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Understanding transition to turbulence in shear flows, even for rather simple fluid sys-
tems, is a major challenge that has attracted the attention of the scientific community for
over a century. Its technological implications are far-reaching, very especially in the case of
aeronautics, for which shear flows are of outstanding importance. The focus has been set
here on subcritical transition of wall-bounded shear flows and, in particular, of pipe flow
(pressure-driven flow along a circular pipe).

This work has aimed at providing a deeper understanding of the mechanisms that are
responsible for transition bypassing linear instability of the pipe basic flow. To this end,
two complementary research approaches have been undertaken.

The first approach has consisted in a direct characterisation of the basin of attraction of
the stable basic flow. The critical threshold beyond which finite amplitude perturbations are
capable of bringing about transition has been investigated and scaling laws describing how
the basin of attraction of the laminar profile shrinks with increasing flow speed have been
provided for different types of perturbations. Very good agreement with recent accurate
pipe flow experiments has been obtained.

However, simple characterisation of the critical threshold does not provide, on its own,
much insight on what the mechanisms behind transition are. A second approach, consisting
in a direct exploration of the phase map from a dynamical systems point of view, has
acquired great momentum in the very recent past. As a result, new states disconnected
from the basic flow have been identified. These solutions, which take the form of periodic
travelling waves in pipe flow, have been computed and their implications in transition and
in developed turbulence assessed. Some of them arise from a purely theoretical course
of action. Their relevance in developed turbulence has been positively established both
experimentally and numerically in the literature, but their alleged role in transition has
not been clarified. In the present work, new solutions have been found within a chaotic
state that resides within the critical threshold and seems to govern transition. Because
they naturally dwell in this chaotic saddle, their relevance to transition seems to be beyond
any doubt.

The chaotic state and the solutions found, however, correspond to short pipe global
transition, where no intermittency phenomena is ever observed. Transition to localised
structures typical of long pipes, such as puffs or slugs, seems instead to be governed by a
localised chaotic state of about the same characteristic length of the turbulent structures the
basin of attraction of which it bounds. No simple travelling-wave-type solutions have been
identified within the chaotic localised state. The relationship between the short wavelength
periodic states and experimental transition to localised long structures remains an open
problem that should be the object of future work.
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CHAPTER 1

INTRODUCTION

1.1 Relevance of transition in Aerospace Science

Understanding transition to turbulence in shear flows, even for rather simple fluid systems,

is a major challenge that has attracted the attention of the scientific community for over

a century. Its technological implications are far-reaching, very specially in the case of

aeronautics, for which shear flows are of outstanding importance. Computational fluid

mechanics, dynamical systems analysis and bifurcation theory are combined together in the

present work to try and shed some light on the unsolved problem of subcritical transition

in wall-bounded shear flows.

Most technological problems involving fluids in motion have, at some point, to deal

with turbulence. In some applications, such as those requiring mixing, turbulence is a very

useful phenomenon, but, more often than not, it is a nuisance. A clear example of this

would be the boundary layer developing on an aircraft wing. Because of the mixing, a

turbulent boundary layer induces greater friction on the walls on which it develops than

a laminar boundary layer would, thus resulting in higher aircraft drag. For this reason

alone, many efforts are devoted to maintaining the boundary layer laminar for as long

a distance on the wing chord as possible, trying to push transition further and further

downstream. Could the boundary layer be kept laminar over the full chord of wings, tail

and nacelles of an Airbus-type aircraft, drag would be reduced by up to a 10-15%, with

the ensuing benefit in terms of fuel consumption and a huge impact on direct operating

costs. Also the flow through a pipe, present in many technical applications not limited to

the aeronautical domain, can be driven with much lower energy consumption if it is forced

to remain laminar.

Many technical solutions have been investigated in order to maintain laminarity (Fig. 1.1).

Here we will focus on the more theoretical approach of trying to comprehend the intimate

mechanisms of transition as a first step towards gaining full control of laminarity.

A variety of flows exists exhibiting instabilities that eventually lead to turbulence. The

focus will be set here on shear instabilities appearing in wall-bounded shear flows. Shear

flows are those for which the velocity gradients have a strong component in a direction

normal (or quasi normal) to the main orientation of the flow. Some examples are pipe and

channel flows, boundary layers, jets and wakes. These flows often experience transition to

turbulence for values of the Reynolds number (Re) well below that for which they become

1



2 1. Introduction

Figure 1.1: On the left, NASA test on laminar flow control at supersonic
speeds. On the right, CFD analysis of the honda-jet laminar
wing.

linearly unstable, some of them being even believed to remain linearly stable for all values

of Re. This transition not stemming from linear instability is usually called bypass (or

subcritical) transition.

Many factors of all sorts influence transition. Compressibility, wall rugosity, heat trans-

fer or preturbulence levels are some examples of accessory parameters, certainly having an

impact on transition, but playing a nonessential role. To explore the underlying physical

mechanisms, it is therefore crucial to get rid of all these secondary factors and aim at a

minimal description carrying the essential elements involved. Thus, we are left with the

bare incompressible Navier-Stokes equations governing fluid flow, which are alone capable

of describing transition. The simplest geometry exemplifying the transition scenario in-

vestigated (i.e. subcritical shear instability) has been presently chosen to exclude as far

as possible problem-dependent effects on transition. With such premises, the analysis of

transition in a pressure-driven flow along a circular infinite pipe is undertaken, since we

consider it to be the simplest problem containing all the ingredients that are needed for

subcritical transition in wall-bounded flows, which is a chief interest of the aeronautical

community.
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Figure 1.2: Sketch of the Pipe Poiseuille parabolic basic solution.

1.2 The pipe problem

In pipe or Hagen-Poiseuille flow, a fluid of kinematic viscosity ν is axially driven through a

circular pipe of radius a by means of a uniform axial pressure gradient. The basic solution

of the Navier-Stokes equations is a parabolic, streamwise-independent, axisymmetric and

steady purely axial flow (Fig. 1.2). The basic flow Reynolds number is defined as Re =

UCLa/ν, where UCL is the maximum axial speed of the flow at the centre-line of the pipe.

A more common definition of the Reynolds number in pipe flow, which we will call actual

Reynolds number, is Rea = ŪD/ν, where Ū = Q/πa2 is the mean axial velocity (Q being

the massflux) and D = 2a is the pipe diameter.

The parabolic basic solution is believed to be linearly stable for all values of the gov-

erning parameter Re, as seem to indicate both experimental [54] and numerical studies

[14, 35, 62, 56, 45]. Notwithstanding its linear stability, beyond a certain critical value of

Re ≃ 2000 pipe flow undergoes transition to turbulence in the presence of large enough fi-

nite amplitude perturbations [14]. The parabolic profile ceases to be a global attractor and

its basin of attraction is no longer the full phase space. Furthermore, experimental evidence

shows that pipe flow becomes more sensitive to perturbations when increasing the Reynolds

number. Since the flow is linearly stable, finite (yet small) amplitude perturbations must

be responsible for the transition to turbulence.
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1.3 Subcritical transition in shear flows

Transition to turbulence in Hagen-Poiseuille flow has been object of analysis for over a

century. Since the seminal work of Osborne Reynolds [58] published in 1883, many physi-

cists and applied mathematicians have devoted enormous efforts to provide a theoretical

explanation of the phenomenon of subcritical transition to turbulence in shear flows such

as plane Couette or pipe flow.

Thus, many theoretical [3, 6, 19, 20], numerical [62, 81, 78, 38, 45, 40, 22] and experi-

mental [80, 11, 13, 27] studies have tried to produce an explanation to pipe flow transition

in the past three decades.

As we have already pointed out, transition to turbulence in shear flows still remains

an open problem of hydrodynamic stability theory. For instance, plane Couette flow (fluid

contained between inertially sliding infinite parallel plates) is always linearly stable, i.e.,

any infinitesimal perturbation of the flow decays for long times, yet it exhibits transition

to turbulence in the laboratory and in numerical simulations for moderate flow speeds

[59, 12, 65, 1]. Hagen-Poiseuille or pipe flow (pressure driven flow through an infinite

circular pipe) is believed to be linearly stable as well but also becomes turbulent in practise

[14, 45, 63, 11, 27]. Plane Couette and pipe flow, because of their apparent simplicity, are

the most fundamental examples of subcritical transition to turbulence in fluid dynamics,

i.e., transition to turbulence bypassing linear stability.

1.4 Research approaches to subcritical transition

Typical transition scenarios in shear flows are the secondary instability of Tollmien-Schlichting

waves, the streak breakdown mechanism and oblique transition [63]; the former emanating

from a local bifurcation, the other two correspond to bypass transition.

Streak breakdown has been proved a universal and very effective transition mechanism

in shear flows. It relies on the nonmodal transient growth exhibited by streamwise vortical

finite-amplitude disturbances. The perturbation develops into two-dimensional transient

structures called streaks that modulate the basic flow so that it exhibits an inflectional

velocity profile. The presence of saddle points inviscidly destabilises certain optimal three-

dimensional infinitesimal perturbations that grow exponentially [81]. Whenever these waves

attain sufficient energy before the onset of the streaks’ viscous decay, nonlinear interaction

triggers transition.
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A first approach towards comprehending transition to turbulence aims at characterising

the basin of attraction of the basic flow. Subcritical turbulence can be viewed as a flow

state taking the form of a chaotic attractor coexisting with the laminar basic flow. This

first step consists in measuring the critical amplitude threshold, Ac(Re), of the basic regime

(minimal amplitude of perturbations inducing turbulence), being plausible to assume that

its asymptotic behaviour scales with Re according to

Ac ∼ Reγ, (1.1)

with γ necessarily negative. Theoretical exponents for plane channel flows have been ob-

tained by means of asymptotic methods within the framework of some particular transition

scenarios [8], of which streak breakdown is among the most effective. Lab experiments do

not have access to arbitrary initial disturbances, but some renormalisations [71] have re-

cently been suggested in order to cast different pipe experimental results in terms of a

single definition of the amplitude appearing in (1.1). The exponent for these experiments

is found to lie within the interval γ ∈ [−9/5,−6/5].

The most accurate experimental explorations, based on an injection system perturbing

a constant massflow pipe [27], have concluded that γ ∼ 1. Figure 1.3 shows a schematic

representation of the experimental device used together with a picture of a transitional run.

A direct exploration of the phase map of the corresponding dynamical system repre-

senting the fluid problem constitutes another approach to unfold the nature of the chaotic

attractor as a step towards comprehending transition. Numerical studies have recently

revealed the existence of travelling wave solutions, presumably constituting a fundamental

ingredient of the chaotic dynamics observed [19]. The limit cycles associated with these

travelling waves have been proved to be linearly unstable and their associated friction factor

Figure 1.3: On the left, drawing of the Manchester experimental constant-
massflow pipe. On the right, picture exhibiting a turbulent run.
(Courtesy of J. Peixinho and T. Mullin)



6 1. Introduction

agrees reasonably well with the empirical laws describing turbulent flows in smooth pipes,

as a clear sign of the relevance of these solutions in the turbulent regime. Postprocessed

experimental results have recently suggested the presence of the aforementioned travelling

waves as inherent components of the turbulent flow [26]. Clearer traces of travelling wave

transients, regarding the underlying dynamical mechanism and their wavelength, have since

been identified in turbulence regeneration studies at moderate Re [25].

1.5 Outline

This work is structured as follows. The numerical scheme devised to solve the Navier-Stokes

equations in a cylindrical domain is presented in chapter 1, together with a convergence

analysis and some test examples. The contents of this chapter were published in Meseguer

& Mellibovsky [42]. Chapters 3 and 4 are devoted to the characterisation of the basin

of attraction of the basic flow through the critical exponent presented above as one of the

current research approaches aiming at explaining transition. Chapter 3, published in Melli-

bovsky & Meseguer [38], concentrates on transition following global perturbations based on

the streak breakdown mechanism. Transition due to localised impulsive perturbations like

those inflicted in experiments are investigated in chapter 4, the contents of which appeared

published in Mellibovsky & Meseguer [39]. The other research approach mentioned, based

on direct exploration of phase space, is undertaken within chapters 5 and 6. A method to

track unstable travelling wave solutions that seem to play a role in turbulence and tran-

sition is presented in chapter 5 together with the states found. An outline of the method

to track travelling wave solutions has been published in Meseguer, Avila, Mellibovsky &

Marques [41] in conjunction with the several research lines of the Barcelona fluid dynamics

group to which I belong. In chapter 6, a method to compute trajectories in the critical

boundary between laminarity and turbulence is implemented and the travelling wave search

method is applied to identify solutions that are embedded in the chaotic attractor govern-

ing the critical dynamics. Finally, the main conclusions regarding pipe flow transition to

turbulence are summarised in chapter 7.



CHAPTER 2

MATHEMATICAL FORMULATION & NUMERICAL APPROACH

Spectral methods have been extensively applied for the approximation of solutions of the

Navier-Stokes equations [4, 7, 21]. So far, collocation or pseudospectral methods have been

more popular than Galerkin spectral because they are easier to formulate and implement.

One of the arguments that have been frequently given to encourage the use of Galerkin

instead of collocation methods is that sometimes the former provide banded matrices in the

spatial discretisation of linear operators, which improves the efficiency of the linear solvers

in the time integrations. The difficulty of Galerkin methods lies on their mathematical

formulation. In particular, the Navier-Stokes equations in non-cartesian geometries make

the Galerkin formulation very complex and tedious.

The numerical approximation of pipe flows via spectral or pseudospectral methods is not

a new matter. There has been a long list of contributions regarding this issue in the recent

past. Among other works, should be mentioned the methods proposed in Boberg & Brosa

[3], Komminaho [32], Leonard & Reynolds [34], Leonard & Wray [35], O’Sullivan & Breuer

[50], Priymak & Miyazaki [56], Shan et al. [67], for example. In Leonard & Wray [35],

a solenoidal Fourier-Jacobi spectral method was proposed, elegantly solving the problem

of the apparent singularity at the origin since the Jacobi polynomials used in the radial

coordinate automatically satisfied the suitable analyticity conditions at the pole. Besides,

the pressure terms were eliminated from the formulation via projection over a solenoidal

space of test functions. The only weakness of the method proposed in Leonard & Wray

[35] was the lack of a fast transform for the Jacobi polynomials and the clustering of radial

points near the axis, thus considerably reducing the time step size in the time integrations.

In a recent work [56], a Fourier-Chebyshev collocation method was formulated in primitive

velocity-pressure variables, where Chebyshev polynomials of selected parity combined with

half radial Gauss-Lobatto grid were used, thus avoiding clustering near the origin and

allowing the use of a fast cosine transform. As far as I know, this is the first time where

the combination proposed in Priymak & Miyazaki [56] has been used in Navier-Stokes

equations in cylindrical coordinates.

In Meseguer & Trefethen [45], a spectral solenoidal Petrov-Galerkin scheme was used

for the accurate computation of eigenvalues arising from the linearisation of the Navier-

Stokes operator of the Hagen-Poiseuille flow. The analysis presented was focused on the

asymptotic behaviour of the leading eigenvalues but the technical details of the spatial

discretisation and its efficiency for nonlinear time dependent integrations had to wait until

a complete nonlinear formulation of the scheme was provided and tested.

7
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Here, a Galerkin method capable of simultaneously dealing with several difficulties aris-

ing from the Navier-Stokes equations in cylindrical unbounded geometries is presented.

First, the construction of a solenoidal basis of trial functions for the velocity field in order

to satisfy the incompressibility condition identically. In addition, this basis has to satisfy

suitable physical boundary conditions at the pipe wall and also be analytic in a neighbour-

hood of the apparent singularity located at the origin in order to provide spectral accuracy.

Second, the obtention of a dual basis of solenoidal test functions so that the pressure terms

cancel out in the scheme once the projection has been carried out. The result of the pro-

jection should lead to inner products involving orthogonal or almost-orthogonal functions

so that the resulting discretised operators are banded matrices. Third, devising an optimal

quadrature rule in the radial variable capable of avoiding clustering of points near the cen-

ter axis and allowing a fast transform in that variable if possible. Avoiding clustering near

the pole should also improve the time step restrictions due to the cfl conditions. Fourth,

developing a pseudospectral algorithm for the efficient computation of the nonlinear terms

via partial summation techniques. Finally, the implementation of the described discretisa-

tion within a robust time marching scheme capable of overcoming the difficulties arising

from the stiffness of the resulting systems of ode.

This chapter is structured as follows. In section §2.1, the nonlinear initial-boundary

stability problem is formulated mathematically. Section §2.2 is devoted to the detailed

formulation of the trial and test solenoidal functions, focusing on their analyticity and radial

symmetry properties. Section §2.3 describes the projection procedure that leads to the

weak formulation of the problem as a dynamical system of amplitudes. In section §2.4, an

analysis of the linear stability of the basic Hagen-Poiseuille flow is presented, mainly focused

on detailed explorations regarding the structure of the eigenmodes, providing accurate

numerical tables of eigenvalues to be compared with other spectral schemes. The time

marching algorithm and the efficient computation of the nonlinear terms via pseudospectral

collocation and partial summation techniques are explained in section §2.5. The validation

of the numerical algorithm for unsteady computations is provided in section §2.6 based

on a comparison with previous works and on a comparative performance analysis between

two linearly implicit methods. Finally, section §2.7 is devoted to the numerical simulation

of a particular transition to turbulence scenario in pipe flow. The main conclusions are

summarised in section §2.8.
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2.1 Formulation of the problem

We consider the motion of an incompressible viscous fluid of kinematic viscosity ν and

density ρ. The fluid is driven through a circular pipe of radius a and infinite length by a

uniform pressure gradient, Π0, parallel to the axis of the pipe. We formulate the problem

in cylindrical coordinates. The velocity of the fluid is prescribed by its radial (r̂), azimuthal

(θ̂) and axial (ẑ) components

v = u r̂ + v θ̂ + w ẑ = (u , v , w), (2.1)

where u, v and w depend on the three spatial coordinates (r, θ, z) and time t. The motion

of the fluid is governed by the incompressible Navier-Stokes equations

∂tv + (v · ∇)v = −Π0

ρ
ẑ −∇p + ν∆v (2.2)

∇ · v = 0, (2.3)

where v is the velocity vector field, satisfying the no-slip boundary condition at the wall,

vpipe wall = 0, (2.4)

and p is the reduced pressure. A basic steady solution of (2.2), (2.3) and (2.4) is the

so-called Hagen-Poiseuille flow

vB = (uB , vB , wB) =

(

0 , 0 , −Π0a
2

4ρν

[

1 −
(r

a

)2
])

, pB = c, (2.5)

where c is an arbitrary constant. This basic flow is a parabolic axial velocity profile which

only depends on the radial coordinate [2]. The velocity of the fluid attains a maximum

value UCL = −Π0a
2/4ρν at the center-line or axis of the cylinder.

Henceforth, all variables will be rendered dimensionless using a and UCL as space and

velocity units, respectively. The axial coordinate z is unbounded since the length of the

pipe is infinite. In what follows, we assume that the flow is axially periodic with period b.

In the dimensionless system, the spatial domain Ω of the problem is

Ω = { (r, θ, z) | 0 ≤ r ≤ 1, 0 ≤ θ < 2π, 0 ≤ z < Λ} (2.6)

where Λ = b/a is the dimensionless length of the pipe, in radii units. In the new variables,

the basic flow takes the form

vB = (uB, vB, wB) = (0 , 0 , 1 − r2). (2.7)
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Finally, the parameter which governs the dynamics of the problem is the Reynolds number

Re =
aUCL

ν
. (2.8)

For the stability analysis, we suppose that the basic flow is perturbed by a solenoidal

velocity field vanishing at the pipe wall

v(r, θ, z, t) = vB(r) + u(r, θ, z, t), ∇ · u = 0, u(r = 1) = 0, (2.9)

and a perturbation pressure field

p(r, θ, z, t) = pB(z) + q(r, θ, z, t). (2.10)

On introducing the perturbed fields in the Navier-Stokes equations, we obtain a nonlinear

initial-boundary problem for the perturbations u and q:

∂tu = −∇q +
1

Re
∆u − (vB · ∇)u − (u · ∇)vB − (u · ∇)u, (2.11)

∇ · u = 0, (2.12)

u(1, θ, z, t) = 0, (2.13)

u(r, θ + 2πn, z, t) = u(r, θ, z, t), (2.14)

u(r, θ, z + lΛ, t) = u(r, θ, z, t), (2.15)

u(r, θ, z, 0) = u0, ∇ · u0 = 0, (2.16)

for (n, l) ∈ Z
2, (r, θ, z) ∈ [0, 1] × [0, 2π) × [0, Λ) and t > 0. Equation (2.11) describes

the nonlinear space-time evolution of the perturbation of the velocity field. Equation

(2.12) is the solenoidal condition for the perturbation, and equations (2.13)–(2.15) describe

the homogeneous boundary condition for the radial coordinate and the periodic boundary

conditions for the azimuthal and axial coordinates respectively. Finally, equation (2.16) is

the initial solenoidal condition for the perturbation field at t = 0.

2.2 Trial and test solenoidal bases

This section will deal with the generation of solenoidal bases for our approximation of

the vector field u appearing in (2.9). We discretise the perturbation u by a spectral

approximation uS of order L in z, order N in θ, and order M in r,

uS(r, θ, z, t) =
L∑

l=−L

N∑

n=−N

M∑

m=0

alnm(t)Φlnm(r, θ, z), (2.17)
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where Φlnm are trial bases of solenoidal vector fields of the form

Φlnm(r, θ, z) = ei(2πlz/Λ+nθ)vlnm(r), (2.18)

satisfying

∇ · Φlnm = 0 (2.19)

for l = −L, . . . , L, n = −N, . . . , N and m = 0, . . . ,M . The trial bases (2.18) must satisfy

certain regularity conditions at the origin, be periodic in the axial and azimuthal directions,

and satisfy homogeneous boundary conditions at the wall,

Φlnm(1, θ, z) = 0, (2.20)

according to equations (2.12)–(2.15).

There are many different ways of obtaining divergence-free fields in polar coordinates

[35, 43, 46]. The solenoidal condition (2.19) can be written as

(∂r +
1

r
)ulnm +

in

r
vlnm + il

2π

Λ
wlnm = 0, (2.21)

where

vlnm = ulnm r̂ + vlnm θ̂ + wlnm ẑ = ( ulnm , vlnm , wlnm ) . (2.22)

Equation (2.21) introduces a linear dependence between the three components of vlnm,

leading to two degrees of freedom. In what follows, we define

hm(r) = (1 − r2)T2m(r), gm(r) = (1 − r2)hm(r), D =
d

dr
, D+ = D +

1

r
, k0 =

2π

Λ
(2.23)

where T2m(r) is the Chebyshev polynomial of degree 2m and r ∈ [0, 1], and k0 stands for

the fundamental axial wavenumber in the axial coordinate. Following the regularisation

rules proposed in Priymak & Miyazaki [56], we distinguish two cases:

I. Axisymmetric fields (n = 0): The basis is spanned by the elements

Φ
(1)
l0m = eikolzv

(1)
l0m = eikolz ( 0 , rhm , 0 ) , (2.24)

Φ
(2)
l0m = ei kol zv

(2)
l0m = ei kol z ( −iko l rgm , 0 , D+[rgm] ) , (2.25)

except that if l = 0, the third component of Φ
(2)
lnm is replaced by hm(r).

II. Non-axisymmetric fields (n 6= 0): In this case, the basis is spanned by the elements

Φ
(1)
lnm = ei(n θ+kol z)v

(1)
lnm = ei(n θ+kol z)

(
−i n rσ−1 gm , D[rσ gm] , 0

)
, (2.26)
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Φ
(2)
lnm = ei(n θ+kol z)v

(2)
lnm = ei(n θ+kol z)

(
0 , −iko l rσ+1 hm , i n rσhm

)
, (2.27)

where

σ =

{

2 (n even)

1 (n odd).
(2.28)

The binomial factors (1 − r2) and (1 − r2)2 appearing in hm(r) and gm(r) are responsible

for the boundary conditions (2.20) at the pipe wall to be satisfied. Factors of the form

1− r or (1− r)2 would also solve the boundary problem, but they would violate the parity

conditions established by Theorem 1 of Priymak & Miyazaki [56]. The monomials r, rσ and

rσ±1 appearing in equations (2.24 - 2.27) enforce the conditions of regularity and parity at

the pole. The pure imaginary factors in Φ
(2)
lnm could be dispensed with, but we leave them

in so that the basis functions have a desirable symmetry property: if l and n are negated,

each basis function is replaced by its complex conjugate, i.e.,

[

Φ
(1,2)
lnm

]∗

= Φ
(1,2)
−l, −n, m . (2.29)

The Galerkin scheme is accomplished when projecting the trial functions above de-

scribed over a suitable dual or test space of vector fields. We consider the inner product

(·, ·) as the volume integral over the domain of the pipe:

(a,b) =

∫ Λ

0

∫ 2π

0

∫ 1

0

a∗ · b rdr dθ dz, (2.30)

where ∗ stands for complex conjugate, b belongs to the physical or trial space and a is

a solenoidal vector field belonging to the test or projection space still to be determined.

We focus our attention on the radial integration involved in (2.30). Since the variable

of the Chebyshev polynomials considered in the trial functions is the radius r, we need

to relate that integral to an orthogonal product in the extended domain r ∈ [−1, 1]. A

straightforward solution is to assume that

∫ 1

0

a∗ · b rdr =
1

2

∫ 1

−1

a∗ · b rdr. (2.31)

The previous equation is only true if the integrand a∗ ·b r is an even function of the radius.

This is the crucial point of the spectral projection in the radial variable. In order to satisfy

equation (2.31), the test functions will consist of even Chebyshev polynomials T2m(r),

previously factorised with the Chebyshev weight (1 − r2)−1/2 and suitable monomials rβ

so that the integrand becomes symmetric with respect to the center axis and the integrals

can be computed exactly by using quadrature formulas.

For the test functions Ψlnm(r, θ, z), we distinguish again two different situations:
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I. Axisymmetric fields (n = 0): In this case, the basis is spanned by the elements

Ψ
(1)
l0m = ei kol zṽ

(1)
l0m(r) =

ei kol z

√
1 − r2

( 0 , hm , 0 ) , (2.32)

Ψ
(2)
l0m = ei kol zṽ

(2)
l0m =

ei kol z

√
1 − r2

(
−koi l r

2gm , 0 , D+[r2gm] + r3 hm

)
, (2.33)

except that the third component of the vector in Ψ
(2)
l0m is replaced by rhm(r) if l = 0.

II. Non-axisymmetric fields (n 6= 0): In this case, the basis is spanned by the elements

Ψ
(1)
lnm = ei(n θ+kol z)ṽ

(1)
lnm =

ei(n θ+kol z)

√
1 − r2

(
i n rβgm , D[rβ+1 gm] + rβ+2hm , 0

)
, (2.34)

Ψ
(2)
lnm = ei(n θ+kol z)ṽ

(2)
lnm =

ei(n θ+kol z)

√
1 − r2

(
0 , −koi l r

β+2hm , i n rβ+1 hm

)
, (2.35)

except that the third component of the vector in Ψ
(2)
lnm is replaced by r1−βhm(r) if l = 0,

where

β =

{

0 (n even)

1 (n odd).
(2.36)

These vector fields include the Chebyshev factor (1 − r2)−1/2 and suitable monomials so

that the symmetrisation rule (2.31) holds. Therefore, the products between the test and

trial functions can be exactly calculated via Gauss-Lobatto quadrature, leading to banded

matrices. Since the test and trial functions are not the same, this projection procedure is

usually known as Petrov-Galerkin scheme.

In the radial coordinate, we consider the Gauss-Lobatto points

rk = − cos

(
πk

Mr

)

, k = 0, . . . ,Mr, (2.37)

where we will assume that Mr is odd and of suitable order so that the quadratures are

exact. The spectral differentiation matrix is given by

(Dr)ij =







(1 + 2M2
r )/6 i = j = Mr

−(1 + 2M2
r )/6 i = j = 0

− ri

2(1 − r2
i )

i = j ; 0 < i < Mr

(−1)i+j cj

ci(rj − ri)
i 6= j

, (2.38)
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where cj = 1 for 0 < j < Mr and c0 = cMr
= 2 [4, 70]. The radial, azimuthal and axial

components of the trial functions Φ
(1,2)
lnm are either even or odd functions of r. Therefore,

we only need to consider the positive part of the grid

r+
k = − cos

(
πk

Mr

)

, k =
Mr + 1

2
, . . . ,Mr. (2.39)

For arbitrary even, fe(r), or odd, fo(r), functions satisfying

fe(rk) = fe(rMr−k), fo(rk) = −fo(rMr−k), k = 0, . . . ,
Mr − 1

2
, (2.40)

the differentiation matrices which provide the first derivatives

(
dfe
dr

)

r=r+
i

= (De
r)ij fe(r

+
j ),

(
dfo
dr

)

r=r+
i

= (Do
r)ij fo(r

+
j ), (2.41)

are obtained from the Chebyshev matrix (2.38):

(De
r)ij = (Dr)ij + (Dr)i Mr−j, i, j =

Mr + 1

2
, . . . ,Mr, (2.42)

and

(Do
r)ij = (Dr)ij − (Dr)i Mr−j, i, j =

Mr + 1

2
, . . . ,Mr. (2.43)

For the periodic azimuthal and axial coordinates, we use standard equispaced grids

(zi, θj) = (
Λ

Lz

i,
2π

Nθ

j), (i, j) = [0, Lz − 1] × [0, Nθ − 1], (2.44)

where we assume that Nθ and Lz are odd, and we make use of the standard Fourier matrix

[21] for the differentiation of fields with respect to those variables.

2.3 Dynamical system of amplitudes

The spectral Petrov-Galerkin scheme is accomplished by substituting expansion (2.17) in

(2.11) and projecting over the set of test vector fields (2.32-2.33) and (2.34-2.35)

(Ψlnm , ∂tuS) =

(

Ψlnm ,
1

Re
∆uS − (vB · ∇)uS − (uS · ∇)vB − (uS · ∇)uS

)

, (2.45)

for l = −L, . . . , L, n = −N, . . . , N and m = 0, . . . ,M . We have not included the pressure

term ∇q of (2.11) in the projection scheme (2.45). One of the advantages of our method is

that the pressure term is cancelled in the projection, i.e.,

(Ψlnm , ∇q) = 0; (2.46)



2.4. Linear stability 15

see Canuto et al. [7] or Leonard & Wray [35], as an example.

Once the projection has been carried out, the spatial dependence has been eliminated

from the problem and a nonlinear dynamical system for the amplitudes alnm is obtained.

Symbolically, this system reads

A
lnm
pqr ȧpqr = B

lnm
pqr apqr − blnm(a, a), (2.47)

where we have used the convention of summation with respect to repeated subscripts. The

discretised operator A appearing in (2.47) is the projection

A
lnm
pqr = (Ψlnm , Φpqr) = 2πΛδl

pδ
n
q

∫ 1

0

ṽ∗
lnm · vpqrrdr, (2.48)

where δi
j is the Kronecker symbol. The inner product (2.48) reveals another advantage of

the Galerkin scheme. Due to the linearity of the time diferentiation operator ∂t and the

Fourier orthogonality in the periodic variables, the axial and azimuthal modes decouple.

The operator B in (2.47),

B
lnm
pqr =

(

Ψlnm ,
1

Re
∆Φpqr − (vB · ∇)Φpqr − (Φpqr · ∇)vB

)

, (2.49)

satisfies the same orthogonality properties in the periodic variables. As a result, those

operators A
lnm
pqr and B

lnm
pqr with different axial indices (l 6= p) or different azimuthal ones

(n 6= q) are identically zero. The remaining operators with l = p and n = q have a banded

structure due to the orthogonality properties of the shifted Chebyshev basis used in the

radial variable. In Fig. 2.1 we have represented the sparse structure of both operators

for the particular case l = p = 1 and n = q = 1. A clever reordering of the vector

of coefficients makes A and B collapse into a single band structure. The quadratic form

blnm(a, a) appearing in (2.47) corresponds to the projection of the nonlinear convective term

(Ψlnm , (uS · ∇)uS) . (2.50)

For computational efficiency, this term has to be calculated via a pseudospectral method.

The details of this computation will be analysed later. Finally, the initial value problem is

prescribed by the coefficients alnm(0) representing the initial vector field u0
S given by

alnm(t = 0) =
(
Ψlnm , u0

S

)
. (2.51)

2.4 Linear stability

The stability of very small perturbations added to the basic flow is dictated by the linearised

equation

A
lnm
pqr ȧpqr = B

lnm
pqr apqr, (2.52)
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A
1 1 m
1 1 r B

1 1 m
1 1 r

Figure 2.1: Sparse structure of operators A
lnm
pqr and B

lnm
pqr for l = p = 1 and

n = q = 1, with M = 32 radial modes

obtained from (2.47), where we have neglected the nonlinear advective term. Therefore,

since the problem is linear, we can decouple the eigenvalue analysis for each independent

azimuthal-n and axial-l wavenumbers associated with the ei(nθ+kz) normal mode, where

k = lko. For a fixed axial and azimuthal periodicity, the spectrum is given by the eigenvalues

of the operator L = A
−1

B,

L a = λ a, (2.53)

where the operators A and B are the matrices (2.48) and (2.49) corresponding to the axial-

azimuthal mode (n, l) under study, λ is an eigenvalue of the spectrum of L, and a is its

associated eigenvector

a = (a
(1)
1 , . . . , a

(1)
M , a

(2)
1 , . . . , a

(2)
M )T, (2.54)

where we have omitted the axial and azimuthal subscripts for simplicity.

The convergence and reliability of the spectral method have been checked. For this

purpose, some of the results reported here have been compared with previous works. For

example, in Table 2.1, the convergence of the least stable eigenvalue has been tested for

Re = 9600, n = 1 and k = 1, a case previously studied by other authors [35, 56]. For

Re = 3000, the spectra for different values of k and n have been computed in order to make

comparisons with a first comprehensive linear stability analysis carried out in Schmid &

Henningson [62]. Our code provided spectral accuracy in all the computed cases. In Tables

2.2 and 2.3, the spectra of the 10 rightmost eigenvalues have been listed for (k = 1, n = 0, 1)

and (k = 1, n = 2, 3), respectively, following Schmid and Henningson’s former study.

The same computation has been done for streamwise-independent perturbations (k = 0)

and for different values of the azimuthal mode n (see Table 2.4). To the author’s knowl-
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M size λ1

20 42×42 −0.0229 + i 0.950
30 62×62 −0.0231707 + i 0.9504813
40 82×82 −0.02317079576 + i 0.950481396669
50 102×102 −0.023170795764 + i 0.950481396670

Leonard & Wray (1982) λ1 = −0.023170795764 + i 0.950481396668

Priymak & Miyazaki (1998) λ1 = −0.023170795765 + i 0.950481396670

Table 2.1: Convergence test for Re = 9600, k = 1 and n = 1, following Leonard &
Wray [35] and Priymak & Miyazaki [56]. M is the number of Chebyshev
polynomials used in our spectral approximation, size is the dimension
of the discretisation matrices appearing in Fig. 2.1 and λ1 stands for the
rightmost eigenvalue. The reported figures are those which apparently
converged at M=60.

n = 0 n = 1

−0.0519731112828 + i 0.9483602220505 −0.041275644693 + i 0.91146556762
−0.0519731232053 + i 0.948360198487 −0.0616190180049 + i 0.370935092697
−0.103612364039 + i 0.896719200867 −0.088346025188 + i 0.958205542989
−0.103612889227 + i 0.8967204441 −0.0888701566 + i 0.8547888174
−0.112217160388 + i 0.4123963342099 −0.1168771535871 + i 0.216803862997
−0.121310028246 + i 0.2184358147279 −0.137490337 + i 0.7996994696
−0.155220165293 + i 0.8450717997117 −0.14434614486 + i 0.91003730954
−0.155252667198 + i 0.845080668126 −0.1864329862 + i 0.7453043578
−0.2004630477669 + i 0.3762423600255 −0.195839466 + i 0.5493115826
−0.20647681141 + i 0.79378412983 −0.198646109 + i 0.8607494634

Table 2.2: Rightmost eigenvalues for Re = 3000, k = 1 and n = 0, 1, following
Schmid & Henningson [62]. The reported figures are apparently con-
verged at M = 54.

n = 2 n = 3

−0.060285689559 + i 0.88829765875 −0.08325397694 + i 0.86436392104
−0.08789898037 + i 0.352554927087 −0.105708407362 + i 0.346401953386
−0.1088383407 + i 0.8328933609 −0.116877921343 + i 0.2149198697617
−0.112001616152 + i 0.939497219531 −0.1323924331 + i 0.8097468023
−0.1155143802215 + i 0.215491816529 −0.136035459528 + i 0.91671917468
−0.15810861 + i 0.778584987 −0.182036372 + i 0.7558793156
−0.167294045951 + i 0.8906185726 −0.190639836903 + i 0.8674136555
−0.20759146658 + i 0.725077139 −0.2127794121 + i 0.37123649827
−0.20931432998 + i 0.37502653759 −0.23181786 + i 0.70300722
−0.2214747313 + i 0.8409753749 −0.244111241 + i 0.551731632

Table 2.3: Same as Table 2.2 for n = 2, 3.
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n = 0 n = 1 n = 2 n = 3

−0.0019277286542 −0.00489399021 −0.0087915387 −0.0135688219
−0.004893990214 −0.0087915388 −0.01356882195 −0.01919431362
−0.0101570874478 −0.0164061521 −0.0236166663 −0.03175919084
−0.01640615210723 −0.0236166663 −0.03175919085 −0.040809265355
−0.0249623355969 −0.03449981796 −0.04500690295 −0.0564651499
−0.034499817965 −0.045006902955 −0.05646514994 −0.06885660345
−0.0463467614754 −0.059173588937 −0.0729733963 −0.087733618
−0.0591735889378 −0.072973396381 −0.08773361808 −0.103440753288
−0.07431076787255 −0.090427218091 −0.1075183721 −0.1255751331
−0.0904272180909 −0.107518372097 −0.12557513314 −0.14458704546

Table 2.4: Same as Tables 2.2, 2.3 for k = 0, n = 0, 1, 2, 3.

edge, numerical tables of streamwise-independent modes have not been reported previously.

Mathematically, the case k = 0 needs a special treatment. In fact, the limit k → 0 does not

coincide with this case. In our formulation, this phenomenon can be understood looking

at the boundary conditions which must be satisfied by the radial velocity over the wall.

For k 6= 0, the radial velocity, as well as its first derivative, must vanish over the wall. For

k = 0 the boundary conditions change abruptly.

Our formulation in solenoidal primitive vector fields allows to obtain the explicit ex-

pression of a first integral of the perturbation field, i.e., a manifold over which the fluid

particles lie on for all t. The obtention of a closed form of these stream functions is possible

because of the (θ, z) invariance transformation induced by the normal mode analysis. The

normal mode ei(nθ+kz) is invariant under spiral transformations of the form:

dz

dθ
= −n

k
. (2.55)

We define a spiral variable ζ
.
= nθ + kz, so that the solenoidal condition

∇ · v =
1

r
∂r(rvr) +

1

r
∂θvθ + ∂zvz = 0

can be expressed as

∂r(rvr) + ∂ζ [nvθ + rkvz] = 0, (2.56)

where we have used the differentiation rules

∂θ = (∂θζ)∂ζ = n∂ζ , ∂z = (∂zζ)∂ζ = k∂ζ .

Equation (2.56) defines implicitly a first integral Θ(r, ζ) satisfying

∂ζΘ = −rvr, (2.57)
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and

∂rΘ = nvθ + rkvz. (2.58)

A straightforward integration of (2.58) leads to the explicit expression of Θ for cases I and

II described in §2.2. The physical vector field is a real object obtained from solving the

eigenvalue problem (2.53) associated with the normal mode ei(nθ+kz) and its conjugated:

u = 2ℜ{ei(kz+nθ)

M∑

m=0

a(1)
m v(1)

m + a(2)
m v(2)

m }, (2.59)

where the subscripts l and n have been omitted for simplicity. From equations (2.24-2.27)

and (2.58) we can obtain explicit expressions for the first integral Θ:

I. Axisymmetric fields (n = 0):

Θ(r, θ, z) = 2kr2 ℜ
{

eikz

M∑

m=0

a(2)
m gm(r)

}

, (2.60)

except that Θ is a constant if k = 0.

II. Non-axisymmetric fields (n 6= 0):

Θ(r, θ, z) = 2nrσ ℜ
{

ei(kz+nθ)

M∑

m=0

a(1)
m gm(r)

}

, (2.61)

for all k.

In Fig. 2.2 we have represented the spectrum of eigenvalues computed for Re = 3000,

n = 1 and k = 1. Three different branches are clearly identified; wall modes branch (wm),

center modes branch (cm) and mean modes branch (mm) [15, 14]. In order to have a

qualitative idea of the dynamics associated with each one of the three branches, we have

plotted the velocity field v computed from (2.59) and the first integral obtained from (2.61)

in Fig. 2.3, for the three selected eigenvalues in Fig. 2.2. In particular, we have represented

the eigenfunctions corresponding to the wall, center and mean eigenvalues previously shown

in Fig. 2.2. The pictures corresponding to the center and wall modes shown in Fig. 2.3 have

recently appeared in Drazin [14].
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Figure 2.2: Spectrum of eigenvalues for Re = 3000, n = 1, k = 1. The
labelled dots wm (wall mode), cm (center mode) and mm (mean
mode) are the eigenvalues whose associated eigenfunctions have
been plotted in Fig. 2.3.

2.5 Nonlinear unsteady computations

2.5.1 Overview

The numerical approach to the resolution of the fully nonlinear problem described in this

section was first devised in Meseguer & Trefethen [44]. The spectral spatial discretisation

of the Navier-Stokes equations leads to a stiff system of odes [4, 23, 29], characterised by

the presence of modes with vastly different time-scales. This pathology leads to stability

problems in the time discretisation, in particular when explicit time integration schemes

are used. The development of numerical algorithms for the solution of stiff systems is an

active research area where new methodologies appear frequently. In spectral discretisation

of nonlinear pdes, the more standard procedures are based on semi-implicit, also called

linearly implicit methods, where the linear part is integrated implicitly and the nonlin-

ear terms are treated explicitly. In a recent work, by Cox & Matthews [10], Exponential
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Θ CMvCM

λCM = −0.04127 − i 0.91147

ΘWMvWM

λWM = −0.06162 − i 0.37094

ΘMMvMM

λMM = −0.54160 − i 0.67146

Figure 2.3: Eigenmodes corresponding to the three selected eigenvalues of
Fig. 2.2.
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Time Differencing (etd) schemes were proved to be more efficient for some stiff pdes, in

comparison with standard linearly implicit, integrating factor or splitting methods. Nev-

ertheless, etd methods lead to technical complications when the domain of the problem

has no periodicity or when the linearised operator L appearing in equation (2.53) is (or is

close to be) singular. For moderately high Reynolds numbers, the ill-conditioning of the

linearised Navier-Stokes operator and the radial-Chebyshev spectral interpolation make the

etd scheme not feasible for practical purposes.

Second and fourth order linearly implicit time integration schemes have been tested

for unsteady computations of transitional regimes in pipe flow. In particular, implicit

Backward Differences, combined with modified Adams-Bashforth polynomial extrapolation

(also termed ab2bd2 and ab4bd4 in Cox & Matthews [10]), have been used. It is well known

that bd4 method may lead to stability problems [23]. Nevertheless, we found ab4bd4 as

the best scheme for this particular problem.

2.5.2 Linearly implicit time integration

Let ∆t be the time step and t(k) = k ∆t, k = 0, 1, 2, . . . the time array where we approx-

imate our amplitudes a(t) 1 from the original system (2.47). In our notation, a(k) = a(t(k))

is the approximation of a(t) at t = t(k) and b(k) is the nonlinear quadratic form appearing in

(2.47) evaluated at t(k), i.e., b(k) = b(a(k), a(k)). The second order ab2bd2 method is given

by the iteration

(3 A − 2 ∆t B)a(k+1) = A(4a(k) − a(k−1)) − 2∆t (2b(k) − b(k−1)), (2.62)

for k ≥ 1, see Cox & Matthews [10], whereas the fourth-order ab4bd4 scheme is

(25 A − 12 ∆t B) a(k+1) = A
(
48a(k) − 36a(k−1) + 16a(k−2) − 3a(k−3)

)

−∆t
(
48b(k) − 72b(k−1) + 48b(k−2) − 12b(k−3)

)
,

(2.63)

for k ≥ 3. In both schemes, the initial value a(0) is prescribed by the initial condition

(2.51), and the first unknown amplitudes, a(1) for (2.62) or a(1,2,3) for (2.63), are obtained

by means of a fourth-order Runge-Kutta explicit method.

The nonlinear explicit contributions b(k) appearing in (2.62) and (2.63) must be effi-

ciently computed in advance by means of a de-aliased pseudospectral or collocation method.

1To avoid cumbersome notation, we temporarily suppress the subscripts corresponding to the spatial
discretisation.
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The main goal is to compute the term

blnm = (Ψlnm, (uS · ∇)uS) =

∫ Λ

0

∫ 2π

0

∫ 1

0

Ψ∗
lnm · (uS · ∇)uS rdr dθ dz, (2.64)

where uS is given by the known coefficients a(k) appearing in expansion (2.17), at a previous

stage in time. The standard procedure for the computation of the nonlinear advective term

is summarised in the diagram of Fig. 2.4. Basically, once the coefficients alnm (top left of

alnm

blnm

uijk

(∇u)ijk

[(u · ∇)u]ijk

fourier-chebyshev
space

physical
space

-

¾

? ?

Dr Dθ Dz

?

ifft
mm

fft
mm

Figure 2.4: Pseudospectral computation of the nonlinear term. The abbre-
viations fft, ifft and mm stand for Fast Fourier Transform,
Inverse Fast Fourier Transform and Matrix Multiplication, re-
spectively.

the diagram) of uS are known, we evaluate uS in the physical space (top arrow going from

left to right in the diagram). The gradient of the vector field, ∇uS, and the convective

product, (uS · ∇)uS , are also computed in the physical space (vertical arrows downwards,

on the right). Finally, the physical product is projected onto the dual Fourier-Chebyshev

space (bottom arrow, from right to left). The first stage of the algorithm is to evaluate the

sum (2.17)

uS =
L∑

l=−L

N∑

n=−N

M∑

m=0

alnm(t)Φlnm(r, θ, z) =
L∑

l=−L

N∑

n=−N

M∑

m=0

alnm ei(nθ+kolz)vlnm(r) (2.65)

over the three-dimensional grid

(rk, θj, zi) =

(

cos(
πk

2Md

) ,
2π

Nd

j ,
Λ

Ld

i

)

, (2.66)
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for k = 0, . . . ,Md − 1, j = 0, . . . , Nd − 1 and i = 0, . . . , Ld − 1. The values Md, Nd and Ld

are the numbers of radial, azimuthal and axial points, respectively, needed to de-alias the

computation up to the spectral order of uS. For coarse grid computations, the convolution

sums which appear when evaluating the non-linear terms may generate low aliased modes

[7]. A similar problem arises in the non-periodic (radial) direction, although in this case it

is related to a poorly resolved quadrature. In this method, aliasing is removed by means

of Orszag’s 3
2
−rule, imposing

Ld ≥ 3

2
(2L + 1) , Nd ≥ 3

2
(2N + 1) , Md ≥ 3M, (2.67)

in order to eliminate aliased modes up to order (L,N,M). Direct evaluation of (2.65) over

each point of the grid (2.66) would require O(LMN) operations. Overall, the total compu-

tation of uS would imply a total number of operations of order O(L2N2M2). Nevertheless,

we can substantially reduce the number of operations by means of Partial Summation

technique [4], where uS (u for simplicity) is evaluated over the radial grid rk:

uk(θ, z) = u(rk, θ, z) =
L∑

l=−L

N∑

n=−N

ei(nθ+kolz)

M∑

m=0

alnmvlnm(rk)

︸ ︷︷ ︸

α
(k)
ln

, k ∈ [0,Md − 1]. (2.68)

The sum for the radial modes in (2.68) has been underbraced and identified by the coef-

ficients α
(k)
ln , that require O(M2LN) operations to be computed. The second step is the

evaluation of uk(θ, z) over the azimuthal grid

ujk(z) = u(rk, θj, z) =
L∑

l=−L

eilkoz

N∑

n=−N

M∑

m=0

alnmeinθjvlnm(rk)

︸ ︷︷ ︸

β
(jk)
l

, (j, k) ∈ [0, Nd−1]×[0,Md−1],

(2.69)

taking advantage of the the pre-computed α
(k)
ln coefficients,

β
(jk)
l =

N∑

n=−N

einθj

M∑

m=0

alnmvlnm(rk) =
N∑

n=−N

einθjα
(k)
ln , (2.70)

that requires O(N2ML) operations. Finally, ujk(z) over the axial grid zi is computed using

the same procedure, i.e.,

uijk = u(rk, θj, zi) =
L∑

l=−L

eikolziβ
(jk)
l , (i, j, k) ∈ [0, Ld−1]×[0, Nd−1]×[0,Md−1]. (2.71)

Overall, the computational cost needed for the previous three stages is O
(
LNM(L + N +

M)
)
, and it can be further improved by using the fft in z and fct (Fast Cosine Trans-

form) in r, leading to an optimal cost of O
(
LNM ln(LNM)

)
operations per time step.
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Computation of (uS · ∇)uS in the physical space is carried out by using standard Fourier

Differentiation matrices [21] in the axial and azimuthal coordinates, whereas differentiation

matrices D
e,o
r defined in (2.43-2.42) are used in the radial direction. Finally, partial sum-

mation techniques are used again to efficiently inverse-transform of [(uS · ∇)uS]ijk leading

to the nonlinear term blnm appearing in (2.47).

2.6 Validation of the numerical scheme

2.6.1 Convergence analysis

The spatial convergence of the spectral Petrov-Galerkin method has already been tested

in section §2.4 and also in Meseguer & Trefethen [43] via a linear asymptotic eigenvalue

analysis, providing spectral accuracy in all cases studied. For the nonlinear unsteady

computations, the same initial value problem has been solved by means of the two different

linearly implicit schemes ab2bd2 and ab4bd4 . In both cases, the same spectral resolution

in space, the same initial condition for the amplitudes and the same total integration

time have been considered for consistency. In particular, the initial perturbation that we

considered for our convergence tests is a two-dimensional streamwise independent field of

the form

u0
S = u0

2D = A2D eiθ (−if1(r), f2(r), 0) + c.c., (2.72)

where f1(r) = 1−2r2 +r4, f2(r) = 1−6r2 +5r4, c.c. stands for complex conjugate and A2D

is a real constant such that ε(u0
S) = ε0, where ε(u) is the normalised energy of an arbitrary

perturbation,

ε(u) =
1

2EHP

∫ Λ

0

dz

∫ 2π

0

dθ

∫ 1

0

rdr u∗ · u, (2.73)

with respect to the energy of the basic Hagen-Poiseuille flow, EHP = πΛ/6. The initial

condition (2.72) consists of a pair of streamwise vortices of azimuthal number n = 1 that

only perturb the radial and the azimuthal components of the basic regime. This perturba-

tion has streamwise invariance in time, due to its orthogonality with respect to the axial

base flow. Thus, the initial condition ensures that uS(t) preserves its streamwise symme-

try for all t. In Fig. 2.5(a) we have plotted a z−cnst. cross section of the perturbation

field u0
S, and the basic parabolic profile of the Hagen-Poiseuille flow has been represented

in Fig. 2.5(b). Finite amplitude perturbations of the form (2.72) are of special interest in

the nonlinear stability analysis of shear flows. Streamwise vortices are particularly effi-

cient in triggering transition due to the usually termed lift-up effect, advecting slow axial
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Figure 2.5: (a) Initial perturbation field u0
S prescribed by amplitudes given in

(2.72). (b) Contour level curves of the axial speed corresponding
to the parabolic Hagen-Poiseuille flow.

flow to high speed regions and viceversa [33, 57, 63, 81]. This mechanism modulates the

axial parabolic flow in a new transient profile, usually termed streak, which contains sad-

dle points, thus being potentially unstable with respect to three-dimensional infinitesimal

disturbances [14, 15, 63].

As an example, Fig. 2.6 shows the evolution of the energy ε(t) associated with the

two-dimensional perturbation prescribed in equation (2.72) for Re = 3000 and with initial

energy ε(u0
S) = ε0 = ε(0) = 10−2. The structure of the modulated axial flow has been

represented in Fig. 2.7 at some selected instants of time, labeled with white circles in Fig. 2.6.

This run was carried out using ab4bd4 with M × N = 25 × 15 radial×azimuthal modes

(equivalent to Mr×Nθ = 26×31 collocation points), with ∆t = 0.01 and a total integration

time T = 200. The evolution of this kind of perturbations was originally considered in

Zikanov [81], where hybrid 2nd order finite differences scheme in r combined with a spectral

Fourier method in θ was used. Low spatial resolution simulations based on the present

spectral method were also provided in Meseguer [40]. In both cases the agreement with

former computations is very good. In Fig. 2.7 it is clearly observed the formation of streaks.

The first important feature of this transient flow is the presence of saddle points in its profile.

The second is that this transient regime is almost steady, as we observe more clearly from

the curve in Fig. 2.6.

A time-convergence test has been carried out by comparing the accuracy of the solution

for the ab2bd2 and ab4bd4 schemes, always based on the same kind of perturbations
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Figure 2.6: Typical evolution of the energy of a two-dimensional streamwise
perturbation.
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Figure 2.7: Modulated axial speed (uS + vB)z contours corresponding to the
time integration plotted in Fig. 2.6.
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Figure 2.8: Absolute error (2.74) for the two different time marching
schemes. The two curves represent the error obtained for the
same initial value problem and with the same spatial resolution.

described before. All the runs have been based on the same initial condition (2.72), for

Re = 2500, M = 10, N = 10 and a total time T = 50. Figure 2.8 captures the essential

features of the convergence of the two different time marching schemes, representing the

absolute L2-norm error of the Fourier coefficients a∆t
lnm(T ) obtained at the end of the run

with respect to the “exact” ones, a∆t0
lnm(T ), obtained with a much smaller reference time

step ∆t0 = 10−4,

‖ǫ(∆t)‖2
2 =

∑

l,n,m

| a∆t
lnm(T ) − a∆t0

lnm(T ) |2 . (2.74)

Figure 2.8 reveals a faster (and better) convergence of the fourth order scheme in front of

the second order one. In fact, for ∆t < 10−2, the ab2bd2 scheme is still converging with an

absolute error of order 10−6, whereas the ab4bd4 has already achieved the accuracy dictated

by the spatial resolution. When using ab2bd2 , ∆t should still be decreased nearly by two

orders of magnitude to get that precision. The computational time required for every time
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step is essentially the same for both schemes and this has been the main motivation to use

the fourth order scheme in our computations. Nevertheless, ab4bd4 requires a bit more

memory storage and this factor must be considered by the user.

As mentioned in the introduction, one of the novelties of the presented method is the

use of half Gauss-Lobatto grid in the radial coordinate. The use of standard mappings,

x = 2r − 1, identifying the radial domain r ∈ [0, 1] with the cartesian interval x ∈ [−1, 1]

is a common practice in spectral methods in cylindrical coordinates [35, 46, 51, 62]. The

clustering of quadrature points near the wall, i.e., r = 1 or x = +1 is justified by the

presence of boundary layers and strong gradients of the physical variables in that region,

being necessary to resolve the physical phenomena within those small scales. However,

the accumulation of radial points near the center axis has no physical justification unless

remarkable variations of the flow speed take place in a neighbourhood of the pole. This is

not the case in the Hagen-Poiseuille problem, where the axial profile is smooth and exhibits

a maximum at r = 0.

Wherever semi-implicit time marching schemes are used, the time step size ∆t is condi-

tioned by the advective time scale, τmax = dh/cmax, where d is a typical length scale of the

problem, cmax is the advection speed and h is the grid size [4]. A straightforward geometri-

cal analysis of the radial-azimuthal clustering in a standard collocation scheme x = 2r − 1

leads to

h ∼ 1

M2N
, (2.75)

where M is the number of radial points, clustered near the origin via the asymptotic

behaviour of the Gauss-Lobatto distribution, 1−cos(π/M) ∼ π2/2M2, and N is the number

of azimuthal points, leading to an arclength clustering proportional to N−1. Provided that

the order of maximum speed of the flow is O(cmax) ∼ 1 and the typical length of the

problem is the nondimensional pipe radius, O(d) = 1, the advective restriction (2.75) leads

to τmax ∼ O(N−1M−2), whereas the asymptotic radial clustering given by (2.39) provides

a milder accumulation ratio near the pole

r+
(M+3)/2 − r+

(M+1)/2 = − cos

(
π(M + 1)

2M

)

∼ π

2M
, (2.76)

leading to a less restrictive limit τmax ∼ O(N−1M−1). The dependence ∆tmax(N,M) has

been explored within the range (N,M) ∈ [7, 19] × [12, 28], for Re = 2500 and a total

time of integration T = 100, starting with the same initial condition prescribed in (2.72).

The maximum time step ∆tmax has been plotted against M and N in figure 2.9. The

behaviour of ∆tmax(N) for fixed M is the same as in other integration schemes (Fig. 2.9,

right), whereas a remarkable improvement can be observed in Fig. 2.9, on the left, where
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Figure 2.9: ∆tmax as a function of the number of radial and azimuthal
modes.

∆tmax(M) for fixed N has been represented. Only two-dimensional perturbations have

been included at t = 0, thus reducing the exploration to streamwise-independent dynamics.

Although we have just focused our analysis on the radial-azimuthal clustering effect, the

density of points in the axial coordinate will also affect the maximum time step size, the

limitations being the same as in any other equispaced spectral scheme.

2.7 Transition to turbulence

This section is devoted to a performace analysis of the presented numerical solver in cap-

turing the essential features of transitional pipe turbulence. The study of fully developed

turbulence is out of the scope of the present work.

As mentioned in previous section, two-dimensional streaks might be destabilised by

three-dimensional infinitesimal disturbances. This mechanism is just one possible scenario

of transition to turbulence in shear flows and it is usually referred to as streak breakdown

[40, 57, 63, 81]. In order to obtain a streak breakdown, three-dimensional disturbances of

a suitable axial periodicity must be added to the two-dimensional perturbation. The new

initial condition is:

u0
S = u0

2D + u0
3D, (2.77)

where u0
2D is the same perturbation described in (2.72), and u0

3D is a three-dimensional
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disturbance of the form

u0
3D =

∑

l=5,6,7

∑

n=0,1

Aln
3Dvln + c.c., (2.78)

where the fields vln are

vln =

{

eikolz (0, f3(r), 0) , (n = 0)

ei(kolz+nθ) (−inf1(r), f2(r), 0) , (n = 1)
(2.79)

with f3(r) = r(1 − r2). In this case, ko must be suitably chosen so an optimal range of

axial wave numbers kl = l ko are initially activated. In previous works [40, 81], it has

been proved that the optimal range of axial periodicities depends on the initial amplitude

of the two-dimensional perturbation and the Reynolds number. A comprehensive explo-

ration is not the aim of this analysis, so a particular case has been considered to test

fully three-dimensional unsteady transitional dynamics. In particular, some axial wave

numbers within the range k ∈ [1.5, 2.2] have been excited at t = 0. As in previous sec-

tion, the bulk of the initial energy is mainly assigned to the two-dimensional component

of the perturbation so that ε2D
0 ∼ 10−3, whereas the amplitudes Aln

3D, for n = 0,±1 and

k±5,±6,±7 = 1.5625, 1.875, 2.1875, are uniformly activated leading to a much smaller total

three-dimensional energy ε3D
0 ∼ 1 · 10−7. This is accomplished by choosing ko = 0.3125

and L = 16, so that medium-long wavelengths dynamics are also captured, leading to a

pipe length Λ = 2π/ko ∼ 20. Overall, the computations reported here have been carried

out with L = 16, N = 16 and M = 32, equivalent to a Mr × Nθ × Lz = 33 × 33 × 33-

radial× azimuthal× axial grid. The fixed length of the pipe and the number of axial

modes fix the maximum axial wavenumber to kmax = 5.0. It is well known that high

axial-azimuthal frequencies require a considerable number of radial modes to be resolved

[56]. Nevertheless, transitional dynamics are strongly dominated by low or medium axial

wavenumbers, the high frequencies being only important once fully developed turbulence

has been established.

For Re = 5012, Fig. 2.10 shows a typical example of the evolution of the energies

ε2D(t) and ε3D(t) = ε (u3D(t)) associated with the two-dimensional and three-dimensional

perturbations, respectively. The sudden exponential growth of ε3D(t) is due to the inviscid

instability. The computation shown in figure 2.10 covered T = 600 nondimensional time

units, with a time step ∆t = 10−3 and using the ab4bd4 scheme. The nearly 6 · 105 time

steps required about 80 hours on a 3.0 GHz amd Athlon cpu.
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Figure 2.10: Energies ε2D(t) and ε3D(t) as a function of time, exhibiting the
streak breakdown mechanism of transition to turbulence.

2.8 Conclusions

A solenoidal spectral Petrov-Galerkin formulation for the spatial discretisation of incom-

pressible Navier-Stokes equations in unbounded cylindrical geometries has been formulated

and implemented within a high order linearly implicit time marching scheme. The spatial

discretisation identically satisfies the incompressibility condition and the pressure terms

are eliminated in the projection. The solenoidal fields satisfy suitable regularity conditions

at the pole and radial clustering is avoided by using half Gauss-Lobatto meshpoints and

modified Chebyshev polynomials of selected parity, thus allowing fast transform in the ra-

dial coordinate. The resulting radial-azimuthal mesh leads to less restrictive explicit time

marching conditions. For the efficient evaluation of the nonlinear term, dealiased partial

summation techniques have been formulated. The spatial discretisation has been proven

to converge spectrally in all linear cases studied. For unsteady nonlinear computations,

modified ab2bd2 and ab4bd4 linearly implicit schemes have been used, the last proven

to be more convenient for this particular problem. Different spatio-temporal convergence

analysis have been provided and the time evolution of streamwise vortices has been studied

as a test case. Streamwise streaks have been computed and their structure and energy dis-

tribution is almost identical to the ones formerly computed by other authors using different

discretisation schemes. Transitional dynamics to turbulence has been computed by means

of the usually termed streak breakdown scenario, and the streamwise dependent modes
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that destabilise the streaks have axial periodicities within the interval predicted by former

studies.





CHAPTER 3

TRANSITION FOLLOWING GLOBAL PERTURBATIONS

During the last decade, the pursuit of an answer to pipe flow transition has followed two

independent research approaches. The first one has been mainly focused on the study

of nonmodal transient growth exhibited by streamwise vortical finite amplitude perturba-

tions, due to the strong nonnormality of the linearised Navier-Stokes operator, i.e., non-

orthogonality of its eigenvectors [61, 40, 63, 62, 33]. This transient growth eventually stag-

nates, leaving an almost steady modulated streamwise flow that contains two-dimensional

streaks, characterised by the presence of saddle points, potentially unstable with respect

to three-dimensional infinitesimal perturbations in the inviscid stage, i.e., before the vis-

cous effects take over the dynamics. Almost exponential growth of streamwise-dependent

waves is therefore expected under the presence of streaks, eventually inducing transition via

a mechanism commonly termed streak breakdown, by which the three-dimensional waves

break the streamwise structure of the streaks, leading to turbulence. The described in-

stability process has been proved to be a universal mechanism of subcritical transition in

other shear flows such as Blasius boundary layer or plane Poiseuille flow, although other

scenarios may also be at work in the transition process [57, 8].

The second approach to the problem of subcritical transition, which we will explore

later on, has been based on the direct exploration of the phase map of the corresponding

dynamical system representing the fluid problem. Subcritical transition in linearly stable

open shear flows is directly related to the existence of secondary solutions of the Navier-

Stokes equations. Since these flows are linearly stable for all Reynolds numbers, these other

solutions must be necessarily disconnected from the basic flow. For example, in plane Cou-

ette flow, secondary solutions were found [47, 9] by means of homotopy transformations.

More recent numerical studies [64, 1] have also reported new solutions for this particular

problem. In pipe flow, recent numerical studies have revealed the existence of travelling

wave solutions of selected azimuthal symmetry, supposedly constituting the essential topo-

logical feature of the chaotic dynamics [19, 78]. The limit cycles associated with these

travelling waves have been proved to be linearly unstable [18]. The computation of the

friction factor associated to these time-dependent solutions ostensibly matches the empiri-

cal laws describing turbulent flows in smooth pipes [19], which in itself constitutes a clear

signature of the relevance of these solutions in the turbulent regime.

One of the main goals of the two previously described approaches to subcritical turbu-

lence has been to provide a characterisation of the basin of attraction of the basic laminar

flow. We must think of it as a subset in an infinite dimensional space that contains the

35
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basic flow, driving towards this solution any initial perturbation contained in this subset.

Numerical simulations confirm that pipe flow is even stable for all axisymmetric finite-

amplitude disturbances [52]. Therefore, the basin of attraction is not a bounded domain

and its size is a meaningless measure because it is actually infinite. Instead, we must think

of the boundary of that basin of attraction that approaches a minimum amplitude Ac from

the steady solution. A question still unsolved is the dependence of this amplitude with

the Reynolds number, Ac = Ac(Re), that must necessarily decrease when Re is increased,

being plausible to assume that its asymptotic behaviour scales with Re according to

Ac ∼ Reγ, (3.1)

with γ necessarily negative. In other words, Ac represents the minimum amplitude of

a perturbation capable of destabilising the basic profile, leading to a turbulent regime.

Theoretical exponents for plane channel flows have been obtained by means of asymptotic

methods within the framework of some particular transition scenarios [8]. For pipe flow,

recent renormalisations [71] have been suggested in order to cast different experimental

results in terms of a single definition of the amplitude appearing in (3.1), providing lower

and upper bounds for the value of this critical exponent that presumably lies within the

interval γ ∈ [−9/5,−6/5].

The most comprehensive experimental explorations of the threshold amplitude problem

(3.1) for pipe flow were provided by Darbyshire & Mullin [11] and more recently by Hof

et al. [27], henceforth referred as hjm, where the fluid was perturbed by means of localised

injections of selected azimuthal symmetry. The experimental results of hjm clearly con-

cluded that the minimum amplitude of a perturbation required to trigger transition scaled

as the inverse of the Reynolds number, i.e., Ac = O(Re−1). Postprocessed experimental re-

sults have recently confirmed the presence of the aforementioned travelling waves obtained

computationally [19, 78] as inherent components of the turbulent flow [26].

As far as we know, the first computational estimation of the threshold exponent prob-

lem (3.1) in pipe flow was provided in Meseguer [40], employing a numerical model for

time integrations that were too short in time, thus being impossible to distinguish between

relaminarised and turbulent flows, particularly for low Re. The resolution was extremely

poor, especially in the axial direction, for which a singe mode was considered, not allowing

for nonlinear interaction. By contrast, the present study provides a highly resolved compre-

hensive numerical exploration of the threshold amplitude for 2.5 × 103 < Re < 1.26 × 104,

based on the streak breakdown scenario, for medium length pipe aspect ratio and for ex-

tended time-horizons that allow to distinguish between long-lasting turbulence and relam-

inarisation. Streamwise perturbations consisting of a varying number of pairs of vortices
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are used as initial disturbances, optimal streamwise-dependent waves and random noise are

alternatively added as the 3D component of the perturbation, the development of the flow

is carefully analised for some test cases and the independence of the considered transition

scenario with respect to pipe length suitably verified.

This chapter is structured as follows. Section §3.1 is devoted to the mathematical formu-

lation of the initial value problem for the perturbation fields, and the axial and azimuthal

structure of disturbances is presented. The criteria that allow to classify laminar, relami-

narised and turbulent flows are explained in section §3.2, where the time horizons required

to distinguish among those regimes are provided. Section §3.3 yields the main results of

the exploration for different types of streamwise disturbances and also investigates the ef-

fects of pipe length in this particular transition scenario. Finally, many questions regarding

the difficulties of comparing numerics with recent experimental results are addressed. The

main conclusions are gathered and presented in section §3.4.

3.1 The initial value problem

Following the formulation in section 2.1, the computational domain considered is (r, θ, z) ∈
D = [0, 1] × [0, 2π] × [0, Λ], where the dimensionless pipe-length in radii units is fixed to

Λ = 6.4π ∼ 20 (except for a subset of runs on a much longer pipe, with Λ = 32π ∼ 100,

carried out for verification purposes). For a vast exploration, the spatial resolution used in

the domain D is Mr × Nθ × Lz = 25 × 33 × 33 radial×azimuthal×axial grid points, and

Mr×Nθ×Lz = 33×33×33 for further refinements, resulting in a dynamical system of nearly

3.5×104 degrees of freedom. No substantial differences have been observed when increasing

the spatial resolution or decreasing the time step. The spatial convergence has been checked

by repeating some test computations on a finer mesh of Mr × Nθ × Lz = 41 × 49 × 49.

Also the energy contents of the highest axial/azimuthal fourier modes has been monitored

for every single run to ensure the adequacy of the spatial truncation. For subcritical runs,

an energy decay of 6 to 7 orders of magnitude below that of the basic flow has been

considered enough. Transitional runs are clearly under-resolved when turbulent motion

begins. The computational costs of the resolution that would be required are unaffordable,

but it must be bore in mind that it is not the aim of this study to simulate turbulence, but

to bound the basin of attraction of the basic flow. Computations on a longer pipe have

been carried out in order to check the length effects in the transition mechanisms studied.

In particular, computations with Λ = 32π ∼ 100 have been done by increasing the grid size

to Mr × Nθ × Lz = 33 × 33 × 129.
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The normalised energy of a perturbation u is measured by means of the volume integral

or hermitic product

ε(u) =
1

2EHP

∫

D

u† · u dD, (3.2)

with respect to the energy of the basic Hagen-Poiseuille flow, EHP = πΛ/6, so that the

amplitude of the perturbation is defined as the square root of its normalised energy,

A(u) =
√

ε(u) . (3.3)

To better understand how the energy is distributed within the flow, it is very convenient

to express the perturbed velocity v as a sum of the basic flow ub and the Fourier components

of the perturbation field u, satisfying (2.11,2.12) and (2.14,2.15),

v(r, θ, z, t) = ub(r) + u00(r, t) +

u2D(r, θ, t)
︷ ︸︸ ︷
∑

n6=0

einθu0n(r, t) +

u3D(r, θ, z, t)
︷ ︸︸ ︷
∑

l 6=0

∑

n

ei(nθ+ 2π
Λ

lz)uln(r, t), (3.4)

where u00 contains the azimuthal-axial-averaged perturbation velocity profile, u2D repre-

sents the non-axisymmetric streamwise component of the velocity field and u3D the re-

maining streamwise-dependent components. For the particular computations presented

throughout this study, u2D must be interpreted as the streaks modulation of the flow.

Using (3.2) on the decomposed velocity field, the energies corresponding to the bulk flow,

to the streamwise component and to the 3D perturbation can be computed independently

as ε00 = ε(u00), ε2D = ε(u2D) and ε3D = ε(u3D), respectively.

Subcritical instability in shear flows is efficiently triggered by adding streamwise vortical

perturbations to the basic flow [33, 61, 57, 8]. Of all possible initial disturbances, streamwise

vortices with azimuthal wave number nv = 1 are the best candidates to trigger transition,

as several linear nonmodal stability analyses of pipe flow [62, 45] have repeatedly shown

that this sort of disturbances exhibit optimal transient growth. This energy growth leads to

the generation of strong nonlinear streaks, in the presence of which streamwise-dependent

modes of selected axial periodicity are destabilised. Time-dependent linear stability anal-

ysis of the streamwise streaks [81] confirms that only a subset of streamwise-dependent

modes are potentially destabilised by the inflectional transitional streaks. Therefore, the

perturbation introduced at t = 0 must satisfy three requirements to be optimal. First,

it must have a strong streamwise component to generate inflectional profiles or streaks.

Second, it must also contain small streamwise-dependent components of suitable axial pe-

riodicity within the range that exhibits optimal inflectional instability [81]. Third, since the

streaks are transient modulations of the basic flow, the destabilised streamwise-dependent
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components have a limited period of time to grow and non-linearly interact with the modu-

lated flow while it lasts. As a result, although the streamwise-dependent initial amplitudes

can be of much smaller magnitude than that of the streamwise component, they still need

to be large enough to be able to break the streaks before the onset of their viscous decay.

Even though a single pair of streamwise vortices (nv = 1, from here on referred to as

n1) experiences the largest transient growth [62, 45], perturbations consisting of a greater

number of pairs of streamwise vortices (nv = 2, 3..., which we will call n2, n3..., respec-

tively), although exhibiting smaller transient growth, might develop into streaks with a

higher potential of destabilising streamwise-dependent waves.

The initial disturbance u 0 = u(r, θ, z, 0) used in a first exploration of the critical thresh-

old consists of a suitable superposition of a single pair of two-dimensional streamwise vor-

tices (n1), u2D
0 , and a set of three-dimensional waves, u3D

0 , of selected axial periodicities,

u 0 =

u2D
0

︷ ︸︸ ︷

C2D eiθv1(r) +

u3D
0

︷ ︸︸ ︷
∑

l,n

C3D
ln ei(nθ+kolz)vn(r) + c.c., (3.5)

where c.c. stands for complex conjugated terms. The radial structure of u2D
0 takes the

simplest polynomial form compatible with solenoidality and non-slip boundary conditions

at the wall, closely resembling a nearly optimal (in its capability of generating strong

streaks) pair of streamwise vortices [62, 81]. As to u3D
0 in (3.5), the sum only excites

streamwise dependent modes with n = {−1, 0, 1} and l = {l1, l2, l3} (i.e. 9 streamwise

modes overall) and whose radial structure is also of the lowest polynomial order. The

radial fields just described are:

vj(r) =

{

r(1 − r2) θ̂ j = 0

−i j rσ−1(1 − r2)2 r̂ + D[rσ(1 − r2)2] θ̂ j 6= 0,
(3.6)

where σ = 1 (2) for j odd (even) and D denotes a radial derivative. The subscript j

alternatively equals 1 for the 2D component or represents n for the 3D component of the

perturbation given in (3.5).

The fundamental axial wavenumber ko = 2π/Λ appearing in (3.5) is determined by the

aspect ratio of the computational pipe domain. The triad li, for i = 1, 2, 3, must then be

chosen so that the excited axial wave-numbers (ki = koli) lie within the range exhibiting

optimal exponential growth of u3D in the presence of the streaks developing from u2D
0 .

According to former studies [81, 40] and a few preliminary runs within the frame of the

present work, the optimal axial wave-number appears to be somewhere in the interval
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kopt ∈ [1.5, 2.2]. Since the aspect ratio of the pipe has been fixed to Λ ∼ 20 radii, the triad

li = {6, 7, 8}, which activates waves with ki = {1.56, 1.88, 2.19}, must be initially excited.

The complex constants C2D and C3D
ln in (3.5), which modulate the initial amplitude

of the two components of the perturbation, are chosen so that the initial energy of the

streamwise vortices, ε(u2D
0 ), and of the three-dimensional waves, ε(u3D

0 ), take the desired

values ε2D
0 and ε3D

0 , respectively. ε3D
0 is evenly distributed among the whole set of excited

3D modes. The complex phases of these constants are generated randomly.

With the aim of testing vortical perturbations of different azimuthal topology, a slightly

different type of initial condition has been defined. The 2D component in (3.5) has been

adapted in (3.7) to admit varying azimuthal wave-numbers (nv) in order to represent

streamwise-independent structures consisting of an arbitrary number of pairs of vortices.

The simplest polynomial form, detailed in (3.6), has been retained, with j now represent-

ing nv. Thus, vortical structures with nv = 2, 3 (n2, n3) can be considered along with

the aforementioned single pair of vortices (nv = 1, n1). No studies exist, to the authors

knowledge, on the optimal range of axial-wavenumbers (k) of the waves that are most

destabilised in the presence of streaks developing from n2 and n3 vortical structures. Con-

sequently, rather than undertaking such a vast task as would be determining the optimal

axial wave-numbers, decision has been made of simply adding a random 3D noise, which

in fact narrowly mirrors what happens in experiments, thus exciting 3D waves of all axial

wave-lengths. The exploration for a single pair of vortices (n1) has been repeated with this

random 3D noise for checking purposes. The general expression of the initial disturbance

for this enhanced parameter exploration is

u 0 =

u2D
0

︷ ︸︸ ︷

C2D einvθvnv
(r) +

u3D
0

︷ ︸︸ ︷

urand(r, θ, z) + c.c., (3.7)

with urand a random perturbation velocity field of the desired amplitude, containing much

lower energy than the streamwise component.

3.2 Criteria for transition

In order to establish criteria to decide whether the perturbations (3.5) and (3.7) lead to

turbulence or not, it is crucial to run up to a time-horizon at which the streaks have fully

developed and the three-dimensional perturbations have had enough time to grow. This

time has been found to be at least Tmax = 1000 advective time units for the lowest ε2D at the

highest Re explored. After this period, either the streak breakdown or the irreversible onset
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of viscous decay have taken place. However, for Re < 7500, Tmin = 600 has been found to

be enough. Experimentally, considering the perturbation is at worst advected downstream

at the basic flow maximum axial speed, this is equivalent to having the observation point

at 300 to 500 diameters distance downstream from the perturbation point. The longest

constant mass flow rig used in experiments allows to make observations up to 530 diameters

downstream from the perturbation location [27], which our time-horizons represent well

enough. Checking for turbulence after this time is therefore a reasonable approach, and

this is done by a bare eye inspection of the modal energy distribution. In the present study,

a simulation run is considered turbulent if

ε3D(T ) ≥ 10−3 and O
(
ε2D(T )

)
∼ O

(
ε3D(T )

)
, (3.8)

otherwise laminar. Condition (3.8) is based on the fact that three-dimensionality is a clear

signature of turbulent dynamics and therefore it is required for the streamwise-dependent

modes to be still active, and much stronger than initially, at the end of the run. For low Re,

however, transition for a limited time-window with an eventual relaminarisation has been

consistently observed. These relaminarised runs would have appeared as turbulent depend-

ing on the position of the observation area in an experimental rig. The existence of this

phenomenon suggests that some of the runs considered turbulent within a time-horizon of

T = 600 may have relaminarised if longer runs had been envisaged. It is however important

to point out that we do not expect to properly model developed turbulence with our dis-

cretisation, as it is too coarse to represent the smallest turbulent scales at which the energy

is dissipated. Turbulence and relaminarisation are therefore missrepresented phenomena

in the current work, and should be interpreted with extreme care. Figures 3.1a, 3.1b and

3.1c illustrate a laminar, a turbulent and a relaminarised run, respectively. They all depict

the evolution of n1-type disturbances and the selected set of optimal 3D waves. In each

plot, the continuous line corresponds to the energy of the mode excited by the streamwise

perturbation, which constitutes a reliable signature of the development of the streaks. The

dashed lines are the energies associated with some of the streamwise-dependent modes of

the axial triads with n = 0 or |n| = 1. In the laminar case, Fig. 3.1a, the three-dimensional

components of the perturbation are only temporarily excited once the streaks have devel-

oped, but this tendency is soon reverted and their energy rapidly decays before having

been able to perturb the streamwise streaks. The turbulent run, Fig. 3.1b, differs from the

laminar one in the growth rate of the streamwise dependent modes in the presence of the

streaks, eventually leading to a streak breakdown and setting off chaotic dynamics or tur-

bulent motion. This phenomenon can be spotted by looking at the drastic fall of ε2D(t) for

t > 50. Since the inflectional structure of the modulated flow is streamwise independent,

this transition scenario leads to global turbulence instead of intermittency phenomena ob-
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Figure 3.1: From top to bottom, a) laminar, b) turbulent and c) relami-
narised runs. In all three plots, the continuous line represents
ε2D(t), and the dotted lines are the energies associated with the
streamwise-dependent triads.
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served in the experiments, where coexistence of laminar flow with turbulent regions, usually

called puffs and slugs, is observed. Finally, in the relaminarised run, Fig. 3.1c, the turbu-

lent motion is abruptly interrupted and the streamwise-dependent energies start decaying

rapidly whilst the streaks recover temporarily to slowly vanish afterwards for t > 600.

3.3 Results and discussion

For the present study, we have carried out a comprehensive exploration of the minimum

initial amplitude, A0 = A(u0), defined in (3.3) required to trigger transition, according to

the criteria established in section §3.2. This has initially been done for disturbances fulfilling

all optimality criteria derived from previous studies, i.e., a single pair of streamwise vortices,

n1, plus the 3D waves that are most unstable to the streaks developed from these vortices,

detailed in (3.5).

The current exploration has been extended for disturbances consisting of different num-

bers of pairs of vortices (n2 and n3), on top of which random 3D noise has been added

according to (3.7), since no available data on the optimal axial periodicity of 3D waves

destabilised by streaks developing from these vortices is available in the literature. The

critical threshold exploration for n1 disturbances has been repeated with random 3D noise

to allow comparison with the previous exploration only considering activation of the optimal

3D waves, and to indeed assess their optimality. Finally, the critical amplitude threshold

for the n1 type of initial condition exciting the optimal 3D waves has been recomputed on

a much longer pipe in order to rule out length scale effects on transition for the particular

scenario investigated. An extra run on the long pipe with random 3D noise added on top

of an n1 vortical disturbance has been computed to illustrate the streak breakdown global

mechanism of transition by comparing the same case on the short pipe.

3.3.1 n1 disturbances with optimal 3D waves

The critical amplitude threshold exploration for this particular kind of disturbances covers

a wide range of Reynolds numbers, within the interval Re ∈ [2.5×103, 1.26×104], and initial

energies ε2D
0 within the range ε2D

0 ∈ [2.5× 10−5, 4× 10−2], while the energy associated with

the streamwise-dependent modes is held constant, with ε3D
0 = 9 × 10−8 evenly distributed

among the corresponding triads.

Results for the coarse computations (Mr × Nθ × Lz = 24 × 33 × 33), are shown in
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Fig. 3.2a, where white triangles represent laminar runs, black circles denote turbulent runs

and empty circles correspond to relaminarised runs. The critical amplitudes, obtained from

a refined exploration (Mr ×Nθ ×Lz = 33× 33× 33), have been marked with gray squares.

Overall, the over two hundred exploratory runs required nearly 10 cpu months on a 3 GHz

Athlon-PC cluster.

For low Reynolds numbers, it is remarkable how relaminarisation is a very common

phenomenon, where the basic flow preserves sound stability properties and considerably

big perturbations are required to trigger transition. As expected, the critical amplitude Ac

is a decreasing function of the Reynolds number. In fact, Ac exhibits a vertical threshold

evidenced by the behaviour of the slope, which is very pronounced at low Re (allegedly

converging to a vertical asymptote at Recr . 2000).

As soon as Re is increased, the numerical results shown in Fig. 3.2a clearly suggest that

pipe Poiseuille flow follows the same behaviour as other shear flows [8, 57], with a critical

amplitude that decreases with Re according to Ac ∼ Re−1.47±0.02, very close to the exponent

γ = −3/2 quoted in previous numerical studies with far less resolution and run on a much

shorter domain [40] (dashed straight line in Fig. 3.2), at least within the studied range.

This behaviour has been confirmed by increasing the spectral resolution of the numerical

scheme. Furthermore, the axial/azimuthal resolutions have been validated as sufficient by

assessing the decay of the energy contents of the highest Fourier modes for the subcritical

runs, which has been required to be 6 to 7 orders of magnitude below that of the basic flow.

The resolution is certainly not sufficient for runs exhibiting transition once turbulence sets

in. However, since this work is only concerned with bounding the basin of attraction of the

basic flow, properly representing the laminar phases of the transition process is enough.

The uncertainty on the exponent γ has been assessed by estimating the evolution of the

slope of the critical threshold through linear regressions on subsets of contiguous data points

and by assessing the variability of this slope around the average value at which it seems to

stabilise at high Reynolds. Fig. 3.2b shows a zoom on the squared out region in Fig. 3.2a,

including the higher resolved integrations that have been used to accurately determine the

threshold amplitude.

The experimental results recently reported in hjm revealed a clear exponent γ = −1.

The numerical simulations presented here are not necessarily in contradiction with the ex-

periments. In fact, expression (3.1) implicitly involves many physical aspects that require

an accurate description before making any comparison between numerics and experiments.

First, the mathematical definition of the amplitude A appearing in (3.3) was provided in

terms of the kinetic energy of the perturbation, whereas hjm measured the amplitude A as a
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Figure 3.2: Threshold amplitude for n1-type perturbations with optimal 3D
waves. a) Coarse exploration with lower spectral resolution Mr×
Nθ × Lz = 24 × 33 × 33. b) Zoomed region on top, showing the
numerical refinements for Mr ×Nθ ×Lz = 33× 33× 33. Overall,
the 200 runs presented here required nearly 10 cpu months on a
3.0 GHz Athlon PC-Cluster.
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ratio between the perturbing injected flux and the basic mean flux, i.e., A ∼ Φinj/ΦHPF. Sec-

ond, the geometrical features of the perturbation will necessarily conditionate the subspace

over which we are measuring the amplitude appearing in (3.1). In the present scenario,

we have selected streamwise-independent disturbances that optimally trigger inflectional

instability, whereas in the experiments, the disturbances are axially localised, thus exciting

the full spectrum of streamwise wavenumbers. Besides, the azimuthal symmetry of the

numerical perturbation is nv = 1, in contrast with the six-jet device used in hjm that

forces an nv = 6 symmetry. Third, our perturbation mechanism is mathematically posed

as an initial value problem, whereas the injections used in hjm require finite durations, thus

transiently modifying the original topological features of the basin of attraction. Finally,

expression (3.1) is only valid for high values of Re. Thus, over the range studied both in

experiments and numerics the exponent obtained must necessarily be local. This would

also be in line with results obtained for plane Poiseuille flow [8], where full simulations at

low Re also give different exponents that are ascribed to finite-Re effects. Further increase

of the Reynolds number would be required to asymptotically confirm the value of γ.

The observed discrepancies with experiments should not be taken as a major hindrance.

We are concerned with natural transition due to unknown perturbation sources that are

always present in the flow. The aim of this study is to identify the components of this

unknown sources that can be held responsible for transition and, to that end, numerical

simulation is much more flexible than experiments. We are quite confident, however, that

experimental disturbances containing strong components of the numerically used ones are

realisable and that they will very much yield the same results as our numerical experiments.

3.3.2 n1,2,3 disturbances with random 3D noise

To gain some understanding on the effect on transition of the azimuthal topology of the

initial disturbance, a systematic search for the critical amplitude threshold has been imple-

mented based on initial conditions consisting of nv = 1, 2 and 3 pairs of rolls (n1, n2 and

n3 disturbances). As previously stated, the objective is to test their presumed higher capa-

bility of destabilising 3D waves despite their lesser transient growth when compared with

n1 perturbations. Ideally, we would have liked to test azimuthal wave-numbers of up to

nv = 6 so as to allow direct comparison with the 6-jet experimental injection used in hjm,

but the azimuthal resolution this would require renders such an exploration unaffordable.

Lacking insight on the most rapidly growing axial wave-numbers, the 3D component of

the perturbation has been introduced as a random velocity field fairly evenly distributing



3.3. Results and discussion 47

among all modes an energy four to five orders of magnitude below that of the streamwise

vortices. The objective is to make sure the optimal 3D waves are activated, notwithstand-

ing the fact that some spurious energy is being wasted on irrelevant modes. No significant

differences on the critical threshold should a priori be expected from using a random 3D

perturbation instead of 3D waves within the optimal axial wave-number range. While

the approach of adding a random perturbation is of much simpler implementation, the

possibility of identifying the optimal waves by comparison with computations exciting ex-

clusively certain (optimal) wave-numbers, can be very valuable, since it may be relevant to

understanding transition and can help establish connections with recently found travelling-

wave solutions [19, 78], some of which have wavelengths in the vicinity of the optimally

destabilised 3D perturbations.

Thus, the critical threshold for n2 and n3 has been obtained and the one for n1 recom-

puted for disturbances with a random 3D component, using the initial condition presented

in (3.7). Over 100 additional runs with a spatial resolution of (Mr×Nθ×Lz = 33×33×33)

have been performed to bound the critical threshold for the three different types of initial

disturbance. Fig. 3.3 shows the critical amplitude thresholds of n1, n2 and n3 disturbances

with a random 3D noise added. The estimated asymptotic exponents, resulting from the

analysis through linear regression of the evolution of the slope, are displayed with dashed

straight lines.

A first obliged remark is that, for n1, adding a random noise instead of activating the

right axial wavelengths, as was done in the first exploration, does not alter the picture

substantially. This seems to confirm that a small packet of waves can be held responsible

for transition, the rest of modes playing no role whatsoever until the streaks have been

broken and chaotic motion has set in. The exponent, however, seems to have slightly

decreased to a value of γ1 ∼ −1.35 ± 0.02, less pronounced than the previously found

γ = −1.47 ± 0.02. Exciting non-optimal wavelengths seems to deteriorate the capability

of the 3D disturbance to bring about transition as Re is increased, as though competing

waves were disturbing one another through nonlinear interaction, thus deferring transition.

The critical thresholds for n2 and n3 appear to be of a similar order of magnitude

and both considerably lower than that for n1, for moderate values of Re. It is therefore

clear that, within the studied Re range, initial disturbances consisting of a couple of pairs

of streamwise vortices are slightly more effective than those consisting of three pairs and

considerably better than a single pair of vortices. However, it is not immediately clear

whether this will still be the case at higher Re. Assuming the asymptotic regime of the

critical threshold has more or less been established by the time we reach the right end of
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Figure 3.3: Critical amplitude threshold as a function of Re for initial dis-
turbances made up of nv = 1, 2, 3-pairs of vortices and a much
lower random 3D noise.

the explored Re range, n1 disturbances stand a better chance of dominating the transition

threshold for Re tending to infinity, as n2 disturbances produce an exponent γ2 ∼ −1.10±
0.03 and n3 disturbances a γ3 ∼ −1.06, not yet stabilised but apparently tending towards

−1. Nevertheless, the possibility that all disturbance thresholds mellow out asymptotically

to an exponent γ ∼ −1 cannot be discarded nor proved from the present study, since the

exponent stabilisation may be apparent and its evolution could resume at higher Re.

To the difficulty of discussing the current results, we must add a further hindrance,

namely that the critical amplitude at a given Re depends on the initial energy of the

3D component of the perturbation, which is assumed very small compared to the 2D

component to ensure the streak breakdown mechanism, and not oblique transition, takes

place. Chances are that the 3D perturbation energy level has an effect on the critical

threshold at moderate Re but a rather weak one on its asymptotic exponent, since as

Re increases the streaks lifetime stretches giving longer time for the 3D waves to grow,

thus making their initial energy level irrelevant as long as it is finite. Figs. 3.4a, 3.4b and

3.4c exemplify the streak breakdown mechanism for the n1, n2 and n3 types of initial

disturbance, respectively. Depicted are the time evolution of the energy of the streaks
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Figure 3.4: From top to bottom, energy-evolution plots of streak breakdown
transition examples for vortical perturbations of the a) n1, b) n2

and c) n3 types, for Re = 5012. In all three cases, the added 3D
component is a random field.
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Figure 3.5: From left to right, contours of 〈w〉z, 〈ε3D〉z and 〈ε3D〉θ, for the
n1 disturbance evolution with Λ = 20.1 and Re = 5012. Time
elapses from top to bottom, with snaphots taken at the most
relevant instants, marked with gray circles in Fig. 3.4a.

(ε2D, solid line), together with that of the 3D component (ε3D, dashed line). All three

runs correspond to Re = 5012 and initial perturbations which are just supercritical (A1 =

2.75 · 10−2, A2 = 8.13 · 10−3 and A3 = 10−2, for the n1, n2 and n3 cases, respectively). As

expected, in all three cases the streaks develop and excite 3D modes that start growing

exponentially until they acquire sufficient energy to nonlineary interact with the streaks

and bring about transition. The n1 case exhibits a slightly more complex behaviour as the

different stages of the 3D perturbation energy growth evince.

In Figs. 3.5, 3.6 and 3.7, three series of snapshots at selected times, conveniently in-

dicated with gray circles on the energy-evolution plots (Figs. 3.4a, 3.4b and 3.4c), help

illustrate the streak breakdown process for each type of vortical disturbance. On the

left of Figs. 3.5-3.7, z-averaged cross-sectional contours of the axial speed component of

the flow v = (u, v, w) are represented within the range 0 ≤ 〈w〉z(r, θ, t) ≤ 1 in order to

visualise the streaks formation and destabilisation. The center and right vertical sequences
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Figure 3.6: Same as Fig. 3.5, for the n2 perturbation. Snapshots are taken
at instants marked with gray circles in Fig. 3.4b.

of pictures correspond to energy density contours of the velocity component u3D(r, θ, z, t)

appearing in (3.4). More specifically, the central array of figures contains z-averaged cross-

sectional contours, while the right array shows θ-averaged contours on a transversal section

(r, z) ∈ [0, 1] × [0, Λ]. The aforementioned energy density averages are given by

〈ε3D〉z(r, θ, t) =
1

2

∫ Λ

0

‖ u3D(r, θ, z, t) ‖2 dz, (3.9)

and

〈ε3D〉θ(r, z, t) =
1

2

∫ 2π

0

‖ u3D(r, θ, z, t) ‖2 dθ, (3.10)

and their contours are drawn in arbitrary units. In addition, the axial coordinate of the

longitudinal sections has been conveniently scaled to aid representation. These series of

contours reveal the modal structure of the 3D waves as well as their location and destabil-

isation effects over the streaks. A fixed number of contour lines is extrapolated between 0

and the maximum energy at each particular instant of time.

Because of their simplicity, it seems natural to start by discussing the n2 and n3 cases,

shown in Figs. 3.6 and 3.7, respectively. The 3D perturbation organises itself and grows
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Figure 3.7: Same as Fig. 3.5, for the n3 perturbation. Snapshots are taken
at instants marked with gray circles in Fig. 3.4c.

exponentially in the vicinity of the saddle lines of the streaks-modulated axial velocity pro-

files, as can be seen in the snapshots at t = 120 for n2 and t = 100 for n3. Once the 3D

perturbation has reached a sufficient energy level, nonlinear interaction with the streaks

starts (270 ≤ t ≤ 300 for n2 and 200 ≤ t ≤ 220 for n3), destabilising the laminar profile

and leading to turbulence. It should be noted that the axial structure of the 3D waves is

neither long nor stretching, which could be taken as an evidence that the transition sce-

nario investigated does not contemplate the possibility of local transition or intermittency

phenomena, plausibly rendering results fairly independent of the pipe length considered. It

should also be noted that the structures shown in the longitudinal sections of Figs. 3.5-3.7

are being advected downstream and hence re-enter the domain from the left as soon as

they leave it through the right-end due to the axial periodicity.

Conversely to what happens in the n2 and n3 cases, the n1 case admits no easy inter-

pretation, as several 3D modes seem to compete at different stages of the streaks formation
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and development. In a first stage, the 3D perturbation seems to be transiently concentrated

near the wall, where the axial velocity gradients are largest (not shown in Fig. 3.5), to be

eventually absorved by a stronger perturbation that grows up closer to the pipe centre-

line, in the vicinity of the saddle lines of the axial velocity profile (t = 140 in Fig. 3.5).

This centered perturbation grows rapidly until it saturates and is then overtaken again by

near-wall components (t = 230) that eventually destabilise the streaks (t = 290) and trig-

ger transition. The wavelength of the dominant perturbation at each stage of the process

varies. Long wavelengths only become dominant in the last stages before transition.

3.3.3 Pipe length effects on transition

The streak breakdown mechanism is based on the development of a global inflectional profile

affecting the whole pipe length. The mathematical explanation is provided when study-

ing the streamwise invariance of the u2D introduced initially. The structure of equation

(2.11) preserves streamwise independence of u2D(t) due to the fact that the disturbance

has spanwise components only, whereas the basic flow is purely streamwise. Therefore,

upon streaks generation, saddle points, or rather saddle streamwise lines, appear along

the pipe, resulting in an inflectional instability of the u3D(t) components destabilising the

whole pipe length at once. The inflectional stability thus generated has been numerically

shown to follow selection rules as to which axial wave-numbers can be destabilised by the

streaks [40, 81]. The streak breakdown transition process happens to be clearly dominated

by medium-short wavelengths of order O(λ) ∼ π. Hence, no substantial discrepancies can

be expected when repeating the computations on a longer aspect-ratio pipe.

Intermittency is a commonly observed phenomenon in experimental pipe transition.

Perturbations initially localised in space lead to small patches of turbulent motion called

slugs that, while convected downstream, grow into the surrounding laminar regions to end

up filling the whole pipe domain. To properly capture this behaviour numerically, long

enough computational domains need to be set up for these long-scale turbulent structures

to show up and grow freely. The aspect ratio we have used so far (Λ = 6.4π ∼ 20) is

clearly too short to allow for intermittency phenomena, whose characteristic length has

been shown bigger [26, 67]. However, the transition mechanism studied here is global ;

hence, not depending on the formation of long structures, but of medium-short ones.

To assess the pipe-length effects on streak-breakdown transition, we have computed the

critical threshold for n1 disturbances, exciting only the optimal 3D waves, but this time on

a much longer pipe of Λ = 32π ∼ 100. To preserve a somewhat sufficient representation
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Re Acr

short pipe long pipe
4467 4.6 · 10−2 4.7 · 10−2

5012 3.3 · 10−2 3.3 · 10−2

6310 1.8 · 10−2 1.8 · 10−2

8913 1.1 · 10−2 1.1 · 10−2

12589 6.4 · 10−3 6.4 · 10−3

Table 3.1: Critical amplitude threshold as a function of Re for initial distur-
bances made up of a single pair of vortices and waves of selected
axial periodicity derived from computations on a short (Λ ∼ 20-
radii) and a long (Λ ∼ 100-radii) pipe.

of the small axial scales, the axial gridpoints count has been fourfolded to produce a mesh

of Mr × Nθ × Lz = 33 × 33 × 129. The triads li = {30, 35, 40} for |n| = 0, 1 in (3.5) have

been excited to activate the same 3D waves that were activated in the short pipe version,

i.e. ki = {1.56, 1.88, 2.19}. Table 3.1 reports the critical amplitudes for the long and the

short pipe.

It is reasonably clear from the compared results that no significant differences are introduced

by a pipe elongation, at least for computational domains of up to 100-radii.

As a last verification that pipe-length effects are of little importance in the streak

breakdown transition scenario, the evolution of n1-type disturbances defined in (3.7) and

shown in Fig. 3.4a and Fig. 3.5 has been computed on the longer computational domain.

An exact evolution cannot be expected in any case, since the random 3D energy, now

distributed among extra axial modes that were not present in the short pipe case, makes

a perfect timing unachievable. Also the slight reduction of axial resolution, inevitable to

compute on such a long domain, may have an effect on the results. Fig. 3.8 shows the

energy-evolution plot for the n1 disturbance on the long pipe, to be compared with that

on the short pipe (Fig. 3.4a).

The streaks development is completely analogous. As to the 3D component of the

perturbation, the agreement is reasonably good but for a couple of discrepancies that need

comment. First, at the very initial stages of the streaks formation, the short pipe exhibits

3D energy oscillations that are not present in the long pipe. The reason is that the long

pipe simulation takes into account modes with very low axial wave-number, not captured

in the short pipe version. These modes are known to experience large algebraic transient

growth that could be masking the organisation of the 3D waves that are to be destabilised

later by the streaks. Second, in the latter stages before transition, the short pipe seems
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Figure 3.8: Same as Fig. 3.4a, but computed on the long pipe.

to hesitate a bit longer before bringing about streak breakdown. The slightly diminished

axial resolution of the longer pipe, thus dissipating less energy in the small scales could

be at the origin of the slightly faster transition. Another possible explanation for the

faster transition on the long pipe when compared with the short one could be derived

from the random properties of the 3D noise. If, as we hypothesise, the streak breakdown

transition is global and only depends on short-medium wavelengths, the long pipe could

be behaving as a mere concatenation of short pipes, each with its particular random 3D

component. It would not be strange, then, that a particular section of the whole pipe

receives a more effective initial random field and ends up triggering transition ahead of

the rest of sections, which eventually achieve enough energy to also destabilise their region

of influence, now probably competing with another mechanism, namely the growth of the

already transitioned turbulent patches. For all this, the long pipe could be behaving as

the most effective of 5 short pipes, each with a different random noise. This is just a

simplification, since the different sections of the long pipe are not evolving independently,

but gives an idea of what could be actually happening.

Figure 3.9 shows the same pics that were presented in Fig. 3.5 except those for the largest

time at which developed turbulence is observed. The same caption times that were used

for the short pipe have been retained, although the 3D perturbation is at slightly different

stages of evolution. The fact is that streaks are evolving all throughout the process and,

therefore, influencing the location and shape of the 3D perturbation independently of its

magnitude, which depends on the pseudo-linear inflectional instability mechanism.
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Figure 3.9: Same as Fig. 3.5, but on the long pipe with Λ = 100.5. Snapshots
are taken at instants marked with gray circles in Fig. 3.8. From
left to right, t = 140, t = 230 and t = 290.

The sequence shows a very good agreement between short and long pipe results. Only

the smallest scales are slightly worse resolved in the long pipe, as some resolution has been

sacrificed to produce a longer domain. It is interesting to see how the transition process is

dominated by short-medium wavelengths that get destabilised at random locations along

the pipe length, are advected with the mean flow and end up triggering transition. Tran-

sition can be considered both local and global in nature. Local because turbulence first

appears at discrete axial positions. Global, because the spacing of these axial positions

is considerably short and no intermittent structures such as slugs have time or space to

appear and then stretch freely to end up polluting the whole domain.

3.4 Conclusions

The capability of vortical streamwise perturbations to trigger transition in pipe flow has

been assessed and an upper bound for their critical amplitude provided by means of accurate

numerical simulations based on a theoretical scenario of transition that has been proved

to be universal in many other shear flows. The computations have been carried out using

suitable time windows, making it possible to distinguish relaminarisation from long-lasting

nonlinear chaotic dynamics. The criteria for transition within the specified time horizons is

based on the comparison of relative amplitude of the two-dimensional and three-dimensional

perturbation components.

The computed amplitude threshold seems to scale differently for vortical perturbations

consisting of different numbers of pairs of rolls. Thus, our best estimates suggest that

single-paired vortical disturbances follow an asymptotic scaling law Ac ∼ Re−1.5≤γ≤−1.35,

while double and triple-paired perturbations respond to scaling laws Ac ∼ Re−1.1 and



3.4. Conclusions 57

Ac ∼ Re−1.0, respectively, for the highest Reynolds numbers explored. Although the critical

threshold shrinks faster for the single-paired vortical disturbances, two or three pairs of

rolls are more effective in triggering transition within the explored Re-range, making it

adventurous to proclaim which type of perturbations will dominate at higher Re numbers.

Results at the lower end of explored Re, where even very strong disturbances only

lead to transient destabilisation, evidence the vertical region of what is often called the

double threshold. Somewhere around Re ∼ 2000, the critical threshold tends to a vertical

asymptote and no sustained turbulence is ever achieved for lower Re.

The instability mechanisms based on the streak breakdown process presented in this

work may be difficult to reproduce in the laboratory due to the fact that this scenario

requires a streamwise initial perturbation, which is irrealisable in experiments by localised

injections that necessarily trigger three-dimensional components of some streamwise struc-

ture. In addition, our numerical explorations do not exhibit any of the transitional struc-

tures frequently observed in experiments, characterised by the coexistence or intermittency

between laminar and turbulent regimes. Further computations carried out for pipe aspect

ratio Λ ∼ 100 involving nearly 1.5 × 105 degrees of freedom confirm the global nature of

the considered instability mechanism, where long wavelengths take the lead only towards

the final stage before transition. Nevertheless, the length scale of these developing waves

is not dramatically missrepresented in the short pipe computations.

Other internal mechanisms could also be at work in the transition process and also

longer time horizons with T > Tmax should be explored in order to check for eventual re-

laminarisation of cases considered turbulent in the present work, along with its implications

in the value of the exponent, i.e., γ = γ(T ). All these issues will be addressed in future

works but they are currently far beyond the scope of our study.





CHAPTER 4

TRANSITION FOLLOWING LOCALISED PERTURBATIONS

As we already did in chapter 3, we are here concerned with providing a characterisation

of the basin of attraction of the basic laminar solution, but now focusing on localised per-

turbations as those usually inflicted in experimental studies. It has already been advanced

that the basin of attraction is not a bounded set and that its size is a meaningless mea-

sure because it is actually infinite. Thinking of the critical threshold as the boundary of

that basin of attraction that approaches a minimum norm A from the steady solution,

the question is then what sort of dependence has this norm or amplitude with respect to

the Reynolds number, A = A(Re). As previously, we deem reasonable to assume that its

asymptotic behaviour scales with Re according to

A ∼ Reγ , (4.1)

with γ necessarily negative. In this context, A represents the minimum amplitude of a

perturbation capable of destabilising the basic profile, thus leading to a turbulent regime.

Expression (4.1) implicitly involves many physical aspects that require an accurate de-

scription. First, a mathematical definition of the amplitude A appearing in (4.1) must be

provided. Second, the geometrical features of the perturbation (azimuthal symmetry or

streamwise dependence, for example) will necessarily conditionate the subspace over which

we are measuring the amplitude appearing in (4.1). Third, depending on the perturbative

methodology used, the dynamical system scenario of the problem may fall into two dif-

ferent categories. Either the perturbation may develop from an initial disturbance of the

basic flow, the fluid system evolving in an autonomous fashion, or it may develop from a

time-dependent source such as an external forcing or time-dependent boundary conditions.

Fourth, when studying the time evolution of a perturbation in an open flow, advection is

crucial, since potential turbulent transients flush down the drain, making it impossible to

classify the dynamics for long times. Once an observational time-horizon, say T , is cho-

sen, one must establish criteria to distinguish between laminar, relaminarised or turbulent

states. As a result, the critical exponent appearing in (4.1) will implicitly depend on the

time horizon chosen [5], i.e., γ = γ(T ). Fifth, expression (4.1) is only meaningful for high

values of Re.

Theoretical exponents for plane channel flows have been obtained by means of asymp-

totic methods within the framework of some particular transition scenarios [8]. For pipe

flow, recent renormalisations [71] have been suggested in order to cast different experimen-

tal results in terms of a single definition of the amplitude appearing in (4.1), providing

59
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lower and upper bounds for the value of this critical exponent that presumably lies within

the interval γ ∈ [−9/5,−6/5].

Very recent experiments carried out by Hof, Juel & Mullin [27], henceforth referred as

hjm, explored transition phenomena of pipe flow subjected to finite amplitude impulsive

perturbations for a wide range of axial speeds of the flow. The experiments reported in hjm

were carried out in a long aspect ratio pipe, with a piston that kept the mass-flux constant

during every run and where the disturbances were generated by impulsively injecting fluid

into the main flow through six slits azimuthally equispaced on a perimeter around the

pipe located at a fixed axial position far downstream from the pipe inlet, so that the

hpf flow was sufficiently developed. The experimental results of hjm clearly concluded

that the minimum amplitude of a perturbation required to trigger transition scaled as

the inverse of the Reynolds number, i.e., A = O(Re−1). The experimental procedure

of perturbing the basic flow would correspond to the category of time-dependent (non-

autonomous) perturbative methods.

By contrast, numerical simulations [40, 38] based on initial streamwise perturbations

concluded that the minimum amplitude, defined as the square root of the kinetic energy,

required to destabilise the flow, scaled as A = O(Reγ), with γ between −1 and −3/2,

depending on the type of initial vortical perturbation chosen. The discrepancy with the

experimental results might probably relate to the definition of the perturbation amplitude

used in Meseguer [40], Mellibovsky & Meseguer [38], which is not applicable to the type

of perturbations used in hjm. Nevertheless, transition in pipe flow strongly depends not

only on the amplitude of the initial perturbation, but also on its symmetry features, being

globally stable, for instance, with respect to axisymmetric perturbations [52]. The pertur-

bation mechanism used in Meseguer [40], Mellibovsky & Meseguer [38] corresponds to the

category of autonomous perturbative methods, since there is no time-dependent forcing

of the Navier-Stokes problem. It is for consistency with these studies, that we chose to

keep the same flow-driving mechanism used previously, namely a constant axial pressure

gradient, instead of implementing a constant mass-flux pipe.

The main goal of this work is to gain some insight on the internal mechanisms respon-

sible for transition by reproducing numerically the experiments of hjm with an accurate

spectral method. The main difference between the present study and hjm experimental

work concerns the principle driving the fluid along the pipe. As we pointed out earlier,

the pressure drop (or streamwise forcing) is held constant throughout each of our computa-

tions, letting the massflow vary freely as perturbations develop within the flow. Conversely,

the experiments force a prescribed massflow by means of a time-dependent forcing that,
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inflicted upon the fluid by a constant-speed sucking piston, injects or substracts energy

into or from the flow.

This chapter is structured as follows. The numerical modelling of the injected perturba-

tion is presented in §4.1, where special attention is given to relating the numerical injection

amplitude to its experimental counterpart. §4.2 deals with the injection-time dependency

of the amplitude threshold, comparing it with experimental data. A typical transitional

experiment is analised in §4.3 to demonstrate the effects of localised impulsive injections.

In §4.4, an extensive exploration is undertaken to determine the critical amplitude thresh-

old as a function of the Reynolds number. Finally, the main conclusions drawn from this

study are summarised in §4.5.

4.1 Mathematical formulation and perturbation modeling

We follow the same formulation as the one discussed in section 2.1. The parameter govern-

ing the dynamics of the problem is the nominal Reynolds number Re, based on the basic

laminar flow corresponding to a given axial pressure gradient,

Re =
aUcl

ν
=

−Π0a
3

4ρν2
, (4.2)

whereas the actual Reynolds number used in the experiments by hjm is defined as

Rea =
d U

ν
, (4.3)

where d = 2a is the pipe diameter and

U =
1

πa2

∫ 2π

0

∫ a

0

w r dr dθ (4.4)

is the mean axial instantaneous speed of the flow. Accordingly, the actual Reynolds number

Rea will be an evolving quantity in the Navier-Stokes equations representing a pressure-

driven pipe. Both Reynolds numbers coincide for the laminar Hagen-Poiseuille profile,

regardless of the pressure-driven or constant mass-flux nature of the problem. In a con-

stant mass-flux pipe, Rea is forced to remain always constant through the action of a

time-dependent adapting volume force, whereas in a pressure-driven pipe, it exhibits a

considerable drop as turbulence sets in.

In our explorations, the pipe length has been fixed to Λ = 12.8π ∼ 40 radii units and

the spatial resolution used in the domain D has been set to Mr × Nθ × Lz = 33 × 65 × 65
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(radial×azimuthal×axial) grid points, resulting in a dynamical system of nearly 1.4 × 105

degrees of freedom. The energy contents of the highest axial/azimuthal fourier modes

has been monitored for every single run to ensure the adequacy of the spatial truncation.

For subcritical runs, an energy decay of 6 to 7 orders of magnitude below that of the

basic flow has been considered enough. Transitional runs are clearly under-resolved when

turbulent motion begins. The computational costs of the resolution that would be required

are unaffordable, but it must be bore in mind that it is not the aim of this study to

simulate turbulence, but to bound the basin of attraction of the basic flow. Hence, the

resolution is certainly not sufficient for runs exhibiting transition once turbulence sets in,

but suffices to properly represent the laminar phases of the transition process. A few cases

have been run at the high Re-range with doubled axial resolution (Lz = 129), producing no

qualitative differences in the observed critical amplitude trends when compared with those

obtained with the lower resolution. Thus, the lower resolution has been kept for the bulk

of simulations, since every single high resolution run (a single perturbation amplitude at a

given Re) takes nearly 15 days on a 3GHz P4. The numerical reliability of the method has

been extensively tested for low and high resolution computations [43, 44, 40, 37].

4.1.1 Numerical model of the six-jet impulsive injection

Equations (2.11-2.16) describe the spatio-temporal evolution of an arbitrary perturbation,

the source of disturbances being prescribed by the initial condition u0 in (2.16). As men-

tioned in the Introduction, different scenarios of transition have been studied [40, 37] based

on specific initial perturbations. In the present work, no initial perturbation is to be pre-

scribed, i.e., u0 = 0, and the disturbances will be generated by the action of an external

forcing.

Figure 4.1a is a schematic plot of the injection device used in hjm, where the six

slits are equally distributed along the perimeter of the pipe so that the injected fluid jet

penetrates into the basic flow with an angle ϕ = π/3 with respect to the radial coordinate,

in a plane normal to the pipe axis. In addition, the injection is located at a particular

streamwise coordinate for which the basic Hagen-Poiseuille flow profile can be considered

as fully developed. Besides, the injection is activated following a step-like time-dependent

function, active for a prescribed injection duration. We refer the reader to hjm [11, 27] for

further details.

Numerical spectral modeling of the device shown in Fig. 4.1a is not a trivial task. To

start with, fluid is injected from the wall, thus violating the homogenous boundary condition
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Figure 4.1: (a) Six-jet injection device used in Hof, Juel & Mullin [27] exper-
iments . Fluid is injected from six azimuthally equispaced slits
around a perimeter of the pipe at a fixed streamwise location.
(b) Acceleration field ∂tu at t = 0 and z = 0, resulting from the
forcing f in (4.6). See the Appendix for details.

(2.13). Second, we do not know a priori the nature of the injected flow regarding its spatial

structure, i.e., laminar or turbulent profile and penetration capability. Third, the boundary

condition at the wall is time-dependent, in contrast with (2.13). Moreover, since the fluid

is injected impulsively, which requires a time lapse to do so, the initial condition (2.16)

cannot represent by any means such mechanism.

The aforementioned difficulties can be mostly overcome by means of adding an impulsive

volume force term f in equation (2.11), playing the role of the injection. This forcing acts

locally in time and space as an accelerator of the fluid and can be chosen and suitably

modified until the dynamics observed are in agreement with the experimental observations.

In this work, we are going to study the perturbative effects generated by introducing in

(2.11) an impulsive volume forcing term, f , localised in time and space, i.e.,

∂tu = −∇q + f +
1

Re
∆u − (vB · ∇)u − (u · ∇)vB − (u · ∇)u. (4.5)

The length scale of the experimental injection holes is far too small to be captured in a

feasible discretisation. As a result, the approach of modeling the effects of an injection,

rather than the injection itself, seems a reasonable option. Thus, it is assumed that the only,

or of outmost importance, effect of the injection is that of accelerating the fluid around
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the jet. The forcing field f appearing in (4.5) is introduced so that the resulting local

acceleration is qualitatively equivalent to the one generated by the injection experimental

device. We can properly represent the number of injection points (six) and the angle at

which the jets penetrate the pipe (π/3). The width of the jets in the cross-sectional plane

can be more or less approximated, but not so much so in the streamwise direction where a

smoother profile must be used due to the coarse axial discretisation of the domain. Finally,

the penetration of the jet becomes the least guided decision to be taken, as no data on this

is readily available.

In the present study, the forcing field has the following structure:

f(r, θ, z, t) = fa ft(t) fs(r, θ, z), (4.6)

where fa is the amplitude factor. The injection time-dependence is introduced through a

double-step function ft(t), given by

ft(t) =

{

1 t ≤ ∆tinj

0 t > ∆tinj,
(4.7)

acting as a switch that remains activated within the time interval t ∈ [0, ∆tinj]. Finally, fs

provides the spatial structure of the six-jet injection and its explicit mathematical expres-

sion is presented in the next section. Figure 4.1b shows the acceleration field inflicted by

the modelled forcing upon the stationary basic flow.

Values of the injection lapse within the range ∆tinj ∈ [2, 24] advective time units have

been used throughout the present study. It would make no sense to report on the amplitude

factor (fa) range explored, since it is only intended to scale/modulate the arbitrary original

norm of the spatial structure fs and therefore has a purely relative meaning.

4.1.2 Spatial structure of the 6-jet injection model

To construct the spatial structure fs of the forcing field f introduced in (4.5), a draft

skeleton for the acceleration field a must be generated, observing the main properties

that are desired. The consistency of this field in terms of solenoidality and boundary

conditions can be initially overlooked, as it will be resolved upon projection onto the Petrov-

Galerkin projection basis functions inherited from the numerical method used in the spatial

discretisation [40, 44].

The skeleton for the spatial structure of the forcing term fs appearing in (4.6) is written
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as a superposition of as many fields as injection points,

a(r, θ, z) =
5∑

j=0

aj(r, θ, z) =
5∑

j=0

a0(r, θ −
π

3
j, z). (4.8)

Due to the periodic azimuthal distribution of the holes, all of them at the same axial

position, only the forcing field frame for the first slit, a0, needs to be engineered, the rest

resulting from simple rotations.

The acceleration field a0 is set up as an homogeneous field of vectors pointing in the

direction of the injection (at an angle ϕ0 with respect to the radial direction), with their

magnitude modulated with independent gaussian distributions in the three natural direc-

tions: jet-wise, jet-transverse and pipe-streamwise, represented in Fig. 4.2 by x̂0, ŷ0 and

their vector product x̂0 ∧ ŷ0, respectively. Because the acceleration on the walls will have

x̂0

ŷ0

θi

(0)

ϕi

ri

ϕ0

(i)

g

Figure 4.2: Cross-sectional cartesian coordinate system used in designing the
jet corresponding to the first injection point.

to cancel out, the centre (i) for the gaussian distributions, where the acceleration is going

to be at its maximum, is drifted along the jet axis a certain distance g within the fluid

domain, so that the vector field to be projected does not severly violate the boundary con-

ditions. This helps to avoid great distortion of the prescribed vector field upon obtention

of the actual forcing to be used, since we are departing from a field which is closer to an

acceptable solution.

This vector field is most easily written in the system of cross-sectional cartesian coordi-

nates (x, y) = x x̂0 +y ŷ0, with origin at (i), depicted in Fig. 4.2. In this coordinate system,
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the vector field takes its simplest form:

a0(x, y, z) = (ax, ay) = e−Ax2−By2−C sin2( 2π
Λ

z) x̂0, (4.9)

where B and C govern the jet-transverse and pipe-streamwise widths of the jet, A its jet-

wise penetration within the fluid domain and Λ is the pipe aspect ratio. Typical values used

throughout the present work have been A = 15, B = 150, C = 75, Λ = 12.8π, ϕ0 = π/3

and g = 0.25.

The local (x, y) coordinates are related to the polar system (r, θ) according to the change
{

x = −(r cos θ − ri cos θi) cos(ϕi + θi) − (r sin θ − ri sin θi) sin(ϕi + θi)

y = (r cos θ − ri cos θi) sin(ϕi + θi) − (r sin θ − ri sin θi) cos(ϕi + θi),
(4.10)

where (ri, θi) and ϕi are the polar coordinates of the origin of the cartesian coordinate sys-

tem and its orientation, respectively. Note that in Fig. 4.2, θi is negative. These quantities

follow directly from the injection parameters:






ri =
√

1 + g2 − 2g cos ϕ0

θi = ϕ0 − ϕi

ri sin ϕi = sin ϕ0.

(4.11)

The frame of the acceleration field is finally expressed in cylindrical coordinates:

a0 = (a0)r r̂ + (a0)θ θ̂ + (a0)w ẑ = −ax cos(ϕi + θi − θ) r̂ − ax sin(ϕi + θi − θ) θ̂. (4.12)

The forcing field skeleton we have just constructed does neither respect the boundary

conditions nor the solenoidality condition. A compatible forcing field, fs, fit to be used in

(4.6), is obtained upon projection of a in (4.8) onto the dual basis of the solenoidal spectral

scheme used in this work’s spatial discretisation [40, 44].

4.1.3 Relating the numerical injection amplitude to its experi-

mental counterpart

One of the main difficulties is the quantitative comparison of the effect produced by the

numerical injection just formulated and the actual experimental one. Some insight may be

obtained from the axisymmetric jet-theory [60]. Assuming the jet penetrates a resting fluid

in a direction normal to the wall from which it emanates, and that it is locally axisymmetric

around its propagation axis, which are rough idealisations, its kinematic momentum [60] is

K′ = 2π

∫ ∞

0

u(̺)2 ̺ d̺, (4.13)
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where u(̺) refers to the jet-wise component of the induced velocity field at a distance ̺

from its axis. The value of u = u(0) on the jet axis, at a distance g from the slit is also

provided by the theory [60],

u =
3

8π

K′

νg
. (4.14)

The objective is to relate the velocity at a given point on the jet axis to the injected

massflow, on which quantity rests the amplitude definition used in the experiments by hjm.

In practice, the point where the forcing field f attains its maximum norm is chosen and

the time evolution of the jetwise-projected flow velocity at this point, induced by sustained

action of the forcing for all t, monitored. Under the assumption that the asymptotic

laminar velocity to which the fluid flow tends corresponds to that of an idealised jet, the

axisymmetric jet theory can be used to recover the amplitude of the injection that would

potentially produce this asymptotic velocity at the particularly chosen point.

The kinematic momentum defined in (4.13), which must be conserved in the jet axial

direction, can be expressed as a function of the injected massflow through one of the slits,

K′ = β
Φ2

inj

Sinj

, (4.15)

where Sinj is the cross-sectional area of the slit and β is a parameter depending on the jet

velocity profile considered (β = 4/3 or 1 for a laminar or a turbulent jet, respectively).

It will be assumed that the penetrating jet will commonly be turbulent. By identifying

our finite-area and finite-velocity jet with a zero-area and infinite-velocity ideal jet, both

carrying the same kinematic momentum, the center-line velocity of the jet at a distance g

from the slit, where our forcing is maximum, is

u =
3

8πνg

Φ2
inj

Sinj

. (4.16)

The injection amplitude A defined in hjm is given by the ratio between the total massflow

injected through the Ninj slits and the pipe massflow upon injection,

A = Ninj
Φinj

Φpipe

. (4.17)

The pipe massflow can be exactly derived from the actual Reynolds number, Rea, in the

experiments, or, equivalently, from the nominal Reynolds number before injection. In our

computations, the pipe massflow evolves, but, provided that the injection duration is kept

short, it can be considered that of the initially unperturbed Hagen-Poiseuille flow, so that

it can be expressed in terms of the nominal Reynolds number, Re, as

Φpipe =
πνa

2
Re. (4.18)
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Using equations (4.16) and (4.18), the injection amplitude defined in (4.17) can be expressed

in terms of the speed of the jet and the nominal Reynolds number,

A = Ninj

(
32

3
g∗S∗

inj

)1/2 (
u∗

Re

)1/2

, (4.19)

where g∗ = g/a, S∗
inj = Sinj/πa2 and u∗ = u/Ucl are dimensionless quantities measuring the

distance from the slit, its cross-sectional area and the jet speed, respectively. It should be

reminded that u∗ appearing in (4.19) is not the velocity of the flow at the chosen point

projected on the jet axis direction (which we shall call ug), but the velocity at that point

of the jet itself, the effects of which we are trying to model using a forcing field. While we

have access to the former, we infer the latter by assuming that they become the same as

the effects of the forcing saturate and the velocity at this point approaches an asymptotic

value.

Different jet-penetration scenarios have been suggested [71] recently in order to adjust

upper and lower bounds for the threshold exponent γ appearing in (4.1). To the authors’

knowledge, equation (4.19) provides a first quantitative approximation to a law relating an

injection property that is mensurable in under-resolved (to be affordable) computations and

the experimental amplitude. There are other factors appearing in (4.19) that are associated

with geometrical features of the slit. As mentioned before, current computational power

limitations makes accurate representation of the slits not feasible. As a result, the coarse

discretisation used in this study may lead to discrepancies due to geometrical differences

between the numerically modelled and the actual experimental injections. Nevertheless, we

expect to qualitatively mimic the experimental behaviour of the injection save for a scaling

factor to do with geometrical discrepancies and non-ideality of the jets.

4.2 Effects on transition of injection duration

The effect of the injection lapse on transition has been extensively tested experimentally

in hjm and it has been found that, although increasing the duration of the injection at a

given Reynolds number reduces the critical amplitude, this reduction eventually stagnates.

As a result, the critical amplitude does not depend on the injection duration, provided that

it becomes sufficiently long-lasting. Experimentally, it has been observed that the critical

amplitude is not altered for injection durations of ∆tinj & ∆t0 = 24 advective time units,

where ∆t0 will be considered later as a reference time interval for amplitude renormalisation

purposes. This behaviour should also be reproduced numerically for the simulations to be

considered reliable.
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Following hjm, we proceed to validate the computational model of the injection and

the scaling law provided in (4.19) by simulating different injection amplitudes and injection

lapses at Re = 4000. For a given injection lapse, ∆tinj, the amplitude factor fa is increased

until transition is obtained. A computational run is considered turbulent when chaotic dy-

namics have taken over the full domain and persist after 600 advective time units. Laminar

runs, instead, are characterised by the eventual viscous decay of the injected perturbation

after an initial transient growth.

A single run has been performed for each value of the amplitude factor. No probabilistic

behaviour was observed or expected near criticality, even at the low Re-range. The fact that

the same exact perturbation (forcing) was scaled up and down, with no random component

added on top, may be responsible for the deterministic behaviour observed in the vicinity of

the critical threshold. We would have expected probabilistic transition, had we randomly

modified the forcing shape or imposed a random initial condition, so that the amplitude was

no longer the only difference from run to run. Furthermore, the critical threshold has only

been resolved within a 2.5% accuracy, which is far beyond what is needed to determine the

critical amplitude threshold trends, and the probabilistic behaviour may well be confined

within this error, especially as Re is increased.

Once the critical forcing amplitude is known, we proceed to compute the asymptotic

value u∗ of the jet by re-starting the same critical run but with the forcing permanently

on so that the flow jetwise speed at the chosen location on the jet axis, ug(t), has enough

time to stagnate to its asymptotic value, which we identify as u∗. This recomputation is

mandatory for example in the case of very short injections, where the forcing stops before

the monitored flow speed has achieved an asymptotic value.

Figure 4.3a shows the flow speed ug(t) measured at the point of maximum forcing norm

for different critical runs carried out for ∆tinj = 2, 3, 4, 5, 8 and 16 time units. On each of

these curves the forcing was stopped at the indicated instants of time (gray circles), critically

leading to transition for longer times (not shown). Figure 4.3a also shows the behaviour of

the flow speed for the same runs, but with permanent forcing (dashed curves). It can be

observed that there is a clear stagnation of ug to a constant value u∗ in some cases. The

curve for ∆tinj = 2 exhibits some irregularities due to the fact that very large amplitudes

are needed to lead to transition for short injections and therefore turbulence sets in before

the asymptotic value of the jet speed is reached. However it is easy to obtain a sharp

asymptotic value u∗ for most of the injections, so that this value can be used afterwards in

relation (4.19) to identify its corresponding amplitude A.

In order to make a consistent comparison between numerics and experiments, we define
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Figure 4.3: (a) Jet speed, ug, measured at the point of maximum forc-
ing norm as a function of time for different injection lapses
∆tinj = 2, 3, 4, 5, 8 and 16 (solid curve ended with gray circles)
with Re = 4000. The re-run for the same critical amplitude
but with permanent forcing are represented to show the asymp-
totic behaviour of ug (dashed curves) and their saturation values
u∗. (b) Normalised threshold amplitudes from Hof, Juel & Mullin
[27] experiments (gray squares) and current computations (white
circles) with Re = 4000.

the normalised amplitude of a ∆tinj-lapse perturbation as

A(∆tinj) =
A(∆tinj)

A(∆t0)
. (4.20)

Therefore, the experimental and numerical threshold amplitudes are normalised indepen-

dently with respect to their corresponding reference saturation values for ∆t0 = 24 advec-

tive time units. With this renormalisation, the critical amplitudes become independent of

the injection geometrical features appearing in (4.19) and comparison is rendered possible.

Table 4.1 summarises the saturation values u∗ obtained from the computations and their

corresponding amplitudes according to (4.19) and (4.20), Anum and Anum, respectively. Ta-

ble 4.1 also contains the experimental data, Aexp, originally extracted from Figure 3 of hjm

[27] and normalised, Aexp, according to (4.20). Figure 4.3b shows the normalised thresh-

old amplitudes Aexp and Anum for different injection lapses. The agreement is very good,

particularly for ∆tinj > 8. Nevertheless, there is some discrepancy for short injections,

∆tinj = 2. As explained before, short injections require a larger forcing, thus triggering

transition before an asymptotic value of u∗ is identified (see Fig. 4.3a) to be used in the
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∆tinj u∗ Anum × 103 Aexp × 103 Anum Aexp

4.0 0.157 1.495 6.167 1.48 1.72
8.0 0.112 1.280 4.443 1.26 1.24
10.0 0.100 1.225 4.244 1.21 1.19
14.0 0.090 1.167 4.045 1.15 1.13
16.0 0.081 1.106 3.834 1.09 1.07
24.0 0.068 1.013 3.581 1.00 1.00

Table 4.1: Computed threshold amplitudes Anum, based on numerical mea-
surement of u∗, for comparison with those corresponding to the
experiments by Hof, Juel & Mullin [27], Aexp. The quantities
appearing in the last two rows are the normalised amplitudes ac-
cording to equation (4.20).

renormalisation. Furthermore, the forcing field has not been tuned to accomodate the large

penetration expected from the large amplitude injections required to trigger transition for

low ∆tinj. Also the fact that the experimental injection effective time is somewhat shorter

than the prescribed perturbation time (more significantly, the shorter the injection is), due

to the finite rise and decay times of the experimental boxcar signal, may account for the

discrepancy.

The same sort of analysis was carried out in hjm for Re = 2170, obtaining equivalent

results regarding the stagnation of Aexp for long injection lapses. The experiment at this

lower Re could not be reproduced numerically as it was found very difficult to obtain

sustained transition below Re = 2800. Sustained turbulence appeared extremely sensitive

to environmental noise at the low Re-range, in agreement with what was already pointed

out by Reynolds [58] in the past. This was ascertained by increasing the numerical noise

at random for different runs, which eased transition but still thwarted any possibility of

repeating the injection-lapse analysis at low Re. The incapability of the numerical model to

reproduce sustained turbulent motion at Re . 2800 can be ascribed to the pressure-driven

nature of the problem, an issue that will be addressed later on, as well as to the significance

of the perturbation exact shape [24].

4.3 Transition due to a localised impulsive injection

The transition process triggered by a localised impulsive injection will be exemplified with

a thorough analysis of a single critical run at Re = 4000. A very structured and regular

disturbance is locally enforced during an injection lapse of ∆tinj = 20 advective time units.
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The perturbed portion of fluid at injection withdrawal will nevertheless be much shorter

than ∆tinj-radii, and, tipically, even shorter than Λ/4. Even though the injection lasts

long, only the near-wall region is affected by a forcing representing very oblique jets. In

this region, the streamwise advection due to the basic flow is slow and, therefore, the

perturbed length remains short. This is clearly shown in Fig. 4.4a, where the azimuthal

vorticity of the disturbance velocity, (∇×u)θ, is plotted precisely at the end of the injection

lapse t = ∆tinj = 20. Also plotted is a 3D view of a couple of axial vorticity iso-surfaces at

(∇× u)z = ±0.3, which give a clearer view of the size of the perturbed patch as well as of

its laminar or turbulent nature.

Once the injection has ceased, the perturbed patch of flow stretches and deforms as

it is advected downstream. The patch follows a cyclic evolution by which it grows and

then splits in three sections: front, central and rear. The front and rear sections of the

perturbed region travel faster and slower than the central section, respectively, as they die

away. Meanwhile, the central region starts stretching again and the whole cycle is repeated.

As a result, the length of the perturbed region can be considered to oscillate around a fairly

constant value, albeit only transiently while laminarity is preserved. Figure 4.4b shows the

perturbation immediately after it first breaks into three smaller patches. In Fig. 4.4c, the

front and rear sections of the patch can be seen fading out as they depart from the central

section position. What brings this cyclic behavior to an end is the appearance of turbulent

motion within the perturbed region. The patch starts losing its laminarity and breaks

into turbulent bursts. At first, the turbulent bursts relaminarise at the front and back

of the perturbed structure, but soon the core of the perturbed region becomes turbulent

and starts growing monotonically. Figure 4.4d, shows the perturbation once it has become

fully turbulent and is growing fast. From this point on, the trailing edge starts to abruptly

decelerate while the leading edge accelerates, rapidly polluting the whole computational

domain through axial periodicity reinfection. In experiments, the whole pipe would have

transitioned downstream from the axial location where the trailing edge finally settles.

The local growth of the trailing and leading interfaces of the turbulent patch have been

monitored during the last stages of the transition, before the turbulent structure pollutes

the whole computational domain due to the artificially imposed axial periodic boundary

conditions. The root-mean-square (r.m.s.) of the fluctuation of the axial velocity distur-

bance, 〈uz〉rms, has been computed by taking an average over the azimuthal coordinate, and

then further averaged along the radius to produce a quantity representative of the turbu-

lence level and only depending on the axial coordinate. In Fig. 4.5, the axial positions with

〈uz〉2rms ≥ 0.5%(Ucl/2)2 have been represented with black dots for t ∈ [175, 205], evidencing

the turbulent patch length evolution as a function of time. Linear regression analyses have
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Figure 4.4: Critical run at Re = 4000, with ∆tinj = 20. Each snapshot de-
picts azimuthal vorticity contours, (∇×u)θ, of the perturbation
field (basic flow removed) on top of a 3D view of a couple of
axial vorticity iso-surfaces at (∇ × u)z = ±0.3. The pictures
correspond to t = 20, 70, 130 and 200, and have been taken from
a viewpoint travelling downstream at the same speed as the per-
turbation.

been performed with the first and last point defining the leading (LE) and trailing (TE)

edges of the perturbation, respectively. The results have been plotted in Fig. 4.5 as dashed

lines. The slope of these lines represents the propagation velocity of the leading and trail-

ing edges, which happen to be cLE = 0.754Ucl and cTE = 0.325Ucl, respectively. Taking

into account that Rea ≃ 3850 during the period we measure these speeds we can express

them in terms of the mean flow velocity as cLE = 1.567Ū and cTE = 0.675Ū, which is in



74 4. Transition Following Localised Perturbations

t

z

cLE = 0.754Ucl

cTE = 0.325Ucl

175 180 185 190 195 200 205
0

Λ/2

Λ

Figure 4.5: Growth of the turbulent patch as it is advected downstream.
Black dots represent points fulfilling the criterion that 〈uz〉2rms ≥
0.5%(Ucl/2)2. Dashed lines show the position of the trailing and
leading edges as a function of time.

reasonable agreement with experimental results for turbulent slugs [80]. We can therefore

conclude that the numerically observed turbulent structure closely resembles a slug. Be-

yond the times plotted, the leading edge velocity sharply increases, but this is probably due

to the fact that the actual size of the perturbed region is comparable to the size of the pipe

and the leading and trailing interfaces artificially interact due to the periodic boundary

conditions, the infinite pipe no longer being properly represented.

Overall, the transition process which takes the flow from the laminar to the turbulent

state is clearly catastrophic, in agreement with what is generally observed in the experi-

ments [11]. Therefore, it is not a trivial task to identify a simple instability mechanism

from the numerical computations, in contrast with former numerical studies [38] based on

particular streamwise transition scenarios.
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4.4 Critical amplitude threshold for injected perturbations

It has been experimentally shown [27] and computationally verified in §4.2 that the critical

amplitude of an injection triggering transition does not depend on the injection duration

for ∆tinj ≥ 24 advective time units. Nonetheless, it can be considered to have reasonably

settled down for ∆tinj ≥ 20. It is therefore convenient to explore the critical amplitude

threshold using this lower ∆tinj = 20, so that the perturbed length is as much shorter than

the pipe length as possible to avoid reinfection due to axial periodicity, at least within the

injection lifetime.

The critical amplitude threshold has been systematically tracked for Reynolds numbers

in the range Re ∈ [2512, 14125] and the injection duration held fixed to ∆tinj = 20 in all the

explorations. The amplitude calculation is completely analogous to the one described in

§4.2 and the same criteria used to distinguish laminar from turbulent runs are retained. The

geometrical discrepancies between experiments and the actually modelled injection, along

with the extreme idealisation of the jets, demand a normalisation of the experimental and

numerical thresholds so that they become comparable. In what follows, we normalise the

amplitudes according to

A(Re) =
A(Re)

A(Re0)
. (4.21)

where Re is the Reynolds number (actual and nominal confounded) of the basic flow before

being perturbed and Re0 = 14000.

The critical amplitude threshold results are shown in Fig. 4.6. The amplitude A, nor-

malised according to (4.21), has been plotted as a function of Re for both experiments

(gray squares) and computations (white circles), along with a dashed line indicating a

slope of γ = −1. It is remarkable how experiments and computations exhibit very similar

behaviour at high Re, which seems to evidence that the numerical model properly cap-

tures the transition mechanisms observed in the laboratory. The doubled axial-resolution

check-runs at high Re have also been plotted (black dots), with no significant change in the

critical threshold slope, which reassures us that the resolution chosen for the bulk of the

computations is sufficient. At the low Re-range, however, while experiments exhibit the

same characteristic asymptotic behaviour from Re values as low as 2000, the computations

fail to do so. In fact, the numerical simulations seem to find a vertical stability threshold

for Re ∼ 2500, at least for the type of perturbations used. This discrepancy can be ascribed

to several apparent differences between experiments and computations.

A first difference has to do with the topological modelisation of the injection. As Re is

reduced, the critical amplitude of the forcing required to trigger transition increases. For



76 4. Transition Following Localised Perturbations

Re

A

Hof, Juel & Mullin

Numerical
Num. (high res.)γ = −1

103 104

100

101

Figure 4.6: Experimental (gray squares) and computational (white circles)
critical amplitude thresholds. The high resolution (doubled count
of axial mesh-points) critical threshold check-runs at high Re
have also been represented (black dots). All sets of values have
been normalised independently with respect to their extrapolated
critical amplitudes at Re = 14000.

consistency, the computational forcing field modeling the injection has been held fixed and

merely scaled up until transition is obtained. However, in the laboratory, increasing the

injection amplitude not only scales up the induced acceleration field, but it also may modify

the topological features of the resulting jet, such as its penetration or effective width. The

forcing field chosen seems to be as effective as the experimental one for moderate and

large Re, but not so much so for low Re. However, we believe this could explain a slight

deviation, but not the spectacular discrepancy observed at very low Re.

The main difference, however, concerns the constant-massflow and pressure-driven dif-

ferent nature of the experimental and the computational pipes, respectively. As the per-

turbation grows and reorganises the flow, the actual Reynolds Rea has a tendency to drop.

Especially in short pipes, where intermittency phenomena may fill a high portion of the

pipe length. In the constant-massflow experiments of hjm, some energy may be restituted
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into the flow through the action of a constant-speed piston, so that Rea is held constant. In

the extreme case of transition, the piston is forced to pull harder in order to restitute the

enormous amount of energy dissipated due to turbulence and keep the massflow constant.

By contrast, the numerical simulation lets Rea evolve freely. As a consequence, by the

time the perturbation has grown and transition becomes probable, Rea may be much lower

than originally, rendering the experimentally calculated critical amplitude threshold not

generally applicable to our simulations, since it is not immediately apparent which value

of Rea (initial, transitional or averaged) should be used for a consistent comparison. This

difficulty in choosing when to measure Rea is in fact disclosing a more profound hindrance,

namely that the discrepancy stems from the fact that the problems being solved are indeed

different. Fortunately, this effect, which is dominant at low Re for the pipe length consid-

ered, becomes less decisive as Re is increased, which indicates that both problems tend to

become equivalent. This is clearly evidenced in Fig. 4.7, where the transient drop of Rea

relative to its initial value, the nominal Re, is followed in time for injection amplitudes that

are just subcritical. It is clear that Rea suffers a transient remarkable drop for low-Re runs

t
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Figure 4.7: Relative transient drop of Rea for slightly subcritical injections
(less than 2.5% under criticality) at different values of nominal
Re, indicated next to each of the corresponding curves.
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(over a 20% at Re = 2818), while at high Re it remains much more stable (less than 2% drop

at Re = 14125). The significant drop makes it futile to reproduce the critical amplitude

threshold behaviour at low Re, while comparison with experiments becomes reasonable as

Re is increased. To further support this view, and thus validate the obtained asymptotic

exponent for the critical threshold, this latter has been recomputed for Re >= 7943 with

a constant mass-flux version of the code. The pressure-driven results are mimicked with

pinpoint accuracy, at least within the 2.5% resolution with which the threshold has been

computed. Transition at very low Re in pressure-driven pipes causes a considerable drop

in Rea when the full domain becomes turbulent (down to as low as Rea ∼ 1800 from an

initial Re = 2500, for instance). Turbulence has a very short lifetime at this very low Rea

and relaminarisation naturally occurs well before our time-horizon is attained [20, 28].

4.5 Conclusions

The effects of the impulsive perturbative system recurrently used in pipe flow experiments

have been succesfully modelled via a time-dependent volume forcing in numerical compu-

tations. The axisymmetric jet theory has been used to define a perturbation amplitude

equivalent to the one used in the aforementioned experiments.

An extensive study of the critical amplitude of the impulsive injections that are capable

of triggering transition as a function of their time-duration has been carried out at Re =

4000 and very good agreement with experimental results has been obtained. As in the

experiments, the critical amplitude has been shown to decrease with the injection duration

to end up stagnating at a constant value for ∆tinj ≥ 24 advective time units.

The evolution of injected perturbations has been monitored with detail in order to

capture the main features of a turbulent patch for Re = 4000. Numerical computations

reproduce quite well the generation of laminar-turbulent intermittency dynamics observed

in former experimental studies. This is evidenced by monitoring the speed of the trailing

and leading interfaces of the generated turbulent slug, which are found to be roughly the

same as the ones measured in the laboratory. However, the length of the computational

pipe domain and the assumption of periodic boundary conditions makes it impossible to

study the evolution of the slug for longer times, due to the numerical interaction between

the trailing and leading interfaces.

The critical amplitude threshold has been systematically tracked for Reynolds numbers

within the range Re ∈ [2512, 14125]. The explorations have been carried out always taking
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∆tinj = 20, for which the critical amplitude can be considered to have almost settled down

to its asymptotic value. Very good agreement with experiments has been obtained at the

high-end of Reynolds numbers, where the exponential scaling A ∼ Re−1 has been clearly

evidenced. By contrast, the apparent discrepancy at low Reynolds numbers is ascribed to

the different behaviour of pressure-driven and constant-massflow pipes of finite length and

also to the nature of the injection numerical model, whose topological structure has been

held fixed in all simulations. In addition, the massflow transient drop as the perturbation

develops within the flow at low Re may explain why the computational pressure-driven pipe

seems more robust to perturbations and does not exhibit transition for Re . 2800. How-

ever, this transient drop is shown to lose transcendency as the Reynolds number is increased,

thus favoring a better asymptotic agreement between our moderate-length pressure-driven

computational pipe and the long constant-massflow experimental pipe. Some computations

at high Re with a constant-massflow version of the code substantiate this good agreement.





CHAPTER 5

GENERAL SEARCH OF TRAVELLING WAVES

A very recent approach to cast light on both subcritical transition and turbulent dynamics

in shear flows, has aimed at a direct exploration of the phase space of the dynamical system

representing the problem. Stationary and travelling-wave solutions have been identified in

wall-bounded shear flows such as plane Couette [47, 74, 76, 77] and plane Poiseuille flow

[75, 76]. Their involvement in turbulent dynamics or even in transition seems to be of

foremost importance [77]. Until very recently, the Hagen-Poiseuille basic flow was the

only known simple solution to pipe flow. In the past few years, however, a number of

travelling wave solutions have been identified [19, 78, 55], and their presence in turbulent

flow positively ascertained [26]. Traces of coherence (periodicity), presumably ascribed to

these travelling waves, have also been observed in decaying turbulence [53]. These solutions

are unstable and disconnected from the basic flow, which renders the task of computing

them utterly complex and in no way accessible by mere time integration.

This chapter is structured as follows. Section §5.1 is devoted to the mathematical

formulation of the problem of searching for travelling wave solutions. The design of the

initial guess to converge onto these types of solutions is addressed in section §5.2. Section

§5.3 yields the main results of the search, showing the main features of the solutions found.

An outline of a method for finding relative periodic orbits as a next step in complexity

is sketched in section §5.4. Finally, the main conclusions are gathered and presented in

section §5.5.

5.1 Travelling waves search method

Since the flow through a pipe has, due to the pressure gradient boundary conditions between

inlet and outlet, a broken fore-aft symmetry, it does not admit streamwise-dependent steady

solutions of any type. The simplest solutions compatible with the Navier-Stokes equations

in a pipe geometry with this type of boundary conditions take therefore the form of travel-

ling waves, which become stationary solutions if we place ourselves in a comoving reference

frame. A general method to find such solutions would be the search of fixed points of the

Poincaré map [17, 30, 72]. This approach would allow to compute periodic solutions of any

sort and, in particular, travelling wave solutions, but at the cost of requiring a complete

integration over a period every time a crossing of the Poincaré section was needed, namely

at every Newton step performed on the Poincaré application, with the computing effort
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involved.

A much more sensible approach, and the one chosen in the present work, consists of

looking for stationary solutions in a comoving reference frame travelling at the speed of the

travelling wave [16, 19, 78].

A general solution to the Navier-Stokes equations must satisfy the ODE system de-

scribed in chapter 2:

A ȧ = B a − b(a, a) + fF, (5.1)

where F is a volume forcing and f a scaling factor, the use of which will be described later.

Here we are looking for solutions that are stationary in an adequate reference frame,

moving downstream at the travelling wave phase speed. These solutions satisfy, in phisical

space,

u(r, θ, z + c t, t) = u(r, θ, z, 0), (5.2)

where c is the a priori unknown travelling wave phase speed. The Fourier-Chebyshev

coefficients resulting from the Galerkin projection must satisfy:

a
(s)
lnm(t) = atw e−iklct, (5.3)

where atw is nothing but the spacial structure of the travelling wave. Substituting the

expression (5.3) in the equation (5.1) and simplifying the exponential terms that appear

throughout, we end up with an implicit system of equations that the spatial structure must

satisfy:

−iklc A atw = B atw − b(atw, atw) + fF, (5.4)

where the volume forcing term F is taken as streamwise independent or, in the worst of

cases, assumed to travel downstream with the travelling wave phase speed. The scalar

coefficient f appearing in (5.4) is a forcing factor to allow for a continuation process aimed

at removing the forcing, whenever an homotopy transformation of the problem has been

used to track the travelling wave solutions. The resulting system of equations is then

preconditioned with the inverse of the matrix B (usually called Stokes preconditioning),

which is approximately the inverse of the diffusion operator, and has been proven a good

preconditioner of the Navier-Stokes equations [36]. We end up designing a Newton solver

looking for zeroes of the vector function

F(a, c) = a + B
−1(iklcA a − b(a, a) + fF ). (5.5)

In order to allow for the extra unknown represented by the phase speed c, an additional

equation is needed. The natural choice is an equation fixing the phase of any streamwise
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dependent coefficient, so the axial degeneracy of the solution (a continuum of solutions

related by an arbitrary axial shift exist) is accounted for.

Equation (5.5) will lead to travelling wave solutions preserving the same axial pressure

gradient as the initial guess. Travelling waves are nothing but rigid structures characterised

by constant speed downstream advection, with no axial pressure gradient or massflux vari-

ations in time. They admit two equivalent representations, one within the pressure-driven

pipe frame, another subject to the constant massflux pipe description. The method just

described lies within the pressure-driven pipe frame. In some cases, however, it may be

useful to look for travelling wave solutions preserving the initial guess massflux. This is the

case of Re continuations aimed at unfolding a whole branch of solutions or direct search of

travelling waves underlying a constant-massflux time evolution. In such cases, equations

(5.4) and (5.5) can be easily adapted to preserve massflux. An additional forcing term Cfcm,

representing the bulk axial pressure gradient required to preserve the basic flow massflux,

must be added. To account for the new unknown fcm, a new equation enforcing that the

perturbation a has no contribution to the total massflux, must be added: Q(a) = 0. Dis-

tinction will be made throughout between two different Reynolds numbers, Re and Rea,

the first one associated to the pressure-driven description, the second one to the constant

massflux description, as was already addressed in chapter 4. Associated to the two different

descriptions, two different definitions of the travelling wave phase speed arise. Whereas c

appearing in 5.3 is related to the pressure-driven description, a travelling wave phase speed

based on the constant massflux description, ca, nondimensionalised with the mean axial

velocity, can also be defined, the relationship between the two being ca = 2c (Re/Rea).

Two versions of the Newton solver were implemented. First, a direct Newton solver,

with very good convergency properties as long as the initial guess is close to the solution

sought, i.e. within the Newton solver convergency basin. The linear system produced at

each Newton step is solved using iterative Krylov -subspace methods such as GMRES. In

applications for which the initial guess could not be ensured to be close to the solution, an

enhanced convergency region was required. For these cases a damped Newton method was

implemented.

5.2 Generation of an initial guess

The basic flow constitutes the most simple travelling wave and, as such, is a solution of

equation (5.4). This trivial solution has therefore its own basin of attraction for the Newton

solver and would capture most of the initial guesses used whenever they do not fall within
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the basin of attraction of other travelling wave solutions. Consequently, choosing right

initial guesses is not a trivial task. We have followed to independent approaches to the

task of producing good initial guesses, one based on an homotopy transformation of the

problem using a carefully chosen volume forcing term, the other lying on wandering v isits

to the vicinity of travelling wave solutions along fully 3d time evolutions.

5.2.1 Homotopy transformation using a volume forcing term

A first approach to generate appropriate initial guesses is to assume a certain topology

compatible with the existence of a travelling wave solution. This is precisely the way in

which the first families of exact coherent travelling states were found in pipe flow [19, 78, 55]

and the one we chose to, at the same time, test the method and find the already found

states.

The philosophy behind the method consists in assuming the self-sustained process ini-

tially devised to explain turbulence [3, 73] as the underlying mechanism behind the trav-

elling wave subsistence. The mechanism assumes a strong vortical structure that induces

streaks to which 3D waves are unstable that nonlinearly interact feeding back the original

vortices. The approach to produce a good guess from where to converge onto the travelling

wave consists in enforcing a vortical structure using the forcing term F in equation (5.4).

Within a certain range of Re and forcing amplitude f , a stable forced travelling wave so-

lution, disconnected from the basic flow, is born from a saddle node bifurcation. Because

it is stable, it can be easily computed by simple time evolution. The forced travelling wave

obtained can be converged as much as desired with the Newton solver and then a contin-

uation process to remove the forcing occasionally ends up producing the sought travelling

wave.

The travelling wave selected very much depends on the forcing topology. The forcings

employed to find the first identified families of travelling waves were based on solutions

of the Stokes operator in a circular domain corresponding to different numbers of pairs of

rolls. Volume forcings linearly enforcing 2, 3, 4, 5 and 6 pairs of rolls produced travelling

wave solutions with 2, 3, 4, 5 and 6-fold azimuthal periodicity, respectively.

To recompute the already pinpointed travelling waves [19, 78], streamwise-independent

vortical structures with the azimuthal topology of the travelling waves sought were designed.
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Figure 5.1: C2 forced travelling wave converged through time evolution at
Re = 1250 with f = 0.1. a) 1D, 2D, 3D and total energy signals.
b) uz at a point of the pipe axis corresponding to a pretty much
converged travelling wave.

We chose the simplest vortical structures compatible with our pipe representation:

an0
= a

(s)
lnm =

{

1 (l, n,m; s) = (0,±n0, 0; 1)

0 elsewhere
, (5.6)

with n0 the number of pairs of rolls. The forcing is then chosen so that it linearly enforces

this solution:

F = −B an0
. (5.7)

By construction, a streamwise-independent stationary solution will exist as a simple homo-

topic transformation of the basic flow due to the presence of the forcing term. How-

ever, within a certain range of Re and f , this solution becomes unstable and a sta-

ble streamwise-dependent forced travelling wave bifurcates locally, from the new forced

streamwise-independent steady solution. This state we find through time evolution. Figure

5.1 shows an example of a forced travelling wave with 2-fold azimuthal symmetry (n0 = 2,

what we dub as a C2 travelling wave). The convergence towards a constant energy solution,

as can be seen in Fig. 5.1a, seems to indicate that a stationary solution or a travelling wave

is being approached asymptotically. The fact that the solution approached is nothing but

a travelling wave is clearly confirmed by Fig. 5.1b, where the periodic behaviour of uz at a

given point in the pipe axis removes all doubt.

This forced travelling wave we then converge to the desired precision using the Newton

solver.
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Figure 5.2: Forcing removal continuation process for a C2 forced travelling
wave. Plotted is the travelling wave phase speed c against f ·Rea.
The portion of the process shown corresponds to variations of f
at Re = 2200, where the intersections with the (f ·Rea = 0)-axis
correspond to unforced travelling wave solutions.

The last step to converge unto a travelling wave which is a solution of the unforced

Navier-Stokes equations is to follow a continuation process in order to remove the forcing.

This continuation process is not trivial and the forcing removal is not monotonical. A

combined f and Re continuation is required since the solution sought may not necessarily

exist within the same exact Re-range as its forced counterpart. In this continuation process,

whenever the forcing factor crosses the f = 0 axis, an unforced travelling wave has been

found that can be later continued in Re to unfold a full family of solutions with the

prescribed topology. As an example, a detail of such continuation process has been plotted

in Fig. 5.2.

5.2.2 Initial guesses from time evolution

A second approach to produce good initial guesses for the Newton solver consists in mon-

itoring the Newton residual along time evolving runs. Whenever a significant drop of the

residual is observed, there exists the possibility that the trajectory might have approached



5.3. Azimuthal discrete symmetric travelling waves 87

a travelling wave solution. If there is a neighbouring travelling wave, the Newton solver

may be able to converge it.

This method could be used in a fully turbulent run to try and identify visits to travelling

wave solutions underlying the turbulent dynamics. This we haven’t attempted to do due

to the extremely high resolution necessary to properly simulate turbulent runs. Other

trajectories that are good candidates to experience visits to all sorts of simple states, among

which travelling waves, are the edge or critical trajectories. Because of their particular

interest in transisition understanding, we will focus on these trajectories later in chapter 6.

5.3 Azimuthal discrete symmetric travelling waves

Following the method decribed in section 5.2.1, the C2, C3, C4 and C5 travelling wave

solutions already found in Faisst & Eckhardt [19], Wedin & Kerswell [78] have been com-

puted with sufficient resolution ((L,N,M) = (10, 10 · n0, 50)) imposing for each the axial

wave-number k0 that bifurcated at a minimal Re. All these solutions possess a shift &

reflect symmetry (S&R) with respect to a longitudinal plane:

S&R : (ur, uθ, uz)(r, θ, z) → (ur,−uθ, uz)(r, 2 θSR − θ, z + π/k0), (5.8)

where θSR is the azimuthal inclination of the reflection plane, that adds to the imposed

discrete rotational symmetry (Rn):

Rn : (ur, uθ, uz) (r, θ, z) → (ur, uθ, uz)(r, θ + 2π/n, z). (5.9)

The solutions have been continued in Re to unfold the C2, C3, C4 and C5 families

of rotationally symmetric travelling waves. Figure 5.3 shows the Re-continuation curves

of the computed families of travelling waves. It can be seen from Fig. 5.3a that all found

travelling waves travel downstream faster than the flow mean axial velocity, and that the

lower the azimuthal wave number, the higher the phase speed. The C3 family is the first

one to bifurcate at Re ≃ 1250. Depicted in Fig. 5.3b are the friction factors (λ) associated

with the given travelling waves. The nondimensional friction factor λ is the ratio between

the driving pressure gradient and the flow kinetic energy [60], computed as

λ =
−Π0D
1
2
ρŪ2

= 64
Re

Rea
2 . (5.10)

All the travelling waves found originate at local saddle-node bifurcations. Interestingly

enough, the lower branch travelling waves exhibit friction factors that scale with Re in the
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Figure 5.3: Re-continuation curves of the C2 (bold), C3 (long-dashed), C4
(short-dashed) and C5 (dotted) familes of travelling waves at
their optimal axial wavenumbers (k0 that bifurcated at the lowest
Rea). a) Phase speed c. b) Friction factor λ; the dash-dotted line
represents the basic flow frictrion factor λlam = 64/Re

same way the laminar basic flow friction factor does, as can be ascertained in Fig. 5.3b

where the basic flow friction factor is shown as a dash-dotted curve. At the same time, the

upper branch travelling waves possess friction factors which are compatible with turbulent

flow values.

In table 5.1 we summarise the main properties of the travelling waves found.

C2 C3 C4 C5
k opt 1.55 2.44 3.23 4.11

Rea bif. 1358.9 1250.8 1973.9 2485.2
Re 1664.2 1628.9 2604.1 3426.6

ca bif. 1.44 1.28 1.17 1.08
c 0.59 0.49 0.44 0.39

Table 5.1: Some properties of the travelling wave families computed. Tab-
ulated are the optimal axial wavenumber k, the actual Reynolds
number Rea at bifurcation, the corresponding nominal Reynolds
number Re, the actual phase speed ca at the bifurcation point,
and the nominal phase speed c.

The actual appearance of the travelling waves at their bifurcation points is shown in

Fig. 5.4. The strong streaky structure of the travelling waves, along with the slight 3D



5.3. Azimuthal discrete symmetric travelling waves 89

C2

C3

C4

C5

Figure 5.4: Aligned in rows, the C2, C3, C4 and C5 travelling waves at
their bifurcation points. From left to right, four snapshots at
z = 0, Λ/8, Λ/4, 3Λ/8 showing axial velocity contours of the per-
turbed field in the range ±0.33 ·UCL, and, fifth, axially averaged
contours. Dark contours represent speeds higher than the under-
lying parabolic profile, light corresponds to regions with lower
velocity.
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wobbling structure is made clear in the snapshots across the pipe length. Only half of

the pipe has been represented, benefiting from the shift & reflect symmetry. All travelling

waves are characterised by low speed streaks in the central region of the pipe and high

speed streaks in the outer region close to the walls.

Continuation in k and stability analysis, both within the azimuthal subspace to which

they belong and in full space, have been performed for some of the solutions. They are not

reported here as they do not add anything new to the picture presented in former work by

other authors [19, 78].

For further details and a deeper analysis of the structure of these unstable travelling

waves, please refer to the works where they were first reported [18, 19, 78]. Their relevance

in developed turbulence has been investigated both experimentally [26] and numerically

[31].

An attempt has been made to compute double-layered travelling waves, based on volume

forcings imposing two radial layers of rolls. The forcings were designed to linearly enforce

double-layered solutions of the Poisson equation in a circular domain. Whereas both forced

travelling waves and forced relative periodic orbits were found, no success was achieved

when removing the forcing and the solution always ended up falling back to the laminar

flow.

5.4 Relative periodic orbits

The next simplest solution admitted by pipe flow is the relative periodic orbit. It can be

seen as a pulsating or time-modulated travelling wave. The easiest way to track this type

of solutions, which we have not implemented in the present work, would be to look for a

static point in a Poincaré section of the equations written in a reference frame travelling

downstream at the bulk speed of the travelling wave carrying the solution. Recent work

has been able to identify relative periodic orbits emanating in a Hopf bifurcation from

a travelling wave [priv. comm. with Y. Duguet]. The solution found is, however, highly

unstable, and seems to play but a marginal role, in the best of cases, in pipe flow transition.
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5.5 Conclusions

Families of unstable travelling waves with C2, C3, C4 and C5- discrete azimuthal symmetry

have been computed by means of a Newton solver. The initial guesses have been designed

based on the self-sustained process applied to imposed azimuthal topological restrictions

on the number of streamwise rolls involved. The painstaking process includes the design of

a forcing of the right topology followed by a sweep in k, Re and forcing factor f aimed at

finding forced stable travelling waves that bifurcate in the presence of the forcing. Removal

of the forcing via continuation has led, in some cases, to the travelling waves already

reported in the literature. Further continuation in k and Re has unfolded the full families

of azimuthally symmetric travelling waves.

Their friction factors suggest that while the upper branch solutions (those closer in

energy and friction factor to turbulent flow) may play a role in the turbulent dynamics,

as has been proven in recent experimental work [27], the lower branch solutions could be

relevant to turbulent transition. Nonetheless, recent work seems to indicate that other

travelling waves with no azimuthal symmetry may outweigh these solutions in importance

when it comes to transition understanding.

It is interesting to observe how all these z-periodic solutions are short in comparison

with the length scale of the turbulent structures that appear in long pipes. The relationship

between the solutions and these long structures (puffs and slugs) is still not clear, although

experiments have reavealed that they seem to appear in certain locations of the turbulent

structures.

Extension to double-layered vortical topologies has been attempted to no avail. Analysis

with different number of pairs of rolls in the two layers is pending.





CHAPTER 6

EDGE TRAJECTORIES & UNDERLYING TRAVELLING WAVES

Transition to turbulence must be governed by states located in phase space between the

basic flow and the turbulent chaotic attractor. This region is what we call the critical

threshold. To try and identify these states we need to start by thoroughly examining

trajectories wandering about criticality, namely trajectories that never decay to the basic

laminar state nor experience transition to turbulence. It is well known from experience

that such trajectories are unstable, since no initial condition has been found, numerically

or experimentally, that triggers dynamics that live for an arbitrarily long period without

ending up decaying or transitioning. There exist however a number of numerical techniques

to compute trajectories living within a bounded region of phase space for as long as desired.

One of such techniques, aimed at finding trajectories on chaotic saddles is the PIM (Propper

interior Maximum) triple procedure [48].

It is fairly common in dynamical systems to find values of the parameters for which two

or more attractors coexist. This is clearly the case of fluid mechanics and, in particular,

of pipe flow, for which the basic flow coexists as a local stable solution with the turbu-

lent attractor for Re beyond a certain critical value. In such cases, the basin boundary

is nonempty, and the aforementioned technique can be easily adapted to find trajectories

on the boundary between basins of attraction [49]. The method, though, is only applica-

ble to chaotic saddles with a unique unstable dimension, which is very restrictive in high

dimensional systems, where the number of unstable dimensions tends to be higher. An al-

ternative general method called Stagger-and-Step exists, that can deal with chaotic saddles

with several unstable directions [69].

In cases with two attractors that are easily identifiable, further simplification of these

techniques leads to arbitrarily long computations on the boundary between basins of at-

traction. We have developed a very simple technique, based on those used in literature to

compute such trajectories in a simplified model of a parallel shear flow [68] as well as in

pipe flow [66].

This chapter is structured as follows. Section §6.1 is devoted to a thorough description

of the method used to compute trajectories wandering about criticality simply using a

time-stepping code. The way in which the several trajectories investigated in this work

is set up, is explained in section §6.2. Section §6.3 presents the results corresponding to

streak-breakdown-based critical trajectories on a short pipe, and the underlying coherent

states are analysed in section §6.4. A long pipe critical trajectory is then presented in

93
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section §6.5. Finally, the main conclusions are gathered in section §6.6.

6.1 A method to compute critical trajectories

We start a critical trajectory computation with an adequate choice of an initial condition

that, when sufficiently scaled up in energy, is capable of triggering transition. The subcrit-

ical nature of pipe flow transition ensures that scaling down this initial condition we have

access to a topologically identical initial condition that, after a more or less long laminar

transient, ends up decaying back to the laminar flow. We can then hypothesise that, inbe-

tween, there must exist an initial condition that will wander about criticallity, neither trig-

gering transition nor decaying, for an infinite lapse of time. This is precisely what we want to

compute and have therefore designed a bisect-and-shoot method to track these trajectories

for arbitrarily long times. The method consists in parallely running from the same initial

condition (ao), properly scaled up and down such that one of the computations eventually

leads to turbulence (turbulent run, aT (t), starting from aT
o = kT ao) and the other ends up

decaying to the basic flow (laminar run, aL(t), starting from aL
o = kL ao). Whenever the

distance between the two trajectories grows beyond a given tolerance (|aT (tb)−aL(tb)| ≥ ǫ)

at time tb, a bisection between the two trajectories is performed and the bisecting case run

(ab(t) for t ≥ tb, starting from ab
o = (aT (tb) + aL(tb))/2), for long enough as to discrimi-

nate whether it triggers transition or decays. The parallel computation of a laminar and a

turbulent run bounding the critical trajectory is then resumed at time tb, replacing the pre-

vious laminar (turbulent) case with the bisecting case if it happened to decay (transition).

This method, composed of a sequence of shootings and bisections, leads to a trajectory

wandering about criticality, never decaying nor transitioning to turbulent flow.

The criteria to decide whether a computational run must be considered as laminar or

turbulent have to be chosen carefully. They must clearly detect when irreversible transition

occurs (in a transient sense, since some experimental studies seem to point at a transient

nature of turbulence, retaining always some probability that the flow may relaminarise

[28]), or secular decay towards the laminar flow takes place, but at the same time must

be wide enough to allow for considerable energy fluctuation within the critical boundary.

We alternatively use perturbation energy, Etot, or enforced axial pressure gradient, (∇p)z,

to establish criteria, and fix their cut-off values depending on experience gained from the

prelimiary shooting computations run to initially bound the critical trajectory.

The method is very simple and overlooks the existence of folds in the critical surface or

even its possible fractality in certain regions of the parameter space. In this case, simple
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bisection leads to jumps that would be avoided by shooting many intermediate cases and

sticking to, for example, the bounding cases with smallest amplitude. However, despite the

jumps, the chaotic saddle living within the critical boundary is regularly visited and its

dynamics evidenced.

6.2 Critical trajectories setup

All critical trajectories computed in the present work were performed in constant massflux

pipes. Time integrations were thus performed with the time evolution code described in

chapter 2, but adapted with an extra pressure gradient term that was adapted every time

step in order to preserve the prescribed massflux. In this respect, every reference to the

Reynolds number in this chapter must be understood as meaning the actual Reynolds

number (Rea).

Taking different types of initial condition, all capable of triggering transition when

scaled up above a certain critical value of their amplitude, we have computed trajectories

on the critical threshold. We chose three different transition scenarios to check for unicity

of the saddle embedded in the critical threshold. Thus, streak breakdown based on 1, 2 and

3 pairs of vortices was first established as the transition scenario on a short pipe of Λ = 10,

the different azimuthal symmetries introduced to select, if they exist, critical trajectories

with different features. The streak breakdown initial conditions were the same investigated

in chapter 3:

u 0 = C (

u2D
0

︷ ︸︸ ︷

einθvn(r) +

u3D
0

︷ ︸︸ ︷

urand(r, θ, z) + c.c.), (6.1)

where c.c. stands for complex conjugated terms, C is a factor to scale the initial condition

to the desired overall energy and the radial structure takes the simplest polynomial form

compatible with solenoidality and non-slip boundary conditions:

vn(r) = −i n rσ−1(1 − r2)2 r̂ + D[rσ(1 − r2)2] θ̂, (6.2)

where σ = 1 (2) for n odd (even), D denotes the radial derivative, and with urand a random

perturbation velocity field of the desired amplitude, containing much lower energy than the

streamwise component. n = 1, 2, 3 for 1, 2 and 3 pairs of rolls, respectively.

All cases were run at Re = 2875 for the sake of comparison with the first reported critical

trajectories, dubbed edge of chaos [66]. A moderate resolution of (L,N,M) = (16, 16, 24)

was considered as sufficient to cast light on the salient features of these trajectories, without
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being too demanding in terms of computational cost. ∆t = 5 · 10−3 was taken as the time

step.

Finally, the task of producing critical trajectories on a long pipe of Λ = 100 was un-

dertaken. The transition scenario chosen was the generation of puffs at Re = 2000, with

the main goal of producing localised puff -like states on the very edge of criticality. In this

case, we contented ourselves of studying the bulk dynamics of such a trajectory within an

under-resolved pipe with (L,N,M) = (64, 8, 16) and ∆t = 10−2. The initial condition used

to produce local transition to puffs was taken as a single pair of the simplest streamwise

rolls, axially compressed by means of a gaussian-type dependency:

u 0 = C (ei θv1(r) + urand(r, θ, z) + c.c.) e−100 sin2 ( k

2
z). (6.3)

6.3 Short pipe critical trajectories

The three streak breakdown initial conditions lead, after different transient non-normal

growths that naturally preserved the azimuthal symmetry, to very similar chaotic long-

term behaviours, indicating that all three trajectories were eventually captured by the

same chaotic saddle within the critical boundary. This can be readily derived from the

outstandingly similar behaviour of (∇p)z, plotted in Fig. 6.1. Each of the initial pertur-

bations exhibits a different transient growth, characterised by different pressure gradient

maxima (not shown in Fig. 6.1) at time around 15-30, during which the azimuthal symme-

try is preserved. After the surge, the pressure gradient drops back and starts fluctuating

randomly within 5-35% above the basic flow value. By the time the chaotic behaviour

begins, the original spatial structure has been dismantled, the critical trajectories keep no

remembrance of the initial condition topology and their evolution becomes indistinguish-

able from one another. It can be advanced from the behaviour of (∇p)z, that some sort of

low frictional state or states are regularly visited by the critical trajectories, evidenced by

significant long drops down to within 5% of the basic flow pressure gradient.

These remarks are clearly backed by the evolution of the 1d (axisymmetric, streamwise-

independent component), 2d (non-axisymmetric, streamwise-independent components) and

3d (non-axisymmetric, streamwise-dependent components) energies, defined in chapter 3.

They are plotted along with the total perturbation energy in Figs. 6.2a-c. The energy

levels, and their fluctuation amplitude and frequency, are very similar in all cases. Also the

approaches to some sort of slowly evolving states is evidenced by consistent long drops of

the energy levels, even though the approaches are not sustained and are eventually followed
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Figure 6.1: Driving axial pressure gradient (∇p)z evolution of the N1, N2
and N3 critical trajectories.

by a flow breakdown, exhibiting a more chaotic behaviour.

6.4 Short pipe underlying coherent structures

The short pipe critical trajectories approach what is known as an edge state [68, 66], which

in the case of pipe flow turns out to be a chaotic saddle, the unstable direction pointing

outside of the critical boundary, and therefore artificially stabilised by the bisection method

used. Restricting the computation to certain invariant subspaces of given azimuthal peri-

odicity, the edge state happens to coincide with previously found travelling wave solutions

[Priv. Comm. with B. Eckhardt and T. Schneider]. This is the case in the C2 subspace

[17], due to the fact that the travelling wave has only one unstable direction within the C2

subspace that points in a direction transverse to the critical boundary and, therefore, the

travelling wave becomes an attractor within this C2 critical boundary. Other travelling

waves, with more unstable directions, some laying on the critical boundary, and possibly

relative periodic orbits or more complex solutions, together with their heteroclinic and

homoclinic connexions, could then be responsible for the chaotic saddle identified in full

space.

All these solutions underlying the chaotic saddle are unstable, and cannot, by any
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Figure 6.2: 1d, 2d, 3d, and total perturbation energy evolution correspond-
ing to a) N1, b) N2 and c) N3 critical trajectories. d) Axial
velocity uz at a point on the pipe axis fixed in the comoving
reference frame.

means, be computed through direct time evolution. We have, however, access to unstable

travelling wave type solutions via an adapted Newton method, and can therefore try and

identify these sort of solutions within the chaotic saddle.

Following a critical trajectory, it is possible to define a function in order to assess how

far the trajectory is at each time instant from being an exact travelling wave solution. It

suffices to evaluate the residual going into the adapted Newton method presented in chapter

5:

rtw(t) =‖ F(a(t), c(t)) ‖=‖ I a(t) + B
−1(iklc(t) A a(t) − b(a(t), a(t))) ‖, (6.4)

where the travelling wave phase speed c(t) is estimated from the instantaneous speed with



6.4. Short pipe underlying coherent structures 99

N1

N2

N3

rtw

t

Re = 2875

0 500 1000 1500 2000 2500
10−2

10−1

100

101

Figure 6.3: Travelling wave residual rtw as a function of time along the streak
breakdown critical trajectories.

which the structure is advected downstream, namely the speed of the comoving reference

frame in which the perturbation flow would seem to be spatially stopped, although not

necessarily stationary.

The residual just defined becomes, by construction, a clear indicator of whether the

trajectory is approaching something resembling a travelling wave solution. The instants

with a minimum of this residual are then selected as good candidates for a travelling wave

hunt, and directly fed to the adapted Newton method, with its convergence region enhanced

via damping techniques.

Figure 6.3 depicts the time evolution of the residual along the three critical trajectories.

All critical trajectories are characterised by a fairly large rapidly fluctuating residual that

experiences recurrent drops, that can be identified as possible approaches to something

resembling a travelling wave solution.

These residual drops are good candidates to be plugged as initial conditions into the

Newton solver. They naturally correspond to a slow evolution of the energy signals shown

in Figs. 6.2a-c. Close inspection of the axial velocity at a point on the pipe axis fixed in

the comoving reference frame, represented in Fig. 6.2d, clearly shows evidence of some sort

of underlying coherent structure, the actual nature of which remaining still unknown. The

residual minima coincide with the slow saturation of the axial velocity at the particular
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a) b)

Figure 6.4: Axial velocity contours (±0.44Ū) of the perturbation field at a
given cross-section for a) the N1 critical trajectory at time t =
1530, and b) the converged travelling wave. White corresponds
to negative and black to positive values.

point chosen. Constant velocity in the comoving reference frame for all points would mean

a travelling wave solution has been found. The saturation, although only temporary, could

be a trace of an underlying travelling wave solution.

Feeding these instantaneous velocity fields, corresponding to residual minima, into the

Newton solver, consistently produced convergency onto the same travelling wave solution,

save for its azimuthal orientation. As an example, axial velocity contours on a cross-section

at a given axial coordinate for both the N1 critical trajectory at t = 1530 and the converged

travelling wave are shown in Fig. 6.4. The dynamics are clearly dominated by a wobbling

excentric low speed streak, sandwiched between a pair of high speed streaks.

This travelling wave, computed at Re = 2875 and characterised by a phase speed ca =

1.555Ū , is the one recently found by volume forcing homotopy in Pringle & Kerswell [55].

Re continuation of the converged solution leads to a full branch of solutions, originating,

at a lower Re, from a pitchfork bifurcation of a symmetric travelling wave. Apart from

the S&R symmetry, this latter travelling wave posseses a simple reflection symmetry (RS)

with respect to a diameter:

RS : (ur, uθ, uz)(r, θ, z) → (ur,−uθ, uz)(r, 2 θRS − θ, z), (6.5)

where θRS is the azimuthal inclination of the reflection plane. When both symmetries are

combined, as is the case, the corresponding reflection planes necessarily cut each oder at
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Figure 6.5: Bifurcation diagrams of the travelling wave underlying the criti-
cal trajectory (Λ = 10). The bold line corresponds to the Shift
& Reflect (S&R) travelling wave, while the Reflection-Symmetric
(S&R - RS) travelling wave is represented with the dashed line.
Re = 2875 to which the critical trajectories correspond, is in-
dicated with a dash-dotted line. a) Actual phase speed ca as a
function of Rea. b) Friction factor λ.

a right angle (θRS − θRS = ±π/2). The resulting symmetry group is a shift & rotate

symmetry (S&R − RS):

S&R − RS : (ur, uθ, uz)(r, θ, z) → (ur, uθ, uz)(r, θ + π, z + π/k0). (6.6)

The bifurcation diagram is shown in Fig. 6.5.

The lower-branch symmetric travelling wave, shown in Fig. 6.6, undergoes a symmetry

breaking pitchfork bifurcation at Re ≃ 2010, generating two branches of mutually symmet-

ric travelling waves (superimposed in Fig. 6.5) corresponding to the one directly converged

from the edge trajectory. This symmetric travelling wave can be continued down in Re to

a lowest value of Re h 1386, where it emerges at a saddle-node bifurcation of orbits. k

continuation to unfold the full family of travelling waves reveals that for a different axial

wavenumber the symmetric travelling wave can be continued to much lower Re (the lowest

of all known solutions) [55], which we do not include here, since these solutions have no

representation in the studied critical trajectory. This travelling wave holds a striking topo-

logical resemblance with some of the C2 rotationally symmetric travelling waves, although

no connection has been found so far.

The Newton solver as described is restricted to the search of travelling waves with
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a) b)

Figure 6.6: a) A snapshot and b) z-averaged axial velocity contours
(±0.386Ū) of the symmetric travelling wave perturbation field
at Re = 2875. Negative velocities are coded in white and posi-
tive in black.

no rotation. The chaotic saddle embedded in the critical trajectories, however, may be

constituted by a number of simple solutions among which the travelling wave found is just

one. There might also be relative periodic orbits or even rotating travelling waves, as the one

found in Duguet et al. [17]. To allow for the convergence onto rotating travelling waves, the

Newton solver has been adapted to take into account the possibility of a rotational speed.

This has been done by considering solutions, based on expression 5.3, of the form:

a
(s)
lnm(t) = atw e−i(klc+nct)t, (6.7)

where ct is the rotating rate given in units of UCL/a rad, that is in revolutions per time

unit. Modifying the functional given in 5.5 accordingly, and particularising to the constant

massflux scenario, we end up looking for zeroes of

F(a, c) = a + B
−1(i(klc + nct)A a − b(a, a) + Cfcm). (6.8)

Feeding the same initial guesses from the critical trajectories to the Newton solver

produced, in most of the cases, the same shift & reflect travelling wave already described

and shown in Fig. 6.4b. In at least one case (N2 critical trajectory, t = 890), though,

convergence was obtained onto a rotating travelling wave that bore very close resemblance

to the non-rotating one in all respects (topology, energy contents and axial phase speed

ca = 1.517Ū), but for the shift & reflect symmetry breaking, with a very slight rotation rate
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a) b)

Figure 6.7: z-averaged axial velocity contours (±0.42Ū) for a) the non-
rotating, and b) the rotating travelling waves.

of ct = −4.67 · 10−4Ū/a rad. z-averaged axial velocity contours of the non-rotating and the

rotating travelling waves are shown in Figs. 6.7a and 6.7b, respectively. The non-rotating

travelling wave appears symmetric upon z-averaging due to its shift & reflect symmetry,

while the rotating travelling wave is clearly non-symmetric. Their topological resemblance

becomes evident when inspecting the velocity fields.

6.5 Long pipe critical trajectories

The localised rolls initial condition in the long pipe produced a localised puff -like critical

trajectory, with very fast and short wavelength dynamics in the vicinity of the trailing

edge and very slowly evolving long wavelength dynamics in the extended leading edge.

The pressure gradient time trace, plotted in Fig. 6.8, is much closer to that of the laminar

parabolic profile value (within 5%), due to the fact that the perturbation is localised in

space and that the basic flow remains predominantly unaltered in a big portion pf the

pipe length. Its fluctuation, however, is much wider, in relative terms, and chaotic, when

compared with the short pipe critical trajectories. Furthermore, no clear traces of regular

visits to any low frictional state can be spotted, except for some sharp drops of very short

duration every now and then.

This very chaotic behaviour also affects the energy time signals, shown in Fig. 6.9.
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Figure 6.8: Driving axial pressure gradient (∇p)z evolution of the puff -like
critical trajectory.

From the energy plot it is clear that most of the energy is carried by 3D modes, the flow

being strongly 3-dimensional throughout the trajectory. Visits to slowly evolving states

are much less clear than for the short pipe streak-breakdown critical trajectories. The time

signal is consistently more chaotic, as already pointed out, but at the same time extremly

homogeneous in the sense that nothing resembling a coherent solution is clearly approached

at any time.

As already stated, and in spite of the moderate resolution, especially in the axial coordi-

nate, the main features of the puff structure are clearly mimicked by the critical trajectory,

except for the overall energy level, which is lower. This comes as no surprise since the

critical trajectory dwells in the boundary between the basins of attraction of the puff itself

and the basic flow. The aforementioned features are a more or less sharp and well defined

trailing edge and an extended leading edge, the overall structure occupying approximately

25D, that is 50% of the pipe length. This is illustrated in Fig. 6.10, where θ-averaged

contours of uz are plotted with the contour lines taking ±5% Ū as the cutoff value.

Despite the fact that the time traces of all plotted quantities, including velocities in

several points of the domain, showed no clear evidence of approaching simple coherent

structures, the residual time trace helped identify a number of relatively acceptable initial

guesses for the Newton solver. The residual is plotted against time in Fig. 6.11. Although

the residual evolution is strongly fluctuating, there are clear drops at some particular time
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Figure 6.9: 1d, 2d, 3d, and total perturbation energy evolution correspond-
ing to the puff -like critical trajectory.

Figure 6.10: Long pipe critical trajectory θ-averaged uz contours at t = 860
(±0.37Ū , lowest contour lines at ±0.05Ū). Negative values are
shown in white, while positive are represented in black.

instants along the trajectory. Some of the drops immediately bounce back to high residuals,

while others seem to dwell at low values for some time before surging back.

All the flow fields corresponding to residual minima have been used as initial guesses

for the Newton solver, but to no avail. The computations indefectively converged onto the

basic flow as a particular case of travelling wave. In some of the cases corresponding to

relatively long lasting low residuals, however, the Newton method stagnated at a fairly low

residual, although not low enough as to consider the solution a fully converged travelling

wave. In these cases, the Newton method strikingly tended to symmetrise the flow field,

conserving the streamwise length of the structure virtually unaltered. Figure 6.12, depicts

θ-averaged axial velocity contours of the pseudo-converged state. It preserves the main

features of the critical trajectory from which it originates, such as its characteristic length.

Time-stepping shows that this state evolves very slowly in the beginning, although not for
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Figure 6.11: Travelling wave residual rtw as a function of time along the puff -
like critical trajectory.

Figure 6.12: Long pipe pseudo-converged state. Depicted are θ-averaged uz

contours (±0.15Ū , lowest contour lines at ±0.05Ū). Negative
values are shown in white, while positive are represented in
black.

very long time, and then soon breaks up. These minima of the residual could be nothing but

local minima, but there exists the possibility that they hide some sort of simple structure

involving other frequencies apart from the one related to the travelling wave downstream

advection. A relative periodic orbit or something more complex could be veiled behind these

local minima. Nevertheless, it cannot be discarded that truncation may also be playing a

role if the underlying structures require higher resolution to be properly represented.

6.6 Conclusions

A very simple method to compute trajectories that never trigger transition nor decay

to the laminar basic flow has been devised. Examples of these critical trajectories have
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been computed on both short (Λ = 10) and long pipes (Λ = 100) to try and clarify the

phenomenon of transition.

Different initial conditions produced equivalent long time behaviours in the case of short

pipe. The trajectories were in every case captured by the same chaotic saddle lying within

the critical threshold. In their erratic evolution, the trajectories recurrently approached

low frictional states, corresponding to very low residuals from the point of view of their

resemblance to a travelling wave. Use of an adapted Newton solver helped identify at least

two travelling wave states, one with azimuthal rotation, underlying the chaotic saddle. Re-

continuation of the non-rotating state, showed that it emerged at a Pitchfork bifurcation

of a symmetric state that could be traced back to very low Re, where it originates at a

saddle-node bifurcation. The symmetric travelling wave, although existent at Re = 2875,

for which the critical trajectories were computed, does not seem to be directly approached

at any time. None of the lower branch travelling waves discovered so far, which are known

to live on the critical threshold, was approached at any time, either. Thus, these new

travelling waves seem to bear all responsibility for transition as yet. At least in the short

pipe frame.

The same procedure on a long pipe, where turbulence is characterised by intermittency

phenomena, produced critical trajectories that were localised in space and of the character-

istic length of a puff. The critical trajectory, however, exhibits a strongly chaotic behaviour

and no clear visits to low frictional states can be identified. No underlying travelling waves

have been found behind the residual minima, although their existence cannot be completely

ruled out, as cannot be discarded the presence of more complex solutions such as pulsating

travelling waves.





CHAPTER 7

CONCLUSIONS & FUTURE PERSPECTIVES

The very recent discovery of finite amplitude solutions other than the basic flow [19, 78]

has brought renewed momentum to the long trailing problem of subcritical transition in

pipe flow. For the first time in many decades, an answer seems within reach of the scientific

community. Nonetheless, these states alone do not seem to explain transition nor developed

turbulence in full.

Two different approaches have been undertaken in the present work in order to try and

shed some light on this yet unsolved problem of subcritical turbulence in shear flows as a

chief interest of the aeronautical community. The viscous flow driven by a pressure gradient

through a cylindrical pipe (Hagen-Poiseuille flow) was chosen as the object of study and

numerical simulation as the research method.

To this end, an efficient and robust Petrov-Galerkin spectral scheme, presented and

tested in chapter 2, has been developed. It has been the essential tool upon which the

whole of the work here presented lies. The scheme has proven very reliable in reproducing

the stability analysis of the basic flow, in its linear version, and very fast and robust for

the computation of fully nonlinear time evolution.

A first approach consisted in an attempt to characterise the basin of attraction of the

stable basic flow through the estimation of the asymptotic exponential scaling law governing

the shrinking of the basin with increasing Reynolds number. The critical amplitude, as was

already known, has been shown to depend on the perturbation shape. Different types of

perturbations produced different scaling laws. In chapter 3, the focus was set on global

preferently-streamwise-independent vortical perturbations consisting of different numbers

of pairs of rolls with very small 3-d noise on top, that were capable of triggering transition

via streak-breakdown. It has been shown that different numbers of pairs of rolls produce

different dependencies of the critical amplitude threshold with Re. The scaling laws found

are compatible with experimental studies that aimed precisely at estimating the asymptotic

behaviour of the critical threshold [11], even though the perturbations studied are not

reproducible in the lab. It cannot be claimed that streak breakdown is the most efficient

way of inducing transition, and thus responsible for the critical threshold understood as

the minimal amplitude of perturbations triggering transition, but it has been shown a very

effective and global scenario, fairly independent of the pipe length considered as long as

certain critical wavelengths are allowed to grow freely. It has also been shown that at

the low Re-range turbulence is a transient phenomenon, and that relaminarisation is often

109



110 7. Conclusions & Future Perspectives

observed. It reamins an open debate whether turbulence becomes permanent beyond a

certain critical Re number [79] or stays a transient phenomenon [28]. In this latter case,

which seems to be supported by both experimental and numerical studies, an exponential

increase of turbulence lifetime with Re would explain why relaminarisation is never observed

experimentally even for moderate Re. This we cannot ascertain from the results of our work.

The same sort of study was then repeated for perturbations of the type most commonly

used in experimental settings. Thus, in chapter 4, the attention was turned to local injected

perturbations. An equivalence, in terms of the effects produced, has been proven between an

injection and a volume forcing inducing the right acceleration field on the flow. A longer

pipe had to be considered to allow for localised perturbations growth such as puffs and

slugs. The overall features of these structures have been reliably reproduced. The scaling

law obtained for this type of perturbations is in very good agreement with experimental

results [27], giving credibility to the streak breakdown mechanism as a more effective way

of inducing transition. The exponential decrease obtained for global vortical perturbations

constitutes therefore the lowest bound found so far for the critical threshold and a best

estimate of the shrinking of the basin of attraction of the basic parabolic flow as Re is

increased.

Characterisation of the critical threshold is, however, not enough to comprehend the

very nature of transition. Another approach that has very recently landed in pipe flow

research is the direct exploration of phase space. No solutions other than the laminar

parabolic profile had been found until the break of this century. The recent discovery of

travelling wave solutions has allowed to apply classical dynamical systems theory to the

pipe problem anew.

Benefiting from the solenoidal spectral Petrov-Galerkin description and its very simple

algebraic representation, an adapted Newton solver to track travelling wave type solutions

was implemented, and a volume forcing homotopy method devised to recompute these

recently discovered states [19, 78]. These states, that have been shown in literature to play a

role in developed turbulence, we have computed and continued in chapter 5. Several studies

are currently ongoing to try and understand what their implications in transition might be,

but their relevance remains bewildering, especially in the light of the recent discovery of a

chaotic state lying in the very edge of criticality [66]. The lower branch travelling waves

have been shown to rest on the critical threshold, but they are strong repellors within the

critical manifold and only become attractors or weak repellors organising a chaotic critical

state when computations are restricted to the azimuthal symmetry subspace to which they

belong.
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Critical trajectories have been investigated in chapter 6. The unicity of the chaotic sad-

dle within the critical threshold for short pipe has been tested by basing the computations

on three different initial conditions capable of bringing about transition through streak

breakdown. All three initial conditions, consisting of 1, 2 and 3 pairs of rolls, lead to the

same chaotic state, even though the azimuthal symmetry of the N2 and N3 perturbations

tried to ease convergence onto states governed by the C2 and C3 travelling waves described

in chapter 5. The state, which is chaotic, periodically visits some sort of low friction state.

These transients were fed into the Newton solver, and a travelling wave with no azimuthal

symmetry recently discovered through volume forcing homotopy [55], has been identified.

Also another travelling wave with very slow rotational speed has been found within the

critical trajectory. Because of their direct convergence from a critical trajectory, their rel-

evance in transition is believed to be of the utmost importance. Nevertheless, they only

exist in relatively short pipes and their connection with localised turbulent structures such

as puffs or slugs is beyond what can be hitherto ascertained.

To understand transition in experimental pipes, much longer numerical pipes need to

be studied as well, if only to find out what the relationship between short and long pipes

transition is. This we have also attempted in chapter 6, where critical trajectory computa-

tions on a poorly resolved long pipe are presented. The critical state remains chaotic but

localised. Its global structure is like that of the puff, but whith lower energy contents and

much higher spatial coherence. No travelling wave solution has been found underlying this

critical state, but the Newton solver stagnated at a fairly low residual, producing a very

slowly evolving state with reflection symmetry that may have the basic ingredients of the

chaotic saddle embedded in the critical threshold. It cannot be discarded that a number of

travelling wave solutions and their heteroclinic conections conform the state, but it seems

more probable that more complex solutions like relative periodic orbits or toruses may be

involved.

Some of the questions that still need an answer concern the permanent or transient

nature of turbulence and the actual underlying structure of puffs and slugs. Localised

simple states, if they exist, should be the target of future investigation, as they could

hold the key to understanding intermittency phenomena, which are typical of shear flows

turbulence. How the already found periodic states fit in the nonperiodic frame of localised

structures, as experimental studies seems to point out [26], is also a matter of wonder that

needs thorough scrutiny.

All things considered, the main ingredients of transition and turbulence seem to be now

on the table. Putting the puzzle together is what now lies ahead.
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