a pinning region (existence of rotating

waves and precession frequency changing sign when the control parameters are varied)

was identified. After checking that simulations in idealized systems do not allow for

capturing pinned rotating waves, the SO(2) symmetry was broken by imposing a linear

temperature profile at the top lid. In doing so a pinning region bounded by infinite

period bifurcation curves was found. It was observed that pinned solutions correspond

to the attachment of the rotating wave to the sidewall. It must be emphasized that,

unlike other pinning phenomena reported in fluid dynamics, this pinning occurs in a

region of parameter space where the Hopf bifurcation is subcritical. Pinned rotating

waves are likely to occur in experimental facilities for the study of rotating flows, which

are typically SO(2) equivariant, resulting in inconsistencies with the results of numerical

simulations. It is thus important to have in mind the results provided in this chapter

for the correct interpretation of these discrepancies.

Chapter 4 discusses how to incorporate a new term into the Navier-Stokes equations

in order to consider centrifugal effects in certain situations in which they have been

traditionally neglected. This new term is obtained from similar considerations to those

in the classical Boussinesq approximation, which is used to take into account the grav-

itational buoyancy effects in incompressible flows. In addition to the traditional radial

contribution of the centrifugal buoyancy, the new approach allows for considering sec-

ondary centrifugal effects stemming from differential rotation or strong internal vorticity.

The significance of these effects has been elucidated by comparing, for several axially

periodic configurations of laterally heated Taylor-Couette flows, the marginal curves ob-
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tained with and without including the new term in the governing equations. In some

cases, this plays a very relevant dynamical role, particularly at high rotation speeds,

causing significant changes in the onset of instability and eigenfunctions with respect

to the traditional approach. It is important to highlight that only the linear stability

analysis of these flows has been considered. Even though, very substantial differences

between the two approaches arise. A similar study to the one carried out here, but

considering fully nonlinear computations, i.e. comparing the onset of secondary insta-

bility, would be an interesting future work to quantify the influence of the non-linear

interactions in the centrifugal buoyancy. Alternatively, the study might be performed in

finite geometries which can be easily tested experimentally. The radial velocities induced

by the end walls result in significant centrifugal effects, so it is possible speculate that

important discrepancies between the traditional and new approaches will be found for

lower values of the rotation speed than in the axially periodic situation. The chapter

has also provided a discussion on the suitability of using the new numerical approach for

the study of quasi-keplerian shear flows (accretion disks), where the rotation speeds are

extremely high. Although in this case, shear has been found to prevail over centrifugal

buoyancy, and thus the marginal curves are almost identical in both approaches, the

new term could be of great importance when the non-linear terms are considered. Since

little effort both in preparation and execution is required to include the new term in

existing numerical codes, we recommended to use the new approach in all situations,

regardless of whether the centrifugal buoyancy is the dominant force or not.

The influence of finite-length effects in the dynamics of radially heated Taylor–Couette

flows has been investigated in chapter 5. The onset of the primary and secondary

instabilities, when rigid flat end walls (experimental boundary conditions) and axially

periodic boundary conditions (infinite long cylinders; no boundary layers) are used,

have been compared. Two experimental facilities, differing in the sense of the radial

temperature gradient and relative rotation of the cylinders have been analyzed. When

the inner cylinder rotates and the outer cylinder is held at rest (common setup to study

industrial flows), the discrepancies between the finite and infinite cases mainly occur at

high temperatures, because of the stable density gradient induced by the temperature

difference between the Ekman layers, which strongly stabilizes the flow. Furthermore,

the frictional effects due to the Ekman layers shift the marginal curve in the finite

case towards larger values of the rotation speed. Nevertheless, when the temperature

difference between the cylinders is small, the discrepancies due to friction only slightly

affect the critical values for the onset of the transitions, and the dynamics is in both

cases similar. When the system rotates as a solid-body (baroclinic annulus utilized to
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model atmospheric instabilities), the axial velocity in the finite case is confined to the

sidewall, which entirely modifies the base flow of the infinite case, resulting in completely

different dynamics in both cases. The analysis carried out in this chapter is of interest

in order to design future laboratory experiments to reproduce quasi-keplerian flows in

the presence of radial temperature gradients. In numerical models of realistic accretion

disks (Klahr & Bodenheimer, 2003; Petersen et al., 2007; Lesur & Papaloizou, 2010),

which neglect axial stratification, subcritical global and local instabilities have been

found, which trigger turbulence that transport angular momentum outward at the rates

estimated for real accretion disks (Richard & Zahn, 1999). In order to approximate such

models in the laboratory, the axial temperature gradient due to the Ekman layers must

be minimized. To this avail, one approach would be to heat the bottom lid, producing a

vertical temperature gradient that opposes the former (see Stone et al., 1969, in which

the same strategy is applied for the case of solid-body rotation). The strong stabilizing

effect due to axial stratification nearly disappears and the differences between finite and

infinite systems would be solely due to Ekman friction. Since very small frictional effects

are expected at large rotation speeds, it can be speculated that the dynamics will be

similar in both cases. The results of axially periodic simulations could be used as a

guideline to assure the validity of the experimental work.

Finally, in chapter 6 we report a numerical study of the bifurcation scenario experi-

mentally found by Abshagen et al. (2012), in which global states with large amplitude

oscillations localized in some of vortex-pairs arise in a certain region of parameter space.

In contrast to the preceding chapters, where radial or axial temperature gradients are

present, the experimental setup is an isothermal Taylor–Couette facility with moderate–

large aspect ratio. The objective was to explore in detail the dynamics of these axially

localized states and, in particular the transition to chaos, by making use of the ad-

vantages offered by numerical simulations for simultaneously extracting time series in

several points of the fluid domain. Frequency analysis of these time series have been

used to identify the bifurcations taking place. All results obtained are in full agreement

with experimental observations. Four axially localized states over the six possible com-

binations existing for a 10-vortex flow have been found. These states, which appear

for the same values of the control parameters (Reynolds number and aspect ratio nor-

malized with the number of vortices) as in experiments, can be either rotating waves

with a single precession frequency or quasi-periodic. The latter happens when they co-

exist with a very low frequency mode, which arise as a result of the breaking of the

phase coherence between the oscillations of adjacent vortex pairs (Gerdts et al., 1994;

von Stamm et al., 1996). The emergence of the very low frequency mode plays a key
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role in the transition to chaos when the control parameters are changed. It seems to

originate at the same time as the period-doubling of the frequency of the rotating wave,

and grow in amplitude with the increase of the Reynolds number, leading eventually to

chaotic flow. When the aspect ratio is reduced a second route to chaos has been found,

in which the very low frequency becomes nearly zero and the main frequency undergoes

a second period doubling before the flow becomes completely chaotic. The dynamics

is in general very complex due to the high multiplicity of states, hence the sequence of

transitions that is captured is entirely dependent on the initial state and the variations

of the control parameters carried out.
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