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Chapter 1

Introduction

1.1 Navier-Stokes Equations and Dynamical Systems

The basic laws which describe the dynamics of viscous fluids were independently formu-
lated more than a century ago by Navier (1823) and Stokes (1845). In its initial stages, it
was necessary to solve fundamental questions concerning the physical hypotheses used to
obtain the formulation: Newtonian fluid hypothesis, stress tensor structure, stick bound-
ary conditions over the rigid wall, etc. After their eventual formulation, there arose many
other questions of mathematical nature. In fact, a complete formalism was needed to
provide a comprehensive description of the solutions of the Navier-Stokes equations. Since
then, the difficulty has laid on the integration of solutions from these equations for dif-
ferent problems. The nonlinearity of the Navier-Stokes equations makes it impossible to
integrate them by use of standard analytical methods (except in the most simple cases
or under the assumption of symmetry hypotheses). Moreover, the problem is not only
technical but also conceptual. The main question arising at this point concerns the ex-
istence and uniqueness of solutions for the Navier-Stokes initial boundary problem. The
answer to this question strongly depends on the physical dimension of the fluid system.
Although existence and uniqueness theorems have been provided for the two-dimensional
case, equivalent theorems asserting the simultaneous existence and uniqueness of solutions
for three-dimensional flows, have not been demonstrated.

Apart from the pure mathematical problems of existence and uniqueness, many
other physical questions arise. On the one hand, the stability of steady flows must be
studied in order to predict new secondary flows (also termed bifurcated solutions). On
the other hand, a deeper understanding of the inner mechanisms which lead to turbulent
phenomena is needed. Turbulence theory deals with the noisy or irregular (unpredictable)
behaviour that may be exhibited by a fluid system under specific conditions. There is as
yet no complete theory of the origin of turbulence in various types of hydrodynamic flow.
Although various conjectural approaches have been reported in this advanced century, it
remains an unsolved problem. It should be noted that this kind of phenomena is completely
unrelated to the loss of analiticity of solutions of the Navier-Stokes equations. Some results
on the presence of singularities in the Navier-Stokes problem have been obtained recently
(Caffarelli et al. , 1982). Nevertheless, the question of physical turbulence (also termed
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weak turbulence) is a different and previous problem. Weak turbulence theory deals
with the transition from steady solutions to time-periodic ones and, eventually, to chaotic
regimes. In fact, these theories do not consider more aggressive conditions over the fluid
system. For example, extreme physical conditions like high negative pressure gradients
(cavitation) are out of the scope of weak turbulence theories. Moreover, it seems that
weak turbulence, which is extensively studied experimentally, is far from the situation
in which solutions develop singularities. Although some authors continue to associate
turbulence with the presence of singularities in the solutions of the Navier-Stokes equation,
it should be pointed out that weak turbulence has not very much to do with these specific
mathematical problems.

Some relevant changes have taken place in this century that could offer new hopes
for a better understanding of turbulent phenomena. On the one hand, the general theory
of dynamical systems has developed new theoretical tools which provide a deeper under-
standing of non-linear dynamics in physical systems. For example, center manifold theory
and local bifurcation methods provide essential information on the behaviour of the fluid
system near critical stages. This kind of methodology is usually termed weak non-linear
analysis. Throughout this work, it will be seen how these non-linear phenomena can be
linked with complex behaviour in fluid systems. In addition, the continuous improve-
ment of computational devices has provided the possibility of simulating fluid dynamics
problems with high accuracy. Computational fluid dynamics (cfd) offers the capability of
simulating processes which would be otherwise impossible to recover experimentally. As a
matter of fact, fluid flows observed in nature not only must be solutions of the equations,
but must also be stable. This condition is no longer necessary in cfd. On the contrary,
some cfd methodologies are capable of detecting unstable solutions not observed in the
laboratory. Furthermore, unstable solutions, undetectable in experimental research, are
sometimes the cause of the instabilization of basic flows. One of the main goals of cfd
is to formulate numerical schemes able to approximate solutions for the Navier-Stokes
equations. These schemes should be flexible in order to be easily applied in problems
of different nature depending on their features (e.g. geometry and boundary conditions,
etc...). In addition, the information obtained from the computations should not be re-
stricted to a simple array of numerical data. In fact, the mathematical structure of the
method should be useful for different purposes. From a physical point of view, it is essen-
tial not only to obtain accurate numerical approximations, but also to recover essential
information hidden behind the results.

The general theory of dynamical systems (ds) is a good point of reference to ana-
lyze the complex behaviour of fluid systems. In fact, many physical mechanisms of fluid
instabilities (pattern formation or turbulence, for example) can be understood from the
point of view of bifurcation theory (bt) and related topics (Ruelle, 1989). In fact, chaotic
dynamics in low-dimensional models systems may provide a fair explanation of turbu-
lent phenomena. To put it briefly, turbulence could be interpreted like a spatio-temporal
chaotic behaviour in infinite-dimensional dynamical systems. Unfortunately, the link be-
tween the theory of stability of fluid flows (also termed hydrodynamic stability) and ds
theory is not always direct. From a pure mathematical point of view, the nature of the
problems is completely different. On the one hand, the instabilities of fluid systems are
essentially boundary value problems, for which the formalism of partial differential equa-
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tions applies. On the other hand, bt and ds deal with finite dimensional systems, that is,
ordinary differential equations. Most of the tools developed recently in the field of ds are
only valid in the range of finite dimensional problems. Consequently, it is necessary to
provide a connection (at least from a numerical point of view) between the two fields.

A wide variety of methods is available to obtain a simplification of an infinite-
dimensional stability problem. In the second half of this century, some different modeling
techniques were formulated. The first approach to the problem of bifurcation of a fluid
flow was conjectured by Landau in 1944. Landau proposed an amplitude equation for the
square of the perturbations from the basic solution. Although it was a brilliant idea (as
was customary in Landau’s works), it was not completely justified. In fact, Landau did
not calculate the coefficients in his equation, which had to be computed a posteriori, so
it was not a predictive analysis (Landau, 1944). A second step was taken by Stuart and
Watson in 1960. Stuart postulated the form of the equation sought and, on introducing
suitable Taylor series in the amplitude of the unstable mode, found the coefficients for
the nonlinear terms (see Stuart, 1960 or Watson, 1960). From the late fifties on, a large
body of literature on the quasi-linear stability problem appeared. Nevertheless, a formal
mathematical justification for the formulation of these kind of equations had to wait for
over three decades. In 1983, Coullet and Spiegel published a complete formalism for the
computation of amplitude equations in general situations (not only in fluid dynamics prob-
lems). They made use of center manifold formalism and normal forms from ds theory and
the essential conditions of applicability of the method (hypotheses related to the structure
of the spectrum of the operators) were established (Coullet & Spiegel, 1983). In fact, the
Stuart-Watson amplitude equations were only valid under the hypothesis of discrete spec-
trum of eigenvalues of the linear operator which leads the stability. For the continuous
case, the most frequent in extended fluid dynamic systems, an alternative formulation
was needed. At the end of the sixties, Newell, Whitehead and Segel independently pro-
posed a first model of finite bandwidth instabilities (Newell & Whitehead, 1969). In this
case, modulation of the amplitude in the spatial unbounded coordinates was considered.
The new partial differential equation, also termed Ginzburg-Landau equation in theoret-
ical physics because of its similarity to a result in superconductivity, was obtained under
some ad hoc considerations of time-space scales. From that time on, this methodology
has been very productive for the theoretical research of fluid instabilities. Nevertheless, a
rigorous mathematical theory which asserts the reliability of the method does not exist.
Recently, Eckhaus reported some important results about the dynamical properties of the
Ginzburg-Landau equation (Eckhaus, 1993). The efficiency of these kinds of methods is
strongly conditioned by whether the analysis is done near criticality or not. More recently,
a quantitative analysis of the accuracy and reliability of the low dimensional models as
representations of continuous systems was reported (Wittenberg & Holmes, 1997). These
reports criticize the qualitative behaviour of the low-dimensional models in relation to the
real problem. As a matter of fact, some low-dimensional models exhibit complex phenom-
ena (like chaotic dynamics, for example), while the real system (integrated numerically in
its exact form) does not present those features.

The continuous improvement of high speed processors and the development of faster
numerical algorithms call for more sophisticated (and also more accurate) methodologies.
For instance, spectral methods (sm) are a good alternative for the previous purposes. sm
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allow to approximate solutions of the continuous nonlinear system without a loss of infor-
mation on the core dynamics of the problem under study. Moreover, the flexibility of the
methods allows to translate directly the system of non-linear partial differential equations
to systems of ordinary differential equations — that is, a finite-dimensional dynamical sys-
tem which leads the time-dependence of the problem. Finally, the use of tools provided by
the general theory of dynamical systems (center manifold theory, local bifurcation analysis,
continuation methods, etc...) is now completely justified.

1.2 The Purpose of this Work

Under the perspectives described in the introduction, the main goal of the present work
is to provide a simple methodology capable of translating the spatio-temporal dynamics
of a fluid physical problem to an adequate dynamical system of amplitudes. There are
many integration schemes and numerical libraries for the Navier-Stokes boundary value
problem whose accuracy an reliability has been extensively checked. Nevertheless, it should
be noted that normally, those schemes are not properly posed for other purposes other
than pure spatio-temporal computation. In fact, they are very closed algorithms whose
internal information may be very complicated to understand physically. Consequently, the
core aim of the present task is not only to establish a regular formulation of the Navier-
Stokes initial-boundary problem, but also to provide a connection with the main tools of
dynamical systems theories. Therefore, the task will be carried out focusing the efforts on
the theoretical physical results more than in the effectiveness of the numerical schemes We
are mainly concerned with the core dynamics of the physical problem —this is, the stability
of ordered structures, study of eigenvalues, prediction of bifurcations, etc. As a result, the
numerical schemes presented here may not be very efficient from a computational cost
point of view. Fortunately, the improvement of numerical processors and algorithmic
libraries allows us to stop bothering with those technical problems.

The second chapter will be devoted to the weak formulation of the Navier-Stokes prob-
lem. Its purpose is to establish generally the mathematical frame in which the physical
problems studied throughout the research will take place. In addition, the general frame-
work of the Petrov-Galerkin (pg) weak formalism will be introduced. Throughout this
section, the analysis will not be presented in great detail, referring technical difficulties
and computational procedures to specific chapters or appendices.

In the third chapter, a first numerical test of the numerical pg scheme will be carried
out. For this purpose, a classical problem of computational fluid dynamics will be consid-
ered. Moreover, due to the good efficiency of the formalism, not only the integration of the
problem will be given, but a linear stability analysis of the system will also be compared
with recent related works. At this stage, the power of dynamical systems tools in relation
to pure numerical schemes will be emphasized.

Chapter four deals with the behaviour of a low-dimensional fluid model obtained by
a direct truncation of the pg spectral approximations obtained in chapter three, in order
to study the effects of non-linearities in the dynamical system of amplitudes. The model
exhibits a route to chaotic regimes via universal period doubling, also termed Feigenbaum’s
scenario. Some specific numerical algorithms will be constructed in order to compute the
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period doublings with high accuracy. Again, the numerical tools constructed specifically
for those computations will be explained in referred appendices.

The fifth chapter, which is the core part of the present work, is completely devoted
to a comprehensive study of the stability of Taylor-Couette problem submitted to axial
sliding effects. In this part of the research, the tools developed throughout the work will be
used. For this purpose, pg schemes will be ad hoc modified for the geometry and boundary
conditions of the problem. Analysis will focus on the complex behaviour of the physical
system and the efforts will be devoted in order to extract the mathematical information
obtained from our numerical algorithms. As a matter of fact, the linear stability analysis
is complex enough to devote our efforts in a better understanding of the instability and
bifurcation mechanisms of the physical system.

The sixth and last chapter will provide the theoretical framework in which pg schemes
can be applied in the nonlinear stability analysis of the Taylor-Couette problem. Two
different situations will be considered. First, the formulation of the steady bifurcations
with O(2) symmetry in the framework of normal form theory will be provided. The system
of differential equations which is needed for the computation of the coeflicients of the
normal form will be obtained. The numerical integration is, at the present stage, out of the
scope of this work. Secondly, the case of steady bifurcation with O(2)—SO(2) symmetry
breaking will be considered. The normal form of the bifurcation will be obtained by
applying symmetry arguments, and the qualitative properties of secondary steady patterns
will be predicted from the analysis. Finally, this work will end with a numerical check
on the previous results. For this purpose, the pg scheme will be suitably modified in
order to consider not only sliding effects but also an imposed axial pressure gradient. The
numerical evidences obtained from concluding results will confirm that it is possible to
recover steady bifurcations with an explicit O(2) symmetry breaking and that the generic
bifurcation is 2-codimensional.
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Chapter 2

Navier-Stokes Equations:
Weak formalism

2.1 General Procedure

The non-dimensional Navier-Stokes equations of viscous incompressible fluids are con-
sidered:

du+(u-Vju = Au—-Vp (2.1)
V-u = 0. (2.2)

These equations govern the dynamics of a fluid inside an open bounded subset Q(C R")
with boundary I', where n may have the values 2 or 3. The unknown quantities are the
components of the velocity field u(r, t) and the dynamic pressure p(r, t). It should be noted
that the process on non-dimensionalization (L-space, L?/v—time) of the problem carries
out a system of non-dimensional control parameters which describe the global dynamics of
the system. For our purposes, it will be only necessary to consider an abstract parameter R
!, In addition, equations (2.1) and (2.2) are complemented with boundary conditions over
I" and the initial value prescription. For the sake of simplicity, in this section, homogeneous
boundary conditions over I will only be considered

u(r,t) =0, Vrel, Vt (2.3)
and the initial value prescription
u(r,0) =up(r) (Vre) (2.4)

For the mathematical setting of this problem, it is necessary to consider two different
Hilbert spaces. First, the spectral space of divergence-free vector fields H,, which is a
closed subspace of £2(Q)", is considered

He ={uec L2(Q)",V-u=0ur=0} (2.5)

!Usually, this parameter is the Reynolds number R = %, where U, L and v are typical velocity, length
and kinematic viscosity respectively, featuring the physical system.
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where £2(Q)" is the space of square integrable functions over the n-dimensional domain,
and n is the unit normal vector at each point over the boundary I'. Secondly, the projection
space H, defined as follows

H, = {6 € H§(Q)",V -1 =0} (2.6)

will be considered 2 In this case, H3(Q2)" is a subspace of £2(2)" whose functions have
distributional square-integrable derivatives up to the first order, vanishing over the bound-
ary. Our aim is to obtain a dynamical system from the previous initial boundary value
problem. For this purpose, that the weak solution of the previous problem will be assumed
as belonging to ‘H,;. The weak form of the Navier-Stokes equation is obtained by project-
ing equation (2.1) over the space H,. For the projection process, the standard hermitian
product between integrable vector fields is considered

<ab>= / a* - bdQ. (2.7)
Q

Therefore, the weak form of the Navier-Stokes equation will be
<a,0u>+ <, (u-Vju>=<a,Au>—-<a,Vp>, VaecH, (2.8)

One of the advantages of this formalism is that the final equations depend only on the
velocity field u. In fact, the pressure term < @, Vp > in equation (2.8) vanishes:

<ﬁ,Vp>:/

ﬁ*-Vde:/V-(ﬁ*p)dﬂ—/pV-ﬁ*sz/(ﬁ*p)-szO
Q Q Q

r

where Green’s Theorem has been used. Notice that the condition for the last term in the
previous equation to be zero is that @ has only tangential component over the boundary
I'. Therefore, the method only requires this inviscid boundary condition on the test-
projection functions of #,. In fact, some authors (Moser, Moin & Leonard, 1983) make
use of this less restrictive condition . Nevertheless, our functions @ belong to H3(Q2)"
and they vanish over the boundary I'. Finally, the spatial dependence disappears and a
dynamical system, which only involves u, is obtained:

%A(ﬁ, u) = L(a,u) +N(a,u,u), YaeH, (2.9)

where A, £ and N stand for the linear forms

A(a,b) = /a*-bdQ (2.10)
Q

L(a,b) = /a*-AbdQ (2.11)
Q

N(abyc) = / a* - [(b - V)cld® (2.12)
Q

%In fact, some authors only consider non-slip condition, this is, a subspace of H#'(Q2). In this case, the
functions do not require the vanishing condition over the boundary.
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for all integrable vector fields a, b and c. Besides, the incompressibility condition (2.2) is
identically satisfied.

This is the general procedure to obtain the weak form of the Navier-Stokes equations.
Nevertheless, some ad hoc modifications must be done to set up the method in different
problems. Nevertheless, such changes are only technical.

2.2 Fluid Driven by its Boundary

One of the possible methods to induce a motion in a contained fluid system consists in
driving it by its boundary. The non-slip boundary condition ensures the local propagation
on kinematic energy near the frontiers. As a result, the velocity field changes with respect
to the spatio-temporal variables. Consequently, many interesting questions arise. First,
it would be interesting to have information about the existence of attractors in the phase
space of the associated dynamical system. These attractors may be represented by steady
patterns, time-periodic structures or turbulent flows in the physical space. Secondly, the
study of the stability of steady flows, represented by stationary points in the phase space,
is necessary in order to predict a prior: bifurcation processes and new structures. Theory
related with the existence and stability of attractors of the Navier-Stokes equations has
been developed by other authors (Temam, 1988), although the study of these features is
out of the scope of the present work.

For previous purposes, weak formalism, suitably modified, explained in section 2.1
is the adequate framework. In this section, the weak formalism for non-homogeneous
problems (driven boundary fluids) will be developed. The next section is devoted to
the stability of the the solutions obtained by this method or by direct integration of the
Navier-Stokes equations.

We consider again the Navier-Stokes equations for incompressible fluids in two or
three dimensions

du+(u-Viju = Au—-Vp (2.13)
Vu = 0 (2.14)

defined in a closed subset 2 whose boundary is I'. In addition, let us suppose that the
velocity profile prescribed over I' is given in the form

u(r,t) [p=ur(r), vVrerl (2.15)

and the initial conditions are given by the equation (2.4). The methodology developed in
section 2.1 is no longer valid in this case. The main reason is that the boundary conditions
are not homogeneous. In spite of these differences, it is possible to avoid the problem easily.
For this purpose, it will be supposed that the velocity field can be split up as a sum of
two objects

u=uy + uy. (2.16)

On the one hand, u, is a stationary solenoidal vector field which verifies the boundary
condition (2.15). In fact, u, can be obtained analytically by the use of the Stream-Function
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formalism. To sum it up:
V-ou,=0, uplr=ur, uplrn=0, 0uy,=0 (2.17)

On the other hand, uj is an unknown field which will be obtained by the weak formalism.
To put it briefly, u will play here the role of u in section 2.1. Thus, up € Hs, vanishing
identically over I'. The weak form of the problem will now be

<a, 0y >+ <, [(up +up) - V](up +up) >=<1,A(up +up) > (2.18)

where the pressure term, which vanishes in the projection, has been already omitted. As
a result, the dynamical system for the unknown field uy is obtained

d
aA(ﬁ, up) = M(Q, up, up) — N(Q, up, up) + P(a, up) (2.19)
where M and P are defined as follows

M(ﬁa uhaup> = ‘C(ﬁv uh) _N(ﬁv uh7up) _N(ﬁ7 up7uh> (220)

P(a,up) = L(7,u,) — N (@, up, up) (2.21)

where the notation described in equations (2.10), (2.11) and (2.12) has been used. The
splitting in equation (2.19) has been carried out in order to identify the different nature
of each term. First, M stands for the part of the equation which depends linearly on the
unknown field up. Secondly, P is the forcing term which only depends on the solenoidal
field u,. Finally, N represents the non-linear part in u, also called convective term.

2.3 Hydrodynamic Stability

Yet not every solution of the equations of motion, even if it is exact, can actually
occur in Nature. The flows which appear in Nature, must not only obey the equations of
fluid dynamics, but must also be stable. This is the essential principle of hydrodynamic
stability (hs). In fact, not only is of physical interest to obtain solutions for the Navier-
Stokes equations, but also to study their stability with respect to perturbations which may
arouse the generation of new patterns, oscillatory phenomena and, eventually, turbulent
stages. Mathematically, the problem of the hs of a steady flow may be very complicated.
The geometry and symmetries of the system can be of great aid simplifying the problem.
This section deals with the general setting of the problem of hs from the standpoint of
dynamical systems theory. For this purpose, weak formalism, explained in previous section
is the adequate frame.

Consider again a fluid system under the same hypotheses stated in previous sections.
Moreover, assume that a steady solution vp is known by analytical or weak formalism
methods. Thus

(v-V)vg =Avp —Vpp, V-vp=0 (2.22)
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where, pp is the steady pressure field. In order to study the stability of the fluid system,
the flow vp and the pressure field pp are simultaneously perturbed with a time-dependent
vector field u(r,¢) and a time-dependent scalar field p'(r,t), respectively. As a result, the
perturbed system is

V(I‘, t) = VB(r) + u(r, t)a p(r, t) = pB(I') + p'(r, t) (223)
where u must be a solenoidal field which vanishes over the boundary of the fluid system
V-u=0, u(rt)|p=0, Vit (2.24)

Formal substitution of the perturbed fields (2.23) in equation (2.1) leads to the law which
governs the dynamics of the perturbation

O+ [(vg+u)-V](vg+u)=A(vg+u)—V(ps +p). (2.25)

Formally, weak solutions to the problem described by equations (2.24) and (2.25) can
be obtained using the formalism developed in section 2.2. The integration of the previous
problem would lead to a complete description of the evolution of the perturbation field
u. Unfortunately, this task is not always feasible. In some particular problems, whose
geometric features require an special treatment, an alternative is needed. In fact, hs only
deals with questions about the stability of the basic flow. The prediction and computation
of secondary flows which appear after the bifurcation are, at the present stage, out of the
scope of linear hydrodynamic stability 3.

Under the hypothesis of infinitesimal perturbations, the stability of a basic flow is
governed by the lowest order terms in equation (2.25). Consequently, the non-linear term
(u-V)u can be neglected as a first approximation for our practical purposes. As a result,
the mathematical problem simplifies considerably. The linearization process leads to a
simpler equation

du=Au—(vg-V)u— (u-V)vg — Vp/, (2.26)

where identity (2.22) was used. In contrast with equation (2.25), (2.26) is a quasi-linear
partial differential equation which is easier to solve. A suitable method is needed not
only to compute the presence of bifurcations, but also to extract essential information
of physical interest, like spatial periodicity of secondary patterns, velocities of propaga-
tion, etc..., from the system of equations (2.24) and (2.26). At the present stage, many
different approaches to solve the problem are available. As a matter of fact, the pres-
sure term Vp' plays a crucial role. One possible option is to annihilate the pressure
term making use of the stream-function formalism for the perturbation. This procedure
leads to the usually termed Orr-Sommerfeld-Squire equations (see Drazin & Reid, 1981
or Canuto et al. , 1988). From a numerical point of view, the boundary value prob-
lem associated with the Orr-Sommerfeld formulation may have convergence problems
(Mercader et al. , 1991). In fact, the previous formulation based on potentials or simi-
lar techniques (Marqués, 1990) lead to high order eigenvalue problems constrained to low

8We do not consider here weakly non-linear theories which provide more information in bifurcation
processes.
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order boundary conditions. As a result, numerical instabilities may appear in the com-
putation of eigenvalues of the operators. Perhaps, a more compact formulation may be
provided making use of Petrov-Galerkin weak formalism. The main purpose is not only
to construct a suitable scheme for the linear stability analysis, but also to use it for the
nonlinear integration of the problem under study.

2.3.1 Petrov-Galerkin Scheme

It is possible to span the Hilbert spaces H, and H, of section 2.1 with a suitable set of
solenoidal bases. In some cases, those bases may coincide-that is, #,; and H, are the same
functional space. If it is the case, the projection process which leads to the weak form of the
problem is usually termed Galerkin scheme. Nevertheless, for computational purposes, it
is necessary to select a modified basis in H, with respect to the set of functions which spans
Hs. Sometimes, this slight modification is needed to take advantage from orthogonality
properties between the two sets. In this situation, the projection process is properly called
Petrov-Galerkin scheme.

Let Hy and H, be two function spaces spanned by two sets of solenoidal fields {ug}
and {0}, respectively:

H, = Span{ug}, Hp, = Span{i,}.

In order to obtain a dynamical system of amplitudes from the problem (2.26), we suppose
that our unknown perturbation field can be expressed as a linear combination of the set
of functions H;

u=> ag(thug(r), VugeH, (2.27)
B

where the amplitudes ag are related with the time evolution of u. After a formal substi-
tution of expression (2.27) in equation (2.26), we proceed to project it over each element
of H, leading to a system of ordinary differential equations

A(ua, u) = M(iag,u) Vu, € H, (2.28)
where the elements A and M are

A(lig, 1) =< @, Y _ agug > (2.29)
B

M(iig, ) =< s, A Y agug — (vp - Zagug — Zagug Vlvs > (2.30)
B

The system (2.28) can be expressed more explicitly in the following form

Aupis = Magag (2.31)
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or
ap = Sapag, (2.32)

where S5 = A;%Myg and where Einstein’s convention of addition with respect to repeated
indexes has been used. Besides, the matrix elements A,g and Mg are defined as follows

Agg =< Uq,ug >, Myg =<1Uq,,Aug —(vp-V)ug —(ug-V)vp > (2.33)

System (2.32) represents the temporal evolution of the perturbation field. In fact, an, =0
is always a solution of the previous system, representing the trivial solution u = 0 of (2.26).
Therefore, the stability of the basic flow vp will be implicitly conditioned by the spectrum
of eigenvalues of the matrix S,3. So far, the general frame has been considered. Depending
on the geometry, symmetries and dimension of the problem, the previous formulation
may be prohibitive from a numerical point of view. One of the most frequently used
methods to reduce computational cost is the usually termed normal mode analysis. This
method considers specific functional structure of the perturbation field u depending on
the geometric features of the problem. Typically, the perturbation is supposed to depend
exponentially on the time variable and periodically in the extended (unbounded) spatial
ones
u(ru, T'p, t) = v(rb)eAt ik I'u‘

In the previous expression, r,, and r; stand for the unbounded and bounded spatial vari-
ables, respectively. On the other hand, k denotes the wave number (which may be real
or integer, depending on the symmetries of the problem) featuring the spatial periodicity
of the perturbation. Besides, v is a vector field that depends on the bounded spatial
variables and which needs a special treatment. The exponential factor A is complex in
the general case, and the sign of its real part will lead the linear stability of the basic
flow. The exponential structure of the time dependence is justified by the differential
operator J; whose integration would lead to the exponentiation of the matrix S in the
general frame. This kind of analysis greatly simplifies the computations because of the
linearity of equation (2.26). On formal substitution of those exponential structures in the
perturbation equation, each spatial mode k decouples leading to a system of independent
boundary value problems for the unknown field v (see Lin, 1955 or Chandrasekhar, 1961).
In fact, this kind of analysis will be used throughout chapters 5 and 6 taking advantage
of the symmetries of the particular problem under study (Taylor-Couette problem). Un-
fortunately, when the physical system has no symmetries, the previous general frame of
analysis is needed. This is exactly what is going to be carried out in next chapter for the
regularized flow in a square cavity.
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Chapter 3

Regularized Driven Cavity Flow

3.1 Introduction

For several years, steady flow in a square cavity has become a popular example for testing
and comparing numerical methods in computational fluid mechanics. The simplicity of
the problem makes it possible to check easily numerical schemes of integration for the
Navier-Stokes equations of incompressible fluids. In fact, two different versions of the
problem can be considered. In a first version, the fluid velocity is zero on three sides of
the square and is tangent to the fourth side with a uniform profile. This configuration (also
termed Driven Cavity Flow, see Fig. 3.1) has been analyzed extensively by many authors
(see Gupta & Manohar, 1979, for example) with finite-difference schemes. Because of the
discontinuity of the velocity vector field at the corners of the driven side, the solution
of the Navier-Stokes equations is singular at these points (the vorticity is infinite). As
a matter of fact, it is difficult to measure with precision the effect of a singularity on
the accuracy of a solution. This is particularly true when the mesh is refined so that
the computation points are drawn nearer and nearer to the corners even if the values
of the vorticity at these points are not involved in the numerical scheme as is usual for
finite-difference approximations.

A regularized alternative was proposed by Bourcier and Francois in 1969. They con-
sidered the same problem but with a regularized profile instead of a uniform one. This

u = (U(],O)

Figure 3.1: Geometrical configuration of the Driven Cavity Flow. On note the disconti-
nuities of the velocity vector field in the top corners.
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s

Figure 3.2: Experimental grooved channel problem (from Taneda, 1979).

problem is commonly termed Regularized Driven Cavity Flow (rdcf). In this chapter, not
only the numerical schemes used throughout the present work will be tested in this second
case, but also new results related to the stability of the problem will be provided.

The initial motivation of this theoretical (but more physical) problem lies on a deeper
understanding of instability processes in grooved channels (Taneda, 1979). From a physical
point of view, it is interesting to study the effect of cavities in channel flows (see figure
3.2). The presence of this kind of irregularities in the boundary profile may affect the
stability of the global flow. From a mathematical point of view, the advantages of this
problem lie on the regularity conditions that must be imposed on the boundary. This fact
makes the essential distinction between the rdcf and the Driven Cavity Flow (dcf) which
has singularities and can not be analyzed with Galerkin methods.

The grooved channel problem was first numerically studied by Korczak & Patera, 1986,
with spectral elements methods, although a former integration model can be found in
Peyret & Taylor, 1983. Nevertheless, the previous analyses were not concerned with the
stability of the flow. More recently (Shen, 1991), a comprehensive analysis has been
reported making use of temporal-evolution schemes in order to detect instabilities of the
steady flow. As a matter of fact, the absence of symmetries in rdcf makes it impossible to
simplify its analysis in order to compute steady solutions. The rdcf is a pure non-linear
two-dimensional problem in which the two coordinates must be integrated simultaneously
being impossible to compute steady solutions by analytical methods.

This chapter is devoted to the stability analysis of the rdcf as a first test of the Petrov-
Galerkin formulation in primitive variables. For this purpose, the weak formalism ex-
plained in chapter 2 will be used. First, the steady solution for a wide range of Reynolds
numbers will be computed numerically. This will be done using a simple continuation
algorithm. Secondly, the stability of the solution will be studied making use of the linear
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Figure 3.3: Physical configuration of the Regularized Driven Cavity Flow

criteria of eigenvalues. Some comparison with former works will be provided in order to
focus the power of hydrodynamic stability tools in comparison with temporal-evolution
methods.

3.2 Physical Description

The rdcf considers a two-dimensional square box of side length L filled with an incom-
pressible fluid of kinematic viscosity v. The velocity profile is prescribed over the boundary.
On the one hand, the top side is moving in the horizontal direction with a regularized law
over the top corners u(z, Lo/2) = (Up[(2x/Lp)? — 1]2,0). On the other hand, the velocity
field vanishes over the left, right and bottom sides (see figure 3.3).

All variables will be rendered dimensionless, using Lg/2, 2v/Ly as the unit length
and velocity respectively. Therefore, in the frame of chapter 2, the fluid domain is =
[—1,1] x [-1,1], and the boundary is the union of the following sets:

I ={(z,y) e R%z=1ye[-11]} T2={(v,y) e R*%ze[-11,y=1}
I3 ={(z,y) e R* e = -1y c[-11]} Ty={(z,y) e R*%ze[-1,1],y=-1}.
4
That is, I' = U I';. Besides, the non-dimensional boundary conditions are now:
i=1
ulr,rer=0  uln,=(R(z* —1)%,0) (3.1)

where R is the Reynolds number R = LyUp/2v (which differs by a factor % with respect
to the Reynolds number considered by other authors), and Up is the maximum of the
imposed velocity on the side I's. It should be noted that the velocity profile imposed over

I’ is continuous and differentiable over the corners (—1,1) and (1,1).
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3.3 Mathematical Setting

Our aim is to apply to this particular problem the formalism developed in chapter 2. For
this purpose, it is necessary to identify each element. First of all, we are dealing with a
two-dimensional problem in Cartesian coordinates. Moreover, the physical configuration
does not provide any kind of symmetry which could make the analysis simpler. Besides, the
boundary conditions are not homogeneous. As a result, we must use the method explained
in section 2.2. For this purpose, we will suppose that the solution of our problem can be
split up in two parts: uy and up. On the one hand, u,, is a solenoidal field which satisfies
the boundary conditions over the four sides I'y, I'9, I's and I'y. On the other hand, uy is
the homogeneous weak approximation which vanishes at the previous boundaries:

u=u,+up V-u,=0 V-ou,=0 (3.2)

Up |ry,rer, =0 up [r,= R[z? —1]!1 up [r=0
The non-homogeneous part up, can be obtained analytically from the curl of a a pseudo-
stream function v defined over ). A detailed explanation of the computation of ¢ and u,

can be found in appendix A.l. In this case, a solenoidal vector field compatible with the
boundary conditions is

up = 3By~ Dy + V(& — 1%~ Rely + D& ~ ) — 1) (3.4)

The next step is to consider the unknown field uy as an element of the space Hs where
our weak approximation will be expanded. Regarding the procedure explained in section
2.2, the weak form of the problem will be

<,0(up +up) + (up +up) - V(up +up) — A(up +up) >=0, VaeH, (3.5)

3.4 Basis for H; and H,: The Petrov-Galerkin Scheme

The spaces Hs and H,, will be spanned with solenoidal vector fields whose structure is pre-
viously conditioned by the divergence-free constraint in cartesian coordinates. Therefore,
a possible set of bases is

Hp = Span{i;;} M, = Span{uy} (3.6)
where

;= (—fi(2)3; (), fi(@)3; (v))  um = (—fu(@)gi(¥), fi(@)q(v)) (3.7)

where ' means derivative with respect to the variable of the function in each case. The
previous set of functions identically satisfies the divergence-free condition. Furthermore,
they are bases of the Hilbert spaces Hs and H,, respectively. As a result, it is possible to
expand our weak approximation uy as a linear combination of the functions ug;

uh(xvyvt) = Zakl(t)ukl(x7y> (38>

kLl



3.5 Dynamical System of Amplitudes 27

It will be assumed that 11;; and uy; are continuous and differentiable vector fields defined
in © such that their components vanish over the boundary I'. The selection criteria of
the functions fi, dj, fr and g; depends on the geometry of the problem and the boundary
conditions. On the one hand, the functions f; and g¢; contain orthogonal polynomials
factorized with a suitable low order binomial factor which ensures the boundary conditions.
On the other hand, the functions f; and g; have the same factors. In addition, they are
factorized with the weight function associated with the orthogonal polynomials used in
the scheme. Depending on this weight function, the bases uy; and 0;; are not exactly the
same. This scheme is not exactly a Galerkin one but it is more properly called Petrov-
Galerkin. This method has been used before by other authors in different problems with
different geometries (Moser, Moin & Leonard, 1983), (Canuto et al. , 1988).

For this problem, we have selected Tchebychev polynomials whose associated weight
function is w(z) = (1 —x2) /2. As a result, the component functions fx, g;, f; and §; are

file) = (1 —2*)®?Ty(x) gi(y) = (1—y?)®?Ti(y) (0<i,j < M) (3.9)
fr(@) = (1 —2®)’Th()  aily) =(1-y*°Ti(y) (0<kI<M),  (3.10)

where M is the order of our spectral approximation.

3.5 Dynamical System of Amplitudes

Substituting the spectral approximation (3.8) into the weak form of the Navier-Stokes
equation (3.5), we obtain a dynamical system for the amplitudes ay;

dakl ..
Aijklw = (Bijm — Cif;'kl)akl — NijkimnkiGmn + b%, (0<i,5 < M) (3.11)

where we have used the Einstein$ convention of addition with respect to repeated indexes
and where the index R stands for those terms which depend implicitly on the Reynolds
number. The previous coefficients which appear in the last equation are the following
matrix elements:

Ajjrr =< 0gj,up >, (0 <45,k 1 < M) (3.12)

Bijii =< U, Aug; >, (0 <4,j,k,1 < M) (3.13)

Citw =< g, (ugr - V)up + (up - V)ug >, (0 <1i,5,k,1 < M) (3.14)
Nijkimn =< Qi5, (U - V)umn >, (0 <4, 5,k,1,m,n < M) (3.15)

and the forcing term is

biy =< Wj, Aup — (up - V)up > (0< 4,5 < M) (3.16)
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These objects are explicitly analyzed in appendix A.1. Symbolically, the dynamical system
can be expressed as follows

Aa = Lra — N(a,a) + br (3.17)

where Ly stands for a linear operator which depends on a control parameter R, N is a
bilinear form acting over a and bgr is a time-independent forcing term due to the non-
homogeneous boundary condition.

3.6 Steady Solutions

For an arbitrary value of R, the stationary solutions of our problem can be obtained by
equating the right-hand side of (3.17) to zero. This provides an non-linear system of
algebraic equations whose solutions depend implicitly on R !,

g(a,R) = Lra — N(a,a) + br =0, (3.18)
where the explicit structure of g(a,R) is
9ij(a,R) = (Bijrt — Ciipt)art — Nijktmnkiamn + biy, (0 < d,5 < M) (3.19)

The system (3.18) can be solved numerically, making use of an iterative Newton-Raphson
algorithm (Keller, 1977). For this purpose, starting from an initial point a?j representing

/2

a steady solution for some value of R, a forward Euler’s predictor point a;j is obtained
locally over the branch g(a,R) = 0, which always exists, provided that drg # 0 (implicit
function theorem)
1/2

aij/ = a?j + (0rg)ijoR. (3.20)
The previous expression provides a first approximation of the steady solution for the
slightly increased R + dR Reynolds number. This predicted value is then corrected, being
used as the starting iteration point for the Newton-Raphson algorithm

ol = o — [Dg(a™] 1 g(a™)]u, (3.21)

where Dg is the Jacobian matrix of the field g evaluated at the n!-iteration point
[Dg(a™)]ijri = Biji — Ciin — Nijklpqaz(;z) — Nijmngal™), + by, (0<i,j<M) (322

The convergence of the method depends strongly on the basin of attraction of the sta-
tionary point in phase space. The presence of neighboring numerical branches depends on
the truncation order of the spectral approximation. In any case, as long as the number of
modes is increased, it seems to be only a stationary branch which is easy to follow for a
wide range of values of the control parameter R. By increasing the parameter R from zero,
the steady solutions can be obtained. Some particular cases are depicted in figures 3.4, 3.5

!Provided that the Implicit Function Theorem applies.
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and 3.6. From definitions (3.3) and (3.8), the stationary velocity field will be expressed as
follows

M M
u=u,+ Y Y aduu(z,y), (3.23)

k=11=1

where the coefficients agl are the coordinates of the stationary point computed previously.
The stream function of the problem is

M M
U= (z,y) + > ap(a® — 1) — 1)*Ti(2)Ti(y). (3.24)
k=1 [=1

The vorticity field, which measures the local torsion, will be obtained evaluating the curl
on u

M M
wg = (V x u)y = 8puy — dyug = > Y aylfyy (@)au(y) + fe(2)g (v)] + V x u, (3.25)
k=11=1

From the previous pictures, the progressive increasing of the size of the vortices which
appear near the corners can be observed, as well as the clear distinction between two
different zones of vorticity. On the top center part, a high clockwise vorticity can be
observed. This is produced by the horizontal profile of the velocity imposed on the top
side of the box. On the top right part, a high counter clockwise vorticity is present. This
has been produced because of the collision of an almost horizontal jet with the right side of
the box. An almost circular crown around the center vortex can be observed as a constant
low vorticity zone. The velocity fields represented in the figures have been normalized to
the maximum value in each case.

3.7 Linear Stability of the Steady Solutions

Provided that the matrix A in equation (3.17) is non-singular, the dynamical system of
amplitudes can be expressed in the following form

a= f(a,R) (3.26)
where the vector field f is
f(a,R) = A7 [Lra — N(a,a) + bg] (3.27)

Let ag be a solution of the equation f(a,R) = 0 for R = Ry. The stability of ag will
be governed by the spectrum of eigenvalues of the Jacobian matrix of f evaluated at the
point (ao, Ro)

J = Daf(aa 7') |(a0,R0) (328)

Let Spec{J} = {\ € @ | det(J — AI) = 0} be the spectrum of the matrix J and Aps its
eigenvalue with maximum real part. Then, the basic flow, represented by the stationary
solution ag in the phase space, will loss its stability if ReAps > 0.
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Figure 3.4: Above, featuring the stream lines for the specific values R

In the middle, the corresponding velocity vector fields.

distribution.
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3000. In the middle, the corresponding velocity vector fields. At the bottom, the vorticity

Figure 3.5: Above, featuring the stream lines
distribution.
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the corresponding velocity vector fields. At the bottom, the vorticity

featuring the stream lines for the specific values R
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Figure 3.7: Critical Reynolds R, number obtained as a function of the increasing number
of spectral modes n. The two dotted horizontal lines represent the threshold limits of

stability predicted by Shen. On note that our computations converge just in the middle
of Shen’s band (Shen, 1991).

The existence of a local branch of solution near the point (ag,Rp) is ensured by the
Implicit Function Theorem provided that f is analytic and J is non-singular in a neighbor-
hood of that point (Keller, 1977). The presence of local bifurcations near a = ay depends
on the evolution of eigenvalues of J in the complex plane. As a particular case, if one pair
of complex conjugated eigenvalues cross the imaginary axis, then a Hopf bifurcation oc-
curs. As a result, the flow loses its stationary structure and instabilizes to a time-periodic
pattern whose periodicity is directly related to the imaginary part of Ay;.

For a wide range of values of the Reynolds number R, the spectrum of J has been
computed. In figure 3.7, the computed critical Reynolds number as a function of the
order of spectral approximation has been sketched. Numerical evidence predicts a Hopf
bifurcation from the basic flow for R, = 10250. This result has been tested by increasing
the number of modes of the spectral approximation. The numerical value of R is in the
range of the interval predicted in (Shen, 1991), where time-evolution schemes were used to
detect the instability. In Shen’s analysis, two threshold limits of stability are given. They
are depicted as dotted horizontal lines for the values R = 1.00e4 and 1.05e4. Curiously,
our computations converge just in the middle point of Shen’s band. From a numerical
point of view, a linear analysis of stability is much more accurate than a time-integration
scheme in order to detect a Hopf bifurcation. In fact, these kind of high-dimensional
dynamical systems may be very stiff, and time evolution methods may need very long
transient periods of time to observe the instability.

Beyond the Hopf bifurcation, the present analysis is no longer valid. As a matter of
fact, the continuation algorithm can only compute the evolution of steady solutions. On
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the contrary, Shen’s temporal-evolution algorithms are capable of computing secondary
time periodic patterns. In addition, it is possible to make a stability analysis of the time
periodic flows as R is further increased. In fact, this is just what Shen’s study does,
detecting a secondary Hopf bifurcation in the range of values [1.2e4,1.25e4], where the
flow loses its time periodicity, appearing another rational independent frequency (Ruelle-
Takens scenario). It is supposed that further increase of the Reynolds number would lead
to turbulent stages according with classical theories. In order to detect accurately the
value of R for the secondary (Neimark-Sacker) Hopf bifurcation, it would be necessary
to make a Floquet analysis on the periodic orbits in phase space representing the time-
periodic flow. At present stage, this task is out of the scope of this work and it could
be prohibitive from a computational cost point of view, due to the huge dimension of the
associated dynamical system of amplitudes. Nevertheless, this kind of analysis is what is
going to be done for a low dimensional model of the regularized driven cavity flow, where
the dimension of the associated dynamical system is four.



Chapter 4

Feigenbaum’s Universality in a
Low Dimensional Fluid Model

4.1 Introduction

In this chapter, a low-dimensional truncated model for the Regularized Driven Cavity Flow
is obtained by truncating a dynamical system of amplitudes for the velocity field. This low-
dimensional model exhibits a route to chaos via a period doubling cascade (Feigenbaum’s
Scenario). In order to compute with high accuracy the period doubling, a numerical
method based on the first order variational equations for the Poincaré map has been
developed. This methodology can also be applied to the analysis of bifurcations of periodic
orbits in low dimensional ordinary differential equations. This method allows to detect
not only of the presence of bifurcations but also the computation of stable and unstable
periodic orbits. In addition, the chaotic dynamics of the system is analyzed in detail by
the computation of the Liapunov exponents for long-time integrations. For this purpose,
a numerical scheme based on renormalization techniques has been constructed.

Low-dimensional analysis of fluid systems are of interest in capturing the essential
features of their behaviour. Many fluid dynamics problems have been analyzed from this
point of view (Lorenz, 1963, Boldrighini et al. , 1979). Of course, the results obtained
from these models may not be directly related to experiment. However, they capture
the basic qualitative features of the physical system. On the other hand, this kind of
models usually provide relevant information about the core dynamics which governs the
fluid motion.

In this chapter we introduce a low-dimensional analysis for the flow of a viscous fluid
contained in a square box whose boundary conditions have been previously regularized
(regularized driven cavity flow). As explained comprehensively in chapter 3, the regu-
larization is needed for the analiticity of the solutions near the top boundaries. In this
case, a spectral Legendre-tau scheme in primitive variables will be considered in order to
obtain a dynamical system of amplitudes for the velocity field. By truncating the system
up to order four, a relatively simple system of ordinary differential equations is obtained.
Its analysis is the main subject of this chapter. We have found the stationary solution
at low Reynolds number using a continuation method. This solution loses stability at a
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Hopf bifurcation, and exhibits a cascade of period doubling bifurcations. Making use of
a method based on the first order variational equations for the Poincaré map, the period
doubling transitions have been computed with suitable accuracy. The methodology in-
troduced here has a wide range of applicability in low dimensional ordinary differential
equations. This method allows to detect the successive period doublings and to compute
not only the stable periodic orbits but also the unstable ones.

For the truncated system, a period doubling scenario is obtained in the Reynolds
number interval [503.26, 512.468]. This period doubling cascade verifies Feigenbaum’s
universality. Beyond Re = 512.468 the system presents chaotic behaviour. This is reflected
in the Liapunov exponents analysis and in the Fourier spectra of the time evolution. Also,
the structure of the Poincaré section of the attractor presents fractal features.

The chapter is organized as follows. In section 4.2, the physical description of the
problem and the truncated four dimensional model are introduced. Besides, the steady
solution is computed and monitorized as the Reynolds number is increased. Finally, the
stability of the steady solution is studied. In section 4.3, the Newton-1%-order variational
method is developed in order to detect the period-doubling scenario in the model. The
bifurcations are computed with high accuracy; the resulting cascade is presented in detail.
Section 4.4 is devoted to the study of the chaotic zone. On the one hand, Liapunov expo-
nents are computed as a function of the Reynolds number, showing the chaotic behaviour
of the orbits. Moreover, periodic windows are obtained inside the chaotic region. On the
other hand, the results of the Fourier spectra from time integrations of the dynamical sys-
tem are presented for different regions of the parameter space. Finally, a Poincaré section
of the strange attractor is visualized in order to analyze its self-similar (fractal) structure.

4.2 Physical Description: The Model

The problem consists of a two-dimensional square box of length L filled with an incom-
pressible fluid, whose velocity is given on one box side, and zero on the remaining ones,
the so called cavity flow. The physical variables of the problem will be rendered dimen-
sionless by considering Ly/2, Ly/2v as the unit length and velocity respectively, being v
the kinematic viscosity. The fluid domain is Q@ = [—1,1] x [-1, 1], in Cartesian coordinates
(z,y). The boundary conditions are:

#(£1,y) = (0,0), #(z,—1)=(0,0), o(z,1)=1dp = (R(z*—-1)%0) (4.1)

where R is the Reynolds number R = Lyvg/2v and vy is the maximum of the imposed
velocity on the side y = 1.

The problem will be approximated in a weak spectral-scheme. The velocity field be-
longs to a free-divergence function space. Therefore, the incompressibility condition is
automatically satisfied. On the other hand, the Navier-Stokes equation is projected over a
space of solenoidal functions which verify suitable boundary conditions in order to cancel
the pressure term. The technical details of the method are explained in appendix B.

The low-dimensional truncation of Navier-Stokes equations with the boundary condi-
tions described in the previous section yields a four-dimensional dynamical system for the
amplitudes.
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where the coefficients are numerical constants, which can be found in appendix B.

The functional structure of (4.2) is too complicated to find analytical expressions for
the stationary points and their dependence on the Reynolds number R. Nevertheless, the
steady solution will be computed numerically, making use of a continuation method in the
same way as in previous chapter (Keller, 1977). The solution branch is sketched in figure
4.1. The eigenvalues of the Jacobian matrix over the solution branch have been computed
as a function of the parameter R. For values of R less than 321.5 the eigenvalues have
negative real part. For R = 321.5 one pair of complex conjugated eigenvalues crosses
the imaginary axis. As a result, a Hopf bifurcation appears. The orbit generated by this
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4.3 Period Doubling Scenario: The Newton—1%-Order-Variational
Method

For the sake of simplicity, the system (4.2) will be symbolically expressed as ¢ = f(z, R).
Let ¢(t,xz) be the solution of this system with z as initial condition (¢(0,z) = z). In
order to fix the stability and secondary bifurcations of the periodic orbit v that appears
in the Hopf bifurcation, the associated Poincaré map has been considered. Let Il be a
hyperplane transversal to 7 in a point g € . The equation of Il is (z — xp) - £ = 0,
where ¢ satisfies the transversality condition - f(zg, R) # 0. Therefore, the Poincaré map
is given by

P: Iy, — Il

v — Plz) = é(r(z),z) (4.3)

where the function 7(z), the time of flight needed to return to Ilj, is obtained from the
equation (¢(7(z),z) —xp)-& = 0. The eigenvalues of DP lead the stability of the periodic
orbit . Formally, DP is the restriction to IIy of the solution of the first variational
equation

j = Dwf(¢(t7 l‘o),R)J ) ‘](0) =1 (44)
where 14 is the identity matrix in IR*. The projection on Il is given by

pp=@,- BRSO, (4.5)

f (x(h R) €
where DP is a 3—dimensional square matrix.

The method we have termed Newton-1%!-order-variational is an algorithmic process
which allows to compute simultaneously the periodic orbit, its period and the differential
of the corresponding Poincaré map (for a detailed explanation of the numerical algorithms
used here, see appendix C). From an initial point z* near to v and an estimate T* of the
period, the following system is integrated in time

i:f(va) ’ 37(0) .'L'k
{jZ[Dxf(m,R)]J L J0) =1 (4.6)

Next, the accuracy of the period is improved by integrating the dynamical system (4.6)
up to a final time ¢t = T*+1 which satisfies the cut condition with the Poincaré section:

(T, 2%) —a¥) - € =0 (4.7)

This time can be obtained iteratively by linear interpolation or the bisection method. As
a result, a final predictor point z¥*1/2, the Jacobian matrix and DP evaluated at T*+1
are computed:

$k+1/2 _ ¢(Tk+1,$k), Jk—l—l _ J(Tk—l—l)

f@*R)®¢ k
Kk 07 ln

4.8
DPk-I—l — (14 o ( )



4.8 Period Doubling Scenario: The Newton-1%t-Order- Variational Method 39

Figure 4.2: Featuring algorithmic process of computation of periodic orbits as fixed points
of the Poincaré map.

Finally, the predicted values are slightly modified making use of a corrector Newton process
over IIj (see figure 4.2):

o = oF 4 (15 — DPFH) (R T/2 — k) (4.9)

The matrix 13 — DP**1 must be invertible, i.e., its eigenvalues must be different from
1. But when ~ is stable, the eigenvalues have moduli less than 1, and the computed
bifurcations are associated to period doublings. The critical eigenvalue crosses the unit
circle by —1 and the matrix of the Newton method is invertible. For k — oo, ¥ gives a
point of the orbit, regardless of whether it is stable or not. T% and DP gives its period
and eigenvalues.

This iterative process is the core of a continuation method in the Reynolds number R.
The process starts with a R value at which + is stable. The first periodic orbit is obtained
by time evolution of (4.2). For a new value of R the iteration begins with a point and
the period of the previous orbit; if the orbit suffers a period doubling bifurcation, the new
guiding period will be twice the former period.

In order to simplify the computations, the vector ¢ and the coordinates for Iy are
held fixed throughout the global process. The transversality to v is ensured by moving x
along the orbit to a point p, where the angle between the orbit and the Poincaré section
is maximum:

fa,R)-€ _ f(py,R) €
17, RYTEN = 7 (s RONTE]

By gradually varying the Reynolds number R, the bifurcating values of R can be
computed with high degree of accuracy (by successive linear interpolation, for example).

Ve €y (4.10)
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Rcrit d
R'=503.26263580
R?=507.98889404 §1=1.113
R3=512.23403718 §2=23.361
R*=512.41575610 §3=4.3590
R5=512.45743770 §%4=5.0208
R%=512.4657403824 | §°=4.6436
R7=512.4675281125 | §=4.6773
R3=512.4679103180 | 6" =4.6689
R%=512.4679921795

Table 4.1: Critical Reynolds numbers R™ and ratios " for the period doubling cascade.

As a result, a period doubling cascade has been detected, whose first nine period doubling
bifurcation values has been detailed in Table 4.1. The table also shows the ratios between
the successive bifurcation intervals, defined by:

Rn+1 — R"

It can be observed that these ratios approach Feigenbaum’s universal constant ép =
4.66920160.... The R" sequence has an accumulation point at R* = 512.468014489.

The first one, two, four and eight periodic states are sketched in figure 4.3, where we

have represented the amplitude z versus the amplitude v.

4.4 Properties of the Strange Attractor

Liapunov exponents provides information about the stability of the orbits and the long-
term behaviour of the volume elements in phase space (i.e., contraction and expansion).
For the present problem, the first order variational dynamical system has been considered
again

i::f(xvfo ) z(0) =
J=[Df(z,R)]J , J(0) =14

(=)

(4.12)

where now x( is a point of the orbit or the attractor to be considered, obtained after a
suitable transient time integration. Making use of the previous system, the eigenvalues f;
of the matrix J can be computed for all values of ¢t. Therefore, the Liapunov exponents of
the dynamical system will be:

o log|pi|
Aj = lim ——2- =1,2,3,4 4.13
J TEI;O T (.7 » <y ) ( )

When the Liapunov exponents are evaluated directly by integrating the first variational
equations (4.12), numerical problems arise. The columns of J(t) become almost parallel
to the direction of the biggest Liapunov exponent, J becomes ill conditioned, and tends
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Figure 4.3: Orbits of the one, two, four and eight periodic states. In the figures the = axis

corresponds to the v amplitude and the y axis to the z amplitude.
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Figure 4.4: Maximum Liapunov exponent as a function of the Reynolds number R. Note
the periodic solution at R = 512.468025

to be singular. Furthermore, if some of the Liapunov exponents are greater than zero,
overflow problems can occur. Therefore, the previous limit cannot be computed directly.
In order to handle this problem, the renormalization method of Shimada and Nagashima
(Shimada & Nagashima, 1979) has been used. The previous method is comprehensively
described in (Kubicek & Marek, 1983) although a comprehensive explanation can be found
in appendix C. Finally, the Liapunov exponents have been computed as a function of the
Reynolds number. For the periodic solutions (R < R*) the maximum exponent is zero,
being negative the remaining ones, as it was expected. The behaviour of the greatest
Liapunov exponent for R > R* is displayed in Fig. 4.4. Positive values of the exponent
correspond to chaotic solutions, and it can be observed that the system is chaotic but
presents a window with a periodic stable solution. This behaviour is typical of many
dynamical systems which exhibit a period doubling cascade. Besides, it should be regarded
here that the system is featured by a strong hysteresis. As a consequence, different initial
conditions can lead to different solutions, multi-periodic solutions or chaotic ones.

The strange attractor corresponding to the chaotic zone (R = 512.5) is sketched in
figure 4.5. In order to analyse the fractal features of the strange attractor, a Poincaré
section has been obtained. This section is depicted in Fig. 4.6 for R = 512.5. Its self-
similarity structure, typical of strange attractors is apparent. The fractal dimension of the
attractor has been computed using the numerical method of Grassberger and Procaccia
(Grassberger & Procaccia, 1983) 1. The computed dimension for R = 512.5 is d = 1.5854

The Fourier spectra for two different Reynolds numbers are shown in Fig. 4.7. The
first spectrum corresponds to a periodic orbit, and the second one is in the chaotic region.
On note that the former exhibits a broad-band noise, whose level is two or more orders
of magnitude higher than in the periodic case. This is a typical signature of chaos. In
the chaotic spectrum sharp peaks appear above the level of the noise. Similar types
of spectrum have been observed by other authors (Kubicek & Marek, 1983). This type

Dr. Crespo is thanked for his help in computing the fractal dimension of the attractor
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of spectrum is usually termed phase coherent, and occurs close to unstable limit cycles
generated by the sequence of period doubling bifurcations.
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Figure 4.7: Fourier spectra for a periodic solution (R = 512.46) and a chaotic solution
(R = 512.50).

A further increase of the Reynolds number produces a collapse between the chaotic
attractor and an unstable manifold belonging to another branch of steady solutions. This
collision produces an eventual inestabilization of the attractor. This phenomenon is prob-
ably due to the excessive truncation of the model.

In order to check the behaviour of this low-dimensional model, six-dimensional system
for the same problem (M = 2 and N = 3) has been computed. The obtained results are
very similar. The six-dimensional model also exhibits a period doubling scenario, although
the bifurcations take place at different Reynolds numbers.

4.5 Conclusions

By analyzing a truncated model for a two dimensional Navier-Stokes problem we find a
transition to chaos by means of a period doubling cascade. The period doubling verifies
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Feigenbaum’s universality. After the successive period doubling bifurcations, the system
presents a chaotic behaviour. This is reflected in the Liapunov exponents and in the
Fourier spectra of the time integrations of the dynamical system. A six-dimensional model
has also been studied in order to check the results obtained with the four-dimensional
one. In both cases, the qualitative phenomena are essentially the same. We have also
introduced a useful methodology for the analysis of the bifurcations of periodic orbits
in low dimensional ordinary differential equations, that we have termed the Newton-1%¢-
order-variational method.



Chapter 5

Axial Effects in the
Taylor-Couette Problem

5.1 Introduction: The Taylor-Couette Problem

The Taylor-Couette problem concerns with the behaviour of a viscous fluid contained be-
tween two concentric cylinders which rotate independently around their common axis. The
physical system was originally designed by Couette and Mallock in 1888 Couette, 1888,
Mallock, 1888 in order to apply it in viscosimetric measures of fluids. In fact, it was Mar-
gules who, in 1881, proposed the construction of a viscosimeter which could measure the
angular momentum response of an internal cylinder in contact with a viscous fluid rotat-
ing under the action of an external cylinder. Although the theory developed by Couette
predicted that this response should be linear, the experiments only behaved correctly for
a low range of outer rotation angular velocities. Beyond a threshold limit of the angular
speed of the external cylinder, the response was much more complicated, with the ap-
pearence of turbulent stages. In a different way, Mallock considered the inverse problem
by increasing the angular velocity of the inner cylinder and studying the behaviour of the
external one. Again, the observed phenomena did not completely coincide with the the-
oretical predictions of Couette. In fact, for a threshold limit of the inner rotation speed,
the response of the speed of the outer cylinder was also linear but with greater slope. A
partial explanation to this phenomenon was proposed by Lord Rayleigh in 1916. For this
purpose, Rayleigh considered perturbations of concentric fluid rings. These perturbations
were submitted to angular momentum conservation. As a result, the sufficient condition of
instability was the decreasing rate of the angular momentum of the fluid ring with respect
to the radial variable. In fact, the Rayleigh criterion of instability was a inviscid condition
and the dumping effects due to viscosity were not considered.

A comprehensive explanation of the instability mechanism was introduced by G.I.
Taylor, who in a brilliant theoretical and experimental work, predicted the instability of
the azimuthal flow proposed initially by Couette (Taylor, 1923). In the previous work,
the instability values of the inner rotation velocity were computed for different external
rotation conditions. In addition, the secondary patterns, which appear immediately after
the bifurcation from the Couette flow, were predicted linearly and checked experimentally.
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These new toroidal structures are now termed Taylor Vortex flow. Actually, the new
geometry of the flow allows a better efficiency in the radial transport of the angular
momentum throughout the fluid system. In any case, it should be mentioned that, the
prediction of this kind of patterns is due to Stokes who, in 1848, had already proposed
the existence of cellular structures for high rotation speeds of the inner cylinder.

Flow between rotating cylinders is remarkable for the fact that slow increase of
the speed of the inner cylinder gives rise to a wide spectrum of well-distinguishable flow
patterns of increasing geometrical complexity. In Andereck et al. , 1986, a comprehen-
sive experimental study of different flows which appear in different parts of parameters
space can be found. Moreover, the flows which appear in Taylor-Couette problem de-
pend strongly on the particular path followed to reach each of the points in parameter
space. This hysteresis phenomena occurs frequently in non-linear physical systems. Alto-
gether, Taylor-Couette problem turns out to be a perfect framework with which, the main
theoretical predictions about pre-turbulent stages can be checked.

The present chapter will deal with the Taylor-Couette stability analysis in a more gen-
eral way. In addition to the centrifugal effects produced by the rotation of the cylinders,
shear axial effects will be considered. This effect will be accomplished by an inertial relative
sliding between the cylinders. The global system is now termed Spiral Couette problem
and it has been studied partially by many authors from the sixties on (Ludwieg, 1964,
Hung, Joseph & Munson, 1972, Ali & Weidman, 1993). Nevertheless, so far the studies
dealing with the problem have been a bit restricted to particular situations. As a matter
of fact, the problem is now a bit more complicated, not only because of the presence of a
new physical parameter, but also because of the competition between two different kinds
of instability effects, that is, shear and centrifugal mechanisms. It is a well known fact
that shear flow in a pipe throughout its axial direction is linearly stable with respect to in-
finitesimal perturbations. Likewise, the solid-body rotation where both cylinders rotate at
the same angular speed, is linearly stable. A very interesting physical phenomenon occurs
when a slight shear effects inestabilizes the solid-body rotations problem and, simultane-
ously, a little relative rotation inestabilizes the pure shear axial flow (Mackrodt, 1976).

Very extensive literature has reported on the behaviour of Taylor-Couette problem
under different physical conditions. A comprehensive historical review of the subject
would require hundred of pages and its is out of the scope of the present research. A
very good synthesis of the whole inestabilization mechanisms of the problem can be found
in Chossat & looss, 1994. For a comprehensive experimental study of the different flows
which appear see Andereck et al. , 1986. The present work needs to be restricted to make
specific references to those points which are going to be studied. Nevertheless, it is worth-
wile to devote a section to the classical Taylor—Couette problem in order to have a broader
view.

5.1.1 The Taylor-Couette Problem: Physical Description

Taylor-Couette flow is the term used to describe fluid motion between two concentric
rotating cylinders, whose radius and angular velocities are r}, r} and £);, €, respectively.
The annular gap between the cylindersis d = r) —r;.

The independent nondimensional parameters appearing in this problem are, the radius
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Figure 5.1: Geometric sketch and parameters of the Taylor-Couette problem. The basic
flow vf, driven by the angular rotations ;, €2, is also depicted.

ratio n = r;/r}, which fix the geometry of the annulus and the Couette flow Reynolds
numbers R; = dr;Q; /v and R, = dr,Q,/v of the rotating cylinders.

Henceforth, all variables will be rendered dimensionless using d, d?/v, v2/d? as units
for space, time and the reduced pressure (p*/p*). The Navier—Stokes equation and the
incompressibility condition for this scaling become

v+ (v-V)v=—-Vp+Av, V.v=0, (5.1)

which can be expressed explicitly in a suitable cylindrical coordinate system (r,6,z) as
follows:

2

2
Ou + udru + 239u + wo,u — vroo o P+ Au — — Ogv — % (5.2)
r r r r
1 2
O + udpv + 2891) + wo,v + wo_ —=0pp + Av + —Opu — % (5.3)
r r r r r
Oyw + udrw + anw +wl,w = —0,p+ Aw (5.4)
r
1 U
Oru+ —0gv +,w +— = 0, (5.5)
r r

where u, v and w are the radial, azimuthal and axial components of the velocity vector field
v, respectively. In previous equations, A stands for the laplacian operator in cylindrical
coordinates

1 1
A:33+;3,~+583+3§ (5.6)
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5.1.2 Steady Solutions and Symmetry Analysis

The first difficulty that arises when properly describing the physical system lies in the
boundary conditions which must be imposed on the top and bottom sides of the cylinder.
From an experimental point of view, those conditions may be chosen in different ways. In
fact, the top and bottom lids may be enforced to rotate with one of the two cylinders or to
remain fixed. Another possibility is to remove the top wall. In this situation, the top part
of the fluid is submitted under a stress free boundary condition. The anomalous effects pro-
duced by different configurations has been studied by many authors (Cliffe et al. , 1992).
It is a remarkable fact that comparisons between experiments and predictions from the-
oretical arguments (neglecting lids effects) are reasonably good, provided that the height
of cylinders is large enough compared to the gap width, even in such situations where
complicated dynamics occur close to the points of onset of instability for Couette flow.
Moreover, those effects appear after long transient periods of time only. From a numerical
point of view, a realistic computation of the solutions of the Navier—-Stokes problem may
be very complicated. Furthermore, in the absence of symmetries, the previous numerical
integrations would not provide the main features of the bifurcated solutions.

The apparent experimental evidence of the presence of axial periodicity in the bifur-
cated patterns of the physical system, is a fair motive for imposing the usually termed
infinite cylinder hypothesis. This last hypothesis allows to obtain an analytical solution for
the problem, which is essential for the study of the stability and bifurcations, used through-
out this research. The identification of the top and bottom sides changes the topology
of the problem, becoming now a two dimensional torus in the axial and azimuthal coor-
dinates. The invariance group of transformations is properly 0(2)xSO(2). On the one
hand, the orthogonal group O(2) is associated with the translations in the axial directions
identified with vertical periodicity modulus and with specular reflections with respect a
horizontal plane containing the origin. On the other hand, SO(2) is associated with the
rotations around the common axis of the cylinders. To sum up, the corresponding actions
on the velocity field given by equations (5.2), (5.3), (5.4) and (5.5) are

(1av)(r,0,2) = (u,v,w)(r,0,z+a), a€R (5.7)
(Sv)(r,0,z) = (u,v,—w)(r,0,—z) (5.8)
(Ryv)(r,0,2) = (u,v,w)(r,0+1,2), ¢ e€lR/2rZ (5.9)

The next step is the computation of steady solution for the system (5.2), (5.3), (5.4)
and (5.5). Assuming zero axial-radial components on the sought solution and invariance
under the prescribed transformations (5.7), (5.8) and (5.9), an exact solution is found.
For this purpose, the following boundary conditions on the velocity vector field must be

imposed:
u(r;) =0, u(ro) =0, (5.10)
v(ri) = Ri, v(ro) = R, (5.11)
w(r;) =0, w(ry) =0, (5.12)

where r; = n/(1 —1n), ro = 1/(1 —n). As a result, the sought solution, also termed
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Couette-Flow, is given by the following components
B

up=0, vp=Ar+ —, wg =0 (513)
r

as can be seen in (Joseph, 1976). The constants A and B are given by

A R, — TIRi, B— n(R; —nR,) ' (5.14)
1—n? (1= -7
As a result, the exact solution is a pure azimuthal flow, where the fluid particles are rotat-
ing in circular trajectories around the vertical axis and constrained to parallel horizontal
planes. On note that the transformations defined in relations (5.7), (5.8) and (5.9), act
trivially over the basic flow (5.13):

ToUB — UpB SuB = up R¢uB = up (515)

5.1.3 Linear Stability Analysis: Main Results

As already has been briefly commented, the Taylor-Couette problem has been extensively
studied by many authors in its different possible configurations. In this section, the main
results concerning the stability of the centrifugal mechanism will be introduced. In fact,
the computations which are going to be presented here have been done in order to be
compared and checked with previous works and to make a numerical test of the Petrov-
Galerkin schemes used. This section will focus its attention on the final results more
than on the methodology used to obtain them. A comprehensive explanation of the
computational methods will be more properly introduced in the general case concerning
axial effects.

During these last decades, the increasing numerical capabilities of computational de-
vices has allowed to provide more accurate integration schemes for the Navier-Stokes
equations. This fact has directly affected to the study of the Taylor-Couette problem,
increasing exponentially the knowledge about its behaviour under specific conditions. A
synthesis of the results would be prohibitive for the present purposes, but it is worthwile
to present here the essential features exhibited by the problem. At this stage, the first step
is to recover the basic results concerning the stability of Couette flow. As commented in
the introduction, the first comprehensive analysis was carried out by G.I. Taylor in 1923.
Nevertheless, it would be unfair to forget the first non-viscous criterion of stability stated
by Lord Rayleigh in 1916. Rayleigh’s criterion of stability considers small perturbations
of the orbit of a fluid ring, which is rotating with constant angular velocity around a fixed
axis which contains the center of the ring and is parallel to the angular velocity vector.
Under the hypothesis of conservation of angular momentum of the perturbed ring, it can
be demonstrated (Landau & Lifshitz, 1987) that the local angular momentum of the fluid
must increase with respect to the distance to the rotation axis in order to be stable. This
general condition for rotating fluids can be particularly applied on Couette flow for the
co-rotation case. As a result, the non-viscous condition of stability is R, > nR;. On the
other hand, Taylor considered the problem of stability as a boundary value problem in
which an infinitesimal perturbation (Lin, 1955), vanishing on the radial boundaries r; and
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ro, disturbs the velocity and pressure fields. From a formal point of view, stability of a
basic flow means stability with respect to all possible infinitesimal disturbances. Accord-
ingly, for an investigation on stability to be complete, it is necessary that the reaction of
the system to all possible disturbances be examined. In practice, this is accomplished by
expressing an arbitrary disturbance as a superposition of certain basic possible periodic
! modes and examining the stability of the system with respect to each of these modes
(normal mode analysis), as noted in chapter one. The mathematical formulation of the
problem may be established by considering the perturbed fields from the basic state

v(r,0,z,t) =vp(r) + ei("o"'kz)"')‘tu(r), (5.16)
p(r,0,z,t) = pp(r, z) —i—p'(r)ei("e"'kz)""\t, (5.17)

where k € IR, n € Z and A € €. Thus, k features the possible continuous periodicity in
the axial z—coordinate, n is the azimuthal normal mode (which must be integer due to
the azimuthal symmetry), and A = o + iw leads the stability of the flow, as explained in
chapter one. Similarly, vg = (0,vp,wg) is given by (5.13) and the boundary conditions
for u are homogeneous, u(r;) = u(r,) = 0. Linearizing the Navier-Stokes equations about
the basic solution, the following eigenvalue problem is obtained

Au=-Vp +Au—vg-Vu—u-Vvg. (5.18)

Formal substitution of perturbed fields (5.17) in equation (5.18) leads to a decoupled
system of eigenvalues for each mode n and k. Thus, a comprehensive study of the stability
is accomplished by the computation of the spectrum of eigenvalues A(n, k) for each problem
and, eventually, the selection of the critical ones (i. e., those which have maximum real
part). A graphical representation of the global procedure of stability analysis is depicted in
figure 5.2, for R, = 0. In this case, for a fixed wavenumber k, the inner Reynolds number R;
is progressively increased up to a critical value R{(k) so that one of the eigenvalues crosses
the imaginary axis (i. e., o = 0). This procedure must be done for a wide continuous
range of values of k and for the different azimuthal wavenumbers n. Typically, for a
fixed value of n, the curve of critical R{(k) values has a parabolic profile with a single
and well-distinguished minimum. The curves o(k, R;) = 0 are usually termed Neutral
Stability Curves (NSC). Therefore, the dominant transition will be the minimum of the
set of minima obtained from the different NSC. This selection provides a critical pair of
values (k¢, Rf) for which the bifurcation takes place. In the represented case, the dominant
perturbation is the axisymmetric one (n = 0). The previous methodology must be repeated
for each value of external Reynolds number R,. As a result, a functional dependence
between R{ and R, is obtained. The curve which separates stable from unstable regimes
in parameter space (R;, R,) is usually termed linear stability curve or marginal curve.

In figure 5.3, the linear stability results for the cases n = 0.5 and n = 0.8 is depicted
and compared with the Rayleigh’s criterion of stability. The figure represents the usually
termed critical curves over which the linear criterion predicts the presence of a bifurcation.
Therefore, for each case, the curve separates two well-distinguished zones. For physical
conditions contained below the critical curve, the basic flow (Couette flow) is stable, being
unstable as long as the critical curve is crossed.

'The assumption of periodicity of the perturbation fields is justified by experimental evidences. To put
it briefly, we are only searching for spatially periodic bifurcated solutions.
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Figure 5.2: Featuring neutral stability curves for the Couette flow. The values of the
physical parameters are n = 0.5 and R, = 0. The curves for the first three possible
azimuthal modes (n = 0,1,2) are depicted. On note the presence of a minimum critical
point located at (k¢, RS) = (3.16,68.19).
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Figure 5.3: Featuring linear stability curves for Couette flow. The dotted curves represent
the marginal state for the cases n = 0.5 and n = 0.8 obtained from the Petrov-Galerkin
scheme. Solid lines emerging from the origin represent the non-viscous Rayleigh’s criterion
of stability R; = R,/n in each case.
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Figure 5.4: Geometrical sketch of Taylor vortex flow for the value parameters n = 0.5,
R; =68.19, R, = 0 and k. = 3.16. The fluid particles remain moving in each one of the
toroidal surfaces usually termed Taylor vortices.

Another relevant feature of the stability of Couette flow is the structure of the sec-
ondary flows which appear near criticality. Typically, the emerging patterns just after
the inestabilization of Couette flow may be steady cellular flows, usually termed Taylor
Vortezr flow, or time periodic flows, usually termed Spiral flows. The dominance of one or
another depends on the specific physical conditions. On the one hand, Taylor Vortex flow
appears when considering axisymmetric disturbances as the dominant ones in the critical
regime. A curious feature of this flow is its stability under the presence of perturba-
tions. By contrast, Spiral flow which only appear in counter-rotation situations, is a very
unstable pattern. In figures (5.4) and (5.6), a geometrical representation of the stream
functions associated to the two possible bifurcating regimes is depicted. In the first case,
when axisymmetric disturbances are the dominant ones, the bifurcation leads to a cellular
steady pattern in which the fluid remains constrained to move in toroidal surfaces ( Taylor
vortices) with axial periodicity. Only one constant stream function surface is depicted. In
fact, the stream surface which reaches an 80% of the whole gap only is sketched. For the
second representation, the same criterion has been considered. In this case, the particles
move in a spiral surface which is invariant under specific combinations of axial translations
and azimuthal rotations of the form né + k.z = cnst., with n an integer number.

For the computation of the previous structures, the general Petrov-Galerkin scheme,
explained in next section and in appendix D, was used for the particular case of no-sliding
effects. In fact, the previous surfaces represent the eigen—stream functions associated with
the critical eigenvalues in the bifurcation. The axial periodicity of the patterns can be
computed with the same scheme and are the unstable wave numbers under which the
bifurcation will take place. Therefore, the representations are only qualitative. For a
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Figure 5.5: Geometrical sketch of Taylor vortex flow for the value parameters n = 0.5,
R; = 68.19, R, = 0 and k. = 3.16. Different constant stream function values have been
depicted. The thickest line represents a constant azimuthal cut of one pair of toroidal
structures represented in previous figure.

Figure 5.6: Geometrical sketch of Spiral flow for the value parameters n = 0.5, R; = 97.89,
R, = —80, n = —1 and k. = 3.85. In this case, fluid particles remain moving in each one
of the spiral surfaces.
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Figure 5.7: Geometrical sketch of Spiral flow for the value parameters n = 0.5, R; = 97.89,
R, = =80, n = —1 and k. = 3.85. Different constant stream function values have been
depicted. The thickest line represents a constant azimuthal cut of one pair of spiral
structures represented in figure 5.6.

real representation of the bifurcating patterns, the non-linear integration of the original
problem would be needed.

5.2 Spiral Couette Problem—Introduction

In this section, the linear stability of a fluid confined between two coaxial cylinders rotating
independently and with axial sliding (Spiral Couette flow) is examined. A wide range
of experimental parameters were explored, including two different radius ratio. Zero-th
order discontinuities are found in the critical surface; they are explained as a result of the
competition between the centrifugal and shear instability mechanisms, which appears only
in the co-rotating case, close to the rigid body rotation region. In the counter-rotating
case, the centrifugal instability is dominant. Due to the competition, the neutral stability
curves develop islands of instability, which considerably lower the instability threshold.
Specific and robust numerical methods to handle these geometrical complexities were
developed. The results are in very good agreement with the experimental data available,
and with previous computations.

An incompressible viscous fluid which is contained in the gap between two concentric
cylinders that rotate independently about a common axis at constant angular velocities is
considered. Forward motion is induced by an inertial sliding of the cylinders relative to
one another along the pipe axis. The basic motion whose linear stability will be studied
is, therefore, a combination of the Couette flow and the axial velocity field induced by the
relative sliding, the so called Spiral Couette flow (Joseph, 1976).
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Figure 5.8: Original comparison between inviscid criterion of stability and experimental
results, both obtained by Ludwieg in 1964.

This problem was first studied by Kiessling, 1963 and Ludwieg, 1964, who obtained
inviscid stability criteria in the narrow gap case. The experiments of Ludwieg, 1964 are,
as far as we know, the only experiments made in this problem to date. The results
showed the correctedness of the inviscid Ludwieg, 1964 criterion (see figure 5.8), later im-
proved by Wedemeyer, 1967. The general problem was studied by Mott & Joseph, 1968,
Hung, Joseph & Munson, 1972 with special emphasis on energy methods; an excellent re-
view can be found in the book of Joseph, 1976, chapter VI. Recently, Ali & Weidman, 1993
made a linear stability analysis of the Spiral Couette flow, in the stationary outer cylin-
der case, in the so called enclosed geometry, which includes end effects. The more gen-
eral problem of oscillatory sliding has been recently considered by Hu & Kelly, 1995 and
Marques & Lopez, 1997, whose numerical simulations are in good agreement with the ex-
periments of Weisberg, 1996. The previous works dealt with the infinite cylinders case,
assuming periodicity in the axial direction. As a result of the sliding, a non—zero mean
flow in the axial direction appears, that can only be present in open ends configurations,
like in the mentioned Ludwieg, 1964 experiments. The presence of lids enforces a zero
axial mean flow; this constraint is enforced by adding a suitable axial pressure gradient,
which mimics the lids effect, maintaining the periodicity of the velocity field; this is the
usually termed enclosed case.

An understanding of the stability of these flows could have applications in some in-
dustrial processes like the purification of industrial waste water (Ollis et al. , 1991), the
production of wire and cables (Tadmor & Bird, 1974) and the optical fiber fabrication
techniques (Chida et al. , 1982). In all of them, axial sliding in a cylindrical annulus takes
place, and the rotation of one or both cylinders change the stability and properties of the
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flow.

The following sections present an extensive exploration of the linear stability of the
Spiral Couette flow mainly in the open ends case in order to compare with existing ex-
perimental data, although some computations are made in the enclosed case in order to
test our numerical code and quantify the lids effect. The exploration covers a wide range
of angular velocities of both cylinders, and two different radius ratio are examined: one
corresponds to the Ludwieg (64) experiment, with a radius ratio n = 0.8, close to the
narrow gap case (7 — 1). The other case (with a wide gap n = 0.5) has been considered
because the instability appears at lower Reynolds numbers than in the narrow—gap case,
and the change in the azimuthal wave numbers to be considered is also smaller, which
permits a more detailed analysis.

The chapter is organized as follows. In section 5.3, a complete description of the phys-
ical system is given, and the analytical steady solutions are computed for the general case.
In section 5.4 the linear differential equations which govern the stability of the first or-
der perturbations are obtained, using a Petrov—Galerkin scheme. The symmetries of the
problem are considered in order to reduce the parameter space region to be explored. The
neutral stability curves in this problem may have multiple extrema and sharp geometrical
forms, and also exhibit disconnected parts. Specific and robust methods for obtaining
the neutral stability curves in spite of its geometric complexities are designed. The re-
sults of our numerical method are checked with former results obtained previously by
Ali & Weidman, 1993. Section 5.5 is concerned with the wide gap case n = 0.5. For each
pair of values Ro and Rz (outer rotation Reynolds number and axial Reynolds number
respectively) the neutral stability surface is computed. Complex behaviour is found on the
co-rotation zone, specially as the axial Reynolds number is increased. In fact, discontinu-
ities in the critical inner rotation Reynolds surface have been observed. This phenomena
is explained in detail as a competition between the centrifugal instability mechanism char-
acteristic of the Taylor—Couette problem and the shear instability mechanism induced by
the axial sliding. This interpretation in reinforced by examining the rigid rotation case
with sliding. Section 5.6 deals with the narrow—gap case n = 0.8, where the same fea-
tures are present. The results are compared with the experimental results of Ludwieg (64)
and the linear stability computations of Hung et al. (73), reaching good agreement with
both. A detailed analysis of the experimental data shows the presence of hysteresis regions
associated to the mentioned discontinuities. Finally, section 5.7 offers some conclusions.

5.3 Physical Description; Steady Solutions

The dynamical features of the problem are essentially the same as those described in
section 5.1.1. In addition, the inner cylinder is moving parallel to the common axis with a
constant velocity U, (see figure 5.9). The apparently more general flow with both cylinders
moving axially is reduced to the present case by Galilean invariance, changing to a reference
frame with constant axial speed. As a result, a new nondimensional parameter featuring
the axial sliding must be considered. In this case, the Reynolds number R, = dU. /v will
measure the translational velocity of the inner cylinder. Henceforth, all variables will be
rendered dimensionless in the same way as in section 5.1.1. As a result, the Navier—Stokes
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Figure 5.9: Geometric sketch and parameters of the Taylor-Couette problem with axial
sliding. The basic flow rf, vB | driven by the axial motion U, and the angular rotations
Q;, Q,, is also depicted.

equation and the incompressibility condition for this scaling are given by (5.1), and the
boundary conditions are

u(r;) = u(r,) =0, (5.19)
U(Ti) = R;, ’U(TO) = R,, (5.20)
w(ri,t) = Ry, w(re) =0, (5.21)

where ; = /(1 —1n), 1o =1/(1 —n).

In order to compare with experiments and with other previous work, two different
situations are considered in the present research. In both, the basic flow velocity field
is independent of the axial direction, but in one case the axial pressure gradient is zero
(open flow) and nonzero in the other (enclosed flow). The nonzero axial pressure gradi-
ent in the enclosed flow case is physically represented by the presence of endwalls and
allows us to enforce a net zero axial mass flux, not only for the base flow but also for the
perturbed flow. The only experiments of the Taylor—Couette flow with axial sliding of
the inner cylinder known to us are those of Ludwieg (64), which were carried out in an
annulus with open endwalls. The use of an axial pressure gradient to include the large
scale endwall effects has been implemented by Ali & Weidman, 1993, in the linear analysis
of Taylor—Couette flow with axial sliding, in the enclosed case and with the outer cylinder
at rest. This effect was also taken into account by other authors (Edwards et al. , 1991,
Sanchez, Crespo & Marques, 1993) in the Couette flow without sliding, where the bifur-
cation to spirals in the counter-rotating case develop weak axial flows. The axial pressure
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gradient is fixed by the zero axial mass flow condition
/ wrdrdf =0. (5.22)
z=0

The steady velocity field vp independent on the axial and azimuthal variables that verifies
the previous condition is

B P
up =0, vg = Ar+ —, wp :C’ln(i)—l—z(ﬂ—rg), (5.23)
r To

as can be seen in (Joseph, 1976). The constants A, B, C are given by

A= Ro—nki B= n(Ri — nRo) _ 1 (Rz M) (5.24)

1+ 7 (A-np@-70)" Inp 4(1—n)

and P is the non-dimensional Poiseuille number P = (dp*/dz*)d®/(p*v?) measuring the
imposed axial pressure gradient. In the open flow case, P = 0; in the enclosed case, the
mass conservation condition gives P as a function of Rz:

(1—n)2n?lnn+1—17n?)

P=—4R .
T+ +n2)np+ 11—

(5.25)

5.4 Linear Stability of Spiral Couette Flow

In the preceding section the basic flow was obtained. Now a perturbation of this basic
state by a small disturbance which is assumed to vary periodically in the azimuthal and
axial directions is considered:

v(r,0,z,t) =vp(r) + ei("0+kz)+)‘tu(7‘), (5.26)
p(r,0,z,t) = pp(r, z) +p'(r)ei("0+kz)+)‘t, (5.27)

where vg = (0,vp,wp) is given by (5.23) and the boundary conditions for u are homoge-
neous, u(r;) = u(r,) = 0. Linearizing the Navier-Stokes equations near the basic solution,
the following eigenvalue problem is obtained:

Au=-Vp +Au—-vg -Vu—u-Vvg. (5.28)

In order to solve (5.28) numerically, a spatial discretization is accomplished by pro-
jecting (5.28) onto a suitable basis. The space of divergence-free vector fields satisfying
the boundary conditions of the problem is

V ={uc (Lri,70))® | V-u=0, u(rg) = u(r,) =0}, (5.29)

where (L2(ri,7,))3 is the Hilbert space of square-integrable vectorial-functions defined in
the interval (r;, r,), with the inner product,

To
<u,v>= / u* - v rdr, (5.30)
r

i
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where * denotes the complex conjugate. For any u € V and any function p, we have
< u, Vp >= 0. Therefore expanding u in a suitable basis of V,

u= Zaaua, u, €V, (5.31)

and projecting the linearized equations (5.28) onto V' the pressure term disappears, and
a linear system for the coefficients a,, is obtained:

)\Z < lgq,ug >ag = Z < Uq,Aug —vp-Vug —ug-Vvp > ag. (5.32)
B B

A Petrov-Galerkin scheme is now implemented, where the basis used to expand the un-
known velocity, {u, }, differs from that used to project the equations, {i,}. A comprehen-
sive analysis of the method can be found in appendix D. The divergence-free condition for
a velocity field of the form (D.20) is Diu+inv/r+ikw = 0, and a basis for V' is obtained
by taking,

; = (07 _rkhj(r)v nh]'(r))v (5.33)
2 = (—ikf;(r),0, D4 £;(r)), (5.34)

where D = 0,, D. = D + 1/r. The functions f; and h; must satisfy the homogeneous
boundary conditions f; = f]' = h; = 0 on r; and 7,.

Introducing the new radial coordinate z = 2(r — r;) — 1, * € [—1,41] and using
Chebyshev polynomials 7T}, a simple choice for f; and hj, which satisfy the homogeneous
boundary conditions, is

u
u

fi(r) = (1 =2*)?Tja(z), hyi(r) = (1—2*)Tj1(), (5.35)

where j ranges from 1 to M, the number of Chebyshev polynomials used. In order to
preserve the orthogonality relationships between the Chebyshev polynomials, and to avoid
1/r factors in the inner products in (5.32), a suitable choice for the projection basis @ is

filr) = (1= 2?2754 (2), hi(r) = r2(1 = %) Ty 4 (a). (5.36)

With this choice, all the inner products in (5.32) involve polynomials, except those con-
taining the logarithmic term in wp, and therefore they can be numerically computed
exactly using Gauss—Chebyshev quadrature (Isaacson & Keller, 1966). Finally, a general-
ized eigenvalue system of the following form is obtained:

AGx = Hx, (5.37)

where the vector x contains the real and imaginary parts of the coefficients ay in (5.31),
and G, H are constant matrices, with G positive definite. The explicit expressions of the
matrix elements of G and H are given in the appendix D.

Let us consider the symmetries of our problem. The Navier-Stokes equations are
invariant with respect to the specular reflections {z - —z, w — —w} and {# — —6, v —
—v}. They are also invariant with respect to rotations around the axis, axial translations
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Figure 5.10: Experimental visualization of spiral secondary regime (from
Wedemeyer, 1967).

and time translations. The boundary conditions break some of these symmetries. Ri or Ro
different from zero breaks the specular reflection 8 — —6, and Rz # 0 breaks the specular
reflection z — —z. In order to keep the invariance, the sign of these Reynolds numbers, as
well as the corresponding wave numbers n and k in the solution of the linearized system
(D.32), must be changed. Thus, the symmetries allow us to restrict the computations to
the cases Rz > 0 and Ri > 0. Furthermore, since the Navier—Stokes equations are real,
the complex conjugate of a perturbation (D.20, D.21) is also a solution, and the sign of
n, k and the imaginary part of A can be changed simultaneously. Therefore, the analysis
can be restricted to the computations to the k& > 0 case.

When n and k are both different from zero, the eigenvector of the linear problem has
the form of a spiral pattern (see fig. 5.10, showing an experimentally observed spiral flow).

The wave numbers n and k, together with the imaginary part of the critical eigenvalue,
w = ImA, fix the shape and speed of the spiral. The angle « of the spiral with a z—constant
plane is given by tana = —n/(r,k) = —(1 — n)n/k; the speed of the spiral in the axial
direction (on a f-constant line) is ¢ = —w/k, and in the azimuthal direction (on a z—
constant line) it is wy, = —w/n. In the n = 0 case the pattern is axisymmetric and steady
Taylor vortices appear for w = 0, being travelling ones if w # 0, with axial velocity c.

If Rz = 0, the symmetry z — —z is not broken, and at the bifurcation point, in the n #
0 case, two pairs of purely imaginary eigenvalues bifurcate simultaneously, representing
spirals with opposite slope —or angle— (see Iooss & Adelmeyer, 1992). These spirals have
opposite values of n. For Rz # 0, the corresponding eigenvalues split apart, and one of the
two spirals £n becomes dominant. Therefore, mode competition and switching between
+n and —n for Rz close to zero is expected.

5.4.1 Computation of the Neutral Stability Curves

Let o be the real part of the first eigenvalue of the linear system (D.32) which crosses
the imaginary axis. The stability of the basic flow is conditioned by the sign of ¢. For
negative values of o, the basic flow is stable under perturbations. When o is zero or slightly
positive, the steady flow becomes unstable and bifurcated secondary flows may appear. It
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should be noted that o(n, k,n, Ri, Ro, Rz) is a function of the physical parameters which
play an essential role in the dynamics of the system. For fixed values of the parameters
n, Ro and Rz, and n and k given, the inner Reynolds number Ri.(n, k) such that o = 0
is computed. The critical inner Reynolds number is given by Ricis = min, ; Ric(n, k),
and the corresponding values of n, k are the critical azimuthal and axial wave numbers
Nerit, Kerig Wwhich will fix the geometrical shape of the bifurcating solutions, which may be
a spiral flow or travelling Taylor vortices. Moreover, the imaginary part of the critical
eigenvalue, weyit, gives the angular frequency of the secondary pattern. Again, the critical
values are functions of the parameters (1, Ro, Rz).

The curves in the (k, Ri) plane given by o(k, Ri) = 0 are commonly termed Neutral
Stability Curves (NSC). The main goal at this stage is to compute the absolute minimum
of the NSC, which will give the critical parameters (kerit, Ricrit); in this way, the absolute
minimum of the set of the NSC corresponding to integer values of n will be found. As will
be seen below, the NSC curves for this problem may have multiple extrema (maximums
and minimums), exhibit disconnected parts and sharp geometrical forms. In addition,
these curves may exhibit multievaluation branches as functions of k. Moreover, these fea-
tures may change abruptly in certain parameter ranges (see fig. 5.13). Standard methods
applied to a regular grid in the plane (k, Ri) require extremely accurate computations.
Consequently, an alternative method has been considered (for a comprehensive study, see
appendix D).

A local extremum (k., Ri.) must satisfy the following conditions:

o(ke, Ric) =0, 4o (ke, Ric) =0 (5.38)

Using the Implicit Function Theorem, it can be seen that the local extremum is a minimum
if, in addition, the inequality 31%,k033i‘7 < 0 is satisfied. In order to solve equation (5.38),
a two-dimensional Newton-Raphson method has been considered. The convergence of the
method depends on the topological structure of the basin of attraction, and is strongly
dependent on the initial point of iteration in the plane (k, Ri). In order to optimize the
process, a predictor steepest-descent method has been used. This gradient method allows
to be approached to the neighboring zones where the convergence is almost ensured. The
predictor scheme is able to detect islands of instability, independently of their size and
topological features.

5.4.2 Comparisons Open-Enclosed Flow (Ro = 0)

In order to check the numerical scheme, the linear stability of the open and enclosed flows
have been studied for n = 0.4.

For the enclosed flow case, the present computations are in complete agreement with
Ali & Weidman, 1993 results. The numerical results are displayed in figures 5.11 and
5.12. For high axial sliding Reynolds number, the azimuthal dominant mode is n = 4, as
previously predicted by Ali & Weidman, 1993.

In order to study the effect of the zero mean flow, the same computations were carried
out for the open-flow case. The qualitative behaviour of the system is similar to the pre-
vious case analyzed above, but some quantitative differences should be pointed out. First,
the global end effects included in the enclosed case has a stabilizing effect on the basic flow,
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Figure 5.11: Comparison between the open and enclosed (Ali & Weidman, 1993) situa-
tions. Dominant azimuthal wave numbers have been sketched. The points reflect the
change of mode.
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Figure 5.12: Comparison between the open and enclosed (Ali & Weidman, 1993) situa-
tions. Asymptotic states for high axial Reynolds number Rz.



5.5 Instability Results for n = 0.5 65

effect that increases at high axial Reynolds number (see figure 5.11). This enhancement
of stability in the enclosed case is similar to the one observed by Marques & Lopez, 1997
when the inner cylinder undergoes axial oscillations. Second, the asymptotic azimuthal
wave number n is different, with the dominant azimuthal wave number n = 3 in the open
case, and n = 4 in the enclosed one, in agreement with Ali & Weidman, 1993 (see figure
5.12). However, only the open flow case will be considered from now on. As a matter
of fact, the previous experimental analysis were done under the open axial circulation
configuration. The inner cylinder critical rotation Reynolds number Ri..;; was computed
as a function of (Rz, Ro) for two different values of n, 0.5 and 0.8. This was carried out
in the range 0 < Rz < 150 and —250 < Ro < 250. Computations were restricted to the
Rz >0, Ri > 0 and k > 0 cases, on the basis of the symmetries of the physical problem.

5.5 Instability Results for n = 0.5

The computation of Ri.(Rz, Ro) as a function of Rz, Ro for the wide gap n = 0.5, gives
as a first unexpected result the presence of a zero—order discontinuity in Ri., in the co—
rotating case (Ro > 0). Although this behavior had been considered possible by some
authors (Davis & Rosenblat, 1977), specific examples showing this kind of discontinuities
are very unusual in Fluid Mechanics literature.

For Ro = 200 the discontinuity appears for Rz = 82.63. Fig. 5.13 shows the critical R:
as a function of k. For Rz = 80 the dominant mode is n = —1, giving Ri. = 373.43 and
k. = 1.68; but for Rz = 82.63 the marginal stability curve of the n = —4 mode develops
an island of instability for a much lower Ri. = 119.13, introducing a discontinuity in Ri..
It should also be noted that the change in n.; is not +1 as usual, but changes in three
units. The island of instability is very small (figure 5.13, Rz = 84), growing its size as
long as Rz is further increased from the discontinuity point. All these features make the
numerical computation of the critical parameters very difficult from the algorithmic point
of view. For these reasons, specific numerical methods, outlined in section 5.4.1, were
developed in order to detect the islands as soon as they appear.

Before crossing the Ri, discontinuity, the marginal stability curve has a single extrema,
a minimum (figure 5.13, Rz = 80), giving the critical parameter values (Ri., k.). After
crossing, and due to the appearance of the island, we have three extrema, two minima and
a maximum, and the marginal stability curve has two disconnected branches. If we move
to higher Rz values, the island grows until it merges with the other branch (figure 5.13,
Rz = 120 and Rz = 122); the marginal curve then has now a single minimum. Plotting
the position of all the extrema as a function of Rz, an S-shaped curve (see figure 5.25)
is obtained, which shows that the critical surface is multievaluated and continuous but
folded in such a way that a cusp develops. Figure 5.14 shows a perspective view of this
critical surface.

The discontinuity of the critical parameter depends on the experimental way of ap-
proaching to this conflictive zone. For Ri remain fixed the computation of Rz.(Ri, Ro)
results in a continuous surface, formed by all three sheets in the cusp region. In fact, this
exactly is the followed procedure in order to obtain the critical surface in the cusp region,
because the critical wave number n can also change. For dynamical systems that depend
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-250

Figure 5.15: Perspective view of the critical surface Ri.(Rz, Ro), explicitly showing the
changes in the dominant azimuthal mode n at criticality.

on a sufficient number of parameters, the critical surface (a manifold, in the general case)
is likely to present discontinuities of the same or more complex kind. As we lack a prior:
knowledge of this possibility, the use of robust strategies to find the critical points, like
those which have been implemented, becomes necessary.

Figure 5.15 shows the same critical surface with the curves corresponding to a change in
the critical azimuthal wave number n. Along these curves, the change in n..; is always +1,
unless very close to the Rz = 0 axis, where the competition between modes +n is strong.
As already mentioned, the symmetries of the problem for Rz = 0 makes the eigenvalues
corresponding to £n bifurcate simultaneously. When the the symmetry breaking is small
(Rz ~ 0), both eigenvalues are very close, and switching occurs between both critical
surfaces close to the axis. In the region of the cusp, near the discontinuity in Ri., the
increment in n, may exceed the unity, because of the jump discontinuity between the
different sheets of the critical surface; but as long as the displacement is done on the
critical surface, the change in n. is also +1.

The projection of the curves corresponding to a change in the azimuthal wave number
n are plotted in fig. 5.16, along with the edges of the cusp region. The discontinuity in
Ri, corresponds to the upper edge of the fold region, and inside it the dominant azimuthal
wave number is n = —4, except at the very end (Ro ~ 250) where the mode n = —3
becomes dominant.

The coordinates of the cusp point are Ro = 93.22, Rz = 73.41, Ri. = 107.63, inside
the region n. = —3, but very close to the border with n = —4. Although this cusp point
could be interpreted as being a bifurcation point of codimension higher than 1, it is not.
The cusp point is characterized by having a tangent plane parallel to the Ri axis, with
an inflexion point in the Ro-constant section. But if we look at the critical surface from
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Figure 5.16: Dominant azimuthal mode n at criticality, as a function of Ro, Rz; n = 0.5

another point of view (for example changing Ri to a linear combination of the Reynolds
numbers, as for experimental purposes), the cusp point changes its position on the surface.
In fact, looking for the critical Rz number with Ri, Ro fixed, all the folding region is now
univaluated and Rz is continuous. Discontinuities also exist in this case (in Rz), along
with a multievaluated critical surface, but now in a different region of the critical surface.
Figure 5.25 shows that in the upper right corner of fig. 5.15, Rz is multievaluated, and
a discontinuity appears. These discontinuities or folded structures may have important
consequences from the experimental point of view, like hysteresis phenomena, as well as
the discontinuity in Ri..

The geometrical shape of the secondary patterns which appear in this case have been
depicted in figures 5.17, 5.18, 5.19 and 5.20. First, figures 5.17, 5.18 feature the generally
termed travelling Taylor vortices, corresponding to dominant cellular axisymmetric struc-
tures which propagate in the axial direction. Figures 5.19 and 5.20 feature the secondary
spiral flow.

Figures 5.21, 5.22, 5.23 and 5.24 show Ri., w., a and ¢ as a function of Ro for dif-
ferent values of Rz, respectively. The critical Reynolds number Ri. (fig. 5.21 is almost
independent of Rz in the counter-rotating region Ro < 0. But in the co—rotating region,
where the cusp develops, two well separated kinds of behavior are exhibited: for small
axial sliding Rz, before the discontinuity, Ri. is very close to the values without sliding
(Taylor—Couette flow). For higher axial sliding, after the discontinuity, Ri. falls to much
lower values. The effect of the axial sliding is destabilizing, but the effect is important
only in the co-rotating case, after the discontinuity. The centrifugal instability seems the
dominant mechanism (as in Taylor—-Couette, Rz = 0) except after the discontinuity, where
a shear instability due to the axial sliding becomes dominant; the cuspidal zone can be
interpreted as the transition region between both mechanisms. This qualitative change
can also be noticed in the angle of the spiral pattern « (fig. 5.23, which shows a jump from
values less than 10° to values close to 70°. This dramatic change in shape is also reflected
in the axial speed of the spirals, in fig. 5.24. It is noted that the shear—instability domi-
nated branch is very close to the solid body rotation line, where the centrifugal instability
does not apply.

The imaginary part of the critical eigenvalue, w., changes in a linear way with Ro
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Figure 5.17: Geometrical sketch of travelling Taylor wvortices for the value parameters
n=0.5, R =71.70, R, = —30, R, = 10.0, n = 0 and k. = 3.26.

Figure 5.18: Geometrical sketch of travelling Taylor vortices for the value parameters
n=0.5, R; =71.70, R, = —30, R, = 10.0, n = 0 and k, = 3.26. Different constant stream
function values have been depicted. The thickest line represents a constant azimuthal cut
of one pair of spiral structures represented in previous figure.
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Figure 5.19: Geometrical sketch of Spiral Flow for the value parameters n = 0.5,
R; =95.93, R, =30, R, =10.0, n = —1 and k. = 3.23.

Figure 5.20: Geometrical sketch of Spiral Flow for the value parameters n = 0.5,
R; =9593, R, = 30, R, = 10.0, n = —1 and k. = 3.23. Different constant stream
function values have been depicted. The thickest line represents a constant azimuthal cut
of one pair of spiral structures represented in the preceding figure.
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Figure 5.21: Critical parameters for n = 0.5, as functions of the outer Reynolds number
Ro. Featuring, critical inner Reynolds number Ri.; the solid straight line is the rigid
rotation line Rt = nRo.

(figure 5.22), except for jumps when the azimuthal mode n changes. Looking at fig.
5.16, a progressive decreasing of the wave number n, as Rz is increased, can be observed
except in two regions: the first one, close to Rz = 0 in the counter-rotating area, displays
competition between +n modes, due to the breaking of the reflexional symmetry z — —z,
as described in 5.4. The second region, after the discontinuity, shows a kind of saturation;
the azimuthal n = —4 mode is dominant in a very large area.

Figures 5.25, 5.26, 5.27 and 5.28 respectively show Ri., w., a and ¢ as a function of Rz
for different values of Ro in the co-rotating case. In figure 5.25, sections of the cusp region
are displayed; the critical Ri, is, in fact, the minimum of the values in the multievaluated
region, so a discontinuity takes place, growing its size as long as Ro is further increased.
The discontinuity has been displayed in the remaining critical parameter plots, figures 5.26
5.27, 5.28. The bicritical points, where the azimuthal wave number n changes and two
eigenvalues bifurcates simultaneously, are distinguished with a vertical bar. The dominant
mode for small sliding (Rz close to zero) is axisymmetric (n = 0). Since the imaginary
part of the critical eigenvalue is not zero (except for Ro = 0, see figure 5.26, Taylor vortices
which travel axially with a speed ¢ (showed in figure 5.28) appear. The effect of the sliding
on these axisymmetric modes is slightly stabilizing, in contrast with their unstabilizing
effect on the non-axisymmetric ones, mainly in the co-rotating region.

Figures 5.29, 5.30, 5.31 and 5.32 show Ri., w., o and c as a function of Rz for different
values of Ro in the counter-rotating case. Here all the critical parameters change smoothly,
in an almost linear way. Figure 5.29 shows that the critical Reynolds number Ri. is almost
independent of the axial sliding Rz for Ro < 0, suggesting that the centrifugal instability
is the dominant instability mechanism as noted before.
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Figure 5.22: Critical parameters for n = 0.5, as functions of the outer Reynolds number
Ro. Featuring the imaginary part of the critical eigenvalue we.

Figure 5.23: Critical parameters for n = 0.5, as functions of the outer Reynolds number
Ro. Featuring the angle of the spiral pattern a.
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Figure 5.24: Critical parameters for n = 0.5, as functions of the outer Reynolds number
Ro. Featuring axial pattern velocity c.
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Figure 5.25: Critical parameters for 7 = 0.5, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Featuring critical inner Reynolds number Ri.. The
dots are exactly located at the azimuthal mode transition states.
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Figure 5.26: Critical parameters for n = 0.5, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Featured is imaginary part of the critical eigenvalue
We.
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Figure 5.27: Critical parameters for n = 0.5, as functions of the axial Reynolds number
Rz in the co—rotating case Ro > (. Featured is the angle of the bifurcating spiral pattern
a.
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Figure 5.28: Critical parameters for n = 0.5, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Featured is the axial pattern velocity c.
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Figure 5.29: Critical parameters for n = 0.5, as functions of the axial Reynolds number
Rz in the counter-rotating case Ro < 0. Featured is the critical inner Reynolds number
Ri.. The represented dots are exactly located at the dominance transition points between
different azimuthal modes.
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Figure 5.30: Critical parameters for n = 0.5, as functions of the axial Reynolds number

Rz in the counter-rotating case Ro < 0. Featured is the imaginary part of the critical
eigenvalue w;.
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Figure 5.31: Critical parameters for 7 = 0.5, as functions of the axial Reynolds number
Rz in the counter-rotating case Ro < 0. Featured is the angle of the spiral pattern «.
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Figure 5.32: Critical parameters for 7 = 0.5, as functions of the axial Reynolds number
Rz in the counter-rotating case Ro < 0. Featured is the axial pattern velocity c.

5.5.1 Sliding Rigid Rotation

In this section, the rigid rotation case Q; = Q, (or, equivalently, R = Ri = nRo) is going
to be studied with the presence of sliding effects. Actually, it is essential to have a deeper
understanding of the dominant instability mechanism in the cusp region. This situation
is also important because of its global stability for both limiting cases Rz = 0, and R = 0.
The situation is similar to (Mackrodt, 1976) where it is shown that although the Poiseuille
flow in a circular pipe is linearly stable for any Reynolds number, adding a slow rotation
of the pipe makes the flow unstable at some finite Reynolds number.

For this particular situation, the general Petrov-Galerkin scheme is used in order to
compute the linear stability regimes. Figures 5.33 and 5.34 show the computed critical
rotation number R = Ri = nRo and critical wave number k as a function of the axial speed
Rz. The critical regime has an asymptotic value as Rz is increased, with the asymptotic
rotation Reynolds number R* = 33.24. In this limit, the critical azimuthal mode is
n = —4. In addition, as the rotation Reynolds number is increased, the Rz Reynolds
number approaches another asymptotic value, which is Rz*® = 85.11, with a critical
azimuthal wave number n = —5. The dependence of the critical axial wave number k.
over the marginal curve is depicted in figure 5.34. We can observe the presence of a
maximum for the values Rz = 122.05, Ri = 50.25, ke = 0.7638. Moreover, the critical
wave number k decreases to very low values (less than 0.1) as the axial Reynolds number
Rz increases; as a result, the spiral’s slope grows.

Therefore, in the co-rotation region, when the inner Reynolds number R: is increased
and before the onset of the centrifugal instability, the solid body rotation zone is experi-
enced. And if the axial sliding Rz is greater than 85.11, shear instability comes into play:
the lower part of the cusp appears, becoming the dominant instability mechanism, and
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Figure 5.33: Sliding rigid rotation. Critical rotation number R = R: = nRo as a function

of the axial sliding effect. The dominant azimuthal modes are n = 4 and n = 5, where the
dot has been just located at the change state.
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Figure 5.34: Sliding rigid rotation. Critical wave number k as a function of the axial speed
Rz for n = 0.5.
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giving a discontinuous critical Reynolds number. The corresponding eigenfunctions are
clearly different from the centrifugally dominated ones. The axial wave number k is now
very small, giving large spiral angles «, and an almost constant azimuthal wave number
n (equal to -4). The cuspidal zone, where the critical surface is multievaluated, corre-
sponds to the competition between the centrifugal instability mechanism (upper branch)
and the shear instability mechanism (lower branch), constantly connected by the interme-
diate sheet. All three branches can be experimentally observed if we fix Ri and steadily
increase the axial Reynolds number Rz.

5.6 Instability Results for n = 0.8

The qualitative features of the critical surface for n = 0.8 are the same as in the above
analyzed n = 0.5 wide gap case, although quantitative differences do exist. On the one
hand, high rhythm change of the n—critical azimuthal modes were observed, as featured
in fig. 5.35. The number of azimuthal modes to be considered in the stability analysis
increases substantially, and the computation is more expensive.

Figures from 5.36 to 5.47 show the critical parameters Ri., w., a and c as functions
of Rz and Ro as in the 7 = 0.5 case. The critical surface develops a cusp, but for higher
positive values of Rz, outside the plotted range. The early stages of the cusp can be seen
in figures 5.36, 5.37 and 5.39, where the curves display the same splitting in two different
behaviors as in n = 0.5 case. In figure 5.40 is noted that the slope in the inflexion point
tends to become vertical. The shear—instability dominated branch is also very close to
the solid body rotation line. Additional numerical results in the region where the cusp
is present are be given in section 5.6.1, where a comparison with experimental results is
carried out.

The n = 0 axisymmetric mode is stabilized by the axial sliding, giving axially traveling
Taylor vortices. But now the dominance of the axisymmetric mode is restricted to a very
narrow range of Rz values as shown in figures 5.40 ... 5.43. From the numerical results, it
can be asserted that the sliding has a global unstabilizing effect on the basic flow. Another
curious feature is the presence of a small window of the n = —3 critical mode between the
regions n = 2 and 1 (see figure 5.35). Since this takes place very close to the Rz = 0 axis,
it is considered as a side effect of the mode competition and switching when the reflexional
symmetry z — —z is broken.

5.6.1 Comparison with Previous Results

Previous experimental studies have been reported on the stability of the Spiral Couette
flow. In an excellent work done by Ludwieg in 1964, both theoretical and experimental, a
stability analysis was devoted to an specific zone on the parameter space, inside the cusp
region. The experimental apparatus has a gap n = 0.8, with open ends, corresponding
to the open flow case. The rotational speed of the external cylinder is held fixed at
Ro ~ 750.In fact, Ludwieg’s experimental device needed high external rotation speeds in
order to avoid pre-turbulent stages induced by transients. In addition, the mechanism of
increasing axial and azimuthal velocities enforced an implicit dependence between the two
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Figure 5.35: Dominant azimuthal mode n at criticality, as a function of Ro, Rz; n = 0.8.
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Figure 5.36: Critical parameters for n = 0.8, as functions of the outer Reynolds number
Ro. Featuring critical inner Reynolds number Ri.; the solid straight line is the rigid
rotation line Ri = nRo.
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Figure 5.37: Critical parameters for n = 0.8, as functions of the outer Reynolds number
Ro. Featuring imaginary part of the critical eigenvalue w,.
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Figure 5.38: Critical parameters for n = 0.8, as functions of the outer Reynolds number
Ro. Angle of the spiral pattern a.
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Figure 5.39: Critical parameters for n = 0.8, as functions of the outer Reynolds number

Ro. Featuring axial pattern velocity c.
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Figure 5.40: Critical parameters for 7 = 0.8, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Critical inner Reynolds number Ri..
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Figure 5.41: Critical parameters for 7 = 0.8, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Imaginary part of the critical eigenvalue w.
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Figure 5.42: Critical parameters for 7 = 0.8, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Angle of the spiral pattern .
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Figure 5.43: Critical parameters for 7 = 0.8, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Axial pattern velocity c.
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Figure 5.44: Critical parameters for 7 = 0.8, as functions of the axial Reynolds number
Rz in the counter-rotating case Ro > 0. Critical inner Reynolds number Rz..
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Figure 5.45: Critical parameters for 7 = 0.8, as functions of the axial Reynolds number
Rz in the counter-rotating case Ro > 0. Imaginary part of the critical eigenvalue w,.
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Figure 5.46: Critical parameters for n = 0.8, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Angle of the spiral pattern .
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Figure 5.47: Critical parameters for 7 = 0.8, as functions of the axial Reynolds number
Rz in the co-rotating case Ro > 0. Axial pattern velocity c.

magnitudes. As a result, the experimental paths in the parameter space (Ri, Rz) were
straight lines.

Ludwieg’s experimental results (figure 5.8) are given in terms of two nondimensional
parameters cg and c;, which describe the motion of the fluid. These parameters are
functions of the radial variable r,

colr) = 28, () = 522, (5.39)
where r; < r < r,. In some specific situations, the previous functions suffer only tiny
variations in the prescribed range of the values of r, mainly in the narrow gap case. As a
consequence, Ludwieg, 1964, considered mean values ¢4 and ¢, of these functions as the
control parameters; he took r = (r; +7,)/2, the arithmetic mean radius, in the r factor in
front of the definitions of ¢, and ¢y, but he did not specify which values of the azimuthal
and axial velocities and their derivatives were used. In Hung, Joseph & Munson, 1972,
the values of ¢y, ¢, were used at the geometric mean radius 7 = ,/r;7, to compare with
Ludwieg results. As the difference between the arithmetic and geometric means is about
0.6% for the n = 0.8 case, and moreover, as the expressions of ¢4 and ¢, are simpler,
using the Hung et al. prescription, it is going to be used in the present context (a more
detailed discussion of the parameters used by different authors is given in appendix D.5).
Assuming the mentioned prescription, the dependence between ¢y, ¢, and our variables
Ri, Ro, Rz are given by the following equations (for n = 0.8):

. l1+nRo—Ri _ 1+4+n Rz
4T 1 _nyRo+R’ “ 1-nRo+Ri
For the n = 0.8 case the narrow gap approximation is not clearly justified. In figures
5.49 and 5.50 the variation of the functions c,(r) and cy(r) is seen to be about 10% with

(5.40)
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Figure 5.48: Experimental results, from (Ludwieg, 1964) for n = 0.8 and Ro = 750. The
results are simultaneously compared with Hung, Joseph & Munson’s 1972 former work.

respect to the mean values ¢, ¢4. This could be a source of error in the experimental
values given by Ludwieg, 1964. It would be necessary to know the original experimental
results in terms of the Reynolds numbers in order to work with the true control parameters
Rz and Ru.

A linear stability analysis of the Spiral Couette problem was reported by Hung, Joseph
& Munson, 1972 (from now on cited as HJM), where only particular regions in parameter
space where considered. Their results fairly agree with some of Ludwieg’s results, although
there were some unexplored zones that the present work treats in detail. As a particular
case (but out of the range of the global analysis carried out in preceding section), the
critical curve for Ro = 750 is computed. This curve is single-valued, considering Rz as
a function of Ri, but it is well within the cusp region. The global results of the three
analyses are sketched in figure 5.48.

Our results are fully coincide with the computations of HJIM, except for two points on
the left of the minimum of our critical curve in figure 5.48, where those results of HJM
clearly diverges from these experimental results. It must be noted that the results of HJM
are confined to the intermediate branch of the critical surface fold, where the changes in
Rz are small. The other branches shows very high slopes of Rz.(Ri); furthermore, the
change in the critical azimuthal wave number n is of more than 15 units in this range. This
indicates the difficulties Hung et al. encountered out of the intermediate branch, which
explains the mentioned discrepancy.

Ludwieg’s experimental results exhibit good agreement with the numerical results of
this research. The best experimentally defined bifurcation points correspond to the vertical
branch (in this case, the shear is the dominant instability mechanism), and on this curve,
his discrepancies are less than 4%; it should be mentioned that this is the first time the
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Figure 5.49: Variation of c¢,(r) for n = 0.8 in the gap, compared with the mean value ¢,;
as ¢,(r) is linear in Rz, we have plotted it only for the characteristic value Rz = 100.
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Figure 5.50: Variation of cg4(r) for 7 = 0.8 in the gap, compared with the mean value ¢,
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vertical branch has been computed numerically. The biggest discrepancy appears for high
values of Rz, but for these parameter values, the splitting between the mean values ¢4, ¢,
and the functions cy(r), c,(r) has a maximum (see figures 5.49 and 5.50). In the region
close to the minimum of the critical curve, the set in of the instability agrees with the
experiments, but some points on the right side of the minimum clearly deviates from the
numerical predictions. In order to understand why, the experimental setting must be
examined closely. In Ludwieg’s experiments, a long rod (the inner cylinder) goes through
the outer cylinder, with axial movement and simultaneous rotation; the rod accelerates
from the rest to the final desired inner rotation and axial velocity. The experiment lasts
until the rod has run through the outer cylinder, a short time interval in all cases.

Coming back to figure 5.48, from the two experimental series for low Rz (the two
lowest straight lines), it is apparent that to reach the point labeled A, the minimum of
the stability curve is crossed when the axial velocity of the rod is increased, so a spiral
flow appears before A is reached. Shortly after, when the velocity continues to increase,
the basic flow again becomes stable, but the flow is now in the spiral regime, so different
situations may arise. If the spiral flow is also stable, the flow will not return to the basic
flow; if the bifurcation is subcritical, the spiral flow will persist within the region where
the basic flow is stable (hysteresis effect). The spiral flow can also become unstable when
the other side of the critical curve (supercritical bifurcation) is crossed, and, in this case,
it will also take a finite time for the spiral flow to decay into the basic flow. If this occurs
close to the bifurcation point (as it is the case), this asymptotic process can be longer
than the the experiment lasts.

All these considerations explains why the experimental points close to A shows a
discrepancy with the numerical computations. The experiment should be carried out
again using a path in parameter space in such that the (multivalued) critical curve is not
crossed, in order to be free of hysteresis and relaxation phenomena. Notice that the points
marked with a black and white circle, where Ludwieg could not ascertain about their
stability, are very close to the hysteresis region, strongly suggesting that the bifurcation
could be subcritical in this parameters range. Ludwieg acknowledged the experimental
uncertainties in this parameter region (see figure 5.8) and the estimated errors were shown
as a dashed area.

Unfortunately, Ludwieg’s experimental data do not include information on the az-
imuthal wavenumber n, or other critical parameters, as angular velocities, angle of the
spiral pattern and axial velocities. Therefore, our comparison is reduced to the analysis
of the critical Reynolds number.

Finally, the effectiveness of the inviscid criterion of Ludwieg should be noted, displayed
as a dashed line in figure 5.48. The curve follows the behavior of the numerically computed
viscous curve qualitatively, and predicts a multievaluated critical surface. The comparison
between the inviscid criterion and our computations shows that viscosity stabilizes the flow,
delaying the instability, except for high Rz, in the shear-dominated instability region,
where the viscosity in fact destabilizes the basic solution, as has been observed in other
shear flows.
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5.7 Conclusions

In this work, a comprehensive analysis on the effect of axial sliding in the Taylor-Couette
Problem has been carried out. Specific and robust numerical methods to deal with the
geometrical complexities of the Neutral Stability Curves have been developed. The re-
liability of the numerical Petrov-Galerlin code has been checked by comparing with Ali
and Weidman (93) results, in the enclosed flow case. Detailed computations of the critical
surface have been made for two gap values. The wide gap n = 0.5 case has been consid-
ered because the instability appears at lower Reynolds numbers than in the narrow—gap
case. The change in the azimuthal wave number is also smaller. The case n = 0.8 has
been considered also, because, as far as could be ascertained, the only experimental data
available on this problem correspond to this value. It was found that the sliding has a
global unstabilizing effect over the non-axisymmetric modes. By contrast, the n = 0 mode
keeps stabilized by the same effect, although the range of dominance of this behaviour is
quite limited. The bifurcation is mainly to a spiral flow, but travelling Taylor vortices are
also observed in small parameter ranges.

Notable differences can be pointed out between the co-rotation and counter-rotation
zones. Counter-rotation configurations exhibit a regular behaviour in the critical regime.
Nevertheless, the sudden dominance of non-consecutive azimuthal modes for low Rz values
is to be noted. This phenomenon is due to the breaking of the reflexional symmetry
z — —z, which leads to mode competition and switching between +n modes.

The critical behaviour is radically different in the co-rotation zone. The critical surface
Ri. = f(Rz, Ro) exhibits zero-th order discontinuities, which can only be detected making
use of the specific numerical scheme for the computation of the neutral stability curves.
The discontinuity is due to the presence of a sudden dominant island corresponding to a
different azimuthal mode. This unusual phenomena in hydrodynamical stability problems
has been explained in terms of competition between two independent instability mecha-
nisms: centrifugal instability, dominant in the counter-rotating regime and also for small
axial sliding; and the shear instability due to the axial motion. This second mechanism
becomes dominant near the solid body rotation line, substantially lowering the onset of the
instability. The discontinuity of the critical surface is related to the competition between
both modes; the critical surface is folded into a cusp, and hysteresis behavior becomes
possible. The eigenfunctions corresponding to each mechanism are clearly different: spi-
rals with large angles correspond to shear—type eigenfunctions and show little variation
of the azimuthal wave number n, while those corresponding to the centrifugal instability
exhibit small angles and large variations of n. The computations in this research compare
very favorable with the previous computations of Hung, Joseph and Munson (72), who
obtained one of the branches in the fold region. Agreement with the experimental results
of Ludwieg (64) is also very good. In spite of the difficulties encountered with the param-
eters defined by Ludwieg, the agreement in the shear—-dominated branch, computed for
the first time, is better than 4%.

In order to accurately measure the bifurcation point in the region where hysteresis
is present, new experiments would be necessary, trying to avoid the unwanted crossings
of the critical surface, and designing a parameter path far from the tangencies exhibited
by the lower experimental series of Ludwieg in figure 5.48. These experiments could also
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supply additional information on other computed critical parameters.
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Chapter 6

Weak Nonlinear Analysis of the
Taylor-Couette Problem:
Petrov-(Galerkin approach

6.1 Introduction

As was briefly commented in chapter one, ds theories have provided a wide assortment of
methodologies for studying the nonlinear behaviour of a fluid system near critical stages.
The formal approach to this problem lies on the mathematical hypotheses used to obtain
the reduced or simplified model of amplitudes which leads the perturbations just after
the bifurcation has taken place. At this stage, two main alternatives may be chosen.
The first, under the hypothesis of continuous spectrum of eigenvalues (extended systems),
space modulation of the perturbation amplitude may be assumed. This approach is usu-
ally termed Ginzburg-Landau method, and its effectiveness has been extensively checked in
many continuous systems recently. Nevertheless, it should be pointed out that, so far, a for-
mal conclusion has not been provided which could theoretically justify the time-space scale
analysis used to obtain the Ginzburg-Landau amplitude equation. As a matter of fact,
the method must be suitably modified in each particular case (Cross & Hohenberg, 1993).
The second, under the hypothesis of discrete spectrum of eigenvalues, more formal method-
ologies are available.

Center manifold theory and normal forms provide a fair explanation of what is really
happening after the system goes through a bifurcation. Of course, the reliability of the
results is strongly conditioned whether the analysis is done near criticality or not. In
either case, from a mathematical point of view, the amplitude equations obtained from
this method are completely formal and general. The hypothesis of discrete spectrum
of eigenvalues is now the main point to be discussed. Under some physical conditions,
periodicity in the extended coordinates may be always assumed. This is, of course, an
idealization of the original problem, because there are not infinite experimental systems.
Nevertheless, it is a well known fact that extended systems exhibit pattern formation with
a clear periodicity which is only modulated after a long transient period of time. Moreover,
the information obtained from the center manifold models, condense the whole mechanism
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of instabilities along with their original nature.

The present chapter deals with the nonlinear stability analysis of the Taylor-Couette
problem under some specific conditions. A methodology to apply Petrov-Galerkin schemes
to obtain the first order coefficients of the amplitude equations will be developed. This
part considers two particular situations. On the one hand, the steady bifurcation case
without sliding effects will be studied. In this case, O(2) symmetry will be considered.
On the other hand, the explicit symmetry breaking O(2)—S0(2) due to the presence of a
the combination of relative sliding and imposed axial pressure gradient effects (Couette-
Poiseuille flow). In fact, steady bifurcations are going to be sought in the last case. Our
aim is to evidence numerically the predictions done by the normal form analysis of the
bifurcation. In both situations, only the system of equations to be solved numerically will
be obtained. The explicit numerical computation of the proposed systems is out of the
scope of the present task.

6.2 Steady Bifurcations with O(2)—symmetry.

In this part, the classical Taylor-Couette problem will be considered. Consequently, no
axial effects will take place in the dynamics of the system. Under this prescription,
0(2)xS0O(2) symmetries must be considered in order to simplify the analysis. First, con-
sider the nonlinear partial differential equation corresponding to the perturbation field

v =Av—(vP - V)v—(v-V)vP — (v-V)v - Vp. (6.1)
For the sake of simplicity, v® will stand for the steady Couette flow with zero external
rotation R, = 0!

0
vB(r) =| RO(r) |, (6.2)
0

where O(r) stands for the radial dependence of the laminar Couette flow under the pre-
scribed boundary conditions

. 77Ri 1
O(r) = -], 6.3
)= Pl (63)
1
where r € [1L, T The critical stage is accomplished by increasing the rotation
—n1l=n

speed of the inner cylinder (i.e. the R; control parameter) so that there are some eigen-
values of the linear analysis crossing the imaginary axis for some specific value R; = Rf.
In fact, due to axial symmetry, it can be proved that the crossing eigenvalue must be at
least double (Chossat & Iooss, 1994). In the framework of center manifold theory, a slight
increase of the R; parameter is considered R; = R{ + p, where 0 < p << 1. For the ax-
isymmetric case n = 0, the linear stability analysis provides the eigenfunctions associated
with the critical eigenvalues which are crossing the imaginary axis:

Co(r, 2) = eikaUg(r) Co(r,2) = e_ikcng(r) (6.4)

!Nevertheless, the general case with rotation of the outer cylinder can be solved in the same way.
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At the critical stage (u = 0), the asymptotic behavior of the perturbations remains led by
the center variables x. corresponding to the previous eigenfunctions

ze(t) = A(t)Co(r, 2) + A(t)Co(r, 2)- (6.5)

In addition, the stable hyperbolic modes xj(t) will be slaved throughout the center man-
ifold

zh(t) = Z ¢pqr(7’az)ﬂpApf_1q- (6.6)
ptg+r>2

Consequently, the perturbation v(r, z,t) can be split up as follows
v(r, z,t) = x(t) + xp(t). (6.7)

The same decoupling may be done for the pressure gradient field, where its hyperbolic
part can be now expressed as a Taylor expansion of gradient fields

Vp= Y Vpg(r,z)uP AP AT, (6.8)
ptqtr>2
However, the previous terms will not be considered in the computational Petrov-Galerkin
scheme as they vanish under the projection procedure.
The third order normal form corresponding to a steady bifurcation with O(2)-symmetry
is (Iooss & Adelmeyer, 1992)

dA
—r = dnA+ bA|AP, (6.9)

where d and b are real coefficients which must be computed numerically. Formal substi-
tution of the splitting (6.7) in the nonlinear perturbation equation (6.1)

%(wc +zp) = [A =vB - V](ze + x1) — [(ze + z1) - V](VE + 20 + 1) — Vp, (6.10)

where now the basic flow has been slightly perturbed above the critical stage

0
vBiry=(R¢+p) [ ©(r) |. (6.11)
0

Formal substitution of center manifold expansion z.(¢) from (6.7) in (6.10) and neglecting
terms with order higher than the third, a hierarchy of boundary eigenvalue problems is
obtained by direct identification of power orders. This is accomplished by introducing
normal form (6.9) in (6.10). Then, on identifying equally powered terms in Taylor’s
expansion of the form pP A?|A|", the following system of equation is obtained:

order pA:
0 0 )
Apr10 —[| Ri | -Vi]g1o— Rf[p110- V]| © | —=Voi10 =
0 0
0 0
[{ © | -V]G+I[G-V]| © | +d, (6.12)

0 0
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order pA:

0 0
Aopio1 — [( R; ) - Vl]g1o1 — Rf[¢101 - V] ( © ) — Véin =
0 0
0 B B 0 B
[( o ) - V1o + [¢o - V] ( o ) + ddo,
0 0

0 0
Ago20 — [( R{© ) - V]go20 — R§[po20 - V] ( © ) — [0 - Vo — Vo2 = 0,
0

order pA?:

0
order pA?:
0 0 B B _
Agoo2 — [( R{© ) - V]goo2 — Rf[poo2 - V] ( © ) —[¢o - V]¢o — Voo2 = 0,
0 0
order pAA:
0 0
Apoir — [| R§© | -V]poii—R{[po11- V]| © | =
0 0
[¢o - V1o + [Co - VICo + Vorr,
order uA|A[*:

0 0
A¢021[( R{© ) - Vl]goa1 — Ri[¢o21 - V] ( © ) — Vo =
0 0

b¢o + [Co - Vdo11 + [Co - V]do2o + [Po11 - VICo + [¢o20 - V]Co,
order uA|A*:

0 0
A¢012[( R{© ) - Vl]goi12 — Ri[¢o12 - V] ( © ) — Vo2 =
0 0

b¢o + [Co - Vdooz + [Co - V]dor1 + [P0z - VICo + [¢o11 - V]{o,

0 0
Agoz0 — [( R;© ) - V]gozo—R;[po30 - V] ( © ) =
0 0

[Co - V]dozo + [do20 - V]Co + Vdoso,

order pA3:

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)
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order pA3:
0 0
Agooz — [| Ri© | - V]goos—Ri[poos- V]| © | =
0 0
[Co - Vo0 — [¢o20 - VISo — Vboso- (6.20)

At the same time, it should be regarded that the sought functions ¢, must satisfy the
free-divergence condition

V-bpgr =0, Vp,q,r €N (6.21)

and

n 1
¢pqr(ﬂ) = ¢pqr(ﬂ) =0, Vp,greNN, (6.22)

—that is, they vanish over the radial boundaries.

6.3 Computation of d and 0. Fredholm Alternative

The present section deals with the mathematical problem of computation of coefficients d
and b of the normal form equation (6.9). Only the Petrov-Galerkin methodology and final
expressions will be provided here, the explicit computation being out of the scope of this
work. This latter task would require, in some parts of the general procedure, the use of a
algebraic manipulator (Rand & Armbruster, 1987).

First, consider the equation (6.12), which contains the sought coefficient d. From the
linear stability analysis, an advantage can be drawn from the fact that (p is a 0—eigenfunction.
In other words

0 0
A —Ri[| © | VIGo—Rf[o-V]| © | =00 (6.23)
0 0
or, symbolically
Mp:Go = 0. (6.24)

As a result, the operator Mg is not invertible. On note that now, the equation (6.12) for
¢110 can be expressed as follows

0 0
Mpegrio =dGo+[| © |-VIo+[¢ V][ © |+ V. (6.25)
0 0

Regarding the no-invertibility of the operator acting over ¢119, a compatibility condition
is needed to solve the boundary problem (6.25). For this purpose, the usually termed
Fredholm alternative or compatibility condition is used. This is stated by the following
theorem:
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Theorem 6.3.1 (Fredholm alternative) The boundary value problem (6.25) is com-
patible iff the right hand side term is orthogonal to (o, which is the solution to the associ-
ated homogeneous boundary value problem (6.23).

Consequently, the Fredholm alternative enforces the following condition to be satisfied

0 0
<o, dCo+[| © | -V]Go+[¢-V]] © |+ V110 >= 0. (6.26)
0 0

In previous equation, the inner product <, > must be understood in the sense of £2[0, 27 /k.] x
[0,27]x[n/(1—n),1/(1—n)]-integrable vector fields. At this stage, Petrov-Galerkin schemes
may play a useful role. First, the computed spectral eigenfunctions obtained from the lin-
ear analysis problem may be used. This greatly simplifies the computation of d because
of the pressure gradient ¢~5110 term cancellation in the projection. Denote by Qé‘/[ , the
Mt —order spectral eigenfuction corresponding to the discretization problem introduced
in previous chapter

! = et U (r), (6.27)

where kg is the numerical approximation of k.. Then, a fair approximation of the coefficient
b is given by the following relation

0 0
<UM@r),[| © | -VIUM(r) >+ <UM(r),[UMF)-V]| © | >
d=— 0 0 (6.28)

<Ug'(r),Ug"(r) >

For the computation of the second coeflicient b, the same procedure must be done. In this
case, equation (6.17) may be written as follows

M go21 = blo + [Go - V1dorr + [Co - Vidoao + [bo11 - V]¢o + G020 - VI¢o + Poa1, (6.29)

which, again, is not invertible. The compatibility condition is now

< €0, b¢o + [Co - V]gor1 + [Co - Vdozo + [do11 - Vo + [Bo20 - Vo + o1 > - (6.30)

On note that now, the compatibility condition (6.30) includes the functions ¢p11 and
®020, which must be computed numerically from equations (6.16) and (6.14), respectively.
Altogether, the computation of the center manifold and the coefficients is a really tour
de force. Equation (6.30) can be again suitably modified for the Petrov-Galerkin scheme.
Thus, a fair approximation of b is given by the following equation

< U (r), [Co - Vidois + [Co - Vit + (9011 - V1o + 9030 - V1o >

b=
< U (r), Ug" (r) >

(6.31)

where ¢4, and ¢}, are the M —order spectral solutions corresponding to the homogeneous
boundary problems (6.16) and (6.14), respectively.
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6.4 0(2)—»S0O(2) Symmetry Breaking

This final section deals with of stationary bifurcations with an O(2) broken symmetry. At
the present stage, it should be noted that the symmetry may be broken in two different
ways. First, the bifurcation may break the symmetry by appearing structures which are
not invariant under specular axial reflections or axial fixed-period translations. This is
the case of spirals, for example, in Taylor-Couette problem, where a time-periodic pattern
appears. Secondly, O(2) symmetry may be broken explicitly by introducing axial effects
on the problem. The present section will only consider the combined axial sliding and
imposed axial pressure gradient effects. Moreover, the analysis will be done under the
hypothesis of stationary outer rotation.

The main goal is to find a generic bifurcation capable of providing stationary super-
critical patterns. For this reason, the double-zero eigenvalue bifurcation eigenvalue will be
considered. Consequently, two different alternatives are available for the Jordan form of

the operator
0 0 0 0
L1—<1 0),01‘ L2_<00) (632)

At this point, the non trivial SO(2) action group is considered over the two alternatives.
This will be accomplished by introducing the exponential map

eim¢ 0
R¢ = ( 0 e—im¢ ) y  m 7é 07 (633)

which acts non-trivially over the two-dimensional zero-eigenspace. In order to identify
which of them represent properly the bifurcation, the commutation relations [Ry, L1] = 0
and [Rg, L2] = 0 must be imposed. As a result, only the second alternative Ly satisfies
the equivariance property.

The computation of the normal form bifurcation equation is now accomplished by
considering the complex representation

A = P(4,4,0)
A = P(AA ), (6.34)

where P is a complex polynomial depending on second or higher order terms APA? and
on a set of parameters « featuring the O(2) symmetry breaking. The leading terms of P
will be obtained by imposing the SO(2) symmetry condition

M P(A,A,a) = P(e™PA,e7 ™ A4, ). (6.35)
From last equation, the algebraic structure of P may be obtained
P(A, A a) = Af (AP, o) (6.36)

Equation (6.34) can be now expressed in its polar or Euler form by the identification
A =rel?

i = r(Re[a] + Refa]r? + - --) (6.37)
6 = Im[a] + Im[a]r® + - - - . (6.38)
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Therefore, the third order polar normal form is

i =r(p+ cr?) (6.39)
0 =v+ dr? (6.40)

where p and v will now represent the unfolding parameters of the bifurcation. Therefore,
the bifurcation is of codimension 2. The last equations can now be written in the classical
complex form

A= A(p+iv+[c+id]|AP?) (6.41)

Stationary solutions of (6.40) and (6.40) are obtained from the conditions 7 = 0 and 6 = 0.
As a result, two different kind of steady patterns may be appear. On the one hand, the
trivial (unstable) Couette-Poiseuille flow corresponding to r = 0 is always a solution. On
the other hand, provided that ¢ # 0, two branches of stable solutions appear

p(p) = £4/—=. (6.42)

The phase #—dynamics is crucial at this point. The second condition 6 = 0 establishes a
linear dependence between the two parameters pu and v over the bifurcation branches p(u)

Vp = h (6.43)

Consequently, the steady bifurcated solutions (\/,u—/c, 6y) would lie on a circle with a
constant phase. This is a continuous family of Taylor vortices, distinguished by an axial
phase shift. As was predicted by Armbruster and Mahalov, a suitable combination of
imposed axial effects would lead to this kind of behaviour (Armbruster & Mahalov, 1992).

Finally, for the specific computation of the coefficients d and ¢, the center manifold
formalism should be applied in the same way that it was carried out in the previous
section. Nevertheless, the linear regime provides enough information about the qualitative
character of the bifurcation. For the present, we will restrict our analysis to the search of
numerical evidences capable of confirming the theoretical predictions obtained from the
normal form analysis.

6.5 Numerical Evidences

In order to confirm the theoretical predictions obtained in the previous section, a Petrov-
Galerkin scheme has been specially constructed for the simultaneous combination of the
axial sliding and imposed axial pressure gradient case. Thus, the Taylor-Couette problem
is here considered with the simultaneous effects of rotation of the inner cylinder R;, inner
axial sliding R, and axial pressure gradient II (Couette-Poiseuille flow, see Joseph, 1976).
In this specific situation, the basic flow is given by the expression

0
vB(r) = R;O(r) , (6.44)
R.Zs(r) +I1Zp(r)
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Im(A)=0

— 1 1
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!

Figure 6.1: Featuring zero-level curve of the imaginary part w corresponding to the critical
eigenvalue as a function of the parameters p = Rz-sliding effect and v = P-axial pressure
gradient. Petrov-Galerkin methods have been used in order to obtain the previous results.
On note the linear dependence between the parameters of the codimension-2 bifurcation.

where Zg and Zp stand for the radial dependence of the axial basic flow corresponding
to the sliding and imposed pressure effects respectively. They are explicitly given by the
following expressions

Zs(r) = W (6.45)
1.4 1
Zp(r) = Z[M Inr(l—n)—r?— W] (6.46)

Symmetry breaking will be accomplished by considering R, and Il as the parameters
@ and v. Therefore, the analysis will be done for values near zero. A linear stability
analysis, as in the previous chapter can be done. In this case, the main interest lies on
the axisymmetric disturbances and their dominance for moderate values of R, = yu and
II = v. In addition, efforts must be focused on the search for steady secondary flows, that
is, zero imaginary part of the bifurcating eigenvalues.

The main results are condensed in figure 6.1, where the curve of zero imaginary part of
the bifurcating eigenvalue is represented as function of the symmetry breaking parameters
# and v. As expected from the theoretical results obtained in the previous section, the
dependence between the axial sliding and the imposed pressure gradient must be linear.
The computations have been done for the n = 0.5 wide gap case.
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Chapter 7

Conclusions

7.1 Main Results

In the present work, the reliability of the Petrov-Galerkin schemes applied to nonlinear
fluid dynamical systems is confirmed extensively. Furthermore, their simplicity and easy
implementation make the whole formalism a powerful tool in different kinds of problems.
In chapter 3, focus was on the search for a link between dynamical systems theory and
Navier-Stokes equations in order to provide essential information about the stability of
two dimensional fluid flows. Although the computational cost of the numerical method
may be greater than other standard method of integration (Shen, 1992), the final results
are more reliable from the point of view of hydrodynamic stability. As a matter of fact,
the instability results provided for the Regularized Driven Cavity Flow improve former
ones obtained by Shen with a notable reduction of the relative error in the computation
of the critical Reynolds number.

In chapter 4, the relevance of low-dimensional fluid models was pointed out as a fair
explanation of turbulent phenomena. Furthermore, special numerical algorithms for the
analysis of time multi-periodic dynamical systems was developed. Those methods can
compute with high accuracy period-doubling points of bifurcations, detecting not only
stable periodic orbits but also unstable ones, which are in fact the cause of the eventual
transition to chaotic regimes. Beyond the multi-periodic stages, where Floquet analysis
has been extensively applied, specific numerical algorithms for the long time evolution
were constructed. This was done in order to compute Liapunov exponents, using the
method of Shimada & Nagashima of basis renormalization. To sum up, the whole scenario
completely agrees with Feigenbaum’s theory of period-doubling subharmonic cascades,
and it was also verified numerically by the explicit computation of §r, where only nine
bifurcations were necessary to provide four significant figures of the universal constant.
The essential features of the model and the numerical methods for its study were reported
in (Meseguer, Marques & Sanchez, 1996).

Once Petrov-Galerkin schemes were checked numerically in chapters 3 and 4, the rest
of the work dealt with the study of axial effects in the Taylor-Couette problem. The
geometrical features of the problem and its particular boundary conditions required a
special treatment of the Petrov-Galerkin formalism. In appendix D, a complete construc-
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tive analysis is proposed, applied extensively in chapters 5 and 6. Although some partial
studies of the problem have been reported in the past (Hung, Joseph & Munson, 1972
or Ludwieg, 1964), they do not provide a comprehensive analysis of the competition be-
tween shear and centrifugal mechanisms of instability. The present task specially dealt
with this analysis, focusing on new outstanding features appearing as an outcome of this
competition. As a result, discontinuities and potential hysteresis mechanisms have been
detected with the use of special numerical algorithms for the computation of neutral sta-
bility regimes. These new features (not commented or noticed in previous works) may
have unwanted experimental consequences, making it necessary to repeat the experiments
with more sophisticated devices. Despite the scattered experimental results provided by
Ludwieg, our own computations are in good agreement with them. Moreover, a fair ex-
planation of the cause of quantitative discrepances between Ludwieg’s experiment and
our results has been pointed out. A deeper analysis on the parameters used by different
authors is provided in appendix D in order to clarify what was exactly measured in each
work. For the present, the main results for wide and narrow gap cases n = 0.5 and n = 0.8
are reported in (Meseguer & Marqués, 1998).

Finally, chapter 6 is a formal approach to the weak nonlinear analysis of the Taylor-
Couette problem. First, proposed was how the Petrov-Galerkin schemes can be used for
the computation of the coefficients of the amplitude equations which lead the nonlinear
behaviour of the flow just after the bifurcation has taken place. Secondly, the study
of O(2) to SO(2) symmetry breaking under the presence of imposed axial effects was
studied. The theoretical predictions from the normal form analysis have been confirmed
numerically, agreeing with former predictions stated in (Armbruster & Mahalov, 1992)
where stationary secondary patterns are expected under specific conditions (codimension-
2 bifurcation).

7.2 Perspectives and Applications

Part of the development of the main ideas proposed in this work are within the frame
of parallel studies related with axial effects in Taylor—-Couette problem. In fact, Petrov-
Galerkin methods can be used for more general purposes, as well as in the nonlinear
regime. This is essentially the result of the work of Marques & Lopez, 1997, in which the
stability of nonlinear periodic regimes of the Taylor—Couette problem submitted to axial
oscillations was studied. At this time, the next step would be to consider nonlinear axial
effects after criticality and to study the stability of some secondary flows predicted by the
linear theory. On the one hand, the presence of dominant axisymmetric patterns ( Taylor
vorter) in the linear regime for high axial speeds must be checked nonlinearly. On the
other hand it is necessary to make a nonlinear integration of the combined effects axial
sliding and imposed axial pressure gradient in order to confirm the existence of steady
axisymmetric cellular structures.

A better understanding of the competition of centrifugal and shear instability mecha-
nisms is needed for the improvement of different industrial processes. One example is the
purification of waste water, in which the fluid is rotated and driven axially simultaneously.
Therefore, the exact control of inestabilization of the basic flow would avoid pre-turbulent
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stages, which could affect the effectiveness of the global purification procedure. Another
direct application could related to the massive production on optical fibers. In this case,
the fiber, in its fluid state, is injected under the effects of high pressure gradients. For
such reasons, a comprehensive study of the stability of Couette-Poiseuille basic flow is
essential.
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Appendix A

Regularized Driven Cavity Flow:
Explicit Computations

A.1 Computation of a Free-divergence Particular Solution

Our main goal is to obtain a solenoidal particular solution which satisfies the original
boundary conditions. For this purpose, we consider a function v (z,y) defined over the
two-dimensional set Q = [—1,1] x [—1, 1] such that the sought vector field can be derived
from it

up(z,y) = (Ugvvgvo) =V x (¢k), U,f = Oy, vg = -0 (A.1)

It should be remarked here that 1 is not a stream function for the original problem. The
consideration of this function is only a pure mathematical artifact in order to obtain a
solenoidal field from it. For the sake of simplicity, the separation of variables hypothesis
will be considered on the functional structure of 1. We suppose that the sought function
is The result of a product of two single variable functions

Y(z,y) = F(z)G(y) (A.2)

Now, imposing the boundary conditions (3.3) which must be satisfied by the field uy,
suitable functions F' and G can be obtained. To sum up, the conditions are

V¥ (2, £1) = 0 = Bptb(w, 1) = 0 — F'(2)G(£1) = 0 — G(+1) = 0 (A.3)

vY(£1,y) = 0 — Bpih(£1,y) = 0 = F(£1)G(y) =0 — F'(£1) = 0 (A4)

VI (E1,y) = 0 = dyb(+1,y) = 0 — F(+1)G (y) = 0 — F(+1) = 0 (A.5)
v¥(z,~1) = 0 = dyp(w,—1) = 0 = F(2)G'(-1) =0 > G'(~1) =0 (A.6)
02 (2, 1) = r(2) = (e, 1) = r(z) = F(x)G'(1) = r(z) - F(z) = rie) (A.7)
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where r(z) is the prescribed regularized profile over the top boundary (r(z) = R(z? — 1)?
in the present case). Of course, the previous equations do not determine uniqueness of
the functions F' and G. On the contrary, many different options are available. In fact,
the selection need to be done depending on the family of orthogonal functions which will
be used later on the projection scheme. For this purpose, we have considered simple low
order polynomials in the variables z and y. For example, from equations (A.4) and (A.5),
the structure for F'(z) can be obtained. A simple option could be

F(z) = (2* — 1)*f(2) (A.-8)

where f(z) is a continuous and differentiable function in x = +1. For G(z), the vanishing
conditions are not so restrictive. From equation (A.3), the structure of G(z) may be
guessed

G(y) = (v — )g(y) (A.9)

with g(y) a smooth function whose part of its structure is conditioned by the fourth
boundary condition (A.6). A linear factor is only needed for this purpose such that

Gly) = (v’ ~ 1y +1) (A.10)

is a compatible solution. Finally, equation (A.7) will lead the regularity of the factor f(x)

fla) = (22 —TS;)G’(l) - 4(932(?1)2 (A.11)

where equations (A.10) and (A.8) have been used. The last equation reflects the regularity
conditions which must be satisfied by the profile r(x). To sum up, the regularity conditions
over r(x) can be synthesized in the following form

r(z) ~ O(x £1)?] (A.12)

In our speciic case the regularized profile is 7(z) = R(2%—1)?, thus f(z) = R/4. Therefore,
a simple option for ¥ is

¥(w,y) = 3@~ D2~ Dy +1) (A1

and the associated solenoidal field derived from it is

up = (?(3y —1(y +1)(e? - 1)%, ~Ra(y + 1)(y* - 1)(2* — 1)) (A.14)

A.2 Coefficients for the Dynamical System of Amplitudes

The matrix elements which appear in chapter 3 are explicitly expressed as follows

Aijr = /Q{ﬁ(w)éﬁ(y)fk(ﬁv)gf(y) + Fi(2)3;(y) fi(@)9u(y) 4O (A.15)
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z%maémum@mmummn+mmM%@ﬁwmwmm (A.16)
q%zﬂﬁﬁmwm¢@+ﬁ%m@mww+
()3 () [020s + o0, ][ FL()on(v)] —

(
i
Fi(@)35(9) [ Fr(2)g1(2)8z + fi(@)gi(x)dyJvp +
(2)3; ()~ fx(2)g1(2) 0z + fr(2)g1(2)0y]vp }dQ (A.17)

Nijkimn = /ﬂ{fi(o:)é}(y)[—fk(x)g{(x)ﬁx + fi(@)gi()0y) [ Fru ()9 ()] +
Fi(@)3; () [~ fr(@)g1(2) 00 + fi(2)91(2)8y][f1n ()9 (y)]} A2 (A.18)

b = [ (= @) a0 + Fle) Ay +
fi(@)F5(9)[vp 8 +vhdylvy — Fi(2)3;(y)[vp 0 + vhd,Jvp }dR2 (A.19)
where Q = [—1,1] x [—1, 1] and the functions fi, gj, fr and g; are defined as follows
file) = (1 =2*)*Ti(2) gi(y) = (1 - y*)**Ty(y) (A.20)
fu(z) = (1= 2®)’Ti(x)  ai(y) = (1 - y*)*Tuly) (A.21)
being Ty (z) the i—th order Tchebyshev polynomial
Tm(z) = cos(marccosz), =€ [—1,1] (A.22)

The functions v$ and vj are the cartesian components of the solenoidal field uy, defined
in equation (A.14) and A stands for the laplacian operator in two-dimensional cartesian

coordinates
) 2
A=0;+ 8y (A.23)

The matrix elements can be computed numerically making use of Gauss-Tchebyshev
quadrature schemes (Press et al. , 1986). In fact, the numerical integration is exact if
the order of the quadrature greater or equal than the order of the polynomic factors which
appear in the integrals.
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Appendix B

Low-Dimensional Model: Explicit
Computations

We consider the adimensionalized Navier-Stokes equations for incompressible fluids:
v+ (v-V)v=—-Vp+Av , V.-v=0 (B.1)

In order to build a weighted residual scheme, we will work with two different function
spaces. Let Hg4 be the projection space of test functions:

Hi=1{p € L*(Q), V-$ =0, ¢ |gg= 0} (B.2)
where 7 is the unit normal to 0f2, and let H; be the space of divergence-free functions:
Hy={p e L’(Q), V- $=0} (B.3)

Both spaces will be spanned by solenoidal functions Hg = Span < (;;pq >, Hs = Span <
Gmn > of the form

i (@8 oo (@)
o) = () e = (SRS may

where ' means derivative, and the normal component of quq vanishes on the boundary 92
of the domain: ¢ -# = 0. These vectorial functions satisfy the divergence—free condition
and are a base of the Hilbert spaces Hg4 and H; respectively. Now the velocity field is of
the form:

M N

v(z,y,t) = Z Z amn (t) Pmn (T, ) (B.5)

m=0n=0

The selection criteria of the set of functions quq and ¢, depend on the geometry of the
problem and the boundary conditions. In fact, these functions will be built up using suit-
able orthogonal polynomials (see Canuto et al. , 1988 or Moser, Moin & Leonard, 1983 for
a detailed discussion). We take the f and g functions as

fp(x) = fp(z) = (552 - 1)2Pp(w) (B.6)
da(y) = 94(y) = (¥ —1)Py(y) (B.7)
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where P, is the p'"-order Legendre polynomial. Thanks to the factors (z2 — 1)? and
y? — 1 the boundary conditions (4.1) are satisfied, except for the tangential component on
y = x1. This remaining boundary condition will be set by the tau method.

The weak form of problem (B.1) will be

<P|lOv+(V-V)V—Av>=0 , VYoeHg vEH, (B.8)

where < - | - > is the standard Hermitian product. The pressure term < q~5 | Vp >
vanishes for all q~5 € Hg (Temam, 1988). When the remaining boundary conditions are set,
the coefficients an,, are no longer independent. In fact we can find a;, N, am,v—1 in terms
of the remaining a, , for all m. From Eq. (4.1),

R [n/2]
A = = Om,0 = ; Unnok; n=N,N-1; m=0+M (B.9)

corresponding to the imposed velocity profile v(z) = R(z? —1)? on y = 1. The Egs. (B.8)
for the independent amplitudes in the case N = 3, M = 1 are Eqs. (4.2), where u = aqo,
v = ag1, w = a1g and z = a11. The values of the numerical constants that appear in the
Eqgs. (4.2) are:

A =133/64 Ay =573/80 A3 = 991/20592 A4 = 73/5720

v =23/2904 vy = 1615/113256 w5 = 703/15730 14 = 685/9438

dy =483/32  dy =267/8 ds = 2003/80  dy = 1521/40

5 =499/1716 8, = 5/396 b3 = 801/1430 &4 = 17/26 (B.10)
p1=380/1573  py = 760/47T19  ps = 4T76/7865 ps = 280/1573

ps =12/143  pg = 620/429 pr =504/715  pg = 240/143

po = 1296/3575 po = 72/1859



Appendix C

Computation of Periodic Orbits

C.1 First Order Variational Equations

Consider a dynamical system

i = f(x) (C.1)

defined over an bounded open subset &/ C IR". The uniparametric group of transforma-
tions , ¢¢(z) = ¢(t,x) describes the flow of a particular initial point z after a time ¢, being
the solution of the initial value problem

¢ = f(z), ¢o(x)=12 (C.2)

If f € CP, the same order of smoothness for the low ¢ may be assumed. For a fixed ¢
value, the flow ¢¢(x) may be interpreted as a continuous and differentiable map

oe(z): R* — IR"
T o(t, x).

In order to extract the qualitative information of the local geometric properties of the
flow, the behaviour of ¢ must be studied in detail. From an analytical point of view, ¢;(z)
is a diffeomorphism whose topological features may change as the paramater ¢ evolves.
Consequently, the local evolution of volume elements in phase space will be governed by
the derivative of ¢ near the point x. For this purpose, the first order variations produced
by a local increment Ax are considered

(C.3)

1
Gule + Az) = Gu(x) + (D) Az + 5 [D*6,()| A% + o A%2) (C.4)
Now, regarding that ¢;(x) is the solution of the initial value problem (C.2)

di(x) = fou(x)). (C.5)

The last equation will be very useful for the present purposes because it allows the change
of order of derivation with respect  and ¢ independently. For the sake of simplicity, only
the first order variations are going to be considered for the study of the flow ¢¢(z). In
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fact, the qualitative behaviour of volume elements in phase space is led by the first order
terms. Therefore, the time-evolution of the linear map D¢;(z) must be studied. This will
be accomplished by taking the first order derivative with respect to ¢.

d o0 0 d 0 0

- _ = _ = — =D — .

= i) = 5o 0uw) = o F (@) = DI () 5= (z) (C6)

which leads to a dynamical system for the first order variations, whose explicit structure
is

d 3901‘%5% 8a7n¢% 891:1fl awnfl 3x1¢% 3xn¢%
at : . : = : . : : i :
(C.7)
with the initial condition
3w1¢% 3%@5% 1 --- 0
: : =1 : - |- (C.8)
Op @ - Op, PF —o 0o --- 1

The initial value problem formed by equations (C.7) and (C.8) is usually termed First
order variational equations and it must be integrated simultaneously with system (C.2).
The computational cost of the numerical integration will depend on the dimension of
the global system. The stiffness of the equations requires powerful integrators capable of
controlling the time increments near the initial conditions. For the present purposes, a
Shampine & Gordon linear multi-step method provides enough accuracy, although more
efficient schemes like Gear or implicit Runge-Kutta algorithms are highly recommended
(Shampine & Gordon, 1975).

C.2 Numerical Computation of Poincaré Maps

For the study of stability of periodic or multi-periodic orbits of a dynamical system it is
useful to consider the main features of their transversal sections instead of their global
structure. This idea was originally proposed by Poincaré for the study of stability of
planetary orbits in celestial mechanics. For this purpose, Poincaré considered surfaces
immersed in the phase space which intersect tranversally to the periodic orbit under study.
Poincaré realized that the information obtained from the intersection was enough in order
to study the stability of the orbit. The geometrical mechanism is quite simple. First,
consider a hypersurface IT; defined by equation g;(z) = 0 crossing the flow ¢¢(x1) for
t = 0 (this is, z1 = ¢(0,x)) such that Vg; - f(¢:(z1)) # 0. Next, consider another
hypersurface IIy given now by the relation go(x) = 0 intersecting transversally with the
flow at the point z3. In some sense, the flow ¢;(z) mails the point z; of II; to the point
x2 of Iy for an specific value of ¢ usually termed flight-time. Algebraically, this process
can be interpreted as a map P defined between to manifolds as follows

P Hl—)Hg

T T9 = ¢((t(x1),x1)) — P(xl) . (09)
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In fact, t is a function of x; (this is, different points of II; need different flight-times to
reach ITy) and their dependence is is implicitly conditioned by the algebraic relation

92(¢(t(z1), 1)) = 0. (C.10)

Equation (C.10) is the cut condition for ¢(x1) and may be solved by a combined predictor
algorithm of sign evaluation of g2 over the flow followed by a corrector Newton’s method:

thtl — ¢k 92(2") o* = p(t*, z1) (C.11)
Vga(a*) - f(z*)’ ’
The previous algorithm provides a numerical computation for the map defined previously
in (C.9). For the present purposes, it will be only necessary to consider one transversal
surface II; = Iy = Il defined by a linear equality g(z) = 0 (the Poincaré section) such
that a point zy over IIy belongs to a periodic orbit if and only if

9(#(t(x0), 0)) = g(2o) =0 (C.12)

for some value t(zg) = T which is just the period of the orbit. The previous argument is
the classical setting of the usually termed First return map P. In fact, the main goal is to
study the behaviour of closed trajectories interpreted as bijective maps over the Poincaré
section. The essential information about the stability of trajectories is implicit in the
map P. Therefore, the main point at this stage is the study of P and its effect on phase
space dynamics. In order to simplify the analysis, the cut condition (C.10) will be given
by setting one space coordinate (z,, for example) to zero. This simplification can always
be done assuming that f(z1) is not orthogonal to the canonical vector e, = (0,0,...,1).
Therefore, the cut condition (C.10) is simplified to the expression

9" (t(x),z) = 0. (C.13)

The essential information about contraction or expansion effects in phase space is implicitly
contained in the infinitesimal spatial variations of the map P

(DP)ij = 04, P, (C.14)
which can be obtained by explicit derivation of the definition of P given in (C.9)
0o, Ps = 00, ' (t(x), ) = 040" Ot + 0o, 8" = F(P(t(x), 7)), t + Oa, &' (C.15)

In last equation, the factor Jy; ¢' is given by the first variational equations (C.7) and (C.8).
Besides, the unknown factor d,;t(z) can be obtained by implicit derivation of (C.13) with
respect to the spatial variables

Oz, 0" (t(2), @) = 09" O t(x) + Oy ¢" = f"($(t(2), 7)), t(x) + O, 4" (t(2), ) = 0,
(C.16)

therefore

04,87 (#(x), 2)

O2;t(®) = ~ 52 ), )

(C.17)
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Finally, the differential of Poincaré map is given by the expression

 Fl(ee(t),2) 5
P=0,.¢" — T~~~ 0, ¢ 1
%P =00 = o(a(t),2) (19
which can be expressed in matrix form as follows

n

(DP); = Y0~ T 0,0, 1<y <n) (C.19)
k=1
or
f®en

where 1,, is the n—dimensional identity matrix, f ® e, stands for the dyadic product f*8,
and J = 0,¢.

C.3 Period-doubling Mechanism: Floquet Analysis

For the stability analysis of the periodic orbits, only the restriction over the Poincaré
section Iy is needed. The interest is mainly focused on the transversal expansion and
contraction local properties of the periodic orbit. For this purpose, the projection of the
first order differential of the Poincaré map is considered

(Pl = >0~ L m)@n,09), (<ij<n-1) (C.21)
k=1

The previous matrix provides essential information concerning stability of periodic orbit
under study. Let be P the Poincaré map restricted to the n — 1 dimensional plane self-
connected by a periodic orbit wich crosses the plane at the point xg. From the point of
view of maps, xg is, under the previous hypotheses, a fixed point of P— that is, P(zy) = x¢.
Now, consider another point x = xy + ¢ in a neighborhood of zy (||0|| — 0). Lets study
the behaviour of the perturbation § under the action of P:

P(x, +6) = P(x,) + (DPy)d + O(6%) = zo + F + O(8?), (C.22)

where (DP,) stands for the first order differential of the Poincaré map evaluated at xg,
which is in fact the linear map F' defined in equation (C.21). Thus, neglecting non-linear
terms:

P(.’L’o + 5) = xo + FO. (0.23)

Therefore, the initial perturbation § is transformed linearly by the map F. The same
process can be repeated twice in order to see the linear effects over §

P@) (2 + 6) = P[P(zo + 0)] = P(zo + F6) = xo + F?5, (C.24)
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Im{ A C
=1

Re C

Figure C.1: Featuring period-doubling mechanism. One of the eigenvalues of the spectrum
of the first order differential of Poincaré map crosses the unit circle in the complex plane
passing throughout the point ( = —1, while the rest of eigenvalues remain inside the disc

Il = 1.

where non-linear terms have been neglected again. Finally, after m— complete periods,
the initial perturbation ¢ is transformed by the following linear rule

5 — F™§ (C.25)

As a consequence, the geometrical evolution of the vector § will be conditioned by the
spectrum of eigenvalues of the matrix F'. This matrix is usually termed Floquet matriz and
its eigenvalues are known as characteristic exponents or more frequently Flogquet exponents.
Those eigenvalues will be in general complex and their modulus will conditionate the
dilation or contraction of the vector §. Floquet theory asserts stability of the periodic
orbit if the spectrum of eigenvalues of F' lies inside the unit circle over the complex plane.
If the global system is perturbed (by increasing an external parameter, for example) the
spectrum of eigenvalues may change. The inestabilization is achieved when, at least, one
of the Floquet exponents crosses the unit disc. The mechanism under which this process is
done may be very complicated and it is just what characterizes the bifurcation. A global
analysis of the different kind of phenomena is out of the scope of the present appendix.
For the present purposes, it is enough to consider a particular case.

The period-doubling bifurcation occurs when one of the Floquet exponents crosses
the unit circle by the point z = —1 (see Fig. C.1). As a consequence, there appears a
transversal one-dimensional subspace spanned by an eigenvector v, such that

Fu, = —v, (C.26)

If now, the infinitesimal perturbation is taken in the direction of the eigenvector v,—
that is, 6 = ev, (e — 0), then

P(xg+9) = P(xo + evp) = o + F(evp) = g — €vp = 29 — 0 (C.27)
and, similarly

P@(zg + 6) = P[P(x + ev,)] = P(xg — 8) = 20 + 0 (C.28)
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Therefore, the perturbed point turns to be a fixed point for the map P = (PoP). In
other words, a twice-periodic orbit appears (Bergé et al. , 1984). From that stage on, the
stability analysis of the appearing orbit must be slightly modified because a new Poincaré
map (P?)) for the new period must be defined. Moreover, the topological features of the
orbits may change and the section surfaces may not be valid or not optimal for accurate
computations. Altogether, the modifications on the numerical scheme must be done ad
hoc depending on the particular behaviour of the system.

C.4 Asymptotic Behaviour: Computation of Lyapunov Ex-
ponents

The purpose of this section is to establish an algorithmic scheme capable of providing
information about the long-time behaviour of periodic or multi-periodic orbits in phase
space. As long as the periodic orbits exhibit period-doubling bifurcations, the dynamics of
the system turns to be more and more complex. In fact, the period of the orbits increase as
a power of 2. As a result, long-time numerical integrations are needed to make predictions
about the stability of those orbits. Furthermore, subharmonic cascades produce typically
chaotic behaviours beyond a limit accumulation value of the increasing control parameters.
At the present stage, the term chaotic is introduced in the classical frame of sensibility
with respect to initial conditions— that is, neighboring initial conditions exhibit uncor-
related evolutions for long time integrations. This feature should not be interpreted as
instability or simple divergence of nearby initial trajectories. On the contrary, the dynam-
ical evolution of volume elements in phase space is much more complicated. Simultaneous
stretching and contracting phenomena can be frequently observed. From a geometrical
point of view, the combination of both previous effects is just what characterizes chaotic
regimes.
As in the previous section, consider the first order variations dynamical system

. &= f(z) do(z) = xg
{ Jt)=(Df)JE) JO)=1, ’ (C.29)

where J(t) stands for the first order variations map D¢ (z) introduced in previous sections.
If a slightly perturbed initial condition xy + &y is considered, the dynamical evolution of
§(t) will be led by the fundamental matrix J(¢) (Fig. C.2)

d(t) = J(t)do. (C.30)
In fact, J(t) can be interpreted as an exponential map in IR" as follows
eMt ...
JHy =1 + -~ | (C.31)
0 --- et

A measure of the asymptotic growth rate of the norm of § along the trajectory ¢;(z)
is given by the limit

o 1 (0]

)\(.'170,(50) = t—o00 ¢ ||50||

(C.32)
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(Q(X +0)
0}
X+0
(Q(X)
30)
X

Figure C.2: Geometrical sketch of the evolution of the perturbed initial condition xg + dp.
At the first order, the evolution of §(¢) is led by the fundamental matrix J(¢) acting over
do-

The number A(xg, dp) is usually termed Lyapunov exponent and it measures the divergence
rate of trajectories in the § direction. If A(zg,dp) = A1 # 0, then, for sufficiently high ¢:

.1 [[T(@)l
tl_l)IIolo 7 In H ~ A1 (C.33)
therefore
17(£)dol| ~ e**[16o]l, (C.34)

i.e., the trajectories diverge or converge exponentially depending on the sign of A\;. The
Lyapunov exponent depends on the initial point of evolution xy and the direction defined
by the initial perturbation dg. For fixed x, the Lyapunov exponent can acquire only a finite
number of of mutually different values A1, A2,... ,A\x (kK < n) on the n—dimensional phase
space. Thus, a basis e, es,... , e, may be chosen to measure the behaviour of nearby flows
in different directions.

At this stage, one of the essential features which needs to be captured from the global
dynamics is the behaviour of k—dimensional volume elements in phase space. For this
purpose, the k — dimensional Lyapunov exponent is defined as follows

1. || J(t)er A J(t)ea A--- A J(t)eg]|

AB) (zo) = lim = C.35
(o) = Jim 2 In [er Aez A A exl| (C-35)

Unfortunately, when Lyapunov exponents are evaluated directly by integrating vari-
ational equations, some numerical problems may arise. Depending on the complexity of
the vector field, the dynamical system may exhibit chaotic behaviour. If it is the case,
the variational equations have an exponentially divergent solution. Furthermore, there
may be asymptotically stable manifolds throughout which, some components of the vari-
ational equations decay to zero. Altogether, it turns the fundamental matrix J(¢) to be
ill-conditioned for computational purposes. In order to avoid this numerical problem, a
renormalization method proposed by Shimada & Nagashima, 1979 is highly recommended.
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The method considers a periodic renormalization of the basis e, es,... , e, after a suit-
able transient time period 7. This renormalization is accomplished using the classical
Gramm-Schmidt orthonormalization procedure

JH J(T)G{
I (el o
g = J(r)e; (e{*l-J(T)eé_)e{_“
17(r)e} — (el - J(r)eh)el ™|
. J(r)e} (e{_“-J(T)eg)e{“ (;_“ J(T)eg)e;_“
1T (r)ed — (el - T(r)eh)el™ — (el - J(r)eh)ef ™|
] k-1
J(r)ey — Y (el J(T)el el
ei+1 _ T;::l (C.36)
1T (r)ef, = > (el - T(r)ed, el Ml
m=1

where the change of basis process is justified because of the invariance of subspaces gener-
ated under the exterior product. The exponents obtained under the computations of the
previous algorithm provide information about the complexity of the time-dynamics. For
instance, the existence positive values of Lyapunov exponents would evidence the pres-
ence of chaotic behaviour, while a zero maximum Lyapunov exponent would indicate the
existence of periodic or multi-periodic regimes.



Appendix D

Spiral Taylor-Couette Problem:
Petrov-Galerkin Formulation

D.1 Solenoidal Bases: Constructive Method

When considering axial-azimuthal periodicity of the physical system, the following func-
tional structure on the perturbation fields can be assumed

vr(r)
ve(r) |, VYneZkeR (D.1)

v, ()

v(r,0,z) = el(nf+kz)

where v, vy and v, are the radial, azimuthal and axial components of the vector field,
respectively. In order to built up a suitable complete set of solenoidal fields, the incom-
pressibility condition must be considered. The condition V - v = 0 leads to a functional
dependence between the three components

D, v, + Z—nvg + ikv, =0 (D.2)
r
where the operators D = 9, and Dy = D + 1/r have been used. In addition, the vec-
tor components must vanish over the radial boundaries r; = ﬁ and r, = 1En of the
containing cylinders
vp (1) = vp(ro) = vg(r;) = vg(re) = vy(r;) = vy(ro) =0 (D.3)

For the sake of simplicity, three different situations will be considered. In each of them,
independent radial, azimuthal and axial components are going to be studied in detail so
that particular bases for those subspaces will be obtained. Finally, the linear dependence
between them will be analysed.

e Case I (vy =0)

In this case, axial and radial components are related as follows

D v, = —ikv, (D.4)
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To simplify the analysis, a particular functional structure for v, and v, is going to
be imposed. They are explicitly defined as follows

vp = —ikf;, v, =DLf; (D.5)

where f; is a function depending on the radial variable whose structure will be
particularly conditioned by the boundary conditions (D.3). At this stage, some
freedom on the inner structure of f; is present. In order to avoid 779, (¢ > 0) factors
in the hermitian products of the spectral projection, the structure of f; has been
selected as follows

filz) =r*(1—2*)Tj(z), z=20r—-r)—1, =zec[-1,1], (D.6)

where T}(x) is the j—th order Tchebyshev polynomial. The fourth order factor in
fj is needed for the homogeneous boundary condition on the axial component to be
satisfied. On note that the selection (D.5) satisfies (D.2) identically. To sum up, the
generic element of the basis of non-azimuthal solenoidal fields is

—ikf;
vi= 0 : (D.7)
D f;

It should be remarked that this set of functions is a basis for k # 0 only. For the
axial-independent case, a particular analysis must be done. For & = 0, (D.4) is
reduced to the condition

dv, dr C
+Ur — o r — vr(r) r ( )

Now, imposing the boundary conditions (D.3) over v, the trivial solution v, = 0 is
obtained. Therefore, a suitable alternative is given by the generic element

vi=| 0 (k=0), (D.9)

where h; has a laxer structure on its binomial factor

hj(z) =r*(1 —23)Tj(z), z=2(r—-r) -1, =z€[-11], (D.10)

Case II (v, =0)

In this second case, the solenoidal condition (D.2) is reduced to the equation
D,v, = —iﬁvg or D(rv,) = —invg (D.11)
r

For the structure of f;, the same process of selection explained in previous case is
considered. Equation (D.11) is identically satisfied on choosing

vy = —ifj, v =D(rf;) (D.12)
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Thus, a suitable generic element of the basis of non-axial solenoidal fields is
—inf;
v? = | D(rfj) |- (D.13)
0

Again, the previous set of functions is complete for n # 0 only. For the axisymmetric
case (n = 0), the trivial solution v, = 0 is obtained again. As a consequence, the
alternative generic basis element is

vi=| h; (n =0), (D.14)

where h; has the same structure than in case L.

e Case III (v, = 0). In this case, the condition (D.2) is reduced to the simple equation

nvg = —rkv, (D.15)
Consequently, the generic element of the basis of non-radial solenoidal fields is
0
vi=| —rkhj |Vn,k. (D.16)
nh]-

Proposition D.1.1 (Linear dependence of v]2) The set of functions v]2- is linearly de-
pendent of vjl- and v}g? for k # 0.

Proof. Consider the following linear combination of v; and v;-’

v - (D.17)
Without loss of generality, if can be considered a particular structure for the function h;
hj= 1D fy (D.18)
Formal substitution of h; in linear combination (D.17) gives to the generic vector field
—inf;
D(gfj) : (D.19)

which is an element of v2.

Although there is not a formal conclusion, it is a well known fact that confined axially
extended flows are linearly stable to axial uniform perturbations. Experimental and nu-
merical evidences suggest a preferred finite axial periodicity to inestabilize the flow. This
property simplifies considerably the Petrov-Galerkin formulation because the (k = 0) ele-
ments in cases I or ITI may be neglected as a first glance. Therefore, the sets v! and v3
are going to be chosen in order to span the spectral approximations.

At thi stage, a suitable set of test functions is needed to project the operator acting
over the specr
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D.2 Petrov-Galerkin Projection

As it was explained in previous section, the perturbed fields can be expressed as linear
combinations of normal axial-azimuthal modes. Thus, perturbed velocity and pressure
fields are written as follows

v(r,0,z,t) = vp(r) + e(M0TEa) 2y () (D.20)
p(r,0,z,t) = pp(r, z) + p'(r)el(POHRTAE (D.21)
Formal substitution of fields (D.20) and (D.21) in the linearized Navier-Stokes equation

of the perturbation fields leads to a decoupled system of eigenvalues (5.28) whose explicit
expression of is

2
n“+1 .
v D+DU7~ — (T k2)v,~ - r—27,n1)0
N "l n?+1 2 .
vg | = | DiDuvg—( 2 + k*)vg + ginor | (D.22)
Uz n?+1 9
D, Duv, — ( = + k%)v,
2 '
g vy —;vng fr)zp
(znT +ikwp) | vo | — (”TB + Dugl, | T = '
vz vrDwp ikp'

where vp = (0,vp,wp) is given by (5.23) and the perturbation velocity field u = (v,., vy, v,)
is enforced to vanish over the radial boundaries

u(r;) =u(r,) =0 (D.23)

and to satisfy the solenoidal condition
mn .
Div, + —vg +tkv, =0 (D.24)
r

This is just the mathematical frame which has developed in the previous section. Conse-
quently, the discretization of the eigenvalue problem is going to be accomplished with the
spectral approximation

M
u= Z aju; + bju? (D.25)
=0

for the velocity field. Where u} and u? are elements of v® and v!, respectively

uj = (0, —rkhy(r), nh;(r)), (D.26)
uj = (—ikf;(r), 0, Dy f(r)). (D.27)

At this stage, a suitable set of test functions is needed to project the linear operator
(D.23) acting over the spectral approximation (D.25). The projection is now defined as
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the standard hermitian product
To
<u,v>= / u* - vrdr, (D.28)
r;

where % denotes complex conjugation. Therefore, the main goal is to find again a set of
solenoidal test functions compatible with the previous sets v! and v3. For this purpose,
this set is chosen as follows

uzl = (07 _rkﬁianﬁi) uzz = (_ikfiaoaD-i-.ﬁ')a (D29)

where now, f, and h; are functions whose structure will depend not only on the boundary
conditions but also on the orthogonal family of polynomials selected for f; and h;. For
Tchebyshev polynomials, it is necessary to modify slightly the power factor in the binomial
element (1 — 22) of fy and fzj

fi(r) = (1 =a®)’Ty(z), hy(r) = (1 - &*)Tj(x), (D-30)

fi(r) = (1= a®PPPTi(2),  hi(r) = r?(1 —2®) 2Ty (). (D.31)

This change is needed in order some orthogonality properties between the polynomials to
be satisfied and to avoid sparse matrices in the numerical scheme. Nevertheless, it should
be remarked here that the matrix elements apparing eventually in the projection, can be
exactly computed for the azimuthal components only. Unfortunately, the axial factors
contain logarithmic terms which destroy the band structure. On note that test functions
defined previously in (D.31) vanish over the boundary. In general, this condition is not
necessary for the anihilation of the pressure term in the projection scheme. The necessary
conditions are properly divergence-free and zero orthogonal component over the radial
boundary. At this stage, the essential point is that the solenoidal condition in cylindrical
geometry enforces not only the anhiliation of the radial (normal) component of the velocity
field but also the azimuthal one (in elements ﬁ?, for example)

Finally, the susbstitution of spectral approximation (D.25) and projection over the test
functions (D.31) leads to a complex generalized 2(M + 1)-dimensional eigenvalue problem
which can be simbolically expressed as follows

AGx = Hx, (D.32)

Gl g2 U1 g2
A < g g2 )X~ \ g2 g2 |5 (D.33)
where first and second superindexes identify the projection and spectral elements with

respect which the inner product has been done. The explicit structures of the hermitian
products appearing in (D.33) are

or, in matrix notation

ol = / " rhi(r2k? + n?)hydr (D.34)
r

i
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G;‘f = TL/ oT'iliD+f]'d7' (D35)
Gy = n/ Cr(Dy fi)hydr (D.36)
To _ _
6% = [ i+ (D2 D e (D.37)
i

n?+1 n?
- k?)r +rn*(Dy D — 5 k*)|hjdr

T‘D~
Hi} = / hi[r?k*(D4D —
Ty

ro _
- i/ hi(r2k2 + TL2)(EUB + ka)Thde
r r

i

2

To _ n
H? = n/ hi2k* fj + (DD — T k*)D.]f;dr

T,
- i/ hi[erQ(UTB + d,vp) + n(anB + kwp) Dy + kn(d,wp)|f;dr

To _ _ 2
Hj "/ 2% fi + r(D4 fi)(D4.D — :—2 — k*)]hydr
.

o (D.38)
+ i/ [2k*rup fi — r(D+fi)(nTB + kwpg)]h;dr

A

To = n?+1 ; n’
H? = / [Pk fi( DD = “—5= = ) + 1(D+ fi)(D+D — =5 — KD fydr

= i [0 4 kg (2 + (D4 D) + KD ) @) fydr

i

(D.39)
D.3 Computation of the Critical Points in the NSC
Consider the equation which determines the marginal stability condition
o(k,R)=0 (D.40)

where o is the real part of the first eigenvalue belonging to the spectrum of the problem
(D.32) which is near to cross the imaginary axis. The parameter R represents one of the
Reynolds numbers (R;, R, or R,) which control the dynamics of the physical problem
with two of them held fixed. The variable & is the axial wave number of the perturbation.
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From a geometrical point of view, the previous equation defines a curve in the (k, R) plane
which separates the stable physical configurations from the unstable ones. This curves
are so termed Neutral Stability Curves (NSC) and have the typical parabolic profile with
an absolute minimum for some value of k¥ = k. (see fig. 5.13). When studying physical
perturbations, all the possible real k—values must be considered simultaneously. The
critical value k. will be conditioned by the minimum associated R, value over the curve.
The main goal is to compute numerically the value of k. where the NSC reaches its
minimum R.. As a matter of fact, the dependence R = g(k) is not explicitly present in
the analysis. As a consequence, change of sign detection algorithms of the ¢ function over
a grid in the (k, R) plane are applied in order to compute the critical values. Change
sign algorithms are useful in Taylor-Couette problem or in Benard convection due to the
simple geometrical structure of the NSC. Unfortunately, when an axial symmetry breaking
effect O(2) to SO(2) is imposed in the problem, the topological features of the NSC are
strongly perturbed. As a consequence, some technical problems may arise. On the one
hand, the NSC appear to be multievaluated and with sharpened profiles so that changes
of sign require high resolution in the (k, R) evaluation grid. On the other hand, there may
appear disconnected zones of instability (also termed islands of instability) far from the
expected critical values. Altogether, the computational cost may be prohibitive in order
to take advantage from change sign algorithms. Consequently, an alternative methodology
is needed.

From an analytical point of view, Implicit Function Theorem ensures the existence
of a local branch R = g(k) near the (k., R.) point under some specific conditions. In other
words, equation (D.40) defines locally over an open set A a unique function R = g(k) €
CP(A) with R, = g(k.) provided that:

(i) o(k,R) € CP(A), peIN* (k,R.) €A (D.41)
(ii) o(ke, Re) = 0 (D.42)
(iii) Oro(ke, Re) # 0 (D.43)

Under the previous hypotheses, the necessary condition for k. to be an extreme point is

(%)kke —0 (D.44)

Making use of the implicit function theorem, the last equation can be expressed as a
combination of partial derivatives of o with respect the variables k and R. Applying the
chain rule in equation (D.44)

d _d _ dg _
%U(k,R) = %a(k,g(k)) = Ogo + 8Radk =0 (D.45)

so that a very useful relation is obtained

dg Opo

k= opo (D.46)
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which allows to express the extreme condition in the following form
Oko(ke, Rc) =0 (D.47)

provided that dgo(k., R¢) # 0. Simultaneously, the condition of minimum is given by the
following relation

d%g
- J 0 D.48
(de ) k=k. g ( )

Deriving (D.45) implicitly with respect the variable k

d d d d 2
(00 + aRad—i] — 8 40 + (d—i> 202 po + (d—i) 0% pol + (d_kg) dro =0 (D.49)

evaluating the previous expression in (k., R.), another important relation is obtained

d? o
(—i) = | Rk (D.50)
dk? ) p—, Oro (ko R.)

where equation (D.44) has been used. Therefore, the condition of minimum will be given

now by
(g’%—’k> <0 (D.51)
B (ke o)

D.4 Newton-Raphson Method for the Computation of (k., R.)

The set of equations (D.42), (D.47) and (D.51) form a system of non-linear equations in
IR? which must be solved numerically. To formalize the problem, we consider a function
F : R?2 — IR? defined as follows

F(k, R) = < 6;5"2}51){» ) (D.52)

Therefore, the problem can be expressed as follows

2
O &

<0 (D.53)

At this point, it should be regarded here that there is not a closed expression for o(k, R).
In fact, the evaluation of this function requires the selection of the maximum real part
eigenvalue. Assuming regular behaviour of the spectrum of the operator (7?7, the system
(D.53) can be solved numerically making use of a Newton-Raphson algorithm which is
described by the following iteration expression

(n+1) (n)
(DF)(k(n)7R(n))[( fz(nH) )_ ( k >]+F(k(n)7R(n)) 0 (D.54)
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The method considers a initial iteration point (k(°), R(0)) near the sought solution. This
initial point will be obtained by a prediction of the local behaviour of the function o near
the critical point. DF(k(™  R(™) stands for the jacobian matrix of F evaluated at the
n—iteration point. Explicitly, the previous system can be expressed in the following form

(ot o o e )= (oo )5 (e )y~ (0)
Oeko Ok ) i gy \ ROV R™ Ok (o), mm) 0
(D.55)

The partial derivatives which appear in the scheme can not be evaluated analitically.
The numerical alternative is to evaluate those derivatives with a finite-differences method
over a discrete grid in the (k, R) plane. For this purpose, a centered nine-point reticular
configuration has been used. Figure (D.1) represents the lattice

RT =R+ 4R
R
R - =R-6R

k= =k — 90k k kt =k + 0k

Figure D.1: Nine-point finite-difference lattice used for the evaluation of derivatives in the
Newton-Raphson scheme.

The partial derivatives have been computed numerically making use of a nine-point
relations (see, for example Abramowitz & Stegun, 1972). In the centered prescription they
are

Dyor — ﬁ[a(kﬂ R) — ok, R)] (D.56)

oo = ﬁ[a(k, RT) —o(k,R7)] (D.57)

02 4o = ﬁ[a(k, R) — 20(k, R) + o(k+, R)] (D.58)

O o = 45;53 o(k*, RY) +o(k R ) —o(k*, R ) —olk , RV (D.59)

Newton-Raphson’s method is cuadratically convergent whether the initial point of
iteration (k°, R?) is near the sought solution (k., R.) or not. Unfortunately, the topo-
logical structure of the basin of attraction may be very complicated. As a consequence,
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a predictor-steepest-descent method is required to optimize the scheme. The algorithm
computes the gradient vector field of o in each point of the (k, R)-plane and the pre-
dictor point is guided by the steepest path throughout which o exhibits maximum local
variations. This process is done departuring from different points of the plane until o is
positive. Although there is not a formal conclusion, it can be conjectured (from numerical
evidences) that the corrector NR method converges more rapidly if (k(o), R(O)) is in the
positive o zone. Nevertheless, it has been necessary to consider orientative values ex-
tracted from geometrical analyses to initialize the global search process. Although it was
considered to modify the predictor method with a conjugate gradient scheme, the speed
of the original one was enough for the present purposes.

D.5 Parameters from Different Authors

The functions c4(r), c,(r) (5.39) introduced by Ludwieg, 1964 are easily computed from
the expressions (5.23):
Ar? - B Cr
= = D.60
C¢(7‘) AT2 +B7 CZ(”‘) AT2 +B7 ( )

where the constants A, B, C are given by (5.24). Evaluating these expressions at the
geometric mean radius 7 = /7;r,, we get

. _l4+nRo—Ri 1+n Rz

- - - = . D.61
T 1-nRo+Ri’ “  ql(l/y) Ro+ Ri (D.61)
By Taylor expanding near n = 1 we obtain
In(1 1—n)?
M=1—M+..., (D.62)

1—n 24

therefore (5.40) are the narrow gap approximations of the expressions (D.61). In fact the
expression for ¢4 is exact, and the difference in ¢, is only 0.2% for n = 0.8, so we will use
the expressions (5.40) from now on. The difference in sign has been introduced for better
comparison with the experiments, because if we simultneously change the signs of Rz, n
and w, the marginal stability curve does not change (see §5.4 for a detailed account of the
system symmetries).

The variables used by HIM, v, Q> and R are related with the present parameters as
R,
1—-n’

Ri = R{?nnﬁz +sinyx}, Ro= Rz = Rcosx. (D.63)

Their dependence with the Ludwieg parameters ¢4 and ¢, is

~ 1+ aé¢ . 1-— E¢
Qs = — — ; siny = — —
V(e +1)222 + (1—-2¢4)? V(e +1)222 + (1 —2¢4)?
where a = (1 —7n)/(1 + n) and Ro = 750 is held fixed. From (D.63), (D.64) we can easily
arrive at the same formulas (5.40), showing that HJM used the narrow—gap limiting values
of ¢y, ¢;, or equivalently their values at the geometric mean radius 7 = |/7;7,.

(D.64)
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