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Abstract The present study focuses on the flow over

a 2D square cylinder with a plate placed in front of it.

An in-house code using the lattice Boltzmann method

was employed for all the simulations presented. Few

cases were simulated using the open source code

Nektar??, the results obtained from both method-

ologies were compared. Regarding the plate, three

related parameters, velocity ratio, distance between

the plate and cylinder and the thickness of the plate,

were studied in order to evaluate the impact of these

parameters on the flow behavior. The interactions

between these parameters were as well investigated.

The effect of these parameters on flow transitional

properties such as Hopf and Neimark–Sacker bifur-

cations were discussed. Whenever the velocity ratio

exceeds a certain value, Kelvin–Helmholtz

instabilities dominate the vortex shedding. As velocity

ratio increases, drag coefficient and vortex shedding

frequency increase. The POD method was employed

to predict the flow behavior based on the existing

information. It turned out the POD method is a

trustable methodology to mathematically pre-investi-

gate the flow field, therefore it is capable of saving

large computational resources.

Keywords Lattice Boltzmann method � Proper
orthogonal decomposition � Passive flow control �
Flow over a square cylinder

List of symbols

a~ Acceleration of molecules

Aii Correlated matrix

cs Sound speed

c Lattice velocity

Cd � mean Mean value of drag coefficient

Cd � A Amplitude of drag coefficient
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D� Distance between the cylinder

and plate

dD Particle diameter

e~a Unit velocities vector along

discrete directions

g~ The vertical component of

velocity vector difference

f ðr~; n~; tÞ Distribution function
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f eqðr~; n~Þ Equilibrium distribution

function

F1; F2 Post-collision distribution

function of two fluid particles

f1; f2 Pre-collision distribution

function of two fluid particles

fa Discrete distribution functions

on a directions
Fa Discrete distribution functions

on a directions after collision

faðr~þ e~aDt; t þ DtÞ Discrete—post collision

distribution functions vector

faðr~; tÞ Discrete—pre collision

distribution functions vector

f~
eq

a
Nine-ordered vector of discrete

equilibrium distribution

functions

f neqa The non-equilibrium state of

distribution functions

L Characteristic length (edge)

Lv Vortex length for steady flow

M The number of data blocks

mi Combinations of parameters

(blocks of data)

N The number of snapshots

Re Reynolds number

r� Velocity ratio

r~ Spatial position vector

t Time

Tk� Thickness of the plate

u~ Macroscopic quantity, velocity

U Initial velocity component in

horizontal direction

u Velocity component in

horizontal direction

v Velocity component in vertical

direction

v~j Eigenvector obtained from

correlated matrix

yðxj;miÞ A physical field

yþ Non-dimensional wall distance

Dx Grid spacing

Dt Time step

e Average thickness of the

flapping layer on the upper

cylinder surface

diðmjÞ
� �

M�M
Empirical coefficient matrix

/iðxjÞ Base vectors

k Eigenvalue

q Macroscopic quantity, density

s Single relaxation time term

Xf Collision operator

Xa
f Discrete collision operator on

a directions
dH Integral infinitesimal of angle

xa Weight Coefficients

n~ Velocity vector of molecules

1 Introduction

1.1 Passive flow control of the flow over a square

cylinder

During the past few decades, investigations about flow

around bluff bodies have always been a hot topic in

computational fluid dynamics, not just in theoretical

studies but also in practical applications. Specifically,

the circular and square cylinders under laminar flow

conditions, see references [1–3] and [4–11] respec-

tively, were well studied for more than a half century

using both experimental and computational means.

Tritton [1] launched some experiments on the flow

around a circular cylinder at Reynolds numbers

ranging from 0.5 to 100, body forces were measured

and the vortex shedding process was also captured.

Braza et al. [2] numerically studied the pressure and

velocity fields of the unsteady incompressible laminar

wake behind a circular cylinder by using the second

order accuracy finite volume method, body forces

were calculated at Reynolds numbers 100, 200 and

1000. Allicvi and Bermejo [3] performed a numerical

study on the flow past a cylinder via using the finite

element modified method, lift and drag coefficients at

Reynolds number 100 were presented. Regarding the

square cylinder, Okajima [4] performed a series of

experiments finding out the Strouhal number associ-

ated to each Reynolds number and as a function of

width-to-height ratio of the rectangular cylinders. The

Reynolds number was varied from 70 to 2� 104,

width-to-height ratio varied from 1 to 4. The exper-

imental results were confirmed by numerical calcula-

tions. Kelkar and Patankar [5] investigated the 2D flow

around a square cylinder at different Reynolds num-

bers via using linear stability analysis. The onset of
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unsteadiness was studied and analyzed through vari-

ous time-stepping techniques, the main purpose was to

determine the most appropriate technique for studying

the perturbations growth. A simulation at Reynolds

number beyond the critical value was also performed

to find out the periodic characteristics of the flow.

They found the critical Reynolds number between

steady and unsteady flow was 53. In 1995, Sohankar

et al. [6] investigated the laminar flow around a square

cylinder at Reynolds numbers ranging from 45 to 250.

For each Reynolds number tested, they predicted the

lift, drag, pressure coefficient and Strouhal number. It

turned out that at Reynolds number 55, the flow

exhibited a well-defined vortex shedding frequency

but at Reynolds number 50 the flow was still steady.

Four years later, Sohankar et al. [7] undertook another

study on flow around a 3D square cylinder at moderate

Reynolds numbers, where based on their experiments

[8] they reported that the steady/unsteady Reynolds

critical value was 47� 2, from the simulations

performed, they observed the Reynolds number at

which the flow became 3D was between 150 and 200.

Luo et al. [9] investigated experimentally the flow

transition in the wake of a square cylinder. In their

study they determined two different unstable modes,

modes A and B, their respective Reynolds numbers

associated were 188–190 and 230–260. They con-

cluded that the vortex formation mechanism in

circular and square cylinders was the same, due to

the similar vortical structures they observed between

corresponding modes for these two bluff bodies. In

2009, Ul-Islam and Zhou [10] investigated the flow

around a square cylinder at Reynolds number 100 via

using the lattice Boltzmann method, the aim was to

determine the influence of the different boundary

conditions on the downstream flow characteristics. In

the same year, Ali et al. [11] conducted a grid

convergence study for 2D flow around a square

cylinder at Reynolds number 150. They noticed that

the grid independency was achieved when the first cell

was placed at a non-dimensional distance of 0.005

from the solid surface.

Recently, the flow control technology has been

applied to the flow over bluff bodies, most of the work

refers to the passive flow control [12–18], where the

flow is being modified via using static devices, being

this the kernel idea of passive flow control. In 1998,

Sohankar et al. [12] conducted several simulations on

the flow around a square cylinder by introducing an

adjustable parameter, angle of attack (AOA), ranging

from 0 to 45. They observed when using a null value of

AOA, that the critical Reynolds number was found to

be 51:2� 1:0. For the full range of the AOA studied

angles, ½0; 45�, the onset of unsteadiness occurred

within the Reynolds number interval ð40; 55Þ. Zhou
et al. [13] researched the flow around a square cylinder

with a control plate upstream. They placed a vertical

plate in front of the square cylinder and introduced the

height of the plate as a changeable parameter, they

investigated its influence on the downstream vortex

shedding wake. Cheng et al. [14] performed a series of

calculations via using the lattice Boltzmann method,

to study the flow characteristics of a linear shear flow

past a square cylinder at Reynolds numbers from 50 to

200. The authors presented a controllable parameter

known as shear rate, via modifying such parameter, at

Re = 50 they noticed the steady flow could be

disturbed and turned into unsteady. Doolan [15]

investigated the interaction between a square cylinder

and a horizontal downstream detached plate at Re =

150. In his study, the 2D N-S equations were solved

using the finite volume methodology implemented in

OpenFOAM. He reported the perturbation caused by

the plate could bring a non-negligible influence on the

Strouhal number and force coefficients. In Ali et al.

[16], they investigated a square cylinder with a splitter

plate attached to the rear, they introduced the plate

length as a modifiable parameter. Numerically, they

discovered that the splitter plate can fundamentally

change the flow structure of the wake. Ul-Islam et al.

[17] performed a similar study but with a thick

detached splitter plate. In their study, they took the

distance between the square cylinder and the plate as a

modifiable parameter. In 2016, Wang et al. [18]

presented a study on the flow around a square cylinder,

with a porous vertical plate near the wake. They

concluded that the drag coefficient decreased to some

extent compared with the one associated to the

cylinder without a plate. The Strouhal number was

also reduced and under some conditions the vortex

shedding could even be suppressed.

In the present study, a horizontal splitter plate was

placed upstream of a square cylinder. Four parameters,

velocity ratio r�, distance between cylinder and plate

D�, thickness of the plate Tk� and Reynolds number

Re, were evaluated. The maximum value of Reynolds

number below the splitter plate is 56, being this

maximum value of the Reynolds number based on the
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velocity above the plate 224. As it will be explained in

the results section, these four parameters have a deep

impact on the flow topology, vortex shedding fre-

quency, amplitude and drag forces acting on the

cylinder. The critical Reynolds numbers at which

Hopf and Neimark–Sacker bifurcations appear are

affected by these four parameters. Having four

adjustable parameters under consideration, and in

order to properly study the impact of each parameter, a

large amount of simulations need to be performed,

being very expensive computationally, especially

when considering the large mesh (19,800,000 cells)

used in present study. Therefore, in the present paper,

it was employed a mathematical algorithm known as

the proper orthogonal decomposition (POD) to predict

with a tolerant error, the flow field characteristics

under any combination of the controllable parameters.

It is important to notice that the square cylinder with a

splitter plate located upstream was just investigated in

Ref. [26], where just some velocity ratios were

numerically studied in 2D, although at some of the

Reynolds numbers studied the flow should have been

considered as 3D. In the present paper, for all

Reynolds number studied the flow is two dimensional,

this is why all simulations were performed in 2D. The

entire information presented in this paper is novel and

can not be found elsewhere.

The paper is structured as follows, Sects. 2, 3 and 4

are respectively focusing on the mathematical back-

ground for LBM and POD, mesh and boundary

conditions for the LBM simulations, and LBM code

validation. Section 5 is devoted to the results, in

Sects. 5.1 to 5.3, LBM is employed to investigate the

influence of four parameters on the flow physics. In

Sect. 5.4, initially further LBM simulations were done

to be able to generate the different sample matrixes to

predict the new results by using the POD method. For

each predicted result using POD, a new LBM simu-

lation was done to compare the results with the

predicted ones. The final part of the paper summarizes

the main conclusions obtained.

2 Mathematical background

2.1 Lattice Boltzmann method (LBM)

In what follows, a brief description of the original

LBM is presented. The continuous Boltzmann

equation is given by Eq. (1), notice that all parameters

presented in this equation, as well as the ones

introduced in all equations presented in this paper

are non-dimensional.

of ðr~; n~; tÞ
ot

þ n~ � of ðr~; n
~; tÞ

or~
þ a~ � of ðr~; n

~; tÞ
on~

¼
ZZ

ðF1F2 � f1f2Þd2D g~j j cos hdHdn~1 ð1Þ

The left hand side of Eq. (1) represents the

streaming term, the right hand side represents an

integral–differential term, which is called the collision

term. Simplified by Bhatnagar–Gross–Krook (BGK)

operator, Eq. (1) reads as

of ðr~; n~; tÞ
ot

þ n~ � of ðr~; n
~; tÞ

or~
þ a~ � of ðr~; n

~; tÞ
on~

¼ Xf

¼ 1

s
½f eqðr~; n~Þ � f ðr~; n~; tÞ� ð2Þ

where s is the singular relaxation time term and

f eqðr~; n~Þ is the equilibrium distribution function.

Discretizing Eq. (2) both on space and time, the

lattice Boltzmann equation is obtained and given by

Eq. (3)

faðr~þ e~aDt; t þ DtÞ � faðr~; tÞ ¼ Xa
f

¼ 1

s
½f eqa ðr~; n~Þ � faðr~; n~; tÞ� ð3Þ

where a represents the direction of discrete velocities,

faðr~þ e~aDt; t þ DtÞ and faðr~; tÞ are the discrete -post

and -pre collision distribution functions vector and Xa
f

is the discrete collision operator on a directions. The

relation between the molecular movements and flow

filed, in the present study, is introduced in Eq. (4)

q ¼
P

a
fa

qu~¼
P

a
e~afa

8
<

:
ð4Þ

where q is the fluid density and u~ represents velocity

field.

According to the LBGK model [19], the equilib-

rium distribution functions, for the 9 discrete veloc-

ities (9-bit model), are determined by

f eqa ¼ xaq½1þ
e~a � u~
c2s

þ ðe~a � u~Þ2

2c4s
� u2

2c2s
�

a ¼ 0; 1; . . .; 8

ð5Þ

wherexa are the weight coefficients, and cs is the non-
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dimensional sound speed. The discrete velocities of

LBGK two dimensional 9-bit model D2Q9 are given

by

e~¼ c
0 1 0 �1 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

� �

cs ¼
c
ffiffiffi
3

p xa ¼
4=9 e~2

a ¼ 0

1=9 e~2
a ¼ c2

1=36 e~2
a ¼ 2c2

8
><

>:

ð6Þ

where c ¼ Dx=Dt ¼ 1 is the non-dimensional lattice

velocity,Dx andDt are the lattice grid non-dimensional

spacing and the non-dimensional time step

respectively.

Figure 1 shows the discrete velocities of the LBGK

D2Q9 model employed in all simulations presented in

this paper.

2.2 Proper orthogonal decomposition (POD)

The proper orthogonal decomposition (POD), as a

post-processing algorithm, was introduced in physical

applications four decades ago, the original and

elementary investigation was performed by Lumley

[20] and Sirovich [21]. According to Lumley, POD is a

very efficient tool to predict the dominant represen-

tation of a physical field with a finite number of data

blocks. The basic idea of POD is obtaining the best

orthogonal basis from the existing data via performing

an orthogonal transformation of the sample covariance

matrix, then with the best orthogonal basis, the

physical domain will be reconstructed with a tolerant

residual. The snapshots method introduced in Siro-

vich’s work [21] is also used in the present study, due

to its efficiency and convenience. In Ref. [22], Liang

et al. presented a study about the introduction of some

of the different kinds of POD, Karhunen–Loeve

decomposition (KLD), principal component analysis

(PCA), and singular value decomposition (SVD), as

well as their applications. In 1996, Holmes et al. [23]

introduced the POD in turbulence studies of compu-

tational fluid dynamics (CFD) applications. In the

present study, the snapshots POD approach, first

introduced by Sirovich [21], is coupled with a cubic

spline interpolation procedure to develop reliable, fast,

low-order models for accurately predicting flow fields

for the different parameters involved in this study. In

what follow, a brief introduction of the snapshots POD

method employed in the present paper will be

presented.

Theoretically, any kind of physical field can be

represented in the form of a finite series, as shown in

Eq. (7).

yðxj;miÞ ¼
XM

i¼1
diðmiÞ/iðxjÞ; i ¼ 1; . . .;M; j

¼ 1; . . .;N ð7Þ

where, yðxj;miÞ represents a physical field for a given

domain under a given status (a data block), xj represent

any physical quantity, like velocity, pressure or

temperature, mi describes different combinations of

parameters (blocks of data) characterizing the physical

field. In the present paper, the parameters include

Reynolds numbers, plate thickness, velocity ratio and

plate position, M is the number of the data blocks,

diðmiÞ are the empirical coefficients and /iðxjÞ refers
to the base vectors. For each block, the physical field

forms a column vector y~i ¼ ½yðx1;miÞ; yðx2;miÞ; . . .;
yðxN ;miÞ�T with N elements, where N is the length of

each block, also known as the number of snapshots.

With all the data blocks together, a N �M matrix

yðxj;miÞ
� �

N�M
is obtained, which is also known as the

sample matrix. To predict a new physical quantity, the

PODmethod requires to start with a sample matrix, the

data of this matrix is obtained based on previous

information, which are the physical quantities

obtained through simulation or experimentation.

According to the POD theory, the empirical coef-

ficients diðmiÞ and the base vectors /iðxjÞ extracted

from the sample matrix, must satisfy Eq. (8), which

finally leads to an eigenvalue problem [24] shown in

Eq. (9).

Fig. 1 Discrete velocities of lattice Boltzmann D2Q9 model
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Maximize k ¼
ð/ðxjÞ; yðxj;miÞÞ2

D E

ð/ðxjÞ;/ðxjÞÞ

8
<

:

9
=

;
ð8Þ

where, ;h i denotes the averaging operation, ;ð Þ refers
to the Euclidean inner product and k is the eigenvalue.
Z

X
yðxj;miÞ; yðx0j;miÞ

D E
/ðx0jÞdx0j ¼ k/ðx0jÞ ð9Þ

where, yðxj;miÞ; y�ðx0j;miÞ
D E

¼ 1
M

PM

i¼1

yðxj;miÞy�
ðx0j;miÞ is the averaged auto-correlation function,

y�ðx0j;miÞ denotes the Hermitian matrix of yðxj;miÞ.
The snapshots POD method, makes easier to solve

the eigenvalue problem addressed in Eq. (9), by

introducing the idea that base vectors are actually a

linear combination of snapshots. Therefore, the eigen-

value problem has been reduced and simplified to

solve the eigenvalues of a correlated matrix Aii, where

Aii ¼ ðyðxj;miÞÞT � ðyðxj;miÞÞ i ¼ 1; 2; . . .;M
j ¼ 1; 2; . . .;N

ð10Þ

Notice that the correlated matrix Aii is obtained

when multiplying the transpose sample matrix by the

sample matrix. From the correlated matrix Aii the

eigenvalues and eigenvectors are obtained. To deter-

mine the base vectors, Eq. (11) is employed, this

equation clarifies that the base vectors are obtained

when multiplying the sample matrix yðxj;miÞ by the

column eigenvectors v~j.

/iðxjÞ ¼ yðxj;miÞ; v~j

� �
ð11Þ

To obtain the empirical coefficients based on the

sample matrix, it is required to multiply the transpose

sample matrix by the base vectors as defined in

Eq. (12)

diðmjÞ
� �

M�M
¼ yðxj;miÞT;/iðxjÞ

	 

ð12Þ

At this point, the empirical coefficient matrix

diðmjÞ
� �

M�M
; i ¼ 1; . . .;M; j ¼ 1; . . .;M, and the base

vectors have been obtained. The left and right hand

side of Eq. (7) are known. In order to build the aiming

block (block No. M ? 1), it is required to interpolate

the empirical coefficients of the block M ? 1,di
ðmMþ1Þ, in each coefficient column, afterwards the

physical field of this new block (block No. M ? 1)

will be obtained by using Eq. (13). Notice that the base

vectors were obtained using Eq. (11).

yðxj;mMþ1Þ ¼
XM

i¼1
diðmMþ1Þ/iðxjÞ;

i ¼ 1; . . .;M; j ¼ 1; . . .;N
ð13Þ

3 Mesh and boundary conditions

Figure 2 states the physical problem and boundary

conditions employed in the present geometry. The

domain considered in the present application consists

of a square cylinder located downstream of a detached

splitter plate. At the inlet, the velocity fields below and

above the plate are related by a given velocity ratio, r�.
Providing the square cylinder characteristic length is

L, the distance between the plate and the cylinder is

initially 3.0L, being the splitter plate length also 3.0L.

The outlet is located at a distance of 24.0L downstream

of the square cylinder, the upper and lower boundaries

are located at a distance 8.0L from the cylinder centre

line. For further information of why such distances

were chosen it is recommended to see Sohankar et al.

[12], where they clarified that under laminar condi-

tions such distances are required to make sure that

boundaries do not affect the internal flow. A set of

different cases involving several Reynolds numbers,

splitter-plate square cylinder distances, different

velocity ratios and different splitter plate thicknesses

were evaluated, over 150 cases were simulated.

Boundary conditions are a key point in CFD, having

a crucial influence on the computational results. As

can be seen in Fig. 2, for the up and down far-field

boundaries as well as for the outlet, Neumann

Fig. 2 Physical domain and boundary conditions
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boundary conditions were employed for all flow

quantities. At the inlet, Dirichlet boundary conditions

for velocities u and v were employed, Neumann

boundary conditions for pressure were used. Notice

that the component of the velocity towards the x

direction above the splitter plate is defined as r� times

the same component of the velocity below the splitter

plate. In all solid boundaries, non-slip boundary

conditions for velocities u and v were employed,

Neumann boundary conditions for pressure were used.

It is interesting to realize that the boundary conditions

for pressure, are in reality given as boundary condi-

tions for density, in LBM and for incompressible flow,

the relation between pressure and density is given as

p ¼ q=3.
The application of standard Cartesian grid is very

common in LBM, because of its particular structural

advantages that fit the streaming-collision theory of

LBM. Figure 3 shows the standard Cartesian mesh

employed for the present application. On the left hand

side, the full domain is presented, the total number of

cells was 19,800,000 and the grid spacing was 0.005,

the right hand side of Fig. 3 presents a zoomed view of

the mesh. Regarding the Nektar??, a non-uniform

structured grid having 121,198 cells was employed.

In the current numerical cases, the non-equilibrium

extrapolation scheme [25] is employed to define the

inlet, outlet, solid and far-field boundary conditions.

The basic idea behind this scheme is that the

distribution function of each direction can be classified

into two parts, known as the non-equilibrium term and

the equilibrium term.

As shown in Fig. 4, the grid nodes A, B and C are

flow points, the grid nodes D, E and F are boundary

points (inlet, outlet, solid and far-field). For points

E and B, the distribution function of each direction is

written as

faðE; tÞ ¼ f eqa ðE; tÞ þ f neqa ðE; tÞ ð14Þ

faðB; tÞ ¼ f eqa ðB; tÞ þ f neqa ðB; tÞ ð15Þ

The equilibrium part f eqa ðE; tÞ is obtained from the

macroscopic quantities of point E. While, the non-

equilibrium distribution functions of point E can be

replaced by the homologous of point B.

f neqa ðE; tÞ � f neqa ðB; tÞ ð16Þ

Hence, the distribution functions of pointE become

faðE; tÞ ¼ f eqa ðE; tÞ þ faðB; tÞ � f eqa ðB; tÞ ð17Þ

Fig. 3 Uniform Cartesian mesh used to evaluate the flow around a square cylinder

Fig. 4 Spatial discretization to be used in the inlet, outlet, solid

and far-field boundaries
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4 Code validation

In this section, the present code was validated at three

different Reynolds numbers, 50, 52 and 150, the

splitter plate was not considered in these validation

cases. Tables 1 and 2 compare some of the results

obtained using the present code with the ones obtained

from previous investigations. Table 1 compares the

downstream bubble lengh at two different Reynolds

numbers, 50 and 52, gathered from the present

simulation and from references [6, 26], notice that

under these conditions there is no vortex shedding.

Table 2 compares the average drag coefficient and the

Strouhal number at Reynolds 150 obtained from the

present simulations, using LBM and Nektar??, with

the references [7, 11, 15]. Based on the results

presented in these two tables it can be concluded that,

within the Reynolds numbers studied, the in-house

code generated has a very good degree of accuracy.

Notice that the same boundary conditions and the

minimum value of grid spacing were used for both

simulations, LBM and Nektar??. The maximum

value of yþ at Reynolds number 150 was found to be

0.544.

From these initial simulations it was stated that at

Re = 150, the flow is unsteady with periodic vortex

shedding. Notice that in Ref. [11, 18], the smallest grid

spacing was respectively of 0.0667 and 0.01, clearly

the grid spacing used in the present LBM simulations,

which is of 0.005, allows to obtain a higher degree of

precision. Figure 5 presents a full period of the vortex

shedding process. It is interesting to observe that the

vortices grow alternatively from the downstream

upper and lower corners, and are being shed down-

stream in a typical Von Karman vortex street.

5 New results and analysis

The results about to be presented are divided in four

main subsections, initially all cases will be analyzed

via directly modelling the flow using LBM. On a

second step and based on the results obtained from the

initial modelling, the POD method will be used to

extrapolate results for other cases not considered in the

first section. As a final section, some of the cases

extrapolated via POD will be fully simulated using

LBM and the comparison of the results obtained when

employing both methodologies will be undertaken.

5.1 Evaluation of the splitter plate-square cylinder

distance effect on the flow field

In the present section, LBM simulations were per-

formed to find out the critical Reynolds numbers

characterizing the Hopf bifurcation for three different

splitter-plate-square-cylinder distances, CFD simula-

tions using the open source, Nektar?? package were

as well performed to compare with LBM results. The

parameters remaining constant were, the splitter plate

thickness Tk� = 0.0L and the velocity ratio r� = 1.0. It

is expected that, as the Reynolds number increases, the

flow field changes from laminar steady to laminar

unsteady periodic, followed by unsteady quasi-peri-

odical and finally goes to chaotic. According to the

investigation performed by Sohankar et al. [7], the

flow around a square cylinder is starting to show 3D

characteristics at Reynolds numbers between 150 and

200, indicating that the present study based on a 2D

model is appropriate. In fact, studies undertaken by the

present researchers indicate that for a square cylinder

without a plate and affected by a constant velocity

upstream, at Reynolds number 163 three dimensional

structures start appearing. In references [6, 12],

Sohankar et al. observed that the first critical Reynolds

number, characterizing the boundary between steady

and unsteady periodic flow, for a square cylinder

without the splitter plate, was respectively 52 and

51:2� 1:0. In the present study, it was found that the

critical Reynolds number between steady and

unsteady periodic, for square cylinder was 53, when

using a convergence criterion of 10�6. When studying

Table 1 The comparison of the flow parameters at Reynolds 50 and 52

Data source This paper LBM Ref [6]. Ref [26].

Re = 50 Lv=L 3.726 3.55 3.68

Re = 52 Lv=L 4.089 – 4.1
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Sect. 4, it was observed that at Reynolds numbers 50

and 52, the flow was not really stable when using a

convergence criterion of 10�7, in reality the flow

maintained a steady status for about 13 s, and slowly

became transient with a very small amplitude and

frequency. When employing this smaller convergence

criterion, and allowing the simulations to run for over

17 s, the critical Reynolds number was found to be 48.

According to the experimental investigation per-

formed by Sohankar et al. [8], the critical Reynolds

number is 47� 2, which has a good agreement with

the result obtained in the present study.

Besides the square cylinder without the splitter

plate, the other two geometries, geometry A and B,

studied in the present section are shown in Fig. 6. In

both geometries the splitter plate length was 3.0L, for

geometry A the distance between the splitter plate and

the square cylinder was also 3.0L. In geometry B, the

splitter plate was attached to the square cylinder

upstream face.

Table 3 introduces the critical Reynolds numbers

separating steady from unsteady periodic flows and for

the three geometries studied, these values were

obtained once the total relative error between two

consecutive iterations was kept to 10�8. It is concluded

Table 2 The comparison of the flow parameters at Reynolds 150

Data source This paper LBM This paper Nektar?? Ref [7]. Ref [15]. Ref [18]. Ref [11].

Cd � mean 1.5411 1.54 1.44 1.44 1.4737 1.47

St 0.16102 0.162 0.165 0.156 0.160 0.160

(1) t0=13.0217s  (2) t1=13.0397s    (3) t2=13.0576s

(4) t3=13.0756s    (5) t4=13.0936s    (6) t5=13.11148s

Fig. 5 Streamlines of the flow around a square cylinder without a plate at Reynolds number 150
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that the critical Reynolds number increases as the

distance splitter plate-square cylinder decreases from

infinite to zero. This conclusion was obtained not only

by the in-house LBM code, but also by the open source

software Nektar??. Although in this paper only three

values of the distance were tested, it is believed by the

present authors that, the critical Reynolds numbers

obtained are defining the upper and lower limits of all

possible critical Reynolds numbers, regardless of the

upstream splitter plate position and providing the

splitter plate length is maintained constant at 3.0L. The

plate thickness was negligible, Tk� ¼ 0:0L. Notice

that it is the first time this particular splitter plate

location is considered. Regarding the comparisons

presented in Table 3, it is interesting to highlight that

the computational time consumed when Nek-

tar?? was used, was about 1/10 of the time required

by the LBM simulations.

Table 4 introduces the length of the steady trailing

vortex Lv over the characteristic length of the edge L

and for the three geometries studied in this section. For

each geometry, the largest Reynolds number at which

the flow remains steady is presented. It can be seen,

that the length of the downstream laminar bubble

decreases as the splitter plate is displaced towards the

square cylinder, as clarified before under these con-

ditions the critical Reynolds number increases.

Figure 7 presents the streamlines and the pressure

contour lines, left hand side and right hand side of the

figure, respectively, at the largest Reynolds number

for each geometry at which the flow is steady. The

boundary layer, the mixing layer and the wake, can be

clearly differentiated in these figures. Notice for

example that the mixing layer does not exist for the

cases without the plate and with the plate attached to

the square cylinder. The mixing layer will become

much more relevant whenever the cases considering

an upstream velocity ratio will be evaluated. Regard-

ing the pressure contour lines, it is observed that the

use of a splitter plate, regardless of its position, tends

to reduce the pressure on the square cylinder upstream

face, the pressure acting on the downstream face,

suffers a negligible increase as the plate is moved

downstream. Based on this results and providing the

Reynolds number would remain constant, it could be

estimated that the overall drag force on the square

cylinder decreases as the splitter plate moves down-

stream. In the cases presented in Fig. 7, the Reynolds

numbers are different, the critical Reynolds numbers

increase as the plate is moved downstream, yet and

due to fact that the Reynolds number increase is small,

the force acting on the square cylinder front face

slightly decreases as the plate displaces towards the

cylinder. Such non-dimensional force is 0.1129975 for

the square cylinder, 0.112251 for configuration A, and

0.111821 for configuration B, the respective forces on

the downstream vertical wall were 0.1104375,

0.1105775 and 0.1105545. In other words, as the plate

(1) Geometry A (2) Geometry B

Fig. 6 Geometries A and B

with different distance D�

Table 3 The critical Reynolds numbers for the three different

geometries studied, distinguishing laminar steady from

unsteady flows

Geometry Square cylinder A B

Critical Re LBM 48 56 59

Critical Re Nektar?? 48 56 59

Table 4 Vortex length over the characteristic length for dif-

ferent geometries with different distances between the plate

and the square cylinder

Geometry Square cylinder A B

Critical Re 47 55 58

Lv=L 3.48710 3.0686 2.9159
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moves towards the cylinder, the forces acting on the

square cylinder decrease, even though the critical

Reynolds numbers characterizing the three geometries

presented in Fig. 7 are different.

5.2 Evaluation of the velocity ratio (r�) effect
on the flow field

This section is devoted to study the velocity ratio

effect on the flow field. All simulations were carried

out by using LBM. The parameters remaining constant

were, the upstream length D� = 3.0L, and the splitter

plate thickness Tk� = 0.0L. Figure 8 presents the

average drag coefficient and the non-dimensional

frequency as a function of the velocity ratio and for

five slightly different Reynolds numbers, defined

based on the velocity below the plate. It is observed

that, regardless of the Reynolds number employed,

both parameters increase with the velocity ratio

increase. As the velocity ratio increases, the boundary

layer temporal average thickness e, on the square

cylinder upper horizontal surface keeps decreasing.

The equation characterizing such decrease at Rey-

nolds number 52, measured at the center of the upper

horizontal surface, reads as follows

e ¼ �0:015ðr�Þ3 þ 0:1414ðr�Þ2 � 0:5375r� þ 1:1511

ð18Þ

A decrease of the flapping layer thickness has

associated an increase of the flapping layer stiffness,

the flapping amplitude keeps decreasing, and as a

result, the frequency associated to the flapping layer

fluctuation increases. This is the explanation of the

non-dimensional frequency increase observed in

Fig. 8(2). In the same figure, it is observed that for

velocity ratios higher than 3.0, the curves at different

Reynolds numbers, tend to separate from each other.

The authors believe, this phenomenon is associated to

the onset of the three dimensional structures appearing

in the fluid, notice that at higher Reynolds numbers,

the curves further separate from the rest. The evolution

of the drag coefficient as a function of the velocity

ratio, Fig. 8(1), shows no appreciable difference,

between the different Reynolds numbers, at any of

the velocity ratios evaluated. The initial appearance of

the three dimensional structures do not seem to have a

relevant effect on the drag coefficient.

In order to further understand the effects the

velocity ratio is causing on the vortex shedding and

boundary layer thickness, the vorticity contours for a

given Reynolds number 52 and a given time

t = 1.7414 s are introduced in Fig. 9(1). Four different

velocity ratios are compared. Whenever the velocity

ratio is 1.0, the flow is steady, as observed in Fig. 9 (1-

a) as well as in Fig. 7. Under these conditions, a steady

laminar bubble appears downstream of the square

cylinder. For velocity ratios 2.0 and 3.0, see Figs. 9(1-

b) and 9 (1-c), the downstream vortex shedding is

controlled by Kelvin–Helmholtz instabilities. Notice

that the boundary layer acting on the square cylinder

lower horizontal surface, generates a very low-inten-

sity vorticity which dissipates downstream, the neg-

ative vortex generated on the square cylinder upper

horizontal surface, takes control of the flow. A much

richer downstream vortex generation is observed for a

velocity ratio 4.0, see Fig. 9(1-d). Under these condi-

tions, vortex shedding is generated from both, upper

and lower, square cylinder horizontal surfaces. The

negative vortex generated on the upper surface, has the

maximum intensity associated and it will dominate the

downstream vortex shedding. From the square cylin-

der lower surface, a pair of positive and negative

vortices are coupled together, their respective origin

is, the flapping of the boundary layer appearing at the

square cylinder lower surface, and the flow interaction

at the mixing layer, just before the square cylinder

front face. The Fourier transformation of the dynamic

drag forces acting on the square cylinder, clearly

shows two main non-dimensional frequencies, the

dominant one f1 ¼ 0:1699 is associated to the main

vortex generated on the upper surface, and it is due to

the boundary layer flapping. This is the only frequency

reported in Figs. 8(2) and 10(2) for velocity ratio

r� ¼ 4:0. The secondary frequency f2 ¼ 0:24272, is

associated to the low intensity positive vortices,

generated due to the boundary layer flapping at the

square cylinder bottom surface. In fact, a second

phenomenon, which is associated to the fluid entrain-

ment at the mixing layer existing between the splitter

plate and the square cylinder front face, is generating

small intensity negative vortices, which couple with

the positive vortices created below the cylinder. This

pair of coupled vortices dissipate downstream, leaving

a typical Kelvin–Helmholtz vortex shedding flow as

the remaining one. Notice that under these conditions,

the flow is quasi-periodic. All the process just
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(a) Streamlines (b) Pressure contour lines
(1) Square cylinder without splitter plate at Re=47

(a) Streamlines (b) Pressure contour lines

(2) Geometry A, * * *3.0 ,  1.0,  0.0D L r Tk L= = = at Re=55

(a) Streamlines (b) Pressure contour lines

(3) Geometry B, * * *0.0 ,  1.0,  0.0D L r Tk L= = = at Re=58
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explained, can bemore clearly seen in Fig. 9(2), where

the fluid entrainment at the mixing layer is more

clearly observed. As a matter of a fact, in Fig. 9(2) at

time steps t1 = 1.7362 s and t2 = 1.7388 s, it is

observed that a small negative vortex is generated at

the mixing layer, and it is transported downstream

merging/coupling with the positive vortices generated

below the square cylinder, which dissipate down-

stream. It is interesting to highlight that, under these

conditions, the vortices generated in the mixing layer

are always negative, and always merge with the

positive vortices appearing below the cylinder.

In order to further evaluate the effect of the distance

between splitter plate and square cylinder front

face,D�, at Reynolds number 52 Fig. 10 was gener-

ated. For each of the velocity ratios considered, four

different distances from 1.0L to 4.0L were studied.

Based on the results presented in Fig. 10, it can be

stated that the dominant parameter conducting the

flow dynamics, is the velocity ratio. Then, neither the

drag coefficient nor the non-dimensional frequency,

appeared to be much affected by the distance D�.
Based on what can be observed in Fig. 10(2), it seems

at low velocity ratios, the distance D� shows some

relevance on the final vortex shedding frequency,

small distances tend to generate a slightly higher

frequency.

5.3 Evaluation of the effect of different plate

thicknesses on the flow characteristics

In this section some flow properties when changing the

plate thickness Tk�, were investigated by using LBM.

Four thicknesses, Tk� ¼ 0:0L; 0:1L; 0:2L and 0:3L,

were considered. The parameters remaining constant

were, the upstream length D� = 3L and the velocity

ratio r� = 1.0.

Table 5 compares, for three different Reynolds

numbers, 100, 120 and 150, the average drag coeffi-

cient and the non-dimensional frequencies as a

function of the four values of the plate thickness.

From this table, it can be observed that for the

Reynolds numbers 100 and 120, the mean value of the

drag coefficient, increases as the plate thickness

increases. At Reynolds number 150, the mean value

of the drag coefficient has an initial decrease and

whenever the plate thickness is 0.2L or higher, it

increases. This effect is explained whenever the

average pressure at the upstream/downstream vertical

walls is studied. At Reynolds numbers 100 and 120,

when the plate thickness increases from 0.0L to 0.3L,

the average non-dimensional pressure at the leading

face increases respectively by 0.19% and 0.11%, while

the average non-dimensional pressure at the trailing

vertical wall decreases respectively by 0.268% and

0.249%. For these two Reynolds numbers at which the

flow is mostly periodic, the increase of drag coefficient

is mostly affected by the decrease of the downstream

non-dimensional pressure. At Reynolds number 150,

for a plate thickness of 0.0L, the flow is periodic and

becomes quasi-periodic as the plate thickness

increases to 0.1L. This particular change of the flow

(1) Mean value of Drag coefficient (2) Non-dimensional frequency

Fig. 8 The mean value of drag coefficient and the non-dimensional frequency versus the parameter r� at Reynolds number from 48 to

56

bFig. 7 Streamlines at the largest steady Reynolds numbers of

three geometries (Square cylinder, geometries A and B) in the

present study. (1) Square cylinder without splitter plate,

Re = 47. (2) Geometry A, D� ¼ 3:0L, Tk� ¼ 0:0L, Re = 55.

(3) Geometry B,D� ¼ 0:0L, Tk� ¼ 0:0L, Re = 58. For all cases

the velocity ratio r� ¼ 1:0
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structure, generates a decrease of the average non-

dimensional pressure at the front face of 0.2%,

generating as well a small decrease at the downstream

vertical wall average non-dimensional pressure of

0.036%. As the plate thickness keeps increasing, the

percentage decrease of the average non-dimensional

pressure at the front face, tends to zero, while the

percentage decrease at the downstream face, increases

sharply, therefore clarifying why the average drag

coefficient increases. Notice from Fig. 12 (2), that for

a plate thickness of 0.3L, two alternative vortices,

positive and negative, appear at the mixing layer.

These vortices, once coupled with the square cylinder

upper and lower boundary layers, they decisively

affect the downstream non-dimensional pressure,

decreasing it further. As a general trend, it can be said

that the downstream average pressure tends to

decrease as the plate thickness increases.

For a given plate thickness, as Reynolds number

increases from 100 to 150, the average value of drag

coefficient decreases. This happens for all plate

thicknesses. The physical explanation of why is this

happening, is again to be found when checking the

pressure on the upstream/downstream surfaces. For

any given plate thickness as Reynolds number

increases, the pressure at the front and rear faces

increases, but the percentage increase of the non-

dimensional pressure at the rear face, is always higher

than the one at the front face, explaining why the drag

coefficient decreases. As an example, it can stated that

for plate thickness of 0.0L, when the Reynolds number

goes from 100 to 150, the front face average non-

dimensional pressure increases by 0.228%, while the

average non-dimensional pressure at the rear face

increases by 0.26%. For the case of an isolated square

cylinder, the decrease of the drag coefficient when the

Reynolds number increases, was previously reported

by other scholars [6, 7, 13, 18, 27–29]. See for example

Table 3 in reference 1, figure 3 in reference 2, figure 3

in reference 3, figure 4(a) in reference 4, fig-

ure10(a) inference 5, Table 1 in reference 6 and

Table 2 in reference 7. When considering the drag

coefficient amplitude, it is observed, it increases

sharply as the plate thickness increases, clearly

indicating that under these conditions, the boundary

layer thickness increases. For a given plate thickness,

as the Reynolds number increases, the drag coefficient

amplitude slightly increases. This is explained when

observing the coupling effect of the mixing layer with

the boundary layers located on the top and bottom

surfaces of the square cylinder. As Reynolds number

increases, the mixing layer upstream of the square

cylinder is further enhanced, and the alternative

coupling between the mixing and boundary layers,

(1)

(a) Ratio=1.0 (b) Ratio=2.0 (c) Ratio=3.0 (d) Ratio=4.0

(2)

(a) t1=1.7362s (b) t2=1.7388s (c) t3=1.7414s (d) t4=1.7440s

(3) Re=52 and Ratio=4.0

Fig. 9 (1) Vorticity contours reference bar. (2) Vortex shed-

ding process at a given time with four different velocity ratios at

Re = 52. (3) Vortex shedding process at four different time steps

with velocity ratio r� ¼ 4:0 at Re = 52. In both figures, the plate

thickness is null, Tk� ¼ 0:0L
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brings a small increase on the boundary layer flapping

amplitude. Regarding the non-dimensional frequency,

at Reynolds number 100, it slightly increases as the

plate thickness increases. Notice that whenever the

plate thickness is 0.3L, the flow becomes quasi-

periodic, therefore two main frequencies characterize

the flow fluctuations. Themain frequency is associated

to the square cylinder downstream vortex shedding,

while the secondary frequency is originated at the

mixing layer. The quasi-periodicity of the flow, is

observed at smaller plate thicknesses when Reynolds

number increases.

Figure 11 represents characteristic periodic and

quasi-periodic stages of the flow. Each plot is divided

into two sub-plots, the inset represents the time series

of the drag coefficient, and the main panel introduces

the Fourier transformation obtained from this time

signal. A typical periodic solution, for Re = 100 and

Tk� ¼ 0:0L is presented in Fig. 11(1). Notice that a

single frequency is observed in the main panel. In

Fig. 11(2), one of the quasi-periodic solutions, defined

by Re = 150, Tk� ¼ 0:3L, is introduced, where the two

characteristic frequencies are observed.

In order to visualize the coupling between the

mixing and boundary layers, Fig. 12 was generated. In

this figure and for a Reynolds number 150, several

snapshots taken at different time steps, are compared

for two plate thicknesses 0.0L and 0.3L. The first thing

which is observed is that in both cases, the flow is

controlled by the Von Karman vortex shedding. When

observing the snapshots presented in Fig. 12(1), it is

seen that the mixing layer appearing before the square

cylinder, it is very thin and suffers an alternative

flapping. Whenever the mixing layer reaches the

square cylinder front face, it merges/couples alterna-

tively with the boundary layers located on the top and

bottom surface of the square cylinder. As the plate

thickness increases to 0.3L, see Fig. 12(2), the mixing

layer is further enhanced, being now capable of

generating alternative positive and negative vortices

just before the square cylinder front face. Whenever

the low intensity alternative vortices generated by the

mixing layer reach the square cylinder front face, if

they are negative, they merge/couple with the square

cylinder bottom boundary layer, from which the Von

Karman positive vortices are generated. On then other

hand, the mixing layer negative vortices merge/couple

with the square cylinder top boundary layer, generat-

ing the Von Karman negative vortices.

The effect on vortex shedding when modifying the

Reynolds number, is introduced in Fig. 13. When

comparing the snapshots introduced in Fig. 13(1) and

(2), it is observed, that as Reynolds number increases,

the flow entrainment existing on the mixing layer is

(1) Mean value of Drag coefficient (2) Non-dimensional frequency

Fig. 10 Mean value of the drag coefficient and the non-dimensional frequency versus the velocity ratio r�, as a function of four

different splitter plate square cylinder distances, from 1.0L to 4.0L. Reynolds number 52
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more intense. Notice from Fig. 13(2), that alternative

positive and negative vortices appear upstream of the

square cylinder. Due to the weaker mixing layer

appearing at Reynolds number 100, see Fig. 13(1),

this upstream alternative vortices do not appear. In any

case, regardless of the existence of upstream vortices,

the mixing layer couples alternatively with the

boundary layers appearing on the square cylinder top

and bottom surfaces, generating the typical down-

stream Von Karman vortex shedding. As a conclusion,

a similar effect appears when increasing the splitter

plate thickness or the Reynolds number, in both cases

alternative positive and negative vortices are gener-

ated on the mixing layer upstream of the square

cylinder. Although, the ones generated when the plate

thickness is increased, are more clearly delimitated.

5.4 Applications of the POD method

In this subsection, initially a set of tables defining the

different cases (data blocks) simulated by LBM are

introduced. By using the POD method based on the

information gathered from the different data blocks,

predicted results were obtained for three different

modified parameters (three aiming blocks). In

subsection 5.4.1, the aiming mode regarding the

parameter D�, was predicted by using the POD

method based on the information gathered from the

existing data blocks defined in Tables 6 and 7, while in

Subsections 5.4.2 and 5.4.3, the same procedure was

performed to evaluate unsteady cases with changeable

parameters r� and Tk� respectively.

5.4.1 Application of the POD method for steady cases

and for different distances between splitter plate

and square cylinder, D�

In this section, the parameters which remained con-

stant and their respective values were r� = 1.0 and

Tk� = 0.0L. The range of Reynolds numbers evaluated

fall between 5 and 30. Initially, a set of new cases

defined in Tables 6 and 7, were simulated using LBM,

and the pressure fields obtained were gathered to build

the sample matrix required for the POD method. Once

the sample matrix was obtained, it was used to predict

the pressure fields at different cases not previously

studied. In order to validate the new results, the

pressure fields predicted by using the POD method

were compared with the ones simulated with LBM and

for the same conditions.

Table 5 Flow parameters

for different geometries

with different thickness at

Reynolds numbers 100, 120

and 150

Re thickness 0.0L 0.1L 0.2L 0.3L

100

Cd � mean 1.98145 2.01554 2.07416 2.15264

Cd � amp 0.1903 0.2069 0.24625 0.4325

Frequency f ¼ 0:34794 f ¼ 0:34897 f ¼ 0:34995 f1 ¼ 0:35

f2 ¼ 0:6285

Re thickness 0.0L 0.1L 0.2L 0.3L

120

Cd � mean 1.92409 1.97099 2.03013 2.11732

Cd � amp 0.1983 0.20245 0.24775 0.4375

Frequency f ¼ 0:34889 f ¼ 0:35 f1 ¼ 0:35044 f1 ¼ 0:35

f2 ¼ 0:6301 f2 ¼ 0:63201

Re thickness 0.0L 0.1L 0.2L 0.3L

150

Cd � mean 1.95524 1.84719

1.93105

1.98879

Cd � amp 0.2061 0.2172

0.3197

0.44625

Frequency f ¼ 0:34909 f1 ¼ 0:351111 f1 ¼ 0:3512 f1 ¼ 0:352

f2 ¼ 0:6311 f2 ¼ 0:632 f2 ¼ 0:63321
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The classic snapshot POD method presented by

Sirovich [21] was employed in the present study. The

computational approach followed in the present work

is concluded in the following steps.

1. Obtaining the sample matrix based on M existing

results (data blocks), each data block contains

N snapshots.

2. Solving the eigenvalues and eigenvectors of the

correlated matrix obtained by Eq. (10).

3. Constructing the base vectors with the eigenvalues

and eigenvectors by Eq. (11).

4. Calculating the empirical coefficients by Eq. (12).

5. Computing the target empirical coefficients based

on the empirical coefficients of existing data

blocks by 2D bi-cubic spline interpolation.

6. Reconstructing the aiming block (data block) with

the obtained target empirical coefficients by

Eq. (13).

In Fig. 14(1), the pressure contour lines around the

square cylinder, for Re = 20, plate thickness Tk� ¼
0:0L and plate square distance D� ¼ 2:0L, obtained

from the POD prediction, are compared with the ones

simulated using LBM. For this particular POD

prediction, all the cases introduced in Table 6 were

initially simulated using LBM, the pressure fields from

these cases were employed to generate the sample

matrix. Notice that just 12 cases (data blocks) were

used to generate the POD sample matrix. Due to the

fact, that few data blocks were employed for the POD

prediction, some clear differences can be observed

(1) Re=100, * 0.0Tk L= (2) Re=150, * 0.3Tk L=

Fig. 11 (1) Re = 100, Tk� ¼ 0:0L, the periodic signal of the time series of drag coefficient. (2) Re = 150, Tk� ¼ 0:3L, the quasi-

periodic orbit of the time series of drag coefficient

(a) t1=1.7362s (b) t2=1.7388s (c) t3=1.7414s (d) t4=1.7440s

(1) Re=150 and Thickness=0.0L

(a) t1=1.7362s (b) t2=1.7388s (c) t3=1.7414s (d) t4=1.7440s

(2) Re=150 and Thickness=0.3L

Fig. 12 Introduces the vortex shedding process for a given Reynolds number 150, at two plate thicknesses. (1) Tk� ¼ 0:0L.
(2)Tk� ¼ 0:3L
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between the predicted and simulated results. In

Fig. 14(2), the same predicted and simulated results

are presented, for this particular case a total of 35 data

blocks, introduced in Table 7, were used to create the

POD sample matrix. Clearly when the number of the

data blocks increases, the predicted results gain in

accuracy, this is why in Fig. 14(2), both predicted and

simulated results are almost identical.

5.4.2 Application of the POD method for unsteady

cases and for different velocity ratios, r�

For the present section, the parameters which were

kept constant are, the plate thickness Tk� = 0.0L and

the distance between splitter plate and the square

cylinder D� = 3.0L. As the flow is meant to be

unsteady, the Reynolds numbers range evaluated goes

from 48 to 56. For each of the different Reynolds

numbers, several velocity ratios ranging from 1.2 to

4.0 were considered. As in the previous case, two

different number of data blocks, introduced in

Tables 8 and 9, were employed. Each table character-

izes the LBM simulations performed to obtain the

information required to build the sample matrix. Two

sample matrices were built, one based on the

simulations described in Table 8 and the second one

based on the simulations described in Table 9. Using

each sample matrix and following the steps described

in Sect. 5.4.1, two POD predictions were performed.

In order to compare the results obtained from the

predictions and the simulations, a new case at

Reynolds number 53 and velocity ratio 3.1, is defined

in Table 10 and Fig. 15. Three variables were used for

comparison in Table 10, the drag coefficient average

value, amplitude and the non-dimensional frequency.

When the prediction was done using the 9 data blocks

sample matrix introduced in Table 8, some clear

differences are observed when comparing with the

results obtained via using LBM. As the number of data

blocks increased to 25, see Table 9, the precision

sharply increased, yet it appears that 25 data blocks

sample matrix might still not be sufficient to obtain

very accurate results. In order to further analyze the

dynamic results, Fig. 15 was presented. In this figure,

it is introduced the temporal value of the drag

coefficient obtained using LBM and the POD predic-

tions with 9 and 25 data blocks. Under the macro-

scopic point of view, all three results are very similar,

although the zoomed view clarifies that the prediction

obtained using 9 data blocks clearly differ from the

(a) t1=1.7362s (b) t2=1.7388s (c) t3=1.7414s (d) t4=1.7440s

(2) Re=150 and Thickness=0.2L

(a) t1=1.7362s (b) t2=1.7388s (c) t3=1.7414s (d) t4=1.7440s

(1) Re=100 and Thickness=0.2L

Fig. 13 Introduces the vortex shedding process for given plate thickness Tk� ¼ 0:2L at two Reynolds numbers. (1) Re = 100. (2)

Re = 150

Table 6 Different LBM simulated cases (12 data blocks) used for POD prediction for different plate square distances

Existing data blocks No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11 No. 12

Re 10 10 10 15 15 15 25 25 25 30 30 30

D� 1.0L 2.0L 3.0L 1.0L 2.0L 3.0L 1.0L 2.0L 3.0L 1.0L 2.0L 3.0L
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LBM simulation, once 25 data blocks are employed,

the agreement is much closer. In any case, and in order

to further increase the agreement with the dynamic

results, a higher number of data blocks should be

employed.

5.4.3 Application of the POD method for unsteady

cases and for different plate thicknesses Tk�

For the present section, the parameters being kept

constant are, the velocity ratio r� = 1.0 and the

distance between splitter plate and the square cylinder

D� = 3.0L.

Three different Reynolds numbers 100, 120 and

150, as well as four different plate thicknesses, were

considered. A total number of 12 cases (data blocks)

were initially simulated using LBM. The flow dynam-

ics behind these cases were already presented

Sect. 5.3 (Table 11).

As in the previous section, to analyze the results, a

table and a figure were generated. Table 12 compares

the results obtained from the LBM simulation and the

POD prediction at Reynolds number 125 and plate

thickness Tk� ¼ 0:0L. Three variables, the drag coef-

ficient average value, amplitude and the non-dimen-

sional frequency were evaluated. The comparison of

the predicted drag coefficient obtained by POD with

the simulated one performed with LBM was good, the

drag coefficient average value, amplitude and the non-

dimensional frequency were in good agreement. The

dynamic results are presented in Fig. 16, from where it

is observed that the predicted drag coefficient ampli-

tude exceeds by 9 percent the one obtained from the

LBM simulation. On the other hand, the oscillation

frequency is exactly the same. As already observed in

the previous section, an increase of the number of the

data blocks would improve the results accuracy.

Notice that the results obtained from the POD

prediction are in phase and amplitude slightly different

than the simulated ones obtained via using LB. It is

believed by the present authors that due to the limited

number of the data blocks employed, the POD

prediction in the present study is not extremely

accurate. Besides, the sample matrix is obtained using

stable signals, the transient parts were eliminated at

the very beginning, which may lead to a signal delay in

the POD prediction.
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6 Conclusions

In the present work, a numerical investigation of

passive flow control over a square cylinder was

performed through three changeable parameters, the

velocity ratio, the plate thickness and the distance

between the plate and the square cylinder, different

laminar Reynolds numbers were considered. It is

concluded that

• For a given velocity ratio r� ¼ 1:0 and a given

plate thickness Tk� ¼ 0:0L, the distance D� affects

the critical value of the Hopf bifurcation, which

separate the steady and unsteady periodic flows.

From the study of three values of the parameterD�,
infinite, 3.0L and 0.0L, it is obtained that the

respective critical values are 48, 56 and 59.

• For a given distance D� ¼ 3:0L and a given plate

thickness Tk� ¼ 0:0L, the parameter velocity ratio

r� ranging from 1.2 to 4.0 was studied. The tested

Reynolds numbers varied from 48 to 56. For a

given Reynolds number, the drag coefficient mean

value and the non-dimensional frequency increase

Fig. 14 Pressure contour lines compared between LBM simulation and POD prediction (12 and 35 data blocks), at Reynolds number

20 with D� ¼ 2:0L and Tk� ¼ 0:0L

Table 8 Different LBM simulated cases (9 data blocks) used for POD prediction for different velocity ratios

Existing data blocks No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9

Re 48 48 48 52 52 52 56 56 56

r� 1.2 2.6 4.0 1.2 2.6 4.0 1.2 2.6 4.0

Table 9 Different LBM simulated cases (25 data blocks) used for POD prediction for different velocity ratios

Existing data blocks No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11 No. 12 No. 13

Re 48 48 48 48 48 50 50 50 50 50 52 52 52

r* 1.2 1.9 2.6 3.3 4.0 1.2 1.9 2.6 3.3 4.0 1.2 1.9 2.6

Existing data blocks No. 14 No. 15 No. 16 No. 17 No. 18 No. 19 No. 20 No. 21 No. 22 No. 23 No. 24 No. 25

Re 52 52 54 54 54 54 54 56 56 56 56 56

r* 3.3 4.0 1.2 1.9 2.6 3.3 4.0 1.2 1.9 2.6 3.3 4.0
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as the velocity ratio increases. For a given velocity

ratio, the drag coefficient mean value and the non-

dimensional frequency slightly increase as the

Reynolds number increases. It is found that the

mixing layer was dramatically affected by this

parameter r�, the mixing layer interacts with the

boundary layer flapping at the top and bottom of

the square cylinder, changing the downstream

vortex shedding from Von Karman to Kelvin–

Helmholtz.

• For a given distance D� ¼ 3:0L, a given plate

thickness Tk� ¼ 0:0L and a given Reynolds num-

ber 52, the effect of the velocity ratio r� versus the
distance D� was analyzed. It is found that, com-

pared with the plate square distance D�, the

velocity ratio r� plays a more important role to

modify the flow structure, due to its effect on the

mixing layer upstream of the square cylinder.

• For a given velocity ratio r� ¼ 1:0 and a given

distance D� ¼ 3:0L, the thickness Tk� brought

forward the appearance of the Neimark–Sacker

bifurcation, which defines the border between

unsteady periodic and quasi-periodic flows. It is

observed that, for a given thickness, the drag

coefficient mean value decreases as the Reynolds

number increases. Yet, for a given Reynolds

number, the drag coefficient mean value increases

as the thickness increases.

• From the POD predictions, it is concluded that

based on a sample matrix with limited data blocks,

the POD method is a very appropriate tool reduce

the computational costs via using the existing data.

Table 10 Three variables obtained from the LBM simulation and POD predictions

Aiming block Parameters LBM simulation POD 9 data blocks POD 25 data blocks

Re = 53 Cd � mean 7.10937 7.20294 7.14396

r� = 3.1 Cd � amp 0.81088 1.92009 0.76099

f 0.3256 0.339 0.3296

Fig. 15 Pressure contour lines compared between LBM simulation and POD prediction (9 and 25 data blocks), at Reynolds number 53

with r� ¼ 3:1

Table 11 Different LBM simulated cases (12 data blocks) used for POD prediction for different plate thicknesses

Existing data blocks No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11 No. 12

Re 100 100 100 100 120 120 120 120 150 150 150 150

Tk� 0.0L 0.1L 0.2L 0.3L 0.0L 0.1L 0.2L 0.3L 0.0L 0.1L 0.2L 0.3L
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• In order to have a trustable prediction, the aiming

mode should be falling in the sample matrix range.
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