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Chapter 1Introduction1.1 Navier-Stokes Equations and Dynamical SystemsThe basic laws which describe the dynamics of viscous uids were independently formu-lated more than a century ago by Navier (1823) and Stokes (1845). In its initial stages, itwas necessary to solve fundamental questions concerning the physical hypotheses used toobtain the formulation: Newtonian uid hypothesis, stress tensor structure, stick bound-ary conditions over the rigid wall, etc. After their eventual formulation, there arose manyother questions of mathematical nature. In fact, a complete formalism was needed toprovide a comprehensive description of the solutions of the Navier-Stokes equations. Sincethen, the di�culty has laid on the integration of solutions from these equations for dif-ferent problems. The nonlinearity of the Navier-Stokes equations makes it impossible tointegrate them by use of standard analytical methods (except in the most simple casesor under the assumption of symmetry hypotheses). Moreover, the problem is not onlytechnical but also conceptual. The main question arising at this point concerns the ex-istence and uniqueness of solutions for the Navier-Stokes initial boundary problem. Theanswer to this question strongly depends on the physical dimension of the uid system.Although existence and uniqueness theorems have been provided for the two-dimensionalcase, equivalent theorems asserting the simultaneous existence and uniqueness of solutionsfor three-dimensional ows, have not been demonstrated.Apart from the pure mathematical problems of existence and uniqueness, manyother physical questions arise. On the one hand, the stability of steady ows must bestudied in order to predict new secondary ows (also termed bifurcated solutions). Onthe other hand, a deeper understanding of the inner mechanisms which lead to turbulentphenomena is needed. Turbulence theory deals with the noisy or irregular (unpredictable)behaviour that may be exhibited by a uid system under speci�c conditions. There is asyet no complete theory of the origin of turbulence in various types of hydrodynamic ow.Although various conjectural approaches have been reported in this advanced century, itremains an unsolved problem. It should be noted that this kind of phenomena is completelyunrelated to the loss of analiticity of solutions of the Navier-Stokes equations. Some resultson the presence of singularities in the Navier-Stokes problem have been obtained recently(Ca�arelli et al. , 1982). Nevertheless, the question of physical turbulence (also termed



10 Introductionweak turbulence) is a di�erent and previous problem. Weak turbulence theory dealswith the transition from steady solutions to time-periodic ones and, eventually, to chaoticregimes. In fact, these theories do not consider more aggressive conditions over the uidsystem. For example, extreme physical conditions like high negative pressure gradients(cavitation) are out of the scope of weak turbulence theories. Moreover, it seems thatweak turbulence, which is extensively studied experimentally, is far from the situationin which solutions develop singularities. Although some authors continue to associateturbulence with the presence of singularities in the solutions of the Navier-Stokes equation,it should be pointed out that weak turbulence has not very much to do with these speci�cmathematical problems.Some relevant changes have taken place in this century that could o�er new hopesfor a better understanding of turbulent phenomena. On the one hand, the general theoryof dynamical systems has developed new theoretical tools which provide a deeper under-standing of non-linear dynamics in physical systems. For example, center manifold theoryand local bifurcation methods provide essential information on the behaviour of the uidsystem near critical stages. This kind of methodology is usually termed weak non-linearanalysis. Throughout this work, it will be seen how these non-linear phenomena can belinked with complex behaviour in uid systems. In addition, the continuous improve-ment of computational devices has provided the possibility of simulating uid dynamicsproblems with high accuracy. Computational uid dynamics (cfd) o�ers the capability ofsimulating processes which would be otherwise impossible to recover experimentally. As amatter of fact, uid ows observed in nature not only must be solutions of the equations,but must also be stable. This condition is no longer necessary in cfd. On the contrary,some cfd methodologies are capable of detecting unstable solutions not observed in thelaboratory. Furthermore, unstable solutions, undetectable in experimental research, aresometimes the cause of the instabilization of basic ows. One of the main goals of cfdis to formulate numerical schemes able to approximate solutions for the Navier-Stokesequations. These schemes should be exible in order to be easily applied in problemsof di�erent nature depending on their features (e.g. geometry and boundary conditions,etc...). In addition, the information obtained from the computations should not be re-stricted to a simple array of numerical data. In fact, the mathematical structure of themethod should be useful for di�erent purposes. From a physical point of view, it is essen-tial not only to obtain accurate numerical approximations, but also to recover essentialinformation hidden behind the results.The general theory of dynamical systems (ds) is a good point of reference to ana-lyze the complex behaviour of uid systems. In fact, many physical mechanisms of uidinstabilities (pattern formation or turbulence, for example) can be understood from thepoint of view of bifurcation theory (bt) and related topics (Ruelle, 1989). In fact, chaoticdynamics in low-dimensional models systems may provide a fair explanation of turbu-lent phenomena. To put it briey, turbulence could be interpreted like a spatio-temporalchaotic behaviour in in�nite-dimensional dynamical systems. Unfortunately, the link be-tween the theory of stability of uid ows (also termed hydrodynamic stability) and dstheory is not always direct. From a pure mathematical point of view, the nature of theproblems is completely di�erent. On the one hand, the instabilities of uid systems areessentially boundary value problems, for which the formalism of partial di�erential equa-



1.1 Navier-Stokes Equations and Dynamical Systems 11tions applies. On the other hand, bt and ds deal with �nite dimensional systems, that is,ordinary di�erential equations. Most of the tools developed recently in the �eld of ds areonly valid in the range of �nite dimensional problems. Consequently, it is necessary toprovide a connection (at least from a numerical point of view) between the two �elds.A wide variety of methods is available to obtain a simpli�cation of an in�nite-dimensional stability problem. In the second half of this century, some di�erent modelingtechniques were formulated. The �rst approach to the problem of bifurcation of a uidow was conjectured by Landau in 1944. Landau proposed an amplitude equation for thesquare of the perturbations from the basic solution. Although it was a brilliant idea (aswas customary in Landau's works), it was not completely justi�ed. In fact, Landau didnot calculate the coe�cients in his equation, which had to be computed a posteriori, soit was not a predictive analysis (Landau, 1944). A second step was taken by Stuart andWatson in 1960. Stuart postulated the form of the equation sought and, on introducingsuitable Taylor series in the amplitude of the unstable mode, found the coe�cients forthe nonlinear terms (see Stuart, 1960 or Watson, 1960). From the late �fties on, a largebody of literature on the quasi-linear stability problem appeared. Nevertheless, a formalmathematical justi�cation for the formulation of these kind of equations had to wait forover three decades. In 1983, Coullet and Spiegel published a complete formalism for thecomputation of amplitude equations in general situations (not only in uid dynamics prob-lems). They made use of center manifold formalism and normal forms from ds theory andthe essential conditions of applicability of the method (hypotheses related to the structureof the spectrum of the operators) were established (Coullet & Spiegel, 1983). In fact, theStuart-Watson amplitude equations were only valid under the hypothesis of discrete spec-trum of eigenvalues of the linear operator which leads the stability. For the continuouscase, the most frequent in extended uid dynamic systems, an alternative formulationwas needed. At the end of the sixties, Newell, Whitehead and Segel independently pro-posed a �rst model of �nite bandwidth instabilities (Newell & Whitehead, 1969). In thiscase, modulation of the amplitude in the spatial unbounded coordinates was considered.The new partial di�erential equation, also termed Ginzburg-Landau equation in theoret-ical physics because of its similarity to a result in superconductivity, was obtained undersome ad hoc considerations of time-space scales. From that time on, this methodologyhas been very productive for the theoretical research of uid instabilities. Nevertheless, arigorous mathematical theory which asserts the reliability of the method does not exist.Recently, Eckhaus reported some important results about the dynamical properties of theGinzburg-Landau equation (Eckhaus, 1993). The e�ciency of these kinds of methods isstrongly conditioned by whether the analysis is done near criticality or not. More recently,a quantitative analysis of the accuracy and reliability of the low dimensional models asrepresentations of continuous systems was reported (Wittenberg & Holmes, 1997). Thesereports criticize the qualitative behaviour of the low-dimensional models in relation to thereal problem. As a matter of fact, some low-dimensional models exhibit complex phenom-ena (like chaotic dynamics, for example), while the real system (integrated numerically inits exact form) does not present those features.The continuous improvement of high speed processors and the development of fasternumerical algorithms call for more sophisticated (and also more accurate) methodologies.For instance, spectral methods (sm) are a good alternative for the previous purposes. sm



12 Introductionallow to approximate solutions of the continuous nonlinear system without a loss of infor-mation on the core dynamics of the problem under study. Moreover, the exibility of themethods allows to translate directly the system of non-linear partial di�erential equationsto systems of ordinary di�erential equations { that is, a �nite-dimensional dynamical sys-tem which leads the time-dependence of the problem. Finally, the use of tools provided bythe general theory of dynamical systems (center manifold theory, local bifurcation analysis,continuation methods, etc...) is now completely justi�ed.1.2 The Purpose of this WorkUnder the perspectives described in the introduction, the main goal of the present workis to provide a simple methodology capable of translating the spatio-temporal dynamicsof a uid physical problem to an adequate dynamical system of amplitudes. There aremany integration schemes and numerical libraries for the Navier-Stokes boundary valueproblem whose accuracy an reliability has been extensively checked. Nevertheless, it shouldbe noted that normally, those schemes are not properly posed for other purposes otherthan pure spatio-temporal computation. In fact, they are very closed algorithms whoseinternal information may be very complicated to understand physically. Consequently, thecore aim of the present task is not only to establish a regular formulation of the Navier-Stokes initial-boundary problem, but also to provide a connection with the main tools ofdynamical systems theories. Therefore, the task will be carried out focusing the e�orts onthe theoretical physical results more than in the e�ectiveness of the numerical schemes Weare mainly concerned with the core dynamics of the physical problem {this is, the stabilityof ordered structures, study of eigenvalues, prediction of bifurcations, etc. As a result, thenumerical schemes presented here may not be very e�cient from a computational costpoint of view. Fortunately, the improvement of numerical processors and algorithmiclibraries allows us to stop bothering with those technical problems.The second chapter will be devoted to the weak formulation of the Navier-Stokes prob-lem. Its purpose is to establish generally the mathematical frame in which the physicalproblems studied throughout the research will take place. In addition, the general frame-work of the Petrov-Galerkin (pg) weak formalism will be introduced. Throughout thissection, the analysis will not be presented in great detail, referring technical di�cultiesand computational procedures to speci�c chapters or appendices.In the third chapter, a �rst numerical test of the numerical pg scheme will be carriedout. For this purpose, a classical problem of computational uid dynamics will be consid-ered. Moreover, due to the good e�ciency of the formalism, not only the integration of theproblem will be given, but a linear stability analysis of the system will also be comparedwith recent related works. At this stage, the power of dynamical systems tools in relationto pure numerical schemes will be emphasized.Chapter four deals with the behaviour of a low-dimensional uid model obtained bya direct truncation of the pg spectral approximations obtained in chapter three, in orderto study the e�ects of non-linearities in the dynamical system of amplitudes. The modelexhibits a route to chaotic regimes via universal period doubling, also termed Feigenbaum'sscenario. Some speci�c numerical algorithms will be constructed in order to compute the



1.2 The Purpose of this Work 13period doublings with high accuracy. Again, the numerical tools constructed speci�callyfor those computations will be explained in referred appendices.The �fth chapter, which is the core part of the present work, is completely devotedto a comprehensive study of the stability of Taylor-Couette problem submitted to axialsliding e�ects. In this part of the research, the tools developed throughout the work will beused. For this purpose, pg schemes will be ad hoc modi�ed for the geometry and boundaryconditions of the problem. Analysis will focus on the complex behaviour of the physicalsystem and the e�orts will be devoted in order to extract the mathematical informationobtained from our numerical algorithms. As a matter of fact, the linear stability analysisis complex enough to devote our e�orts in a better understanding of the instability andbifurcation mechanisms of the physical system.The sixth and last chapter will provide the theoretical framework in which pg schemescan be applied in the nonlinear stability analysis of the Taylor-Couette problem. Twodi�erent situations will be considered. First, the formulation of the steady bifurcationswith O(2) symmetry in the framework of normal form theory will be provided. The systemof di�erential equations which is needed for the computation of the coe�cients of thenormal form will be obtained. The numerical integration is, at the present stage, out of thescope of this work. Secondly, the case of steady bifurcation with O(2)!SO(2) symmetrybreaking will be considered. The normal form of the bifurcation will be obtained byapplying symmetry arguments, and the qualitative properties of secondary steady patternswill be predicted from the analysis. Finally, this work will end with a numerical checkon the previous results. For this purpose, the pg scheme will be suitably modi�ed inorder to consider not only sliding e�ects but also an imposed axial pressure gradient. Thenumerical evidences obtained from concluding results will con�rm that it is possible torecover steady bifurcations with an explicit O(2) symmetry breaking and that the genericbifurcation is 2-codimensional.



14 Introduction



Chapter 2Navier-Stokes Equations:Weak formalism2.1 General ProcedureThe non-dimensional Navier-Stokes equations of viscous incompressible uids are con-sidered: @tu+ (u � r)u = �u�rp (2.1)r � u = 0: (2.2)These equations govern the dynamics of a uid inside an open bounded subset 
(� IRn)with boundary �, where n may have the values 2 or 3. The unknown quantities are thecomponents of the velocity �eld u(r; t) and the dynamic pressure p(r; t). It should be notedthat the process on non-dimensionalization (L{space, L2=�{time) of the problem carriesout a system of non-dimensional control parameters which describe the global dynamics ofthe system. For our purposes, it will be only necessary to consider an abstract parameter R1. In addition, equations (2.1) and (2.2) are complemented with boundary conditions over� and the initial value prescription. For the sake of simplicity, in this section, homogeneousboundary conditions over � will only be consideredu(r; t) = 0; 8r 2 �; 8t (2.3)and the initial value prescriptionu(r; 0) = u0(r) (8r 2 
) (2.4)For the mathematical setting of this problem, it is necessary to consider two di�erentHilbert spaces. First, the spectral space of divergence-free vector �elds Hs, which is aclosed subspace of L2(
)n, is consideredHs = fu 2 L2(
)n;r � u = 0;u j�= 0g (2.5)1Usually, this parameter is the Reynolds number R = UL� , where U , L and � are typical velocity, lengthand kinematic viscosity respectively, featuring the physical system.



16 Navier-Stokes Equations:Weak formalismwhere L2(
)n is the space of square integrable functions over the n{dimensional domain,and n is the unit normal vector at each point over the boundary �. Secondly, the projectionspace Hp de�ned as follows Hp = f~u 2 H10(
)n;r � ~u = 0g (2.6)will be considered 2 In this case, H10(
)n is a subspace of L2(
)n whose functions havedistributional square-integrable derivatives up to the �rst order, vanishing over the bound-ary. Our aim is to obtain a dynamical system from the previous initial boundary valueproblem. For this purpose, that the weak solution of the previous problem will be assumedas belonging to Hs. The weak form of the Navier-Stokes equation is obtained by project-ing equation (2.1) over the space Hp. For the projection process, the standard hermitianproduct between integrable vector �elds is considered< a;b >= Z
 a� � bd
: (2.7)Therefore, the weak form of the Navier-Stokes equation will be< ~u; @tu > + < ~u; (u � r)u >=< ~u;�u > � < ~u;rp >; 8~u 2 Hp (2.8)One of the advantages of this formalism is that the �nal equations depend only on thevelocity �eld u. In fact, the pressure term < ~u;rp > in equation (2.8) vanishes:< ~u;rp >= Z
 ~u� � rpd
 = Z
r � (~u�p)d
� Z
 pr � ~u�d
 = Z�(~u�p) � d� = 0where Green's Theorem has been used. Notice that the condition for the last term in theprevious equation to be zero is that ~u has only tangential component over the boundary�. Therefore, the method only requires this inviscid boundary condition on the test-projection functions of Hp. In fact, some authors (Moser, Moin & Leonard, 1983) makeuse of this less restrictive condition . Nevertheless, our functions ~u belong to H10(
)nand they vanish over the boundary �. Finally, the spatial dependence disappears and adynamical system, which only involves u, is obtained:ddtA(~u;u) = L(~u;u) +N (~u;u;u); 8~u 2 Hp (2.9)where A, L and N stand for the linear formsA(a;b) = Z
 a� � bd
 (2.10)L(a;b) = Z
 a� ��bd
 (2.11)N (a;b; c) = Z
 a� � [(b � r)c]d
 (2.12)2In fact, some authors only consider non-slip condition, this is, a subspace of H1(
). In this case, thefunctions do not require the vanishing condition over the boundary.



2.2 Fluid Driven by its Boundary 17for all integrable vector �elds a;b and c. Besides, the incompressibility condition (2.2) isidentically satis�ed.This is the general procedure to obtain the weak form of the Navier-Stokes equations.Nevertheless, some ad hoc modi�cations must be done to set up the method in di�erentproblems. Nevertheless, such changes are only technical.2.2 Fluid Driven by its BoundaryOne of the possible methods to induce a motion in a contained uid system consists indriving it by its boundary. The non-slip boundary condition ensures the local propagationon kinematic energy near the frontiers. As a result, the velocity �eld changes with respectto the spatio-temporal variables. Consequently, many interesting questions arise. First,it would be interesting to have information about the existence of attractors in the phasespace of the associated dynamical system. These attractors may be represented by steadypatterns, time-periodic structures or turbulent ows in the physical space. Secondly, thestudy of the stability of steady ows, represented by stationary points in the phase space,is necessary in order to predict a priori bifurcation processes and new structures. Theoryrelated with the existence and stability of attractors of the Navier-Stokes equations hasbeen developed by other authors (Temam, 1988), although the study of these features isout of the scope of the present work.For previous purposes, weak formalism, suitably modi�ed, explained in section 2.1is the adequate framework. In this section, the weak formalism for non-homogeneousproblems (driven boundary uids) will be developed. The next section is devoted tothe stability of the the solutions obtained by this method or by direct integration of theNavier-Stokes equations.We consider again the Navier-Stokes equations for incompressible uids in two orthree dimensions @tu+ (u � r)u = �u�rp (2.13)r � u = 0 (2.14)de�ned in a closed subset 
 whose boundary is �. In addition, let us suppose that thevelocity pro�le prescribed over � is given in the formu(r; t) j�= u�(r); 8r 2 � (2.15)and the initial conditions are given by the equation (2.4). The methodology developed insection 2.1 is no longer valid in this case. The main reason is that the boundary conditionsare not homogeneous. In spite of these di�erences, it is possible to avoid the problem easily.For this purpose, it will be supposed that the velocity �eld can be split up as a sum oftwo objects u = uh + up: (2.16)On the one hand, up is a stationary solenoidal vector �eld which veri�es the boundarycondition (2.15). In fact, up can be obtained analytically by the use of the Stream-Function



18 Navier-Stokes Equations:Weak formalismformalism. To sum it up:r � up = 0; up j�= u�; up j� �n = 0; @tup = 0 (2.17)On the other hand, uh is an unknown �eld which will be obtained by the weak formalism.To put it briey, uh will play here the role of u in section 2.1. Thus, uh 2 Hs, vanishingidentically over �. The weak form of the problem will now be< ~u; @tuh > + < ~u; [(uh + up) � r](uh + up) >=< ~u;�(uh + up) > (2.18)where the pressure term, which vanishes in the projection, has been already omitted. Asa result, the dynamical system for the unknown �eld uh is obtainedddtA(~u;uh) =M(~u;uh;up)�N (~u;uh;uh) + P(~u;up) (2.19)where M and P are de�ned as followsM(~u;uh;up) = L(~u;uh)�N (~u;uh;up)�N (~u;up;uh) (2.20)P(~u;up) = L(~u;up)�N (~u;up;up) (2.21)where the notation described in equations (2.10), (2.11) and (2.12) has been used. Thesplitting in equation (2.19) has been carried out in order to identify the di�erent natureof each term. First, M stands for the part of the equation which depends linearly on theunknown �eld uh. Secondly, P is the forcing term which only depends on the solenoidal�eld up. Finally, N represents the non-linear part in u, also called convective term.2.3 Hydrodynamic StabilityYet not every solution of the equations of motion, even if it is exact, can actuallyoccur in Nature. The ows which appear in Nature, must not only obey the equations ofuid dynamics, but must also be stable. This is the essential principle of hydrodynamicstability (hs). In fact, not only is of physical interest to obtain solutions for the Navier-Stokes equations, but also to study their stability with respect to perturbations which mayarouse the generation of new patterns, oscillatory phenomena and, eventually, turbulentstages. Mathematically, the problem of the hs of a steady ow may be very complicated.The geometry and symmetries of the system can be of great aid simplifying the problem.This section deals with the general setting of the problem of hs from the standpoint ofdynamical systems theory. For this purpose, weak formalism, explained in previous sectionis the adequate frame.Consider again a uid system under the same hypotheses stated in previous sections.Moreover, assume that a steady solution vB is known by analytical or weak formalismmethods. Thus (vB � r)vB = �vB �rpB; r � vB = 0 (2.22)



2.3 Hydrodynamic Stability 19where, pB is the steady pressure �eld. In order to study the stability of the uid system,the ow vB and the pressure �eld pB are simultaneously perturbed with a time-dependentvector �eld u(r; t) and a time-dependent scalar �eld p0(r; t), respectively. As a result, theperturbed system isv(r; t) = vB(r) + u(r; t); p(r; t) = pB(r) + p0(r; t) (2.23)where u must be a solenoidal �eld which vanishes over the boundary of the uid systemr � u = 0; u(r; t) j�= 0; 8t (2.24)Formal substitution of the perturbed �elds (2.23) in equation (2.1) leads to the law whichgoverns the dynamics of the perturbation@tu+ [(vB + u) � r](vB + u) = �(vB + u)�r(pB + p0): (2.25)Formally, weak solutions to the problem described by equations (2.24) and (2.25) canbe obtained using the formalism developed in section 2.2. The integration of the previousproblem would lead to a complete description of the evolution of the perturbation �eldu. Unfortunately, this task is not always feasible. In some particular problems, whosegeometric features require an special treatment, an alternative is needed. In fact, hs onlydeals with questions about the stability of the basic ow. The prediction and computationof secondary ows which appear after the bifurcation are, at the present stage, out of thescope of linear hydrodynamic stability 3.Under the hypothesis of in�nitesimal perturbations, the stability of a basic ow isgoverned by the lowest order terms in equation (2.25). Consequently, the non-linear term(u � r)u can be neglected as a �rst approximation for our practical purposes. As a result,the mathematical problem simpli�es considerably. The linearization process leads to asimpler equation @tu = �u� (vB � r)u� (u � r)vB �rp0; (2.26)where identity (2.22) was used. In contrast with equation (2.25), (2.26) is a quasi-linearpartial di�erential equation which is easier to solve. A suitable method is needed notonly to compute the presence of bifurcations, but also to extract essential informationof physical interest, like spatial periodicity of secondary patterns, velocities of propaga-tion, etc..., from the system of equations (2.24) and (2.26). At the present stage, manydi�erent approaches to solve the problem are available. As a matter of fact, the pres-sure term rp0 plays a crucial role. One possible option is to annihilate the pressureterm making use of the stream-function formalism for the perturbation. This procedureleads to the usually termed Orr-Sommerfeld-Squire equations (see Drazin & Reid, 1981or Canuto et al. , 1988). From a numerical point of view, the boundary value prob-lem associated with the Orr-Sommerfeld formulation may have convergence problems(Mercader et al. , 1991). In fact, the previous formulation based on potentials or simi-lar techniques (Marqu�es, 1990) lead to high order eigenvalue problems constrained to low3We do not consider here weakly non-linear theories which provide more information in bifurcationprocesses.



20 Navier-Stokes Equations:Weak formalismorder boundary conditions. As a result, numerical instabilities may appear in the com-putation of eigenvalues of the operators. Perhaps, a more compact formulation may beprovided making use of Petrov-Galerkin weak formalism. The main purpose is not onlyto construct a suitable scheme for the linear stability analysis, but also to use it for thenonlinear integration of the problem under study.2.3.1 Petrov-Galerkin SchemeIt is possible to span the Hilbert spaces Hs and Hp of section 2.1 with a suitable set ofsolenoidal bases. In some cases, those bases may coincide{that is, Hs and Hp are the samefunctional space. If it is the case, the projection process which leads to the weak form of theproblem is usually termed Galerkin scheme. Nevertheless, for computational purposes, itis necessary to select a modi�ed basis inHp with respect to the set of functions which spansHs. Sometimes, this slight modi�cation is needed to take advantage from orthogonalityproperties between the two sets. In this situation, the projection process is properly calledPetrov-Galerkin scheme.Let Hs and Hp be two function spaces spanned by two sets of solenoidal �elds fu�gand f~u�g, respectively: Hs = Spanfu�g; Hp = Spanf~u�g:In order to obtain a dynamical system of amplitudes from the problem (2.26), we supposethat our unknown perturbation �eld can be expressed as a linear combination of the setof functions Hs u =X� a�(t)u�(r); 8u� 2 Hs (2.27)where the amplitudes a� are related with the time evolution of u. After a formal substi-tution of expression (2.27) in equation (2.26), we proceed to project it over each elementof Hp leading to a system of ordinary di�erential equationsddtA(~u�;u) =M(~u�;u) 8u� 2 Hp (2.28)where the elements A and M areA(~u�;u) =< ~u�;X� a�u� > (2.29)M(~u�;u) =< ~u�;�X� a�u� � (vB � r)X� a�u� � [(X� a�u�) � r]vB > (2.30)The system (2.28) can be expressed more explicitly in the following formA�� _a� = M��a� (2.31)



2.3 Hydrodynamic Stability 21or _a� = S��a�; (2.32)where S�� = A�1�M� and where Einstein's convention of addition with respect to repeatedindexes has been used. Besides, the matrix elements A�� and M�� are de�ned as followsA�� =< ~u�;u� >; M�� =< ~u�;�u� � (vB � r)u� � (u� � r)vB > (2.33)System (2.32) represents the temporal evolution of the perturbation �eld. In fact, a� = 0is always a solution of the previous system, representing the trivial solution u = 0 of (2.26).Therefore, the stability of the basic ow vB will be implicitly conditioned by the spectrumof eigenvalues of the matrix S��. So far, the general frame has been considered. Dependingon the geometry, symmetries and dimension of the problem, the previous formulationmay be prohibitive from a numerical point of view. One of the most frequently usedmethods to reduce computational cost is the usually termed normal mode analysis. Thismethod considers speci�c functional structure of the perturbation �eld u depending onthe geometric features of the problem. Typically, the perturbation is supposed to dependexponentially on the time variable and periodically in the extended (unbounded) spatialones u(ru; rb; t) = v(rb)e�t+ ik � ru :In the previous expression, ru and rb stand for the unbounded and bounded spatial vari-ables, respectively. On the other hand, k denotes the wave number (which may be realor integer, depending on the symmetries of the problem) featuring the spatial periodicityof the perturbation. Besides, v is a vector �eld that depends on the bounded spatialvariables and which needs a special treatment. The exponential factor � is complex inthe general case, and the sign of its real part will lead the linear stability of the basicow. The exponential structure of the time dependence is justi�ed by the di�erentialoperator @t whose integration would lead to the exponentiation of the matrix S in thegeneral frame. This kind of analysis greatly simpli�es the computations because of thelinearity of equation (2.26). On formal substitution of those exponential structures in theperturbation equation, each spatial mode k decouples leading to a system of independentboundary value problems for the unknown �eld v (see Lin, 1955 or Chandrasekhar, 1961).In fact, this kind of analysis will be used throughout chapters 5 and 6 taking advantageof the symmetries of the particular problem under study (Taylor-Couette problem). Un-fortunately, when the physical system has no symmetries, the previous general frame ofanalysis is needed. This is exactly what is going to be carried out in next chapter for theregularized ow in a square cavity.



22 Navier-Stokes Equations:Weak formalism



Chapter 3Regularized Driven Cavity Flow3.1 IntroductionFor several years, steady ow in a square cavity has become a popular example for testingand comparing numerical methods in computational uid mechanics. The simplicity ofthe problem makes it possible to check easily numerical schemes of integration for theNavier-Stokes equations of incompressible uids. In fact, two di�erent versions of theproblem can be considered. In a �rst version, the uid velocity is zero on three sides ofthe square and is tangent to the fourth side with a uniform pro�le. This con�guration (alsotermed Driven Cavity Flow, see Fig. 3.1) has been analyzed extensively by many authors(see Gupta & Manohar, 1979, for example) with �nite-di�erence schemes. Because of thediscontinuity of the velocity vector �eld at the corners of the driven side, the solutionof the Navier-Stokes equations is singular at these points (the vorticity is in�nite). Asa matter of fact, it is di�cult to measure with precision the e�ect of a singularity onthe accuracy of a solution. This is particularly true when the mesh is re�ned so thatthe computation points are drawn nearer and nearer to the corners even if the valuesof the vorticity at these points are not involved in the numerical scheme as is usual for�nite-di�erence approximations.A regularized alternative was proposed by Bourcier and Francois in 1969. They con-sidered the same problem but with a regularized pro�le instead of a uniform one. Thisu = (U0; 0)u = 0 u = 0u = 0
-

Figure 3.1: Geometrical con�guration of the Driven Cavity Flow. On note the disconti-nuities of the velocity vector �eld in the top corners.



24 Regularized Driven Cavity Flow

Figure 3.2: Experimental grooved channel problem (from Taneda, 1979).problem is commonly termed Regularized Driven Cavity Flow (rdcf). In this chapter, notonly the numerical schemes used throughout the present work will be tested in this secondcase, but also new results related to the stability of the problem will be provided.The initial motivation of this theoretical (but more physical) problem lies on a deeperunderstanding of instability processes in grooved channels (Taneda, 1979). From a physicalpoint of view, it is interesting to study the e�ect of cavities in channel ows (see �gure3.2). The presence of this kind of irregularities in the boundary pro�le may a�ect thestability of the global ow. From a mathematical point of view, the advantages of thisproblem lie on the regularity conditions that must be imposed on the boundary. This factmakes the essential distinction between the rdcf and the Driven Cavity Flow (dcf) whichhas singularities and can not be analyzed with Galerkin methods.The grooved channel problem was �rst numerically studied by Korczak & Patera, 1986,with spectral elements methods, although a former integration model can be found inPeyret & Taylor, 1983. Nevertheless, the previous analyses were not concerned with thestability of the ow. More recently (Shen, 1991), a comprehensive analysis has beenreported making use of temporal-evolution schemes in order to detect instabilities of thesteady ow. As a matter of fact, the absence of symmetries in rdcf makes it impossible tosimplify its analysis in order to compute steady solutions. The rdcf is a pure non-lineartwo-dimensional problem in which the two coordinates must be integrated simultaneouslybeing impossible to compute steady solutions by analytical methods.This chapter is devoted to the stability analysis of the rdcf as a �rst test of the Petrov-Galerkin formulation in primitive variables. For this purpose, the weak formalism ex-plained in chapter 2 will be used. First, the steady solution for a wide range of Reynoldsnumbers will be computed numerically. This will be done using a simple continuationalgorithm. Secondly, the stability of the solution will be studied making use of the linear



3.2 Physical Description 25u(x; L02 ) = (U0[( 2xL0 )2 � 1]2; 0)
u(�L02 ; y) = 0 u(L02 ; y) = 0

u(x;�L02 ) = 0 (L02 ; �L02 )(�L02 ; �L02 )
(L02 ; L02 )-

Figure 3.3: Physical con�guration of the Regularized Driven Cavity Flowcriteria of eigenvalues. Some comparison with former works will be provided in order tofocus the power of hydrodynamic stability tools in comparison with temporal-evolutionmethods.3.2 Physical DescriptionThe rdcf considers a two-dimensional square box of side length L0 �lled with an incom-pressible uid of kinematic viscosity �. The velocity pro�le is prescribed over the boundary.On the one hand, the top side is moving in the horizontal direction with a regularized lawover the top corners u(x;L0=2) = (U0[(2x=L0)2 � 1]2; 0). On the other hand, the velocity�eld vanishes over the left, right and bottom sides (see �gure 3.3).All variables will be rendered dimensionless, using L0=2, 2�=L0 as the unit lengthand velocity respectively. Therefore, in the frame of chapter 2, the uid domain is 
 =[�1; 1] � [�1; 1], and the boundary is the union of the following sets:�1 = f(x; y) 2 IR2;x = 1; y 2 [�1; 1]g �2 = f(x; y) 2 IR2;x 2 [�1; 1]; y = 1g�3 = f(x; y) 2 IR2;x = �1; y 2 [�1; 1]g �4 = f(x; y) 2 IR2;x 2 [�1; 1]; y = �1g:That is, � = 4[i=1�i. Besides, the non-dimensional boundary conditions are now:u j�1;�3;�4= 0 u j�2= (R(x2 � 1)2; 0) (3.1)where R is the Reynolds number R = L0U0=2� (which di�ers by a factor 12 with respectto the Reynolds number considered by other authors), and U0 is the maximum of theimposed velocity on the side �2. It should be noted that the velocity pro�le imposed over�2 is continuous and di�erentiable over the corners (�1; 1) and (1; 1).



26 Regularized Driven Cavity Flow3.3 Mathematical SettingOur aim is to apply to this particular problem the formalism developed in chapter 2. Forthis purpose, it is necessary to identify each element. First of all, we are dealing with atwo-dimensional problem in Cartesian coordinates. Moreover, the physical con�gurationdoes not provide any kind of symmetry which could make the analysis simpler. Besides, theboundary conditions are not homogeneous. As a result, we must use the method explainedin section 2.2. For this purpose, we will suppose that the solution of our problem can besplit up in two parts: uh and up. On the one hand, up is a solenoidal �eld which satis�esthe boundary conditions over the four sides �1, �2, �3 and �4. On the other hand, uh isthe homogeneous weak approximation which vanishes at the previous boundaries:u = uh + up r � uh = 0 r � up = 0 (3.2)up j�1;�3;�4= 0 up j�2= R[x2 � 1]2i uh j�= 0 (3.3)The non-homogeneous part up can be obtained analytically from the curl of a a pseudo-stream function  de�ned over 
. A detailed explanation of the computation of  and upcan be found in appendix A.1. In this case, a solenoidal vector �eld compatible with theboundary conditions isup = R4 (3y � 1)(y + 1)(x2 � 1)2i�Rx(y + 1)(y2 � 1)(x2 � 1)j (3.4)The next step is to consider the unknown �eld uh as an element of the space Hs whereour weak approximation will be expanded. Regarding the procedure explained in section2.2, the weak form of the problem will be< ~u; @t(uh + up) + (uh + up) � r(uh + up)��(uh + up) >= 0; 8~u 2 Hp (3.5)3.4 Basis for Hs and Hp: The Petrov-Galerkin SchemeThe spaces Hs and Hp will be spanned with solenoidal vector �elds whose structure is pre-viously conditioned by the divergence-free constraint in cartesian coordinates. Therefore,a possible set of bases is Hp = Spanf~uijg Hs = Spanfuklg (3.6)where ~uij = (� ~fi(x)~g0j(y); ~f 0i(x)~gj(y)) ukl = (�fk(x)g0l(y); f 0k(x)gl(y)) (3.7)where 0 means derivative with respect to the variable of the function in each case. Theprevious set of functions identically satis�es the divergence-free condition. Furthermore,they are bases of the Hilbert spaces Hs and Hp respectively. As a result, it is possible toexpand our weak approximation uh as a linear combination of the functions ukluh(x; y; t) =Xk;l akl(t)ukl(x; y) (3.8)



3.5 Dynamical System of Amplitudes 27It will be assumed that ~uij and ukl are continuous and di�erentiable vector �elds de�nedin 
 such that their components vanish over the boundary �. The selection criteria ofthe functions ~fi, ~gj , fk and gl depends on the geometry of the problem and the boundaryconditions. On the one hand, the functions fk and gl contain orthogonal polynomialsfactorized with a suitable low order binomial factor which ensures the boundary conditions.On the other hand, the functions ~fi and ~gj have the same factors. In addition, they arefactorized with the weight function associated with the orthogonal polynomials used inthe scheme. Depending on this weight function, the bases ukl and ~uij are not exactly thesame. This scheme is not exactly a Galerkin one but it is more properly called Petrov-Galerkin. This method has been used before by other authors in di�erent problems withdi�erent geometries (Moser, Moin & Leonard, 1983), (Canuto et al. , 1988).For this problem, we have selected Tchebychev polynomials whose associated weightfunction is !(x) = (1� x2)�1=2. As a result, the component functions fk, gl, ~fi and ~gj are~fi(x) = (1� x2)3=2Ti(x) ~gj(y) = (1� y2)3=2Tj(y) (0 � i; j �M) (3.9)fk(x) = (1� x2)2Tk(x) gl(y) = (1� y2)2Tl(y) (0 � k; l �M); (3.10)where M is the order of our spectral approximation.3.5 Dynamical System of AmplitudesSubstituting the spectral approximation (3.8) into the weak form of the Navier-Stokesequation (3.5), we obtain a dynamical system for the amplitudes aklAijkldakldt = (Bijkl � CRijkl)akl �Nijklmnaklamn + bRij; (0 � i; j �M) (3.11)where we have used the Einstein�s convention of addition with respect to repeated indexesand where the index R stands for those terms which depend implicitly on the Reynoldsnumber. The previous coe�cients which appear in the last equation are the followingmatrix elements: Aijkl =< ~uij ;ukl >; (0 � i; j; k; l �M) (3.12)Bijkl =< ~uij;�ukl >; (0 � i; j; k; l �M) (3.13)CRijkl =< ~uij ; (ukl � r)up + (up � r)ukl >; (0 � i; j; k; l �M) (3.14)Nijklmn =< ~uij; (ukl � r)umn >; (0 � i; j; k; l;m; n �M) (3.15)and the forcing term isbRij =< ~uij;�up � (up � r)up > (0 � i; j �M) (3.16)



28 Regularized Driven Cavity FlowThese objects are explicitly analyzed in appendix A.1. Symbolically, the dynamical systemcan be expressed as follows A _a = LRa�N(a; a) + bR (3.17)where LR stands for a linear operator which depends on a control parameter R, N is abilinear form acting over a and bR is a time-independent forcing term due to the non-homogeneous boundary condition.3.6 Steady SolutionsFor an arbitrary value of R, the stationary solutions of our problem can be obtained byequating the right-hand side of (3.17) to zero. This provides an non-linear system ofalgebraic equations whose solutions depend implicitly on R 1,g(a;R) = LRa�N(a; a) + bR = 0; (3.18)where the explicit structure of g(a;R) isgij(a;R) = (Bijkl � CRijkl)akl �Nijklmnaklamn + bRij ; (0 � i; j �M) (3.19)The system (3.18) can be solved numerically, making use of an iterative Newton-Raphsonalgorithm (Keller, 1977). For this purpose, starting from an initial point a0ij representinga steady solution for some value of R, a forward Euler's predictor point a1=2ij is obtainedlocally over the branch g(a;R) = 0, which always exists, provided that @Rg 6= 0 (implicitfunction theorem) a1=2ij = a0ij + (@Rg)ij�R: (3.20)The previous expression provides a �rst approximation of the steady solution for theslightly increased R+ �R Reynolds number. This predicted value is then corrected, beingused as the starting iteration point for the Newton-Raphson algorithma(n+1)ij = a(n)ij � [Dg(a(n)]�1ijkl[g(a(n))]kl; (3.21)where Dg is the Jacobian matrix of the �eld g evaluated at the nth-iteration point[Dg(a(n))]ijkl = Bijkl � CRijkl �Nijklpqa(n)pq �Nijmnkla(n)mn + bRij; (0 � i; j �M) (3.22)The convergence of the method depends strongly on the basin of attraction of the sta-tionary point in phase space. The presence of neighboring numerical branches depends onthe truncation order of the spectral approximation. In any case, as long as the number ofmodes is increased, it seems to be only a stationary branch which is easy to follow for awide range of values of the control parameter R. By increasing the parameter R from zero,the steady solutions can be obtained. Some particular cases are depicted in �gures 3.4, 3.51Provided that the Implicit Function Theorem applies.



3.7 Linear Stability of the Steady Solutions 29and 3.6. From de�nitions (3.3) and (3.8), the stationary velocity �eld will be expressed asfollows u = up + MXk=1 MXl=1 a0klukl(x; y); (3.23)where the coe�cients a0kl are the coordinates of the stationary point computed previously.The stream function of the problem is	 =  (x; y) + MXk=1 MXl=1 a0kl(x2 � 1)2(y2 � 1)2Tk(x)Tl(y): (3.24)The vorticity �eld, which measures the local torsion, will be obtained evaluating the curlon u!k = (r� u)k = @xuy � @yux = MXk=1 MXl=1 a0kl[f 00k (x)gl(y) + fk(x)g00l (y)] +r� up (3.25)From the previous pictures, the progressive increasing of the size of the vortices whichappear near the corners can be observed, as well as the clear distinction between twodi�erent zones of vorticity. On the top center part, a high clockwise vorticity can beobserved. This is produced by the horizontal pro�le of the velocity imposed on the topside of the box. On the top right part, a high counter clockwise vorticity is present. Thishas been produced because of the collision of an almost horizontal jet with the right side ofthe box. An almost circular crown around the center vortex can be observed as a constantlow vorticity zone. The velocity �elds represented in the �gures have been normalized tothe maximum value in each case.3.7 Linear Stability of the Steady SolutionsProvided that the matrix A in equation (3.17) is non-singular, the dynamical system ofamplitudes can be expressed in the following form_a = f(a;R) (3.26)where the vector �eld f is f(a;R) = A�1[LRa�N(a; a) + bR] (3.27)Let a0 be a solution of the equation f(a;R) = 0 for R = R0. The stability of a0 willbe governed by the spectrum of eigenvalues of the Jacobian matrix of f evaluated at thepoint (a0;R0) J = Daf(a; r) j(a0;R0) (3.28)Let SpecfJg = f� 2 Cl j det(J � �I) = 0g be the spectrum of the matrix J and �M itseigenvalue with maximum real part. Then, the basic ow, represented by the stationarysolution a0 in the phase space, will loss its stability if Re�M > 0.
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Figure 3.4: Above, featuring the stream lines for the speci�c values R = 450 and R = 1000.In the middle, the corresponding velocity vector �elds. At the bottom, the vorticitydistribution.
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Figure 3.5: Above, featuring the stream lines for the speci�c values R = 2000 and R =3000. In the middle, the corresponding velocity vector �elds. At the bottom, the vorticitydistribution.
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Figure 3.6: Above, featuring the stream lines for the speci�c values R = 2000 and R =3000. In the middle, the corresponding velocity vector �elds. At the bottom, the vorticitydistribution.
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Figure 3.7: Critical Reynolds Rc number obtained as a function of the increasing numberof spectral modes n. The two dotted horizontal lines represent the threshold limits ofstability predicted by Shen. On note that our computations converge just in the middleof Shen's band (Shen, 1991).The existence of a local branch of solution near the point (a0;R0) is ensured by theImplicit Function Theorem provided that f is analytic and J is non-singular in a neighbor-hood of that point (Keller, 1977). The presence of local bifurcations near a = a0 dependson the evolution of eigenvalues of J in the complex plane. As a particular case, if one pairof complex conjugated eigenvalues cross the imaginary axis, then a Hopf bifurcation oc-curs. As a result, the ow loses its stationary structure and instabilizes to a time-periodicpattern whose periodicity is directly related to the imaginary part of �M .For a wide range of values of the Reynolds number R, the spectrum of J has beencomputed. In �gure 3.7, the computed critical Reynolds number as a function of theorder of spectral approximation has been sketched. Numerical evidence predicts a Hopfbifurcation from the basic ow for Rc = 10250. This result has been tested by increasingthe number of modes of the spectral approximation. The numerical value of Rc is in therange of the interval predicted in (Shen, 1991), where time-evolution schemes were used todetect the instability. In Shen's analysis, two threshold limits of stability are given. Theyare depicted as dotted horizontal lines for the values R = 1:00e4 and 1:05e4. Curiously,our computations converge just in the middle point of Shen's band. From a numericalpoint of view, a linear analysis of stability is much more accurate than a time-integrationscheme in order to detect a Hopf bifurcation. In fact, these kind of high-dimensionaldynamical systems may be very sti�, and time evolution methods may need very longtransient periods of time to observe the instability.Beyond the Hopf bifurcation, the present analysis is no longer valid. As a matter offact, the continuation algorithm can only compute the evolution of steady solutions. On



34 Regularized Driven Cavity Flowthe contrary, Shen's temporal-evolution algorithms are capable of computing secondarytime periodic patterns. In addition, it is possible to make a stability analysis of the timeperiodic ows as R is further increased. In fact, this is just what Shen's study does,detecting a secondary Hopf bifurcation in the range of values [1:2e4; 1:25e4], where theow loses its time periodicity, appearing another rational independent frequency (Ruelle-Takens scenario). It is supposed that further increase of the Reynolds number would leadto turbulent stages according with classical theories. In order to detect accurately thevalue of R for the secondary (Neimark-Sacker) Hopf bifurcation, it would be necessaryto make a Floquet analysis on the periodic orbits in phase space representing the time-periodic ow. At present stage, this task is out of the scope of this work and it couldbe prohibitive from a computational cost point of view, due to the huge dimension of theassociated dynamical system of amplitudes. Nevertheless, this kind of analysis is what isgoing to be done for a low dimensional model of the regularized driven cavity ow, wherethe dimension of the associated dynamical system is four.



Chapter 4Feigenbaum's Universality in aLow Dimensional Fluid Model4.1 IntroductionIn this chapter, a low-dimensional truncated model for the Regularized Driven Cavity Flowis obtained by truncating a dynamical system of amplitudes for the velocity �eld. This low-dimensional model exhibits a route to chaos via a period doubling cascade (Feigenbaum'sScenario). In order to compute with high accuracy the period doubling, a numericalmethod based on the �rst order variational equations for the Poincar�e map has beendeveloped. This methodology can also be applied to the analysis of bifurcations of periodicorbits in low dimensional ordinary di�erential equations. This method allows to detectnot only of the presence of bifurcations but also the computation of stable and unstableperiodic orbits. In addition, the chaotic dynamics of the system is analyzed in detail bythe computation of the Liapunov exponents for long-time integrations. For this purpose,a numerical scheme based on renormalization techniques has been constructed.Low-dimensional analysis of uid systems are of interest in capturing the essentialfeatures of their behaviour. Many uid dynamics problems have been analyzed from thispoint of view (Lorenz, 1963, Boldrighini et al. , 1979). Of course, the results obtainedfrom these models may not be directly related to experiment. However, they capturethe basic qualitative features of the physical system. On the other hand, this kind ofmodels usually provide relevant information about the core dynamics which governs theuid motion.In this chapter we introduce a low-dimensional analysis for the ow of a viscous uidcontained in a square box whose boundary conditions have been previously regularized(regularized driven cavity ow). As explained comprehensively in chapter 3, the regu-larization is needed for the analiticity of the solutions near the top boundaries. In thiscase, a spectral Legendre-tau scheme in primitive variables will be considered in order toobtain a dynamical system of amplitudes for the velocity �eld. By truncating the systemup to order four, a relatively simple system of ordinary di�erential equations is obtained.Its analysis is the main subject of this chapter. We have found the stationary solutionat low Reynolds number using a continuation method. This solution loses stability at a



36 Feigenbaum's Universality in a Low Dimensional Fluid ModelHopf bifurcation, and exhibits a cascade of period doubling bifurcations. Making use ofa method based on the �rst order variational equations for the Poincar�e map, the perioddoubling transitions have been computed with suitable accuracy. The methodology in-troduced here has a wide range of applicability in low dimensional ordinary di�erentialequations. This method allows to detect the successive period doublings and to computenot only the stable periodic orbits but also the unstable ones.For the truncated system, a period doubling scenario is obtained in the Reynoldsnumber interval [503.26, 512.468]. This period doubling cascade veri�es Feigenbaum'suniversality. Beyond Re = 512:468 the system presents chaotic behaviour. This is reectedin the Liapunov exponents analysis and in the Fourier spectra of the time evolution. Also,the structure of the Poincar�e section of the attractor presents fractal features.The chapter is organized as follows. In section 4.2, the physical description of theproblem and the truncated four dimensional model are introduced. Besides, the steadysolution is computed and monitorized as the Reynolds number is increased. Finally, thestability of the steady solution is studied. In section 4.3, the Newton-1st-order variationalmethod is developed in order to detect the period-doubling scenario in the model. Thebifurcations are computed with high accuracy; the resulting cascade is presented in detail.Section 4.4 is devoted to the study of the chaotic zone. On the one hand, Liapunov expo-nents are computed as a function of the Reynolds number, showing the chaotic behaviourof the orbits. Moreover, periodic windows are obtained inside the chaotic region. On theother hand, the results of the Fourier spectra from time integrations of the dynamical sys-tem are presented for di�erent regions of the parameter space. Finally, a Poincar�e sectionof the strange attractor is visualized in order to analyze its self-similar (fractal) structure.4.2 Physical Description: The ModelThe problem consists of a two-dimensional square box of length L0 �lled with an incom-pressible uid, whose velocity is given on one box side, and zero on the remaining ones,the so called cavity ow. The physical variables of the problem will be rendered dimen-sionless by considering L0=2, L0=2� as the unit length and velocity respectively, being �the kinematic viscosity. The uid domain is 
 = [�1; 1]� [�1; 1], in Cartesian coordinates(x; y). The boundary conditions are:~v(�1; y) = (0; 0); ~v(x;�1) = (0; 0); ~v(x; 1) = ~v� = (R(x2 � 1)2; 0) (4.1)where R is the Reynolds number R = L0v0=2� and v0 is the maximum of the imposedvelocity on the side y = 1.The problem will be approximated in a weak spectral-scheme. The velocity �eld be-longs to a free-divergence function space. Therefore, the incompressibility condition isautomatically satis�ed. On the other hand, the Navier-Stokes equation is projected over aspace of solenoidal functions which verify suitable boundary conditions in order to cancelthe pressure term. The technical details of the method are explained in appendix B.The low-dimensional truncation of Navier-Stokes equations with the boundary condi-tions described in the previous section yields a four-dimensional dynamical system for theamplitudes.



4.2 Physical Description: The Model 370BB@ _u_v_w_z 1CCA = R0BB@ ��1��200 1CCA+R20BB@ 00��3��4 1CCA�0BB@ d1 0 0 00 d2 0 00 0 d3 00 0 0 d4 1CCA0BB@ uvwz 1CCA+R0BB@ 0 0 ��1 �20 0 ��3 ��4��1 �2 0 0�3 �4 0 0 1CCA0BB@ uvwz 1CCA+0BB@ �1uz � �2vw�3uw � �4vz�5wz � �6uv�7u2 + �8v2 � �9w2 � �10z2 1CCA ; (4.2)where the coe�cients are numerical constants, which can be found in appendix B.The functional structure of (4.2) is too complicated to �nd analytical expressions forthe stationary points and their dependence on the Reynolds number R. Nevertheless, thesteady solution will be computed numerically, making use of a continuation method in thesame way as in previous chapter (Keller, 1977). The solution branch is sketched in �gure4.1. The eigenvalues of the Jacobian matrix over the solution branch have been computedas a function of the parameter R. For values of R less than 321:5 the eigenvalues havenegative real part. For R = 321:5 one pair of complex conjugated eigenvalues crossesthe imaginary axis. As a result, a Hopf bifurcation appears. The orbit generated by thisbifurcation is stable over the interval [321.5, 503.26].
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Figure 4.1: The �xed point as a function of the Reynolds number R. Solid line meansstable, and dashed line, unstable. The parabolic shape that emerges from the continuousline represents the periodic orbit generated by the Hopf bifurcation.



38 Feigenbaum's Universality in a Low Dimensional Fluid Model4.3 Period Doubling Scenario: The Newton{1st-Order-VariationalMethodFor the sake of simplicity, the system (4.2) will be symbolically expressed as _x = f(x;R).Let �(t; x) be the solution of this system with x as initial condition (�(0; x) = x). Inorder to �x the stability and secondary bifurcations of the periodic orbit  that appearsin the Hopf bifurcation, the associated Poincar�e map has been considered. Let �0 be ahyperplane transversal to  in a point x0 2 . The equation of �0 is (x � x0) � � = 0,where � satis�es the transversality condition � �f(x0; R) 6= 0. Therefore, the Poincar�e mapis given by P : �0 �! �0x �! P (x) = �(�(x); x) (4.3)where the function �(x), the time of ight needed to return to �0, is obtained from theequation (�(�(x); x)�x0) � � = 0. The eigenvalues of DP lead the stability of the periodicorbit . Formally, DP is the restriction to �0 of the solution of the �rst variationalequation _J = Dxf(�(t; x0); R)J ; J(0) = 14 (4.4)where 14 is the identity matrix in IR4. The projection on �0 is given byDP = (14 � f(x0; R)
 �f(x0; R) � � )J j�0 ; (4.5)where DP is a 3�dimensional square matrix.The method we have termed Newton{1st-order-variational is an algorithmic processwhich allows to compute simultaneously the periodic orbit, its period and the di�erentialof the corresponding Poincar�e map (for a detailed explanation of the numerical algorithmsused here, see appendix C). From an initial point xk near to  and an estimate T k of theperiod, the following system is integrated in time� _x = f(x;R) ; x(0) = xk_J = [Dxf(x;R)]J ; J(0) = 14 (4.6)Next, the accuracy of the period is improved by integrating the dynamical system (4.6)up to a �nal time t = T k+1 which satis�es the cut condition with the Poincar�e section:(�(T k+1; xk)� xk) � � = 0 (4.7)This time can be obtained iteratively by linear interpolation or the bisection method. Asa result, a �nal predictor point xk+1=2, the Jacobian matrix and DP evaluated at T k+1are computed: xk+1=2 = �(T k+1; xk); Jk+1 = J(T k+1)DP k+1 = (14 � f(xk;R)
 �f(xk;R) � �)Jk+1 j�k (4.8)



4.3 Period Doubling Scenario: The Newton{1st-Order-Variational Method 39
xk

xk+1/2

xk+1

x

0

Figure 4.2: Featuring algorithmic process of computation of periodic orbits as �xed pointsof the Poincar�e map.Finally, the predicted values are slightly modi�ed making use of a corrector Newton processover �k (see �gure 4.2):xk+1 = xk + (13 �DP k+1)�1(xk+1=2 � xk) (4.9)The matrix 13�DP k+1 must be invertible, i.e., its eigenvalues must be di�erent from1. But when  is stable, the eigenvalues have moduli less than 1, and the computedbifurcations are associated to period doublings. The critical eigenvalue crosses the unitcircle by �1 and the matrix of the Newton method is invertible. For k ! 1, xk gives apoint of the orbit, regardless of whether it is stable or not. T k and DP gives its periodand eigenvalues.This iterative process is the core of a continuation method in the Reynolds number R.The process starts with a R value at which  is stable. The �rst periodic orbit is obtainedby time evolution of (4.2). For a new value of R the iteration begins with a point andthe period of the previous orbit; if the orbit su�ers a period doubling bifurcation, the newguiding period will be twice the former period.In order to simplify the computations, the vector � and the coordinates for �0 areheld �xed throughout the global process. The transversality to  is ensured by moving x0along the orbit to a point p where the angle between the orbit and the Poincar�e sectionis maximum: f(x;R) � �kf(x;R)kk�k � f(p ; R) � �kf(p ;R)kk�k 8x 2  (4.10)By gradually varying the Reynolds number R, the bifurcating values of R can becomputed with high degree of accuracy (by successive linear interpolation, for example).



40 Feigenbaum's Universality in a Low Dimensional Fluid ModelRcrit �R1=503.26263580R2=507.98889404 �1=1.113R3=512.23403718 �2=23.361R4=512.41575610 �3=4.3590R5=512.45743770 �4=5.0208R6=512.4657403824 �5=4.6436R7=512.4675281125 �6=4.6773R8=512.4679103180 �7=4.6689R9=512.4679921795Table 4.1: Critical Reynolds numbers Rn and ratios �n for the period doubling cascade.As a result, a period doubling cascade has been detected, whose �rst nine period doublingbifurcation values has been detailed in Table 4.1. The table also shows the ratios betweenthe successive bifurcation intervals, de�ned by:�n = Rn+1 �RnRn+2 �Rn+1 (4.11)It can be observed that these ratios approach Feigenbaum's universal constant �F =4:66920160 : : : . The Rn sequence has an accumulation point at R1 = 512:468014489.The �rst one, two, four and eight periodic states are sketched in �gure 4.3, where wehave represented the amplitude z versus the amplitude v.4.4 Properties of the Strange AttractorLiapunov exponents provides information about the stability of the orbits and the long-term behaviour of the volume elements in phase space (i.e., contraction and expansion).For the present problem, the �rst order variational dynamical system has been consideredagain _x = f(x;R) ; x(0) = x0_J = [Dxf(x;R)]J ; J(0) = 14 (4.12)where now x0 is a point of the orbit or the attractor to be considered, obtained after asuitable transient time integration. Making use of the previous system, the eigenvalues �jof the matrix J can be computed for all values of t. Therefore, the Liapunov exponents ofthe dynamical system will be:�j = limT!1 log j �j jT (j = 1; 2; 3; 4) (4.13)When the Liapunov exponents are evaluated directly by integrating the �rst variationalequations (4.12), numerical problems arise. The columns of J(t) become almost parallelto the direction of the biggest Liapunov exponent, J becomes ill conditioned, and tends
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Figure 4.3: Orbits of the one, two, four and eight periodic states. In the �gures the x axiscorresponds to the v amplitude and the y axis to the z amplitude.
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Figure 4.4: Maximum Liapunov exponent as a function of the Reynolds number R. Notethe periodic solution at R = 512:468025to be singular. Furthermore, if some of the Liapunov exponents are greater than zero,overow problems can occur. Therefore, the previous limit cannot be computed directly.In order to handle this problem, the renormalization method of Shimada and Nagashima(Shimada & Nagashima, 1979) has been used. The previous method is comprehensivelydescribed in (Kubicek & Marek, 1983) although a comprehensive explanation can be foundin appendix C. Finally, the Liapunov exponents have been computed as a function of theReynolds number. For the periodic solutions (R � R1) the maximum exponent is zero,being negative the remaining ones, as it was expected. The behaviour of the greatestLiapunov exponent for R > R1 is displayed in Fig. 4.4. Positive values of the exponentcorrespond to chaotic solutions, and it can be observed that the system is chaotic butpresents a window with a periodic stable solution. This behaviour is typical of manydynamical systems which exhibit a period doubling cascade. Besides, it should be regardedhere that the system is featured by a strong hysteresis. As a consequence, di�erent initialconditions can lead to di�erent solutions, multi-periodic solutions or chaotic ones.The strange attractor corresponding to the chaotic zone (R = 512:5) is sketched in�gure 4.5. In order to analyse the fractal features of the strange attractor, a Poincar�esection has been obtained. This section is depicted in Fig. 4.6 for R = 512:5. Its self-similarity structure, typical of strange attractors is apparent. The fractal dimension of theattractor has been computed using the numerical method of Grassberger and Procaccia(Grassberger & Procaccia, 1983) 1. The computed dimension for R = 512:5 is d = 1:5854The Fourier spectra for two di�erent Reynolds numbers are shown in Fig. 4.7. The�rst spectrum corresponds to a periodic orbit, and the second one is in the chaotic region.On note that the former exhibits a broad-band noise, whose level is two or more ordersof magnitude higher than in the periodic case. This is a typical signature of chaos. Inthe chaotic spectrum sharp peaks appear above the level of the noise. Similar typesof spectrum have been observed by other authors (Kubicek & Marek, 1983). This type1Dr. Crespo is thanked for his help in computing the fractal dimension of the attractor
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4.5 Conclusions 45of spectrum is usually termed phase coherent, and occurs close to unstable limit cyclesgenerated by the sequence of period doubling bifurcations.
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Figure 4.7: Fourier spectra for a periodic solution (R = 512:46) and a chaotic solution(R = 512:50).A further increase of the Reynolds number produces a collapse between the chaoticattractor and an unstable manifold belonging to another branch of steady solutions. Thiscollision produces an eventual inestabilization of the attractor. This phenomenon is prob-ably due to the excessive truncation of the model.In order to check the behaviour of this low-dimensional model, six-dimensional systemfor the same problem (M = 2 and N = 3) has been computed. The obtained results arevery similar. The six-dimensional model also exhibits a period doubling scenario, althoughthe bifurcations take place at di�erent Reynolds numbers.4.5 ConclusionsBy analyzing a truncated model for a two dimensional Navier-Stokes problem we �nd atransition to chaos by means of a period doubling cascade. The period doubling veri�es



46 Feigenbaum's Universality in a Low Dimensional Fluid ModelFeigenbaum's universality. After the successive period doubling bifurcations, the systempresents a chaotic behaviour. This is reected in the Liapunov exponents and in theFourier spectra of the time integrations of the dynamical system. A six-dimensional modelhas also been studied in order to check the results obtained with the four-dimensionalone. In both cases, the qualitative phenomena are essentially the same. We have alsointroduced a useful methodology for the analysis of the bifurcations of periodic orbitsin low dimensional ordinary di�erential equations, that we have termed the Newton-1st-order-variational method.



Chapter 5Axial E�ects in theTaylor-Couette Problem5.1 Introduction: The Taylor-Couette ProblemThe Taylor-Couette problem concerns with the behaviour of a viscous uid contained be-tween two concentric cylinders which rotate independently around their common axis. Thephysical system was originally designed by Couette and Mallock in 1888 Couette, 1888,Mallock, 1888 in order to apply it in viscosimetric measures of uids. In fact, it was Mar-gules who, in 1881, proposed the construction of a viscosimeter which could measure theangular momentum response of an internal cylinder in contact with a viscous uid rotat-ing under the action of an external cylinder. Although the theory developed by Couettepredicted that this response should be linear, the experiments only behaved correctly fora low range of outer rotation angular velocities. Beyond a threshold limit of the angularspeed of the external cylinder, the response was much more complicated, with the ap-pearence of turbulent stages. In a di�erent way, Mallock considered the inverse problemby increasing the angular velocity of the inner cylinder and studying the behaviour of theexternal one. Again, the observed phenomena did not completely coincide with the the-oretical predictions of Couette. In fact, for a threshold limit of the inner rotation speed,the response of the speed of the outer cylinder was also linear but with greater slope. Apartial explanation to this phenomenon was proposed by Lord Rayleigh in 1916. For thispurpose, Rayleigh considered perturbations of concentric uid rings. These perturbationswere submitted to angular momentum conservation. As a result, the su�cient condition ofinstability was the decreasing rate of the angular momentum of the uid ring with respectto the radial variable. In fact, the Rayleigh criterion of instability was a inviscid conditionand the dumping e�ects due to viscosity were not considered.A comprehensive explanation of the instability mechanism was introduced by G.I.Taylor, who in a brilliant theoretical and experimental work, predicted the instability ofthe azimuthal ow proposed initially by Couette (Taylor, 1923). In the previous work,the instability values of the inner rotation velocity were computed for di�erent externalrotation conditions. In addition, the secondary patterns, which appear immediately afterthe bifurcation from the Couette ow, were predicted linearly and checked experimentally.



48 Axial E�ects in the Taylor-Couette ProblemThese new toroidal structures are now termed Taylor Vortex ow. Actually, the newgeometry of the ow allows a better e�ciency in the radial transport of the angularmomentum throughout the uid system. In any case, it should be mentioned that, theprediction of this kind of patterns is due to Stokes who, in 1848, had already proposedthe existence of cellular structures for high rotation speeds of the inner cylinder.Flow between rotating cylinders is remarkable for the fact that slow increase ofthe speed of the inner cylinder gives rise to a wide spectrum of well-distinguishable owpatterns of increasing geometrical complexity. In Andereck et al. , 1986, a comprehen-sive experimental study of di�erent ows which appear in di�erent parts of parametersspace can be found. Moreover, the ows which appear in Taylor-Couette problem de-pend strongly on the particular path followed to reach each of the points in parameterspace. This hysteresis phenomena occurs frequently in non-linear physical systems. Alto-gether, Taylor-Couette problem turns out to be a perfect framework with which, the maintheoretical predictions about pre-turbulent stages can be checked.The present chapter will deal with the Taylor-Couette stability analysis in a more gen-eral way. In addition to the centrifugal e�ects produced by the rotation of the cylinders,shear axial e�ects will be considered. This e�ect will be accomplished by an inertial relativesliding between the cylinders. The global system is now termed Spiral Couette problemand it has been studied partially by many authors from the sixties on (Ludwieg, 1964,Hung, Joseph & Munson, 1972, Ali & Weidman, 1993). Nevertheless, so far the studiesdealing with the problem have been a bit restricted to particular situations. As a matterof fact, the problem is now a bit more complicated, not only because of the presence of anew physical parameter, but also because of the competition between two di�erent kindsof instability e�ects, that is, shear and centrifugal mechanisms. It is a well known factthat shear ow in a pipe throughout its axial direction is linearly stable with respect to in-�nitesimal perturbations. Likewise, the solid-body rotation where both cylinders rotate atthe same angular speed, is linearly stable. A very interesting physical phenomenon occurswhen a slight shear e�ects inestabilizes the solid-body rotations problem and, simultane-ously, a little relative rotation inestabilizes the pure shear axial ow (Mackrodt, 1976).Very extensive literature has reported on the behaviour of Taylor-Couette problemunder di�erent physical conditions. A comprehensive historical review of the subjectwould require hundred of pages and its is out of the scope of the present research. Avery good synthesis of the whole inestabilization mechanisms of the problem can be foundin Chossat & Iooss, 1994. For a comprehensive experimental study of the di�erent owswhich appear see Andereck et al. , 1986. The present work needs to be restricted to makespeci�c references to those points which are going to be studied. Nevertheless, it is worth-wile to devote a section to the classical Taylor{Couette problem in order to have a broaderview.5.1.1 The Taylor-Couette Problem: Physical DescriptionTaylor{Couette ow is the term used to describe uid motion between two concentricrotating cylinders, whose radius and angular velocities are r�i , r�o and 
i, 
o respectively.The annular gap between the cylinders is d = r�o � r�i .The independent nondimensional parameters appearing in this problem are, the radius
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Figure 5.1: Geometric sketch and parameters of the Taylor-Couette problem. The basicow vB� , driven by the angular rotations 
i; 
o, is also depicted.ratio � = r�i =r�o , which �x the geometry of the annulus and the Couette ow Reynoldsnumbers Ri = dri
i=� and Ro = dro
o=� of the rotating cylinders.Henceforth, all variables will be rendered dimensionless using d, d2=�, �2=d2 as unitsfor space, time and the reduced pressure (p�=��). The Navier{Stokes equation and theincompressibility condition for this scaling become@tv+ (v � r)v = �rp+�v; r � v = 0; (5.1)which can be expressed explicitly in a suitable cylindrical coordinate system (r; �; z) asfollows: @tu+ u@ru+ vr @�u+ w@zu� v2r = �@rp+�u� 2r2@�v � ur2 (5.2)@tv + u@rv + vr @�v + w@zv + uvr = �1r@�p+�v + 2r2@�u� vr2 (5.3)@tw + u@rw + vr @�w + w@zw = �@zp+�w (5.4)@ru+ 1r @�v + @zw + ur = 0; (5.5)where u, v and w are the radial, azimuthal and axial components of the velocity vector �eldv, respectively. In previous equations, � stands for the laplacian operator in cylindricalcoordinates � = @2r + 1r @r + 1r2@2� + @2z (5.6)



50 Axial E�ects in the Taylor-Couette Problem5.1.2 Steady Solutions and Symmetry AnalysisThe �rst di�culty that arises when properly describing the physical system lies in theboundary conditions which must be imposed on the top and bottom sides of the cylinder.From an experimental point of view, those conditions may be chosen in di�erent ways. Infact, the top and bottom lids may be enforced to rotate with one of the two cylinders or toremain �xed. Another possibility is to remove the top wall. In this situation, the top partof the uid is submitted under a stress free boundary condition. The anomalous e�ects pro-duced by di�erent con�gurations has been studied by many authors (Cli�e et al. , 1992).It is a remarkable fact that comparisons between experiments and predictions from the-oretical arguments (neglecting lids e�ects) are reasonably good, provided that the heightof cylinders is large enough compared to the gap width, even in such situations wherecomplicated dynamics occur close to the points of onset of instability for Couette ow.Moreover, those e�ects appear after long transient periods of time only. From a numericalpoint of view, a realistic computation of the solutions of the Navier{Stokes problem maybe very complicated. Furthermore, in the absence of symmetries, the previous numericalintegrations would not provide the main features of the bifurcated solutions.The apparent experimental evidence of the presence of axial periodicity in the bifur-cated patterns of the physical system, is a fair motive for imposing the usually termedin�nite cylinder hypothesis. This last hypothesis allows to obtain an analytical solution forthe problem, which is essential for the study of the stability and bifurcations, used through-out this research. The identi�cation of the top and bottom sides changes the topologyof the problem, becoming now a two dimensional torus in the axial and azimuthal coor-dinates. The invariance group of transformations is properly O(2)�SO(2). On the onehand, the orthogonal group O(2) is associated with the translations in the axial directionsidenti�ed with vertical periodicity modulus and with specular reections with respect ahorizontal plane containing the origin. On the other hand, SO(2) is associated with therotations around the common axis of the cylinders. To sum up, the corresponding actionson the velocity �eld given by equations (5.2), (5.3), (5.4) and (5.5) are(�av)(r; �; z) = (u; v; w)(r; �; z + a); a 2 IR (5.7)(Sv)(r; �; z) = (u; v;�w)(r; �;�z) (5.8)(R v)(r; �; z) = (u; v; w)(r; � +  ; z);  2 IR=2�Z (5.9)The next step is the computation of steady solution for the system (5.2), (5.3), (5.4)and (5.5). Assuming zero axial-radial components on the sought solution and invarianceunder the prescribed transformations (5.7), (5.8) and (5.9), an exact solution is found.For this purpose, the following boundary conditions on the velocity vector �eld must beimposed: u(ri) = 0; u(ro) = 0; (5.10)v(ri) = Ri; v(ro) = Ro; (5.11)w(ri) = 0; w(ro) = 0; (5.12)where ri = �=(1 � �), ro = 1=(1 � �). As a result, the sought solution, also termed



5.1 Introduction: The Taylor-Couette Problem 51Couette-Flow, is given by the following componentsuB = 0; vB = Ar + Br ; wB = 0 (5.13)as can be seen in (Joseph, 1976). The constants A and B are given byA = Ro � �Ri1� �2 ; B = �(Ri � �Ro)(1� �)(1 � �2) : (5.14)As a result, the exact solution is a pure azimuthal ow, where the uid particles are rotat-ing in circular trajectories around the vertical axis and constrained to parallel horizontalplanes. On note that the transformations de�ned in relations (5.7), (5.8) and (5.9), acttrivially over the basic ow (5.13):�auB = uB SuB = uB R uB = uB (5.15)5.1.3 Linear Stability Analysis: Main ResultsAs already has been briey commented, the Taylor{Couette problem has been extensivelystudied by many authors in its di�erent possible con�gurations. In this section, the mainresults concerning the stability of the centrifugal mechanism will be introduced. In fact,the computations which are going to be presented here have been done in order to becompared and checked with previous works and to make a numerical test of the Petrov-Galerkin schemes used. This section will focus its attention on the �nal results morethan on the methodology used to obtain them. A comprehensive explanation of thecomputational methods will be more properly introduced in the general case concerningaxial e�ects.During these last decades, the increasing numerical capabilities of computational de-vices has allowed to provide more accurate integration schemes for the Navier-Stokesequations. This fact has directly a�ected to the study of the Taylor-Couette problem,increasing exponentially the knowledge about its behaviour under speci�c conditions. Asynthesis of the results would be prohibitive for the present purposes, but it is worthwileto present here the essential features exhibited by the problem. At this stage, the �rst stepis to recover the basic results concerning the stability of Couette ow. As commented inthe introduction, the �rst comprehensive analysis was carried out by G.I. Taylor in 1923.Nevertheless, it would be unfair to forget the �rst non-viscous criterion of stability statedby Lord Rayleigh in 1916. Rayleigh's criterion of stability considers small perturbationsof the orbit of a uid ring, which is rotating with constant angular velocity around a �xedaxis which contains the center of the ring and is parallel to the angular velocity vector.Under the hypothesis of conservation of angular momentum of the perturbed ring, it canbe demonstrated (Landau & Lifshitz, 1987) that the local angular momentum of the uidmust increase with respect to the distance to the rotation axis in order to be stable. Thisgeneral condition for rotating uids can be particularly applied on Couette ow for theco-rotation case. As a result, the non-viscous condition of stability is Ro > �Ri. On theother hand, Taylor considered the problem of stability as a boundary value problem inwhich an in�nitesimal perturbation (Lin, 1955), vanishing on the radial boundaries ri and



52 Axial E�ects in the Taylor-Couette Problemro, disturbs the velocity and pressure �elds. From a formal point of view, stability of abasic ow means stability with respect to all possible in�nitesimal disturbances. Accord-ingly, for an investigation on stability to be complete, it is necessary that the reaction ofthe system to all possible disturbances be examined. In practice, this is accomplished byexpressing an arbitrary disturbance as a superposition of certain basic possible periodic1 modes and examining the stability of the system with respect to each of these modes(normal mode analysis), as noted in chapter one. The mathematical formulation of theproblem may be established by considering the perturbed �elds from the basic statev(r; �; z; t) = vB(r) + ei(n�+kz)+�tu(r); (5.16)p(r; �; z; t) = pB(r; z) + p0(r)ei(n�+kz)+�t; (5.17)where k 2 IR, n 2 Z and � 2 Cl . Thus, k features the possible continuous periodicity inthe axial z�coordinate, n is the azimuthal normal mode (which must be integer due tothe azimuthal symmetry), and � = � + i! leads the stability of the ow, as explained inchapter one. Similarly, vB = (0; vB ; wB) is given by (5.13) and the boundary conditionsfor u are homogeneous, u(ri) = u(ro) = 0. Linearizing the Navier{Stokes equations aboutthe basic solution, the following eigenvalue problem is obtained�u = �rp0 +�u� vB � ru� u � rvB : (5.18)Formal substitution of perturbed �elds (5.17) in equation (5.18) leads to a decoupledsystem of eigenvalues for each mode n and k. Thus, a comprehensive study of the stabilityis accomplished by the computation of the spectrum of eigenvalues �(n; k) for each problemand, eventually, the selection of the critical ones (i. e., those which have maximum realpart). A graphical representation of the global procedure of stability analysis is depicted in�gure 5.2, for Ro = 0. In this case, for a �xed wavenumber k, the inner Reynolds numberRiis progressively increased up to a critical value Rci (k) so that one of the eigenvalues crossesthe imaginary axis (i. e., � = 0). This procedure must be done for a wide continuousrange of values of k and for the di�erent azimuthal wavenumbers n. Typically, for a�xed value of n, the curve of critical Rci (k) values has a parabolic pro�le with a singleand well-distinguished minimum. The curves �(k;Ri) = 0 are usually termed NeutralStability Curves (NSC). Therefore, the dominant transition will be the minimum of theset of minima obtained from the di�erent NSC. This selection provides a critical pair ofvalues (kc; Rci ) for which the bifurcation takes place. In the represented case, the dominantperturbation is the axisymmetric one (n = 0). The previous methodology must be repeatedfor each value of external Reynolds number Ro. As a result, a functional dependencebetween Rci and Ro is obtained. The curve which separates stable from unstable regimesin parameter space (Ri; Ro) is usually termed linear stability curve or marginal curve.In �gure 5.3, the linear stability results for the cases � = 0:5 and � = 0:8 is depictedand compared with the Rayleigh's criterion of stability. The �gure represents the usuallytermed critical curves over which the linear criterion predicts the presence of a bifurcation.Therefore, for each case, the curve separates two well-distinguished zones. For physicalconditions contained below the critical curve, the basic ow (Couette ow) is stable, beingunstable as long as the critical curve is crossed.1The assumption of periodicity of the perturbation �elds is justi�ed by experimental evidences. To putit briey, we are only searching for spatially periodic bifurcated solutions.



5.1 Introduction: The Taylor-Couette Problem 53

Figure 5.2: Featuring neutral stability curves for the Couette ow. The values of thephysical parameters are � = 0:5 and Ro = 0. The curves for the �rst three possibleazimuthal modes (n = 0; 1; 2) are depicted. On note the presence of a minimum criticalpoint located at (kc; Rci ) = (3:16; 68:19).
 

Figure 5.3: Featuring linear stability curves for Couette ow. The dotted curves representthe marginal state for the cases � = 0:5 and � = 0:8 obtained from the Petrov-Galerkinscheme. Solid lines emerging from the origin represent the non-viscous Rayleigh's criterionof stability Ri = Ro=� in each case.
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Figure 5.4: Geometrical sketch of Taylor vortex ow for the value parameters � = 0:5,Ri = 68:19, Ro = 0 and kc = 3:16. The uid particles remain moving in each one of thetoroidal surfaces usually termed Taylor vortices.Another relevant feature of the stability of Couette ow is the structure of the sec-ondary ows which appear near criticality. Typically, the emerging patterns just afterthe inestabilization of Couette ow may be steady cellular ows, usually termed TaylorVortex ow, or time periodic ows, usually termed Spiral ows. The dominance of one oranother depends on the speci�c physical conditions. On the one hand, Taylor Vortex owappears when considering axisymmetric disturbances as the dominant ones in the criticalregime. A curious feature of this ow is its stability under the presence of perturba-tions. By contrast, Spiral ow which only appear in counter-rotation situations, is a veryunstable pattern. In �gures (5.4) and (5.6), a geometrical representation of the streamfunctions associated to the two possible bifurcating regimes is depicted. In the �rst case,when axisymmetric disturbances are the dominant ones, the bifurcation leads to a cellularsteady pattern in which the uid remains constrained to move in toroidal surfaces (Taylorvortices) with axial periodicity. Only one constant stream function surface is depicted. Infact, the stream surface which reaches an 80% of the whole gap only is sketched. For thesecond representation, the same criterion has been considered. In this case, the particlesmove in a spiral surface which is invariant under speci�c combinations of axial translationsand azimuthal rotations of the form n� + kcz = cnst:, with n an integer number.For the computation of the previous structures, the general Petrov-Galerkin scheme,explained in next section and in appendix D, was used for the particular case of no-slidinge�ects. In fact, the previous surfaces represent the eigen{stream functions associated withthe critical eigenvalues in the bifurcation. The axial periodicity of the patterns can becomputed with the same scheme and are the unstable wave numbers under which thebifurcation will take place. Therefore, the representations are only qualitative. For a
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Figure 5.5: Geometrical sketch of Taylor vortex ow for the value parameters � = 0:5,Ri = 68:19, Ro = 0 and kc = 3:16. Di�erent constant stream function values have beendepicted. The thickest line represents a constant azimuthal cut of one pair of toroidalstructures represented in previous �gure.
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Figure 5.6: Geometrical sketch of Spiral ow for the value parameters � = 0:5, Ri = 97:89,Ro = �80, n = �1 and kc = 3:85. In this case, uid particles remain moving in each oneof the spiral surfaces.
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Figure 5.7: Geometrical sketch of Spiral ow for the value parameters � = 0:5, Ri = 97:89,Ro = �80, n = �1 and kc = 3:85. Di�erent constant stream function values have beendepicted. The thickest line represents a constant azimuthal cut of one pair of spiralstructures represented in �gure 5.6.real representation of the bifurcating patterns, the non-linear integration of the originalproblem would be needed.5.2 Spiral Couette Problem{IntroductionIn this section, the linear stability of a uid con�ned between two coaxial cylinders rotatingindependently and with axial sliding (Spiral Couette ow) is examined. A wide rangeof experimental parameters were explored, including two di�erent radius ratio. Zero-thorder discontinuities are found in the critical surface; they are explained as a result of thecompetition between the centrifugal and shear instability mechanisms, which appears onlyin the co{rotating case, close to the rigid body rotation region. In the counter{rotatingcase, the centrifugal instability is dominant. Due to the competition, the neutral stabilitycurves develop islands of instability, which considerably lower the instability threshold.Speci�c and robust numerical methods to handle these geometrical complexities weredeveloped. The results are in very good agreement with the experimental data available,and with previous computations.An incompressible viscous uid which is contained in the gap between two concentriccylinders that rotate independently about a common axis at constant angular velocities isconsidered. Forward motion is induced by an inertial sliding of the cylinders relative toone another along the pipe axis. The basic motion whose linear stability will be studiedis, therefore, a combination of the Couette ow and the axial velocity �eld induced by therelative sliding, the so called Spiral Couette ow (Joseph, 1976).
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Figure 5.8: Original comparison between inviscid criterion of stability and experimentalresults, both obtained by Ludwieg in 1964.This problem was �rst studied by Kiessling, 1963 and Ludwieg, 1964, who obtainedinviscid stability criteria in the narrow gap case. The experiments of Ludwieg, 1964 are,as far as we know, the only experiments made in this problem to date. The resultsshowed the correctedness of the inviscid Ludwieg, 1964 criterion (see �gure 5.8), later im-proved by Wedemeyer, 1967. The general problem was studied by Mott & Joseph, 1968,Hung, Joseph & Munson, 1972 with special emphasis on energy methods; an excellent re-view can be found in the book of Joseph, 1976, chapter VI. Recently, Ali & Weidman, 1993made a linear stability analysis of the Spiral Couette ow, in the stationary outer cylin-der case, in the so called enclosed geometry, which includes end e�ects. The more gen-eral problem of oscillatory sliding has been recently considered by Hu & Kelly, 1995 andMarques & Lopez, 1997, whose numerical simulations are in good agreement with the ex-periments of Weisberg, 1996. The previous works dealt with the in�nite cylinders case,assuming periodicity in the axial direction. As a result of the sliding, a non{zero meanow in the axial direction appears, that can only be present in open ends con�gurations,like in the mentioned Ludwieg, 1964 experiments. The presence of lids enforces a zeroaxial mean ow; this constraint is enforced by adding a suitable axial pressure gradient,which mimics the lids e�ect, maintaining the periodicity of the velocity �eld; this is theusually termed enclosed case.An understanding of the stability of these ows could have applications in some in-dustrial processes like the puri�cation of industrial waste water (Ollis et al. , 1991), theproduction of wire and cables (Tadmor & Bird, 1974) and the optical �ber fabricationtechniques (Chida et al. , 1982). In all of them, axial sliding in a cylindrical annulus takesplace, and the rotation of one or both cylinders change the stability and properties of the



58 Axial E�ects in the Taylor-Couette Problemow.The following sections present an extensive exploration of the linear stability of theSpiral Couette ow mainly in the open ends case in order to compare with existing ex-perimental data, although some computations are made in the enclosed case in order totest our numerical code and quantify the lids e�ect. The exploration covers a wide rangeof angular velocities of both cylinders, and two di�erent radius ratio are examined: onecorresponds to the Ludwieg (64) experiment, with a radius ratio � = 0:8, close to thenarrow gap case (� ! 1). The other case (with a wide gap � = 0:5) has been consideredbecause the instability appears at lower Reynolds numbers than in the narrow{gap case,and the change in the azimuthal wave numbers to be considered is also smaller, whichpermits a more detailed analysis.The chapter is organized as follows. In section 5.3, a complete description of the phys-ical system is given, and the analytical steady solutions are computed for the general case.In section 5.4 the linear di�erential equations which govern the stability of the �rst or-der perturbations are obtained, using a Petrov{Galerkin scheme. The symmetries of theproblem are considered in order to reduce the parameter space region to be explored. Theneutral stability curves in this problem may have multiple extrema and sharp geometricalforms, and also exhibit disconnected parts. Speci�c and robust methods for obtainingthe neutral stability curves in spite of its geometric complexities are designed. The re-sults of our numerical method are checked with former results obtained previously byAli & Weidman, 1993. Section 5.5 is concerned with the wide gap case � = 0:5. For eachpair of values Ro and Rz (outer rotation Reynolds number and axial Reynolds numberrespectively) the neutral stability surface is computed. Complex behaviour is found on theco-rotation zone, specially as the axial Reynolds number is increased. In fact, discontinu-ities in the critical inner rotation Reynolds surface have been observed. This phenomenais explained in detail as a competition between the centrifugal instability mechanism char-acteristic of the Taylor{Couette problem and the shear instability mechanism induced bythe axial sliding. This interpretation in reinforced by examining the rigid rotation casewith sliding. Section 5.6 deals with the narrow{gap case � = 0:8, where the same fea-tures are present. The results are compared with the experimental results of Ludwieg (64)and the linear stability computations of Hung et al. (73), reaching good agreement withboth. A detailed analysis of the experimental data shows the presence of hysteresis regionsassociated to the mentioned discontinuities. Finally, section 5.7 o�ers some conclusions.5.3 Physical Description; Steady SolutionsThe dynamical features of the problem are essentially the same as those described insection 5.1.1. In addition, the inner cylinder is moving parallel to the common axis with aconstant velocity Uc (see �gure 5.9). The apparently more general ow with both cylindersmoving axially is reduced to the present case by Galilean invariance, changing to a referenceframe with constant axial speed. As a result, a new nondimensional parameter featuringthe axial sliding must be considered. In this case, the Reynolds number Rz = dUc=� willmeasure the translational velocity of the inner cylinder. Henceforth, all variables will berendered dimensionless in the same way as in section 5.1.1. As a result, the Navier{Stokes
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Figure 5.9: Geometric sketch and parameters of the Taylor-Couette problem with axialsliding. The basic ow rB� ; vBz , driven by the axial motion Uc and the angular rotations
i; 
o, is also depicted.equation and the incompressibility condition for this scaling are given by (5.1), and theboundary conditions are u(ri) = u(ro) = 0; (5.19)v(ri) = Ri; v(ro) = Ro; (5.20)w(ri; t) = Rz; w(ro) = 0; (5.21)where ri = �=(1� �), ro = 1=(1 � �).In order to compare with experiments and with other previous work, two di�erentsituations are considered in the present research. In both, the basic ow velocity �eldis independent of the axial direction, but in one case the axial pressure gradient is zero(open ow) and nonzero in the other (enclosed ow). The nonzero axial pressure gradi-ent in the enclosed ow case is physically represented by the presence of endwalls andallows us to enforce a net zero axial mass ux, not only for the base ow but also for theperturbed ow. The only experiments of the Taylor{Couette ow with axial sliding ofthe inner cylinder known to us are those of Ludwieg (64), which were carried out in anannulus with open endwalls. The use of an axial pressure gradient to include the largescale endwall e�ects has been implemented by Ali & Weidman, 1993, in the linear analysisof Taylor{Couette ow with axial sliding, in the enclosed case and with the outer cylinderat rest. This e�ect was also taken into account by other authors (Edwards et al. , 1991,Sanchez, Crespo & Marques, 1993) in the Couette ow without sliding, where the bifur-cation to spirals in the counter{rotating case develop weak axial ows. The axial pressure



60 Axial E�ects in the Taylor-Couette Problemgradient is �xed by the zero axial mass ow conditionZz=0w r dr d� = 0: (5.22)The steady velocity �eld vB independent on the axial and azimuthal variables that veri�esthe previous condition isuB = 0; vB = Ar + Br ; wB = C ln( rro ) + P4 (r2 � r2o); (5.23)as can be seen in (Joseph, 1976). The constants A, B, C are given byA = Ro� �Ri1 + � ; B = �(Ri� �Ro)(1� �)(1 � �2) ; C = 1ln��Rz + P (1 + �)4(1� �) � (5.24)and P is the non-dimensional Poiseuille number P = (dp�=dz�)d3=(���2) measuring theimposed axial pressure gradient. In the open ow case, P = 0; in the enclosed case, themass conservation condition gives P as a function of Rz:P = �4Rz (1 � �)(2�2 ln � + 1� �2)(1 + �)[(1 + �2) ln � + 1� �2] : (5.25)5.4 Linear Stability of Spiral Couette FlowIn the preceding section the basic ow was obtained. Now a perturbation of this basicstate by a small disturbance which is assumed to vary periodically in the azimuthal andaxial directions is considered:v(r; �; z; t) = vB(r) + ei(n�+kz)+�tu(r); (5.26)p(r; �; z; t) = pB(r; z) + p0(r)ei(n�+kz)+�t; (5.27)where vB = (0; vB ; wB) is given by (5.23) and the boundary conditions for u are homoge-neous, u(ri) = u(ro) = 0. Linearizing the Navier{Stokes equations near the basic solution,the following eigenvalue problem is obtained:�u = �rp0 +�u� vB � ru� u � rvB : (5.28)In order to solve (5.28) numerically, a spatial discretization is accomplished by pro-jecting (5.28) onto a suitable basis. The space of divergence-free vector �elds satisfyingthe boundary conditions of the problem isV = fu 2 (L2(ri; ro))3 j r � u = 0; u(ri) = u(ro) = 0g; (5.29)where (L2(ri; ro))3 is the Hilbert space of square-integrable vectorial-functions de�ned inthe interval (ri; ro), with the inner product,< u;v >= Z rori u� � v rdr; (5.30)



5.4 Linear Stability of Spiral Couette Flow 61where � denotes the complex conjugate. For any u 2 V and any function p, we have< u;rp >= 0. Therefore expanding u in a suitable basis of V ,u =X� a�u�; u� 2 V; (5.31)and projecting the linearized equations (5.28) onto V the pressure term disappears, anda linear system for the coe�cients a� is obtained:�X� < ~u�;u� > a� =X� < ~u�;�u� � vB � ru� � u� � rvB > a�: (5.32)A Petrov-Galerkin scheme is now implemented, where the basis used to expand the un-known velocity, fu�g, di�ers from that used to project the equations, f~u�g. A comprehen-sive analysis of the method can be found in appendix D. The divergence-free condition fora velocity �eld of the form (D.20) is D+u+ inv=r+ ikw = 0, and a basis for V is obtainedby taking, u1j = (0;�rkhj(r); nhj(r)); (5.33)u2j = (�ikfj(r); 0;D+fj(r)); (5.34)where D = @r, D+ = D + 1=r. The functions fj and hj must satisfy the homogeneousboundary conditions fj = f 0j = hj = 0 on ri and ro.Introducing the new radial coordinate x = 2(r � ri) � 1, x 2 [�1;+1] and usingChebyshev polynomials Tj , a simple choice for fj and hj , which satisfy the homogeneousboundary conditions, isfj(r) = (1� x2)2Tj�1(x); hj(r) = (1� x2)Tj�1(x); (5.35)where j ranges from 1 to M , the number of Chebyshev polynomials used. In order topreserve the orthogonality relationships between the Chebyshev polynomials, and to avoid1=r factors in the inner products in (5.32), a suitable choice for the projection basis ~u is~fj(r) = r2(1� x2)3=2Tj�1(x); ~hj(r) = r2(1� x2) 12Tj�1(x): (5.36)With this choice, all the inner products in (5.32) involve polynomials, except those con-taining the logarithmic term in wB , and therefore they can be numerically computedexactly using Gauss{Chebyshev quadrature (Isaacson & Keller, 1966). Finally, a general-ized eigenvalue system of the following form is obtained:�Gx = Hx; (5.37)where the vector x contains the real and imaginary parts of the coe�cients a� in (5.31),and G, H are constant matrices, with G positive de�nite. The explicit expressions of thematrix elements of G and H are given in the appendix D.Let us consider the symmetries of our problem. The Navier{Stokes equations areinvariant with respect to the specular reections fz ! �z; w ! �wg and f� ! ��; v !�vg. They are also invariant with respect to rotations around the axis, axial translations
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Figure 5.10: Experimental visualization of spiral secondary regime (fromWedemeyer, 1967).and time translations. The boundary conditions break some of these symmetries. Ri or Rodi�erent from zero breaks the specular reection �! ��, and Rz 6= 0 breaks the specularreection z ! �z. In order to keep the invariance, the sign of these Reynolds numbers, aswell as the corresponding wave numbers n and k in the solution of the linearized system(D.32), must be changed. Thus, the symmetries allow us to restrict the computations tothe cases Rz > 0 and Ri > 0. Furthermore, since the Navier{Stokes equations are real,the complex conjugate of a perturbation (D.20, D.21) is also a solution, and the sign ofn, k and the imaginary part of � can be changed simultaneously. Therefore, the analysiscan be restricted to the computations to the k � 0 case.When n and k are both di�erent from zero, the eigenvector of the linear problem hasthe form of a spiral pattern (see �g. 5.10, showing an experimentally observed spiral ow).The wave numbers n and k, together with the imaginary part of the critical eigenvalue,! = Im�, �x the shape and speed of the spiral. The angle � of the spiral with a z{constantplane is given by tan� = �n=(rok) = �(1 � �)n=k; the speed of the spiral in the axialdirection (on a �{constant line) is c = �!=k, and in the azimuthal direction (on a z{constant line) it is !sp = �!=n. In the n = 0 case the pattern is axisymmetric and steadyTaylor vortices appear for ! = 0, being travelling ones if ! 6= 0, with axial velocity c.If Rz = 0, the symmetry z ! �z is not broken, and at the bifurcation point, in the n 6=0 case, two pairs of purely imaginary eigenvalues bifurcate simultaneously, representingspirals with opposite slope {or angle{ (see Iooss & Adelmeyer, 1992). These spirals haveopposite values of n. For Rz 6= 0, the corresponding eigenvalues split apart, and one of thetwo spirals �n becomes dominant. Therefore, mode competition and switching between+n and �n for Rz close to zero is expected.5.4.1 Computation of the Neutral Stability CurvesLet � be the real part of the �rst eigenvalue of the linear system (D.32) which crossesthe imaginary axis. The stability of the basic ow is conditioned by the sign of �. Fornegative values of �, the basic ow is stable under perturbations. When � is zero or slightlypositive, the steady ow becomes unstable and bifurcated secondary ows may appear. It



5.4 Linear Stability of Spiral Couette Flow 63should be noted that �(n; k; �;Ri;Ro;Rz) is a function of the physical parameters whichplay an essential role in the dynamics of the system. For �xed values of the parameters�, Ro and Rz, and n and k given, the inner Reynolds number Ric(n; k) such that � = 0is computed. The critical inner Reynolds number is given by Ricrit = minn;k Ric(n; k),and the corresponding values of n, k are the critical azimuthal and axial wave numbersncrit, kcrit which will �x the geometrical shape of the bifurcating solutions, which may bea spiral ow or travelling Taylor vortices. Moreover, the imaginary part of the criticaleigenvalue, !crit, gives the angular frequency of the secondary pattern. Again, the criticalvalues are functions of the parameters (�;Ro;Rz).The curves in the (k;Ri) plane given by �(k;Ri) = 0 are commonly termed NeutralStability Curves (NSC). The main goal at this stage is to compute the absolute minimumof the NSC, which will give the critical parameters (kcrit; Ricrit); in this way, the absoluteminimum of the set of the NSC corresponding to integer values of n will be found. As willbe seen below, the NSC curves for this problem may have multiple extrema (maximumsand minimums), exhibit disconnected parts and sharp geometrical forms. In addition,these curves may exhibit multievaluation branches as functions of k. Moreover, these fea-tures may change abruptly in certain parameter ranges (see �g. 5.13). Standard methodsapplied to a regular grid in the plane (k;Ri) require extremely accurate computations.Consequently, an alternative method has been considered (for a comprehensive study, seeappendix D).A local extremum (kc; Ric) must satisfy the following conditions:�(kc; Ric) = 0; @k�(kc; Ric) = 0 (5.38)Using the Implicit Function Theorem, it can be seen that the local extremum is a minimumif, in addition, the inequality @2k;k�@Ri� < 0 is satis�ed. In order to solve equation (5.38),a two-dimensional Newton-Raphson method has been considered. The convergence of themethod depends on the topological structure of the basin of attraction, and is stronglydependent on the initial point of iteration in the plane (k;Ri). In order to optimize theprocess, a predictor steepest-descent method has been used. This gradient method allowsto be approached to the neighboring zones where the convergence is almost ensured. Thepredictor scheme is able to detect islands of instability, independently of their size andtopological features.5.4.2 Comparisons Open-Enclosed Flow (Ro = 0)In order to check the numerical scheme, the linear stability of the open and enclosed owshave been studied for � = 0:4.For the enclosed ow case, the present computations are in complete agreement withAli & Weidman, 1993 results. The numerical results are displayed in �gures 5.11 and5.12. For high axial sliding Reynolds number, the azimuthal dominant mode is n = 4, aspreviously predicted by Ali & Weidman, 1993.In order to study the e�ect of the zero mean ow, the same computations were carriedout for the open-ow case. The qualitative behaviour of the system is similar to the pre-vious case analyzed above, but some quantitative di�erences should be pointed out. First,the global end e�ects included in the enclosed case has a stabilizing e�ect on the basic ow,
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Figure 5.11: Comparison between the open and enclosed (Ali & Weidman, 1993) situa-tions. Dominant azimuthal wave numbers have been sketched. The points reect thechange of mode.

Figure 5.12: Comparison between the open and enclosed (Ali & Weidman, 1993) situa-tions. Asymptotic states for high axial Reynolds number Rz.



5.5 Instability Results for � = 0:5 65e�ect that increases at high axial Reynolds number (see �gure 5.11). This enhancementof stability in the enclosed case is similar to the one observed by Marques & Lopez, 1997when the inner cylinder undergoes axial oscillations. Second, the asymptotic azimuthalwave number n is di�erent, with the dominant azimuthal wave number n = 3 in the opencase, and n = 4 in the enclosed one, in agreement with Ali & Weidman, 1993 (see �gure5.12). However, only the open ow case will be considered from now on. As a matterof fact, the previous experimental analysis were done under the open axial circulationcon�guration. The inner cylinder critical rotation Reynolds number Ricrit was computedas a function of (Rz;Ro) for two di�erent values of �, 0.5 and 0.8. This was carried outin the range 0 < Rz < 150 and �250 < Ro < 250. Computations were restricted to theRz > 0, Ri > 0 and k > 0 cases, on the basis of the symmetries of the physical problem.5.5 Instability Results for � = 0:5The computation of Ric(Rz;Ro) as a function of Rz, Ro for the wide gap � = 0:5, givesas a �rst unexpected result the presence of a zero{order discontinuity in Ric, in the co{rotating case (Ro > 0). Although this behavior had been considered possible by someauthors (Davis & Rosenblat, 1977), speci�c examples showing this kind of discontinuitiesare very unusual in Fluid Mechanics literature.For Ro = 200 the discontinuity appears for Rz = 82:63. Fig. 5.13 shows the critical Rias a function of k. For Rz = 80 the dominant mode is n = �1, giving Ric = 373:43 andkc = 1:68; but for Rz = 82:63 the marginal stability curve of the n = �4 mode developsan island of instability for a much lower Ric = 119:13, introducing a discontinuity in Ric.It should also be noted that the change in ncrit is not �1 as usual, but changes in threeunits. The island of instability is very small (�gure 5.13, Rz = 84), growing its size aslong as Rz is further increased from the discontinuity point. All these features make thenumerical computation of the critical parameters very di�cult from the algorithmic pointof view. For these reasons, speci�c numerical methods, outlined in section 5.4.1, weredeveloped in order to detect the islands as soon as they appear.Before crossing the Ric discontinuity, the marginal stability curve has a single extrema,a minimum (�gure 5.13, Rz = 80), giving the critical parameter values (Ric, kc). Aftercrossing, and due to the appearance of the island, we have three extrema, two minima anda maximum, and the marginal stability curve has two disconnected branches. If we moveto higher Rz values, the island grows until it merges with the other branch (�gure 5.13,Rz = 120 and Rz = 122); the marginal curve then has now a single minimum. Plottingthe position of all the extrema as a function of Rz, an S-shaped curve (see �gure 5.25)is obtained, which shows that the critical surface is multievaluated and continuous butfolded in such a way that a cusp develops. Figure 5.14 shows a perspective view of thiscritical surface.The discontinuity of the critical parameter depends on the experimental way of ap-proaching to this conictive zone. For Ri remain �xed the computation of Rzc(Ri;Ro)results in a continuous surface, formed by all three sheets in the cusp region. In fact, thisexactly is the followed procedure in order to obtain the critical surface in the cusp region,because the critical wave number n can also change. For dynamical systems that depend
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Figure 5.13: Formation and evolution of an island of instability for � = 0:5, Ro = 200.The solid line corresponds to the n = �4 mode, and the dashed one to n = �1.
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Figure 5.15: Perspective view of the critical surface Ric(Rz;Ro), explicitly showing thechanges in the dominant azimuthal mode n at criticality.on a su�cient number of parameters, the critical surface (a manifold, in the general case)is likely to present discontinuities of the same or more complex kind. As we lack a prioriknowledge of this possibility, the use of robust strategies to �nd the critical points, likethose which have been implemented, becomes necessary.Figure 5.15 shows the same critical surface with the curves corresponding to a change inthe critical azimuthal wave number n. Along these curves, the change in ncrit is always �1,unless very close to the Rz = 0 axis, where the competition between modes �n is strong.As already mentioned, the symmetries of the problem for Rz = 0 makes the eigenvaluescorresponding to �n bifurcate simultaneously. When the the symmetry breaking is small(Rz � 0), both eigenvalues are very close, and switching occurs between both criticalsurfaces close to the axis. In the region of the cusp, near the discontinuity in Ric, theincrement in nc may exceed the unity, because of the jump discontinuity between thedi�erent sheets of the critical surface; but as long as the displacement is done on thecritical surface, the change in nc is also �1.The projection of the curves corresponding to a change in the azimuthal wave numbern are plotted in �g. 5.16, along with the edges of the cusp region. The discontinuity inRic corresponds to the upper edge of the fold region, and inside it the dominant azimuthalwave number is n = �4, except at the very end (Ro � 250) where the mode n = �3becomes dominant.The coordinates of the cusp point are Ro = 93:22, Rz = 73:41, Ric = 107:63, insidethe region nc = �3, but very close to the border with n = �4. Although this cusp pointcould be interpreted as being a bifurcation point of codimension higher than 1, it is not.The cusp point is characterized by having a tangent plane parallel to the Ri axis, withan inexion point in the Ro-constant section. But if we look at the critical surface from
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Cuspidal
   Zone

Figure 5.16: Dominant azimuthal mode n at criticality, as a function of Ro, Rz; � = 0:5another point of view (for example changing Ri to a linear combination of the Reynoldsnumbers, as for experimental purposes), the cusp point changes its position on the surface.In fact, looking for the critical Rz number with Ri, Ro �xed, all the folding region is nowunivaluated and Rz is continuous. Discontinuities also exist in this case (in Rz), alongwith a multievaluated critical surface, but now in a di�erent region of the critical surface.Figure 5.25 shows that in the upper right corner of �g. 5.15, Rz is multievaluated, anda discontinuity appears. These discontinuities or folded structures may have importantconsequences from the experimental point of view, like hysteresis phenomena, as well asthe discontinuity in Ric.The geometrical shape of the secondary patterns which appear in this case have beendepicted in �gures 5.17, 5.18, 5.19 and 5.20. First, �gures 5.17, 5.18 feature the generallytermed travelling Taylor vortices, corresponding to dominant cellular axisymmetric struc-tures which propagate in the axial direction. Figures 5.19 and 5.20 feature the secondaryspiral ow.Figures 5.21, 5.22, 5.23 and 5.24 show Ric, !c, � and c as a function of Ro for dif-ferent values of Rz, respectively. The critical Reynolds number Ric (�g. 5.21 is almostindependent of Rz in the counter{rotating region Ro < 0. But in the co{rotating region,where the cusp develops, two well separated kinds of behavior are exhibited: for smallaxial sliding Rz, before the discontinuity, Ric is very close to the values without sliding(Taylor{Couette ow). For higher axial sliding, after the discontinuity, Ric falls to muchlower values. The e�ect of the axial sliding is destabilizing, but the e�ect is importantonly in the co{rotating case, after the discontinuity. The centrifugal instability seems thedominant mechanism (as in Taylor{Couette, Rz = 0) except after the discontinuity, wherea shear instability due to the axial sliding becomes dominant; the cuspidal zone can beinterpreted as the transition region between both mechanisms. This qualitative changecan also be noticed in the angle of the spiral pattern � (�g. 5.23, which shows a jump fromvalues less than 10o to values close to 70o. This dramatic change in shape is also reectedin the axial speed of the spirals, in �g. 5.24. It is noted that the shear{instability domi-nated branch is very close to the solid body rotation line, where the centrifugal instabilitydoes not apply.The imaginary part of the critical eigenvalue, !c, changes in a linear way with Ro
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Figure 5.17: Geometrical sketch of travelling Taylor vortices for the value parameters� = 0:5, Ri = 71:70, Ro = �30, Rz = 10:0, n = 0 and kc = 3:26.

Figure 5.18: Geometrical sketch of travelling Taylor vortices for the value parameters� = 0:5, Ri = 71:70, Ro = �30, Rz = 10:0, n = 0 and kc = 3:26. Di�erent constant streamfunction values have been depicted. The thickest line represents a constant azimuthal cutof one pair of spiral structures represented in previous �gure.
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Figure 5.19: Geometrical sketch of Spiral Flow for the value parameters � = 0:5,Ri = 95:93, Ro = 30, Rz = 10:0, n = �1 and kc = 3:23.

Figure 5.20: Geometrical sketch of Spiral Flow for the value parameters � = 0:5,Ri = 95:93, Ro = 30, Rz = 10:0, n = �1 and kc = 3:23. Di�erent constant streamfunction values have been depicted. The thickest line represents a constant azimuthal cutof one pair of spiral structures represented in the preceding �gure.
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Figure 5.21: Critical parameters for � = 0:5, as functions of the outer Reynolds numberRo. Featuring, critical inner Reynolds number Ric; the solid straight line is the rigidrotation line Ri = �Ro.(�gure 5.22), except for jumps when the azimuthal mode n changes. Looking at �g.5.16, a progressive decreasing of the wave number n, as Rz is increased, can be observedexcept in two regions: the �rst one, close to Rz = 0 in the counter{rotating area, displayscompetition between �n modes, due to the breaking of the reexional symmetry z ! �z,as described in 5.4. The second region, after the discontinuity, shows a kind of saturation;the azimuthal n = �4 mode is dominant in a very large area.Figures 5.25, 5.26, 5.27 and 5.28 respectively show Ric, !c, � and c as a function of Rzfor di�erent values of Ro in the co{rotating case. In �gure 5.25, sections of the cusp regionare displayed; the critical Ric is, in fact, the minimum of the values in the multievaluatedregion, so a discontinuity takes place, growing its size as long as Ro is further increased.The discontinuity has been displayed in the remaining critical parameter plots, �gures 5.265.27, 5.28. The bicritical points, where the azimuthal wave number n changes and twoeigenvalues bifurcates simultaneously, are distinguished with a vertical bar. The dominantmode for small sliding (Rz close to zero) is axisymmetric (n = 0). Since the imaginarypart of the critical eigenvalue is not zero (except for Ro = 0, see �gure 5.26, Taylor vorticeswhich travel axially with a speed c (showed in �gure 5.28) appear. The e�ect of the slidingon these axisymmetric modes is slightly stabilizing, in contrast with their unstabilizinge�ect on the non-axisymmetric ones, mainly in the co{rotating region.Figures 5.29, 5.30, 5.31 and 5.32 show Ric, !c, � and c as a function of Rz for di�erentvalues of Ro in the counter{rotating case. Here all the critical parameters change smoothly,in an almost linear way. Figure 5.29 shows that the critical Reynolds number Ric is almostindependent of the axial sliding Rz for Ro < 0, suggesting that the centrifugal instabilityis the dominant instability mechanism as noted before.
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Figure 5.22: Critical parameters for � = 0:5, as functions of the outer Reynolds numberRo. Featuring the imaginary part of the critical eigenvalue !c.
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Figure 5.23: Critical parameters for � = 0:5, as functions of the outer Reynolds numberRo. Featuring the angle of the spiral pattern �.
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Figure 5.24: Critical parameters for � = 0:5, as functions of the outer Reynolds numberRo. Featuring axial pattern velocity c.

Figure 5.25: Critical parameters for � = 0:5, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Featuring critical inner Reynolds number Ric. Thedots are exactly located at the azimuthal mode transition states.
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Figure 5.26: Critical parameters for � = 0:5, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Featured is imaginary part of the critical eigenvalue!c.
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Figure 5.27: Critical parameters for � = 0:5, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Featured is the angle of the bifurcating spiral pattern�.
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Figure 5.28: Critical parameters for � = 0:5, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Featured is the axial pattern velocity c.

Figure 5.29: Critical parameters for � = 0:5, as functions of the axial Reynolds numberRz in the counter{rotating case Ro < 0. Featured is the critical inner Reynolds numberRic. The represented dots are exactly located at the dominance transition points betweendi�erent azimuthal modes.
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Figure 5.30: Critical parameters for � = 0:5, as functions of the axial Reynolds numberRz in the counter{rotating case Ro < 0. Featured is the imaginary part of the criticaleigenvalue !c.

α 

Figure 5.31: Critical parameters for � = 0:5, as functions of the axial Reynolds numberRz in the counter{rotating case Ro < 0. Featured is the angle of the spiral pattern �.
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Figure 5.32: Critical parameters for � = 0:5, as functions of the axial Reynolds numberRz in the counter{rotating case Ro < 0. Featured is the axial pattern velocity c.5.5.1 Sliding Rigid RotationIn this section, the rigid rotation case 
i = 
o (or, equivalently, R = Ri = �Ro) is goingto be studied with the presence of sliding e�ects. Actually, it is essential to have a deeperunderstanding of the dominant instability mechanism in the cusp region. This situationis also important because of its global stability for both limiting cases Rz = 0, and R = 0.The situation is similar to (Mackrodt, 1976) where it is shown that although the Poiseuilleow in a circular pipe is linearly stable for any Reynolds number, adding a slow rotationof the pipe makes the ow unstable at some �nite Reynolds number.For this particular situation, the general Petrov-Galerkin scheme is used in order tocompute the linear stability regimes. Figures 5.33 and 5.34 show the computed criticalrotation number R = Ri = �Ro and critical wave number k as a function of the axial speedRz. The critical regime has an asymptotic value as Rz is increased, with the asymptoticrotation Reynolds number R1 = 33:24. In this limit, the critical azimuthal mode isn = �4. In addition, as the rotation Reynolds number is increased, the Rz Reynoldsnumber approaches another asymptotic value, which is Rz1 = 85:11, with a criticalazimuthal wave number n = �5. The dependence of the critical axial wave number kcover the marginal curve is depicted in �gure 5.34. We can observe the presence of amaximum for the values Rz = 122:05, Ri = 50:25, kmax = 0:7638. Moreover, the criticalwave number k decreases to very low values (less than 0.1) as the axial Reynolds numberRz increases; as a result, the spiral's slope grows.Therefore, in the co{rotation region, when the inner Reynolds number Ri is increasedand before the onset of the centrifugal instability, the solid body rotation zone is experi-enced. And if the axial sliding Rz is greater than 85.11, shear instability comes into play:the lower part of the cusp appears, becoming the dominant instability mechanism, and
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Figure 5.33: Sliding rigid rotation. Critical rotation number R = Ri = �Ro as a functionof the axial sliding e�ect. The dominant azimuthal modes are n = 4 and n = 5, where thedot has been just located at the change state.

Figure 5.34: Sliding rigid rotation. Critical wave number k as a function of the axial speedRz for � = 0:5.



5.6 Instability Results for � = 0:8 79giving a discontinuous critical Reynolds number. The corresponding eigenfunctions areclearly di�erent from the centrifugally dominated ones. The axial wave number k is nowvery small, giving large spiral angles �, and an almost constant azimuthal wave numbern (equal to -4). The cuspidal zone, where the critical surface is multievaluated, corre-sponds to the competition between the centrifugal instability mechanism (upper branch)and the shear instability mechanism (lower branch), constantly connected by the interme-diate sheet. All three branches can be experimentally observed if we �x Ri and steadilyincrease the axial Reynolds number Rz.5.6 Instability Results for � = 0:8The qualitative features of the critical surface for � = 0:8 are the same as in the aboveanalyzed � = 0:5 wide gap case, although quantitative di�erences do exist. On the onehand, high rhythm change of the n{critical azimuthal modes were observed, as featuredin �g. 5.35. The number of azimuthal modes to be considered in the stability analysisincreases substantially, and the computation is more expensive.Figures from 5.36 to 5.47 show the critical parameters Ric, !c, � and c as functionsof Rz and Ro as in the � = 0:5 case. The critical surface develops a cusp, but for higherpositive values of Rz, outside the plotted range. The early stages of the cusp can be seenin �gures 5.36, 5.37 and 5.39, where the curves display the same splitting in two di�erentbehaviors as in � = 0:5 case. In �gure 5.40 is noted that the slope in the inexion pointtends to become vertical. The shear{instability dominated branch is also very close tothe solid body rotation line. Additional numerical results in the region where the cuspis present are be given in section 5.6.1, where a comparison with experimental results iscarried out.The n = 0 axisymmetric mode is stabilized by the axial sliding, giving axially travelingTaylor vortices. But now the dominance of the axisymmetric mode is restricted to a verynarrow range of Rz values as shown in �gures 5.40 : : : 5.43. From the numerical results, itcan be asserted that the sliding has a global unstabilizing e�ect on the basic ow. Anothercurious feature is the presence of a small window of the n = �3 critical mode between theregions n = 2 and 1 (see �gure 5.35). Since this takes place very close to the Rz = 0 axis,it is considered as a side e�ect of the mode competition and switching when the reexionalsymmetry z ! �z is broken.5.6.1 Comparison with Previous ResultsPrevious experimental studies have been reported on the stability of the Spiral Couetteow. In an excellent work done by Ludwieg in 1964, both theoretical and experimental, astability analysis was devoted to an speci�c zone on the parameter space, inside the cuspregion. The experimental apparatus has a gap � = 0:8, with open ends, correspondingto the open ow case. The rotational speed of the external cylinder is held �xed atRo � 750.In fact, Ludwieg's experimental device needed high external rotation speeds inorder to avoid pre-turbulent stages induced by transients. In addition, the mechanism ofincreasing axial and azimuthal velocities enforced an implicit dependence between the two
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Figure 5.35: Dominant azimuthal mode n at criticality, as a function of Ro, Rz; � = 0:8.

Figure 5.36: Critical parameters for � = 0:8, as functions of the outer Reynolds numberRo. Featuring critical inner Reynolds number Ric; the solid straight line is the rigidrotation line Ri = �Ro.
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Figure 5.37: Critical parameters for � = 0:8, as functions of the outer Reynolds numberRo. Featuring imaginary part of the critical eigenvalue !c.
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Figure 5.38: Critical parameters for � = 0:8, as functions of the outer Reynolds numberRo. Angle of the spiral pattern �.



82 Axial E�ects in the Taylor-Couette Problem

Figure 5.39: Critical parameters for � = 0:8, as functions of the outer Reynolds numberRo. Featuring axial pattern velocity c.

Figure 5.40: Critical parameters for � = 0:8, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Critical inner Reynolds number Ric.
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Figure 5.41: Critical parameters for � = 0:8, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Imaginary part of the critical eigenvalue !c.
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Figure 5.42: Critical parameters for � = 0:8, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Angle of the spiral pattern �.
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Figure 5.43: Critical parameters for � = 0:8, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Axial pattern velocity c.

Figure 5.44: Critical parameters for � = 0:8, as functions of the axial Reynolds numberRz in the counter{rotating case Ro > 0. Critical inner Reynolds number Ric.
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Figure 5.45: Critical parameters for � = 0:8, as functions of the axial Reynolds numberRz in the counter{rotating case Ro > 0. Imaginary part of the critical eigenvalue !c.

0 50 100 150

α 

Figure 5.46: Critical parameters for � = 0:8, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Angle of the spiral pattern �.
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Figure 5.47: Critical parameters for � = 0:8, as functions of the axial Reynolds numberRz in the co{rotating case Ro > 0. Axial pattern velocity c.magnitudes. As a result, the experimental paths in the parameter space (Ri;Rz) werestraight lines.Ludwieg's experimental results (�gure 5.8) are given in terms of two nondimensionalparameters c� and cz, which describe the motion of the uid. These parameters arefunctions of the radial variable r,c�(r) = rvB dvBdr ; cz(r) = rvB dwBdr ; (5.39)where ri � r � ro. In some speci�c situations, the previous functions su�er only tinyvariations in the prescribed range of the values of r, mainly in the narrow gap case. As aconsequence, Ludwieg, 1964, considered mean values ~c� and ~cz of these functions as thecontrol parameters; he took r = (ri+ ro)=2, the arithmetic mean radius, in the r factor infront of the de�nitions of cz and c�, but he did not specify which values of the azimuthaland axial velocities and their derivatives were used. In Hung, Joseph & Munson, 1972,the values of ~c�, ~cz were used at the geometric mean radius �r = priro to compare withLudwieg results. As the di�erence between the arithmetic and geometric means is about0.6% for the � = 0:8 case, and moreover, as the expressions of ~c� and ~cz are simpler,using the Hung et al. prescription, it is going to be used in the present context (a moredetailed discussion of the parameters used by di�erent authors is given in appendix D.5).Assuming the mentioned prescription, the dependence between ~c�, ~cz and our variablesRi, Ro, Rz are given by the following equations (for � = 0:8):~c� = 1 + �1� � Ro�RiRo+Ri; ~cz = 1 + �1� � RzRo+Ri: (5.40)For the � = 0:8 case the narrow gap approximation is not clearly justi�ed. In �gures5.49 and 5.50 the variation of the functions cz(r) and c�(r) is seen to be about 10% with
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Figure 5.48: Experimental results, from (Ludwieg, 1964) for � = 0:8 and Ro = 750. Theresults are simultaneously compared with Hung, Joseph & Munson's 1972 former work.respect to the mean values ~cz , ~c�. This could be a source of error in the experimentalvalues given by Ludwieg, 1964. It would be necessary to know the original experimentalresults in terms of the Reynolds numbers in order to work with the true control parametersRz and Ri.A linear stability analysis of the Spiral Couette problem was reported by Hung, Joseph& Munson, 1972 (from now on cited as HJM), where only particular regions in parameterspace where considered. Their results fairly agree with some of Ludwieg's results, althoughthere were some unexplored zones that the present work treats in detail. As a particularcase (but out of the range of the global analysis carried out in preceding section), thecritical curve for Ro = 750 is computed. This curve is single{valued, considering Rz asa function of Ri, but it is well within the cusp region. The global results of the threeanalyses are sketched in �gure 5.48.Our results are fully coincide with the computations of HJM, except for two points onthe left of the minimum of our critical curve in �gure 5.48, where those results of HJMclearly diverges from these experimental results. It must be noted that the results of HJMare con�ned to the intermediate branch of the critical surface fold, where the changes inRzc are small. The other branches shows very high slopes of Rzc(Ri); furthermore, thechange in the critical azimuthal wave number n is of more than 15 units in this range. Thisindicates the di�culties Hung et al. encountered out of the intermediate branch, whichexplains the mentioned discrepancy.Ludwieg's experimental results exhibit good agreement with the numerical results ofthis research. The best experimentally de�ned bifurcation points correspond to the verticalbranch (in this case, the shear is the dominant instability mechanism), and on this curve,his discrepancies are less than 4%; it should be mentioned that this is the �rst time the
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Figure 5.49: Variation of cz(r) for � = 0:8 in the gap, compared with the mean value ~cz;as cz(r) is linear in Rz, we have plotted it only for the characteristic value Rz = 100.
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Figure 5.50: Variation of c�(r) for � = 0:8 in the gap, compared with the mean value ~c�.



5.6 Instability Results for � = 0:8 89vertical branch has been computed numerically. The biggest discrepancy appears for highvalues of Rz, but for these parameter values, the splitting between the mean values ~c�, ~czand the functions c�(r), cz(r) has a maximum (see �gures 5.49 and 5.50). In the regionclose to the minimum of the critical curve, the set in of the instability agrees with theexperiments, but some points on the right side of the minimum clearly deviates from thenumerical predictions. In order to understand why, the experimental setting must beexamined closely. In Ludwieg's experiments, a long rod (the inner cylinder) goes throughthe outer cylinder, with axial movement and simultaneous rotation; the rod acceleratesfrom the rest to the �nal desired inner rotation and axial velocity. The experiment lastsuntil the rod has run through the outer cylinder, a short time interval in all cases.Coming back to �gure 5.48, from the two experimental series for low Rz (the twolowest straight lines), it is apparent that to reach the point labeled A, the minimum ofthe stability curve is crossed when the axial velocity of the rod is increased, so a spiralow appears before A is reached. Shortly after, when the velocity continues to increase,the basic ow again becomes stable, but the ow is now in the spiral regime, so di�erentsituations may arise. If the spiral ow is also stable, the ow will not return to the basicow; if the bifurcation is subcritical, the spiral ow will persist within the region wherethe basic ow is stable (hysteresis e�ect). The spiral ow can also become unstable whenthe other side of the critical curve (supercritical bifurcation) is crossed, and, in this case,it will also take a �nite time for the spiral ow to decay into the basic ow. If this occursclose to the bifurcation point (as it is the case), this asymptotic process can be longerthan the the experiment lasts.All these considerations explains why the experimental points close to A shows adiscrepancy with the numerical computations. The experiment should be carried outagain using a path in parameter space in such that the (multivalued) critical curve is notcrossed, in order to be free of hysteresis and relaxation phenomena. Notice that the pointsmarked with a black and white circle, where Ludwieg could not ascertain about theirstability, are very close to the hysteresis region, strongly suggesting that the bifurcationcould be subcritical in this parameters range. Ludwieg acknowledged the experimentaluncertainties in this parameter region (see �gure 5.8) and the estimated errors were shownas a dashed area.Unfortunately, Ludwieg's experimental data do not include information on the az-imuthal wavenumber n, or other critical parameters, as angular velocities, angle of thespiral pattern and axial velocities. Therefore, our comparison is reduced to the analysisof the critical Reynolds number.Finally, the e�ectiveness of the inviscid criterion of Ludwieg should be noted, displayedas a dashed line in �gure 5.48. The curve follows the behavior of the numerically computedviscous curve qualitatively, and predicts a multievaluated critical surface. The comparisonbetween the inviscid criterion and our computations shows that viscosity stabilizes the ow,delaying the instability, except for high Rz, in the shear{dominated instability region,where the viscosity in fact destabilizes the basic solution, as has been observed in othershear ows.



90 Axial E�ects in the Taylor-Couette Problem5.7 ConclusionsIn this work, a comprehensive analysis on the e�ect of axial sliding in the Taylor-CouetteProblem has been carried out. Speci�c and robust numerical methods to deal with thegeometrical complexities of the Neutral Stability Curves have been developed. The re-liability of the numerical Petrov-Galerlin code has been checked by comparing with Aliand Weidman (93) results, in the enclosed ow case. Detailed computations of the criticalsurface have been made for two gap values. The wide gap � = 0:5 case has been consid-ered because the instability appears at lower Reynolds numbers than in the narrow{gapcase. The change in the azimuthal wave number is also smaller. The case � = 0:8 hasbeen considered also, because, as far as could be ascertained, the only experimental dataavailable on this problem correspond to this value. It was found that the sliding has aglobal unstabilizing e�ect over the non-axisymmetric modes. By contrast, the n = 0 modekeeps stabilized by the same e�ect, although the range of dominance of this behaviour isquite limited. The bifurcation is mainly to a spiral ow, but travelling Taylor vortices arealso observed in small parameter ranges.Notable di�erences can be pointed out between the co-rotation and counter-rotationzones. Counter-rotation con�gurations exhibit a regular behaviour in the critical regime.Nevertheless, the sudden dominance of non-consecutive azimuthal modes for low Rz valuesis to be noted. This phenomenon is due to the breaking of the reexional symmetryz ! �z, which leads to mode competition and switching between �n modes.The critical behaviour is radically di�erent in the co-rotation zone. The critical surfaceRic = f(Rz;Ro) exhibits zero-th order discontinuities, which can only be detected makinguse of the speci�c numerical scheme for the computation of the neutral stability curves.The discontinuity is due to the presence of a sudden dominant island corresponding to adi�erent azimuthal mode. This unusual phenomena in hydrodynamical stability problemshas been explained in terms of competition between two independent instability mecha-nisms: centrifugal instability, dominant in the counter{rotating regime and also for smallaxial sliding; and the shear instability due to the axial motion. This second mechanismbecomes dominant near the solid body rotation line, substantially lowering the onset of theinstability. The discontinuity of the critical surface is related to the competition betweenboth modes; the critical surface is folded into a cusp, and hysteresis behavior becomespossible. The eigenfunctions corresponding to each mechanism are clearly di�erent: spi-rals with large angles correspond to shear{type eigenfunctions and show little variationof the azimuthal wave number n, while those corresponding to the centrifugal instabilityexhibit small angles and large variations of n. The computations in this research comparevery favorable with the previous computations of Hung, Joseph and Munson (72), whoobtained one of the branches in the fold region. Agreement with the experimental resultsof Ludwieg (64) is also very good. In spite of the di�culties encountered with the param-eters de�ned by Ludwieg, the agreement in the shear{dominated branch, computed forthe �rst time, is better than 4%.In order to accurately measure the bifurcation point in the region where hysteresisis present, new experiments would be necessary, trying to avoid the unwanted crossingsof the critical surface, and designing a parameter path far from the tangencies exhibitedby the lower experimental series of Ludwieg in �gure 5.48. These experiments could also



5.7 Conclusions 91supply additional information on other computed critical parameters.
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Chapter 6Weak Nonlinear Analysis of theTaylor-Couette Problem:Petrov-Galerkin approach6.1 IntroductionAs was briey commented in chapter one, ds theories have provided a wide assortment ofmethodologies for studying the nonlinear behaviour of a uid system near critical stages.The formal approach to this problem lies on the mathematical hypotheses used to obtainthe reduced or simpli�ed model of amplitudes which leads the perturbations just afterthe bifurcation has taken place. At this stage, two main alternatives may be chosen.The �rst, under the hypothesis of continuous spectrum of eigenvalues (extended systems),space modulation of the perturbation amplitude may be assumed. This approach is usu-ally termed Ginzburg-Landau method, and its e�ectiveness has been extensively checked inmany continuous systems recently. Nevertheless, it should be pointed out that, so far, a for-mal conclusion has not been provided which could theoretically justify the time-space scaleanalysis used to obtain the Ginzburg-Landau amplitude equation. As a matter of fact,the method must be suitably modi�ed in each particular case (Cross & Hohenberg, 1993).The second, under the hypothesis of discrete spectrum of eigenvalues, more formal method-ologies are available.Center manifold theory and normal forms provide a fair explanation of what is reallyhappening after the system goes through a bifurcation. Of course, the reliability of theresults is strongly conditioned whether the analysis is done near criticality or not. Ineither case, from a mathematical point of view, the amplitude equations obtained fromthis method are completely formal and general. The hypothesis of discrete spectrumof eigenvalues is now the main point to be discussed. Under some physical conditions,periodicity in the extended coordinates may be always assumed. This is, of course, anidealization of the original problem, because there are not in�nite experimental systems.Nevertheless, it is a well known fact that extended systems exhibit pattern formation witha clear periodicity which is only modulated after a long transient period of time. Moreover,the information obtained from the center manifold models, condense the whole mechanism



94 Weak Nonlinear Analysis of the Taylor-Couette Problem: Petrov-Galerkin approachof instabilities along with their original nature.The present chapter deals with the nonlinear stability analysis of the Taylor-Couetteproblem under some speci�c conditions. A methodology to apply Petrov-Galerkin schemesto obtain the �rst order coe�cients of the amplitude equations will be developed. Thispart considers two particular situations. On the one hand, the steady bifurcation casewithout sliding e�ects will be studied. In this case, O(2) symmetry will be considered.On the other hand, the explicit symmetry breaking O(2)!SO(2) due to the presence of athe combination of relative sliding and imposed axial pressure gradient e�ects (Couette-Poiseuille ow). In fact, steady bifurcations are going to be sought in the last case. Ouraim is to evidence numerically the predictions done by the normal form analysis of thebifurcation. In both situations, only the system of equations to be solved numerically willbe obtained. The explicit numerical computation of the proposed systems is out of thescope of the present task.6.2 Steady Bifurcations with O(2){symmetry.In this part, the classical Taylor-Couette problem will be considered. Consequently, noaxial e�ects will take place in the dynamics of the system. Under this prescription,O(2)�SO(2) symmetries must be considered in order to simplify the analysis. First, con-sider the nonlinear partial di�erential equation corresponding to the perturbation �eld@tv = �v� (vB � r)v� (v � r)vB � (v � r)v�rp: (6.1)For the sake of simplicity, vB will stand for the steady Couette ow with zero externalrotation Ro = 01 vB(r) =0@ 0Ri�(r)0 1A ; (6.2)where �(r) stands for the radial dependence of the laminar Couette ow under the pre-scribed boundary conditions �(r) := �Ri1 + � [ 1r(1� �)2 � r]; (6.3)where r 2 [ �1� � ; 11� � ]. The critical stage is accomplished by increasing the rotationspeed of the inner cylinder (i.e. the Ri control parameter) so that there are some eigen-values of the linear analysis crossing the imaginary axis for some speci�c value Ri = Rci .In fact, due to axial symmetry, it can be proved that the crossing eigenvalue must be atleast double (Chossat & Iooss, 1994). In the framework of center manifold theory, a slightincrease of the Ri parameter is considered Ri = Rci + �, where 0 < � << 1. For the ax-isymmetric case n = 0, the linear stability analysis provides the eigenfunctions associatedwith the critical eigenvalues which are crossing the imaginary axis:�0(r; z) = eikczU0(r) ��0(r; z) = e�ikczU0(r) (6.4)1Nevertheless, the general case with rotation of the outer cylinder can be solved in the same way.



6.2 Steady Bifurcations with O(2){symmetry. 95At the critical stage (� = 0), the asymptotic behavior of the perturbations remains led bythe center variables xc corresponding to the previous eigenfunctionsxc(t) = A(t)�0(r; z) + �A(t) ��0(r; z): (6.5)In addition, the stable hyperbolic modes xh(t) will be slaved throughout the center man-ifold xh(t) = Xp+q+r�2�pqr(r; z)�pAp �Aq: (6.6)Consequently, the perturbation v(r; z; t) can be split up as followsv(r; z; t) = xc(t) + xh(t): (6.7)The same decoupling may be done for the pressure gradient �eld, where its hyperbolicpart can be now expressed as a Taylor expansion of gradient �eldsrp = Xp+q+r�2r~�pqr(r; z)�pAp �Aq: (6.8)However, the previous terms will not be considered in the computational Petrov-Galerkinscheme as they vanish under the projection procedure.The third order normal form corresponding to a steady bifurcation withO(2)-symmetryis (Iooss & Adelmeyer, 1992) dAdt = d�A+ bAjAj2; (6.9)where d and b are real coe�cients which must be computed numerically. Formal substi-tution of the splitting (6.7) in the nonlinear perturbation equation (6.1)ddt(xc + xh) = [�� vB � r](xc + xh)� [(xc + xh) � r](vB + xc + xh)�rp; (6.10)where now the basic ow has been slightly perturbed above the critical stagevB(r) = (Rci + �)0@ 0�(r)0 1A : (6.11)Formal substitution of center manifold expansion xc(t) from (6.7) in (6.10) and neglectingterms with order higher than the third, a hierarchy of boundary eigenvalue problems isobtained by direct identi�cation of power orders. This is accomplished by introducingnormal form (6.9) in (6.10). Then, on identifying equally powered terms in Taylor'sexpansion of the form �pAqjAjr, the following system of equation is obtained:order �A:��110 � [0@ 0Ri0 1A � r]�110 �Rci [�110 � r]0@ 0�0 1A�r~�110 =[0@ 0�0 1A � r]�0 + [�0 � r]0@ 0�0 1A+ d�0; (6.12)



96 Weak Nonlinear Analysis of the Taylor-Couette Problem: Petrov-Galerkin approachorder � �A: ��101 � [0@ 0Ri0 1A � r]�101 �Rci [�101 � r]0@ 0�0 1A�r~�101 =[0@ 0�0 1A � r]��0 + [��0 � r]0@ 0�0 1A+ d��0; (6.13)order �A2:��020 � [0@ 0Rci�0 1A � r]�020 �Rci [�020 � r]0@ 0�0 1A� [�0 � r]�0 �r~�020 = 0; (6.14)order � �A2:��002 � [0@ 0Rci�0 1A � r]�002 �Rci [�002 � r]0@ 0�0 1A� [��0 � r]��0 �r~�002 = 0; (6.15)order �A �A: ��011 � [0@ 0Rci�0 1A � r]�011�Rci [�011 � r]0@ 0�0 1A =[�0 � r]��0 + [��0 � r]�0 +r~�011; (6.16)order �AjAj2:��021�[0@ 0Rci�0 1A � r]�021 �Rci [�021 � r]0@ 0�0 1A�r~�021 =b�0 + [�0 � r]�011 + [��0 � r]�020 + [�011 � r]�0 + [�020 � r] ��0; (6.17)order � �AjAj2:��012�[0@ 0Rci�0 1A � r]�012 �Rci [�012 � r]0@ 0�0 1A�r~�012 =b��0 + [�0 � r]�002 + [��0 � r]�011 + [�002 � r]�0 + [�011 � r] ��0; (6.18)order �A3: ��030 � [0@ 0Rci�0 1A � r]�030�Rci [�030 � r]0@ 0�0 1A =[�0 � r]�020 + [�020 � r]�0 +r~�030; (6.19)



6.3 Computation of d and b. Fredholm Alternative 97order � �A3: ��003 � [0@ 0Rci�0 1A � r]�003�Rci [�003 � r]0@ 0�0 1A =[��0 � r]�020 � [�020 � r]��0 �r~�030: (6.20)At the same time, it should be regarded that the sought functions �pqr must satisfy thefree-divergence condition r � �pqr = 0; 8p; q; r 2 IN (6.21)and �pqr( �1� � ) = �pqr( 11� � ) = 0; 8p; q; r 2 IN ; (6.22){that is, they vanish over the radial boundaries.6.3 Computation of d and b. Fredholm AlternativeThe present section deals with the mathematical problem of computation of coe�cients dand b of the normal form equation (6.9). Only the Petrov-Galerkin methodology and �nalexpressions will be provided here, the explicit computation being out of the scope of thiswork. This latter task would require, in some parts of the general procedure, the use of aalgebraic manipulator (Rand & Armbruster, 1987).First, consider the equation (6.12), which contains the sought coe�cient d. From thelinear stability analysis, an advantage can be drawn from the fact that �0 is a 0�eigenfunction.In other words ��0 �Rci [0@ 0�0 1A � r]�0 �Rci [�0 � r]0@ 0�0 1A = 0�0 (6.23)or, symbolically MRci �0 = 0: (6.24)As a result, the operator MRci is not invertible. On note that now, the equation (6.12) for�110 can be expressed as followsMRci�110 = d�0 + [0@ 0�0 1A � r]�0 + [�0 � r]0@ 0�0 1A+r~�110: (6.25)Regarding the no-invertibility of the operator acting over �110, a compatibility conditionis needed to solve the boundary problem (6.25). For this purpose, the usually termedFredholm alternative or compatibility condition is used. This is stated by the followingtheorem:



98 Weak Nonlinear Analysis of the Taylor-Couette Problem: Petrov-Galerkin approachTheorem 6.3.1 (Fredholm alternative) The boundary value problem (6.25) is com-patible i� the right hand side term is orthogonal to �0, which is the solution to the associ-ated homogeneous boundary value problem (6.23).Consequently, the Fredholm alternative enforces the following condition to be satis�ed< �0; d�0 + [0@ 0�0 1A � r]�0 + [�0 � r]0@ 0�0 1A+r~�110 >= 0: (6.26)In previous equation, the inner product<;>must be understood in the sense of L2[0; 2�=kc]�[0; 2�]�[�=(1��); 1=(1��)]-integrable vector �elds. At this stage, Petrov-Galerkin schemesmay play a useful role. First, the computed spectral eigenfunctions obtained from the lin-ear analysis problem may be used. This greatly simpli�es the computation of d becauseof the pressure gradient ~�110 term cancellation in the projection. Denote by �M0 , theM th�order spectral eigenfuction corresponding to the discretization problem introducedin previous chapter �M0 = eik0zUM0 (r); (6.27)where k0 is the numerical approximation of kc. Then, a fair approximation of the coe�cientb is given by the following relationd = �< UM0 (r); [0@ 0�0 1A � r]UM0 (r) > + < UM0 (r); [UM0 (r) � r]0@ 0�0 1A >< UM0 (r); UM0 (r) > (6.28)For the computation of the second coe�cient b, the same procedure must be done. In thiscase, equation (6.17) may be written as followsMRci�021 = b�0 + [�0 � r]�011 + [��0 � r]�020 + [�011 � r]�0 + [�020 � r] ��0 + ~�021; (6.29)which, again, is not invertible. The compatibility condition is now< �0; b�0 + [�0 � r]�011 + [��0 � r]�020 + [�011 � r]�0 + [�020 � r] ��0 + ~�021 > : (6.30)On note that now, the compatibility condition (6.30) includes the functions �011 and�020, which must be computed numerically from equations (6.16) and (6.14), respectively.Altogether, the computation of the center manifold and the coe�cients is a really tourde force. Equation (6.30) can be again suitably modi�ed for the Petrov-Galerkin scheme.Thus, a fair approximation of b is given by the following equationb = �< UM0 (r); [�0 � r]�M011 + [��0 � r]�M020 + [�M011 � r]�0 + [�M020 � r]��0 >< UM0 (r); UM0 (r) > ; (6.31)where �M011 and �M020 are theM�order spectral solutions corresponding to the homogeneousboundary problems (6.16) and (6.14), respectively.



6.4 O(2)!SO(2) Symmetry Breaking 996.4 O(2)!SO(2) Symmetry BreakingThis �nal section deals with of stationary bifurcations with an O(2) broken symmetry. Atthe present stage, it should be noted that the symmetry may be broken in two di�erentways. First, the bifurcation may break the symmetry by appearing structures which arenot invariant under specular axial reections or axial �xed-period translations. This isthe case of spirals, for example, in Taylor-Couette problem, where a time-periodic patternappears. Secondly, O(2) symmetry may be broken explicitly by introducing axial e�ectson the problem. The present section will only consider the combined axial sliding andimposed axial pressure gradient e�ects. Moreover, the analysis will be done under thehypothesis of stationary outer rotation.The main goal is to �nd a generic bifurcation capable of providing stationary super-critical patterns. For this reason, the double-zero eigenvalue bifurcation eigenvalue will beconsidered. Consequently, two di�erent alternatives are available for the Jordan form ofthe operator L1 = � 0 01 0 � ; or L2 = � 0 00 0 � : (6.32)At this point, the non trivial SO(2) action group is considered over the two alternatives.This will be accomplished by introducing the exponential mapR� = � eim� 00 e�im� � ; m 6= 0; (6.33)which acts non-trivially over the two-dimensional zero-eigenspace. In order to identifywhich of them represent properly the bifurcation, the commutation relations [R�; L1] = 0and [R�; L2] = 0 must be imposed. As a result, only the second alternative L2 satis�esthe equivariance property.The computation of the normal form bifurcation equation is now accomplished byconsidering the complex representation_A = P (A; �A;�)_�A = P (A; �A;�); (6.34)where P is a complex polynomial depending on second or higher order terms Ap �Aq andon a set of parameters � featuring the O(2) symmetry breaking. The leading terms of Pwill be obtained by imposing the SO(2) symmetry conditioneim�P (A; �A;�) = P (eim�A; e�im� �A;�): (6.35)From last equation, the algebraic structure of P may be obtainedP (A; �A;�) = Af(jAj2; �) (6.36)Equation (6.34) can be now expressed in its polar or Euler form by the identi�cationA = rei� _r = r(Re[�] + Re[a]r2 + � � � ) (6.37)_� = Im[�] + Im[a]r2 + � � � : (6.38)



100 Weak Nonlinear Analysis of the Taylor-Couette Problem: Petrov-Galerkin approachTherefore, the third order polar normal form is_r = r(�+ cr2) (6.39)_� = � + dr2 (6.40)where � and � will now represent the unfolding parameters of the bifurcation. Therefore,the bifurcation is of codimension 2. The last equations can now be written in the classicalcomplex form _A = A(�+ i� + [c+ id]jAj2) (6.41)Stationary solutions of (6.40) and (6.40) are obtained from the conditions _r = 0 and _� = 0.As a result, two di�erent kind of steady patterns may be appear. On the one hand, thetrivial (unstable) Couette-Poiseuille ow corresponding to r = 0 is always a solution. Onthe other hand, provided that c 6= 0, two branches of stable solutions appear�(�) = �r��c : (6.42)The phase ��dynamics is crucial at this point. The second condition _� = 0 establishes alinear dependence between the two parameters � and � over the bifurcation branches �(�)�� = dc� (6.43)Consequently, the steady bifurcated solutions (p�=c; �0) would lie on a circle with aconstant phase. This is a continuous family of Taylor vortices, distinguished by an axialphase shift. As was predicted by Armbruster and Mahalov, a suitable combination ofimposed axial e�ects would lead to this kind of behaviour (Armbruster & Mahalov, 1992).Finally, for the speci�c computation of the coe�cients d and c, the center manifoldformalism should be applied in the same way that it was carried out in the previoussection. Nevertheless, the linear regime provides enough information about the qualitativecharacter of the bifurcation. For the present, we will restrict our analysis to the search ofnumerical evidences capable of con�rming the theoretical predictions obtained from thenormal form analysis.6.5 Numerical EvidencesIn order to con�rm the theoretical predictions obtained in the previous section, a Petrov-Galerkin scheme has been specially constructed for the simultaneous combination of theaxial sliding and imposed axial pressure gradient case. Thus, the Taylor-Couette problemis here considered with the simultaneous e�ects of rotation of the inner cylinder Ri, inneraxial sliding Rz and axial pressure gradient �̂ (Couette-Poiseuille ow, see Joseph, 1976).In this speci�c situation, the basic ow is given by the expressionvB(r) =0@ 0Ri�(r)RzZS(r) + �̂ZP (r) 1A ; (6.44)
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Figure 6.1: Featuring zero-level curve of the imaginary part ! corresponding to the criticaleigenvalue as a function of the parameters � = Rz-sliding e�ect and � = P -axial pressuregradient. Petrov-Galerkin methods have been used in order to obtain the previous results.On note the linear dependence between the parameters of the codimension-2 bifurcation.where ZS and ZP stand for the radial dependence of the axial basic ow correspondingto the sliding and imposed pressure e�ects respectively. They are explicitly given by thefollowing expressions ZS(r) = ln r(1� �)ln � (6.45)ZP (r) = 14[ �ln � ln r(1� �)� r2 � 1(1� �)2 ]: (6.46)Symmetry breaking will be accomplished by considering Rz and �̂ as the parameters� and �. Therefore, the analysis will be done for values near zero. A linear stabilityanalysis, as in the previous chapter can be done. In this case, the main interest lies onthe axisymmetric disturbances and their dominance for moderate values of Rz = � and�̂ = �. In addition, e�orts must be focused on the search for steady secondary ows, thatis, zero imaginary part of the bifurcating eigenvalues.The main results are condensed in �gure 6.1, where the curve of zero imaginary part ofthe bifurcating eigenvalue is represented as function of the symmetry breaking parameters� and �. As expected from the theoretical results obtained in the previous section, thedependence between the axial sliding and the imposed pressure gradient must be linear.The computations have been done for the � = 0:5 wide gap case.
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Chapter 7Conclusions7.1 Main ResultsIn the present work, the reliability of the Petrov-Galerkin schemes applied to nonlinearuid dynamical systems is con�rmed extensively. Furthermore, their simplicity and easyimplementation make the whole formalism a powerful tool in di�erent kinds of problems.In chapter 3, focus was on the search for a link between dynamical systems theory andNavier-Stokes equations in order to provide essential information about the stability oftwo dimensional uid ows. Although the computational cost of the numerical methodmay be greater than other standard method of integration (Shen, 1992), the �nal resultsare more reliable from the point of view of hydrodynamic stability. As a matter of fact,the instability results provided for the Regularized Driven Cavity Flow improve formerones obtained by Shen with a notable reduction of the relative error in the computationof the critical Reynolds number.In chapter 4, the relevance of low-dimensional uid models was pointed out as a fairexplanation of turbulent phenomena. Furthermore, special numerical algorithms for theanalysis of time multi-periodic dynamical systems was developed. Those methods cancompute with high accuracy period-doubling points of bifurcations, detecting not onlystable periodic orbits but also unstable ones, which are in fact the cause of the eventualtransition to chaotic regimes. Beyond the multi-periodic stages, where Floquet analysishas been extensively applied, speci�c numerical algorithms for the long time evolutionwere constructed. This was done in order to compute Liapunov exponents, using themethod of Shimada & Nagashima of basis renormalization. To sum up, the whole scenariocompletely agrees with Feigenbaum's theory of period-doubling subharmonic cascades,and it was also veri�ed numerically by the explicit computation of �F , where only ninebifurcations were necessary to provide four signi�cant �gures of the universal constant.The essential features of the model and the numerical methods for its study were reportedin (Meseguer, Marques & Sanchez, 1996).Once Petrov-Galerkin schemes were checked numerically in chapters 3 and 4, the restof the work dealt with the study of axial e�ects in the Taylor{Couette problem. Thegeometrical features of the problem and its particular boundary conditions required aspecial treatment of the Petrov-Galerkin formalism. In appendix D, a complete construc-



104 Conclusionstive analysis is proposed, applied extensively in chapters 5 and 6. Although some partialstudies of the problem have been reported in the past (Hung, Joseph & Munson, 1972or Ludwieg, 1964), they do not provide a comprehensive analysis of the competition be-tween shear and centrifugal mechanisms of instability. The present task specially dealtwith this analysis, focusing on new outstanding features appearing as an outcome of thiscompetition. As a result, discontinuities and potential hysteresis mechanisms have beendetected with the use of special numerical algorithms for the computation of neutral sta-bility regimes. These new features (not commented or noticed in previous works) mayhave unwanted experimental consequences, making it necessary to repeat the experimentswith more sophisticated devices. Despite the scattered experimental results provided byLudwieg, our own computations are in good agreement with them. Moreover, a fair ex-planation of the cause of quantitative discrepances between Ludwieg's experiment andour results has been pointed out. A deeper analysis on the parameters used by di�erentauthors is provided in appendix D in order to clarify what was exactly measured in eachwork. For the present, the main results for wide and narrow gap cases � = 0:5 and � = 0:8are reported in (Meseguer & Marqu�es, 1998).Finally, chapter 6 is a formal approach to the weak nonlinear analysis of the Taylor-Couette problem. First, proposed was how the Petrov-Galerkin schemes can be used forthe computation of the coe�cients of the amplitude equations which lead the nonlinearbehaviour of the ow just after the bifurcation has taken place. Secondly, the studyof O(2) to SO(2) symmetry breaking under the presence of imposed axial e�ects wasstudied. The theoretical predictions from the normal form analysis have been con�rmednumerically, agreeing with former predictions stated in (Armbruster & Mahalov, 1992)where stationary secondary patterns are expected under speci�c conditions (codimension-2 bifurcation).7.2 Perspectives and ApplicationsPart of the development of the main ideas proposed in this work are within the frameof parallel studies related with axial e�ects in Taylor{Couette problem. In fact, Petrov-Galerkin methods can be used for more general purposes, as well as in the nonlinearregime. This is essentially the result of the work of Marques & Lopez, 1997, in which thestability of nonlinear periodic regimes of the Taylor{Couette problem submitted to axialoscillations was studied. At this time, the next step would be to consider nonlinear axiale�ects after criticality and to study the stability of some secondary ows predicted by thelinear theory. On the one hand, the presence of dominant axisymmetric patterns (Taylorvortex) in the linear regime for high axial speeds must be checked nonlinearly. On theother hand it is necessary to make a nonlinear integration of the combined e�ects axialsliding and imposed axial pressure gradient in order to con�rm the existence of steadyaxisymmetric cellular structures.A better understanding of the competition of centrifugal and shear instability mecha-nisms is needed for the improvement of di�erent industrial processes. One example is thepuri�cation of waste water, in which the uid is rotated and driven axially simultaneously.Therefore, the exact control of inestabilization of the basic ow would avoid pre-turbulent



7.2 Perspectives and Applications 105stages, which could a�ect the e�ectiveness of the global puri�cation procedure. Anotherdirect application could related to the massive production on optical �bers. In this case,the �ber, in its uid state, is injected under the e�ects of high pressure gradients. Forsuch reasons, a comprehensive study of the stability of Couette{Poiseuille basic ow isessential.
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Appendix ARegularized Driven Cavity Flow:Explicit ComputationsA.1 Computation of a Free-divergence Particular SolutionOur main goal is to obtain a solenoidal particular solution which satis�es the originalboundary conditions. For this purpose, we consider a function  (x; y) de�ned over thetwo-dimensional set 
 = [�1; 1]� [�1; 1] such that the sought vector �eld can be derivedfrom it up(x; y) = (vxp ; vyp ; 0) = r� ( k); vxp = @y ; vyp = �@x (A.1)It should be remarked here that  is not a stream function for the original problem. Theconsideration of this function is only a pure mathematical artifact in order to obtain asolenoidal �eld from it. For the sake of simplicity, the separation of variables hypothesiswill be considered on the functional structure of  . We suppose that the sought functionis The result of a product of two single variable functions (x; y) = F (x)G(y) (A.2)Now, imposing the boundary conditions (3.3) which must be satis�ed by the �eld up,suitable functions F and G can be obtained. To sum up, the conditions arevyp(x;�1) = 0! @x (x;�1) = 0! F 0(x)G(�1) = 0! G(�1) = 0 (A.3)vyp(�1; y) = 0! @x (�1; y) = 0! F 0(�1)G(y) = 0! F 0(�1) = 0 (A.4)vxp (�1; y) = 0! @y (�1; y) = 0! F (�1)G0(y) = 0! F (�1) = 0 (A.5)vxp (x;�1) = 0! @y (x;�1) = 0! F (x)G0(�1) = 0! G0(�1) = 0 (A.6)vxp (x; 1) = r(x)! @y (x; 1) = r(x)! F (x)G0(1) = r(x)! F (x) = r(x)G0(1) (A.7)



108 Regularized Driven Cavity Flow: Explicit Computationswhere r(x) is the prescribed regularized pro�le over the top boundary (r(x) = R(x2 � 1)2in the present case). Of course, the previous equations do not determine uniqueness ofthe functions F and G. On the contrary, many di�erent options are available. In fact,the selection need to be done depending on the family of orthogonal functions which willbe used later on the projection scheme. For this purpose, we have considered simple loworder polynomials in the variables x and y. For example, from equations (A.4) and (A.5),the structure for F (x) can be obtained. A simple option could beF (x) = (x2 � 1)2f(x) (A.8)where f(x) is a continuous and di�erentiable function in x = �1. For G(x), the vanishingconditions are not so restrictive. From equation (A.3), the structure of G(x) may beguessed G(y) = (y2 � 1)g(y) (A.9)with g(y) a smooth function whose part of its structure is conditioned by the fourthboundary condition (A.6). A linear factor is only needed for this purpose such thatG(y) = (y2 � 1)(y + 1) (A.10)is a compatible solution. Finally, equation (A.7) will lead the regularity of the factor f(x)f(x) = r(x)(x2 � 1)2G0(1) = r(x)4(x2 � 1)2 (A.11)where equations (A.10) and (A.8) have been used. The last equation reects the regularityconditions which must be satis�ed by the pro�le r(x). To sum up, the regularity conditionsover r(x) can be synthesized in the following formr(x) � O[(x� 1)2] (A.12)In our speciic case the regularized pro�le is r(x) = R(x2�1)2, thus f(x) = R=4. Therefore,a simple option for  is  (x; y) = R4 (x2 � 1)2(y2 � 1)(y + 1) (A.13)and the associated solenoidal �eld derived from it isup = (R4 (3y � 1)(y + 1)(x2 � 1)2;�Rx(y + 1)(y2 � 1)(x2 � 1)) (A.14)A.2 Coe�cients for the Dynamical System of AmplitudesThe matrix elements which appear in chapter 3 are explicitly expressed as followsAijkl = Z
f ~fi(x)~g0j(y)fk(x)g0l(y) + ~f 0i(x)~gj(y)f 0k(x)gl(y)gd
 (A.15)



A.2 Coe�cients for the Dynamical System of Amplitudes 109Bijkl = Z
f ~fi(x)~g0j(y)�[fk(x)g0l(y)] + ~f 0i(x)�[~gj(y)f 0k(x)gl(y)]gd
 (A.16)CRijkl = Z
f ~fi(x)~g0j(y)[vxp@x + vyp@y][fk(x)g0l(y)] +~f 0i(x)~gj(y)[vxp@x + vyp@y][f 0k(x)gl(y)]�~fi(x)~g0j(y)[�fk(x)g0l(x)@x + f 0k(x)gl(x)@y ]vxp +~f 0i(x)~gj(y)[�fk(x)g0l(x)@x + f 0k(x)gl(x)@y ]vypgd
 (A.17)Nijklmn = Z
f ~fi(x)~g0j(y)[�fk(x)g0l(x)@x + f 0k(x)gl(x)@y ][f 0m(x)g0n(y)] +~f 0i(x)~gj(y)[�fk(x)g0l(x)@x + f 0k(x)gl(x)@y ][f 0m(x)gn(y)]gd
 (A.18)bRij = Z
f � ~fi(x)~g0j(y)�vxp + ~f 0i(x)~gj(y)�vyp +~fi(x)~g0j(y)[vxp@x + vyp@y]vxp � ~f 0i(x)~gj(y)[vxp@x + vyp@y]vypgd
 (A.19)where 
 = [�1; 1] � [�1; 1] and the functions ~fi, ~gj , fk and gl are de�ned as follows~fi(x) = (1� x2)3=2Ti(x) ~gj(y) = (1� y2)3=2Tj(y) (A.20)fk(x) = (1� x2)2Tk(x) gl(y) = (1� y2)2Tl(y) (A.21)being Tm(x) the i�th order Tchebyshev polynomialTm(x) = cos(m arccos x); x 2 [�1; 1] (A.22)The functions vxp and vyp are the cartesian components of the solenoidal �eld up de�nedin equation (A.14) and � stands for the laplacian operator in two-dimensional cartesiancoordinates � = @2x + @2y (A.23)The matrix elements can be computed numerically making use of Gauss-Tchebyshevquadrature schemes (Press et al. , 1986). In fact, the numerical integration is exact ifthe order of the quadrature greater or equal than the order of the polynomic factors whichappear in the integrals.
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Appendix BLow-Dimensional Model: ExplicitComputationsWe consider the adimensionalized Navier-Stokes equations for incompressible uids:@tv+ (v � r)v = �rp+�v ; r � v = 0 (B.1)In order to build a weighted residual scheme, we will work with two di�erent functionspaces. Let Hd be the projection space of test functions:Hd = f~� 2 L2(
); r � ~� = 0; ~� � n̂ j@
= 0g (B.2)where n̂ is the unit normal to @
, and let Hs be the space of divergence-free functions:Hs = f�̂ 2 L2(
); ~r � �̂ = 0g (B.3)Both spaces will be spanned by solenoidal functions Hd = Span < ~�pq >, Hs = Span <�mn > of the form~�pq(x; y) = � � ~fp(x)~g0q(y)~f 0p(x)~gq(y) � ; �mn(x; y) = � �fm(x)g0n(y)f 0m(x)gn(y) � (B.4)where 0 means derivative, and the normal component of ~�pq vanishes on the boundary @
of the domain: ~� � n̂ = 0. These vectorial functions satisfy the divergence{free conditionand are a base of the Hilbert spaces Hd and Hs respectively. Now the velocity �eld is ofthe form: v(x; y; t) = MXm=0 NXn=0 amn(t)�mn(x; y) (B.5)The selection criteria of the set of functions ~�pq and �mn depend on the geometry of theproblem and the boundary conditions. In fact, these functions will be built up using suit-able orthogonal polynomials (see Canuto et al. , 1988 or Moser, Moin & Leonard, 1983 fora detailed discussion). We take the f and g functions as~fp(x) = fp(x) = (x2 � 1)2Pp(x) (B.6)~gq(y) = gq(y) = (y2 � 1)Pq(y) (B.7)



112 Low-Dimensional Model: Explicit Computationswhere Pp is the pth-order Legendre polynomial. Thanks to the factors (x2 � 1)2 andy2� 1 the boundary conditions (4.1) are satis�ed, except for the tangential component ony = �1. This remaining boundary condition will be set by the tau method.The weak form of problem (B.1) will be< ~� j @tv+ (v � r)v��v >= 0 ; 8~� 2 Hd; v 2 Hs (B.8)where < � j � > is the standard Hermitian product. The pressure term < ~� j rp >vanishes for all ~� 2 Hd (Temam, 1988). When the remaining boundary conditions are set,the coe�cients amn are no longer independent. In fact we can �nd am;N , am;N�1 in termsof the remaining am;n, for all m. From Eq. (4.1),am;n = �R4 �m;0 � [n=2]Xk=1 am;n�2k ; n = N; N � 1 ; m = 0�M (B.9)corresponding to the imposed velocity pro�le v(x) = R(x2� 1)2 on y = 1. The Eqs. (B.8)for the independent amplitudes in the case N = 3, M = 1 are Eqs. (4.2), where u = a00,v = a01, w = a10 and z = a11. The values of the numerical constants that appear in theEqs. (4.2) are:�1 = 133=64 �2 = 573=80 �3 = 991=20592 �4 = 73=5720�1 = 23=2904 �2 = 1615=113256 �3 = 703=15730 �4 = 685=9438d1 = 483=32 d2 = 267=8 d3 = 2003=80 d4 = 1521=40�1 = 499=1716 �2 = 5=396 �3 = 801=1430 �4 = 17=26�1 = 380=1573 �2 = 760=4719 �3 = 4776=7865 �4 = 280=1573�5 = 12=143 �6 = 620=429 �7 = 504=715 �8 = 240=143�9 = 1296=3575 �10 = 72=1859 (B.10)



Appendix CComputation of Periodic OrbitsC.1 First Order Variational EquationsConsider a dynamical system _x = f(x) (C.1)de�ned over an bounded open subset U � IRn. The uniparametric group of transforma-tions , �t(x) = �(t; x) describes the ow of a particular initial point x after a time t, beingthe solution of the initial value problem_x = f(x); �0(x) = x (C.2)If f 2 Cp, the same order of smoothness for the ow � may be assumed. For a �xed tvalue, the ow �t(x) may be interpreted as a continuous and di�erentiable map�t(x) : IRn �! IRnx �(t; x): (C.3)In order to extract the qualitative information of the local geometric properties of theow, the behaviour of � must be studied in detail. From an analytical point of view, �t(x)is a di�eomorphism whose topological features may change as the paramater t evolves.Consequently, the local evolution of volume elements in phase space will be governed bythe derivative of � near the point x. For this purpose, the �rst order variations producedby a local increment �x are considered�t(x+�x) = �t(x) + [D�t(x)]�x+ 12[D2�t(x)]�2x+ o(�2x) (C.4)Now, regarding that �t(x) is the solution of the initial value problem (C.2)_�t(x) = f(�t(x)): (C.5)The last equation will be very useful for the present purposes because it allows the changeof order of derivation with respect x and t independently. For the sake of simplicity, onlythe �rst order variations are going to be considered for the study of the ow �t(x). In



114 Computation of Periodic Orbitsfact, the qualitative behaviour of volume elements in phase space is led by the �rst orderterms. Therefore, the time-evolution of the linear map D�t(x) must be studied. This willbe accomplished by taking the �rst order derivative with respect to t.ddt @@x�t(x) = @@x ddt�t(x) = @@xf(�t(x)) = Df(�t(x)) @@x�t(x) (C.6)which leads to a dynamical system for the �rst order variations, whose explicit structureis ddt 0B@ @x1�1t � � � @xn�1t... . . . ...@x1�nt � � � @xn�nt 1CA = 0B@ @x1f1 � � � @xnf1... . . . ...@x1fn � � � @xnfn 1CA0B@ @x1�1t � � � @xn�1t... . . . ...@x1�nt � � � @xn�nt 1CA(C.7)with the initial condition0B@ @x1�1t � � � @xn�1t... . . . ...@x1�nt � � � @xn�nt 1CAt=0 = 0B@ 1 � � � 0... . . . ...0 � � � 1 1CA : (C.8)The initial value problem formed by equations (C.7) and (C.8) is usually termed Firstorder variational equations and it must be integrated simultaneously with system (C.2).The computational cost of the numerical integration will depend on the dimension ofthe global system. The sti�ness of the equations requires powerful integrators capable ofcontrolling the time increments near the initial conditions. For the present purposes, aShampine & Gordon linear multi-step method provides enough accuracy, although moree�cient schemes like Gear or implicit Runge-Kutta algorithms are highly recommended(Shampine & Gordon, 1975).C.2 Numerical Computation of Poincar�e MapsFor the study of stability of periodic or multi-periodic orbits of a dynamical system it isuseful to consider the main features of their transversal sections instead of their globalstructure. This idea was originally proposed by Poincar�e for the study of stability ofplanetary orbits in celestial mechanics. For this purpose, Poincar�e considered surfacesimmersed in the phase space which intersect tranversally to the periodic orbit under study.Poincar�e realized that the information obtained from the intersection was enough in orderto study the stability of the orbit. The geometrical mechanism is quite simple. First,consider a hypersurface �1 de�ned by equation g1(x) = 0 crossing the ow �t(x1) fort = 0 (this is, x1 = �(0; x)) such that rg1 � f(�t(x1)) 6= 0. Next, consider anotherhypersurface �2 given now by the relation g2(x) = 0 intersecting transversally with theow at the point x2. In some sense, the ow �t(x) mails the point x1 of �1 to the pointx2 of �2 for an speci�c value of t usually termed ight-time. Algebraically, this processcan be interpreted as a map P de�ned between to manifolds as followsP : �1 �! �2x1 x2 = �((t(x1); x1)) = P (x1) : (C.9)



C.2 Numerical Computation of Poincar�e Maps 115In fact, t is a function of x1 (this is, di�erent points of �1 need di�erent ight-times toreach �2) and their dependence is is implicitly conditioned by the algebraic relationg2(�(t(x1); x1)) = 0: (C.10)Equation (C.10) is the cut condition for t(x1) and may be solved by a combined predictoralgorithm of sign evaluation of g2 over the ow followed by a corrector Newton's method:tk+1 = tk � g2(xk)rg2(xk) � f(xk) ; xk = �(tk; x1) (C.11)The previous algorithm provides a numerical computation for the map de�ned previouslyin (C.9). For the present purposes, it will be only necessary to consider one transversalsurface �1 = �2 = �0 de�ned by a linear equality g(x) = 0 (the Poincar�e section) suchthat a point x0 over �0 belongs to a periodic orbit if and only ifg(�(t(x0); x0)) = g(x0) = 0 (C.12)for some value t(x0) = T which is just the period of the orbit. The previous argument isthe classical setting of the usually termed First return map P . In fact, the main goal is tostudy the behaviour of closed trajectories interpreted as bijective maps over the Poincar�esection. The essential information about the stability of trajectories is implicit in themap P . Therefore, the main point at this stage is the study of P and its e�ect on phasespace dynamics. In order to simplify the analysis, the cut condition (C.10) will be givenby setting one space coordinate (xn, for example) to zero. This simpli�cation can alwaysbe done assuming that f(x1) is not orthogonal to the canonical vector en = (0; 0; : : : ; 1).Therefore, the cut condition (C.10) is simpli�ed to the expression�n(t(x); x) = 0: (C.13)The essential information about contraction or expansion e�ects in phase space is implicitlycontained in the in�nitesimal spatial variations of the map P(DP )ij = @xjPi; (C.14)which can be obtained by explicit derivation of the de�nition of P given in (C.9)@xjPi = @xj�i(t(x); x) = @t�i@xj t+ @xj�i = f i(�(t(x); x)@xj t+ @xj�i: (C.15)In last equation, the factor @xj�i is given by the �rst variational equations (C.7) and (C.8).Besides, the unknown factor @xj t(x) can be obtained by implicit derivation of (C.13) withrespect to the spatial variables@xj�n(t(x); x) = @t�n@xj t(x) + @xj�n = fn(�(t(x); x))@xj t(x) + @xj�n(t(x); x) = 0;(C.16)therefore @xj t(x) = �@xj�n(t(x); x)fn(�(t(x); x)) : (C.17)



116 Computation of Periodic OrbitsFinally, the di�erential of Poincar�e map is given by the expression@xjP = @xj�i � f i(�(x(t); x))fn(�(x(t); x))@xj�i (C.18)which can be expressed in matrix form as follows(DP )ij = nXk=1(�ik � f i�knfn )(@xj�k); (1 � i; j � n) (C.19)or DP = (1n � f 
 enfn )J; (C.20)where 1n is the n�dimensional identity matrix, f
en stands for the dyadic product f i�knand J = @x�.C.3 Period-doubling Mechanism: Floquet AnalysisFor the stability analysis of the periodic orbits, only the restriction over the Poincar�esection �0 is needed. The interest is mainly focused on the transversal expansion andcontraction local properties of the periodic orbit. For this purpose, the projection of the�rst order di�erential of the Poincar�e map is considered(F )ij = nXk=1(�ik � f i�knfn )(@xj�k); (1 � i; j � n� 1): (C.21)The previous matrix provides essential information concerning stability of periodic orbitunder study. Let be P the Poincar�e map restricted to the n � 1 dimensional plane self-connected by a periodic orbit wich crosses the plane at the point x0. From the point ofview of maps, x0 is, under the previous hypotheses, a �xed point of P{ that is, P (x0) = x0.Now, consider another point x = x0 + � in a neighborhood of x0 (k�k ! 0). Lets studythe behaviour of the perturbation � under the action of P :P (xo + �) = P (xo) + (DP0)� +O(�2) = x0 + F� +O(�2); (C.22)where (DP0) stands for the �rst order di�erential of the Poincar�e map evaluated at x0,which is in fact the linear map F de�ned in equation (C.21). Thus, neglecting non-linearterms: P (x0 + �) = x0 + F�: (C.23)Therefore, the initial perturbation � is transformed linearly by the map F . The sameprocess can be repeated twice in order to see the linear e�ects over �P (2)(x0 + �) = P [P (x0 + �)] = P (x0 + F�) = x0 + F 2�; (C.24)
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Figure C.1: Featuring period-doubling mechanism. One of the eigenvalues of the spectrumof the �rst order di�erential of Poincar�e map crosses the unit circle in the complex planepassing throughout the point � = �1, while the rest of eigenvalues remain inside the disck�k = 1.where non-linear terms have been neglected again. Finally, after m� complete periods,the initial perturbation � is transformed by the following linear rule� �! Fm� (C.25)As a consequence, the geometrical evolution of the vector � will be conditioned by thespectrum of eigenvalues of the matrix F . This matrix is usually termed Floquet matrix andits eigenvalues are known as characteristic exponents or more frequently Floquet exponents.Those eigenvalues will be in general complex and their modulus will conditionate thedilation or contraction of the vector �. Floquet theory asserts stability of the periodicorbit if the spectrum of eigenvalues of F lies inside the unit circle over the complex plane.If the global system is perturbed (by increasing an external parameter, for example) thespectrum of eigenvalues may change. The inestabilization is achieved when, at least, oneof the Floquet exponents crosses the unit disc. The mechanism under which this process isdone may be very complicated and it is just what characterizes the bifurcation. A globalanalysis of the di�erent kind of phenomena is out of the scope of the present appendix.For the present purposes, it is enough to consider a particular case.The period-doubling bifurcation occurs when one of the Floquet exponents crossesthe unit circle by the point z = �1 (see Fig. C.1). As a consequence, there appears atransversal one-dimensional subspace spanned by an eigenvector vp such thatFvp = �vp (C.26)If now, the in�nitesimal perturbation is taken in the direction of the eigenvector vp{that is, � = �vp (�! 0), thenP (x0 + �) = P (x0 + �vp) = x0 + F (�vp) = x0 � �vp = x0 � � (C.27)and, similarly P (2)(x0 + �) = P [P (x0 + �vp)] = P (x0 � �) = x0 + � (C.28)



118 Computation of Periodic OrbitsTherefore, the perturbed point turns to be a �xed point for the map P (2) = (P � P ). Inother words, a twice-periodic orbit appears (Berg�e et al. , 1984). From that stage on, thestability analysis of the appearing orbit must be slightly modi�ed because a new Poincar�emap (P (2)) for the new period must be de�ned. Moreover, the topological features of theorbits may change and the section surfaces may not be valid or not optimal for accuratecomputations. Altogether, the modi�cations on the numerical scheme must be done adhoc depending on the particular behaviour of the system.C.4 Asymptotic Behaviour: Computation of Lyapunov Ex-ponentsThe purpose of this section is to establish an algorithmic scheme capable of providinginformation about the long-time behaviour of periodic or multi-periodic orbits in phasespace. As long as the periodic orbits exhibit period-doubling bifurcations, the dynamics ofthe system turns to be more and more complex. In fact, the period of the orbits increase asa power of 2. As a result, long-time numerical integrations are needed to make predictionsabout the stability of those orbits. Furthermore, subharmonic cascades produce typicallychaotic behaviours beyond a limit accumulation value of the increasing control parameters.At the present stage, the term chaotic is introduced in the classical frame of sensibilitywith respect to initial conditions{ that is, neighboring initial conditions exhibit uncor-related evolutions for long time integrations. This feature should not be interpreted asinstability or simple divergence of nearby initial trajectories. On the contrary, the dynam-ical evolution of volume elements in phase space is much more complicated. Simultaneousstretching and contracting phenomena can be frequently observed. From a geometricalpoint of view, the combination of both previous e�ects is just what characterizes chaoticregimes.As in the previous section, consider the �rst order variations dynamical system� _x = f(x) �0(x) = x0_J(t) = (Df)J(t) J(0) = 1n ; (C.29)where J(t) stands for the �rst order variations mapD�t(x) introduced in previous sections.If a slightly perturbed initial condition x0 + �0 is considered, the dynamical evolution of�(t) will be led by the fundamental matrix J(t) (Fig. C.2)�(t) = J(t)�0: (C.30)In fact, J(t) can be interpreted as an exponential map in IRn as followsJ(t) = 0B@ e�1t � � � 0... . . . ...0 � � � e�nt 1CA : (C.31)A measure of the asymptotic growth rate of the norm of � along the trajectory �t(x)is given by the limit �(x0; �0) = limt!1 1t ln kJ(t)�0kk�0k (C.32)
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δ

φ

φ δ)

δ

δ

Figure C.2: Geometrical sketch of the evolution of the perturbed initial condition x0+ �0.At the �rst order, the evolution of �(t) is led by the fundamental matrix J(t) acting over�0.The number �(x0; �0) is usually termed Lyapunov exponent and it measures the divergencerate of trajectories in the � direction. If �(x0; �0) = �1 6= 0, then, for su�ciently high t:limt!1 1t ln kJ(t)�kk�k � �1 (C.33)therefore kJ(t)�0k � e�1tk�0k; (C.34)i.e., the trajectories diverge or converge exponentially depending on the sign of �1. TheLyapunov exponent depends on the initial point of evolution x0 and the direction de�nedby the initial perturbation �0. For �xed x, the Lyapunov exponent can acquire only a �nitenumber of of mutually di�erent values �1; �2; : : : ; �k (k � n) on the n�dimensional phasespace. Thus, a basis e1; e2; : : : ; en may be chosen to measure the behaviour of nearby owsin di�erent directions.At this stage, one of the essential features which needs to be captured from the globaldynamics is the behaviour of k�dimensional volume elements in phase space. For thispurpose, the k � dimensional Lyapunov exponent is de�ned as follows�(k)(x0) := limt!1 1t ln kJ(t)e1 ^ J(t)e2 ^ � � � ^ J(t)ekkke1 ^ e2 ^ � � � ^ ekk (C.35)Unfortunately, when Lyapunov exponents are evaluated directly by integrating vari-ational equations, some numerical problems may arise. Depending on the complexity ofthe vector �eld, the dynamical system may exhibit chaotic behaviour. If it is the case,the variational equations have an exponentially divergent solution. Furthermore, theremay be asymptotically stable manifolds throughout which, some components of the vari-ational equations decay to zero. Altogether, it turns the fundamental matrix J(t) to beill-conditioned for computational purposes. In order to avoid this numerical problem, arenormalization method proposed by Shimada & Nagashima, 1979 is highly recommended.



120 Computation of Periodic OrbitsThe method considers a periodic renormalization of the basis e1; e2; : : : ; ek after a suit-able transient time period � . This renormalization is accomplished using the classicalGramm-Schmidt orthonormalization procedureej+11 = J(�)ej1kJ(�)ej1kej+12 = J(�)ej2 � (ej+11 � J(�)ej2)ej+11kJ(�)ej2 � (ej+11 � J(�)ej2)ej+11 kej+13 = J(�)ej3 � (ej+11 � J(�)ej3)ej+11 � (ej+12 � J(�)ej3)ej+12kJ(�)ej3 � (ej+11 � J(�)ej3)ej+11 � (ej+12 � J(�)ej3)ej+12 k...ej+1k = J(�)ejk � k�1Xm=1(ej+1m � J(�)ejm)ej+1mkJ(�)ejk � k�1Xm=1(ej+1m � J(�)ejm)ej+1m k (C.36)where the change of basis process is justi�ed because of the invariance of subspaces gener-ated under the exterior product. The exponents obtained under the computations of theprevious algorithm provide information about the complexity of the time-dynamics. Forinstance, the existence positive values of Lyapunov exponents would evidence the pres-ence of chaotic behaviour, while a zero maximum Lyapunov exponent would indicate theexistence of periodic or multi-periodic regimes.



Appendix DSpiral Taylor-Couette Problem:Petrov-Galerkin FormulationD.1 Solenoidal Bases: Constructive MethodWhen considering axial-azimuthal periodicity of the physical system, the following func-tional structure on the perturbation �elds can be assumedv(r; �; z) = ei(n�+kz)0@ vr(r)v�(r)vz(r) 1A ; 8n 2 Z; k 2 IR (D.1)where vr, v� and vz are the radial, azimuthal and axial components of the vector �eld,respectively. In order to built up a suitable complete set of solenoidal �elds, the incom-pressibility condition must be considered. The condition r � v = 0 leads to a functionaldependence between the three componentsD+vr + inr v� + ikvz = 0 (D.2)where the operators D = @r and D+ = D + 1=r have been used. In addition, the vec-tor components must vanish over the radial boundaries ri = �1�� and ro = 11�� of thecontaining cylindersvr(ri) = vr(ro) = v�(ri) = v�(ro) = vz(ri) = vz(ro) = 0 (D.3)For the sake of simplicity, three di�erent situations will be considered. In each of them,independent radial, azimuthal and axial components are going to be studied in detail sothat particular bases for those subspaces will be obtained. Finally, the linear dependencebetween them will be analysed.� Case I (v� = 0)In this case, axial and radial components are related as followsD+vr = �ikvz (D.4)



122 Spiral Taylor-Couette Problem: Petrov-Galerkin FormulationTo simplify the analysis, a particular functional structure for vr and vz is going tobe imposed. They are explicitly de�ned as followsvr = �ikfj; vz = D+fj (D.5)where fj is a function depending on the radial variable whose structure will beparticularly conditioned by the boundary conditions (D.3). At this stage, somefreedom on the inner structure of fj is present. In order to avoid r�q; (q > 0) factorsin the hermitian products of the spectral projection, the structure of fj has beenselected as followsfj(x) = r2(1� x2)2Tj(x); x = 2(r � ri)� 1; x 2 [�1; 1]; (D.6)where Tj(x) is the j�th order Tchebyshev polynomial. The fourth order factor infj is needed for the homogeneous boundary condition on the axial component to besatis�ed. On note that the selection (D.5) satis�es (D.2) identically. To sum up, thegeneric element of the basis of non-azimuthal solenoidal �elds isv1j = 0@ �ikfj0D+fj 1A : (D.7)It should be remarked that this set of functions is a basis for k 6= 0 only. For theaxial-independent case, a particular analysis must be done. For k = 0, (D.4) isreduced to the conditionD+vr = 0! dvrvr = �drr ! vr(r) = Cr : (D.8)Now, imposing the boundary conditions (D.3) over vr, the trivial solution vr = 0 isobtained. Therefore, a suitable alternative is given by the generic elementv1j = 0@ 00hj 1A (k = 0); (D.9)where hj has a laxer structure on its binomial factorhj(x) = r2(1� x2)Tj(x); x = 2(r � ri)� 1; x 2 [�1; 1]; (D.10)� Case II (vz = 0)In this second case, the solenoidal condition (D.2) is reduced to the equationD+vr = �inr v� or D(rvr) = �inv� (D.11)For the structure of fj, the same process of selection explained in previous case isconsidered. Equation (D.11) is identically satis�ed on choosingvr = �ifj; v� = D(rfj) (D.12)



D.1 Solenoidal Bases: Constructive Method 123Thus, a suitable generic element of the basis of non-axial solenoidal �elds isv2j = 0@ �infjD(rfj)0 1A : (D.13)Again, the previous set of functions is complete for n 6= 0 only. For the axisymmetriccase (n = 0), the trivial solution vr = 0 is obtained again. As a consequence, thealternative generic basis element isv2j = 0@ 0hj0 1A (n = 0); (D.14)where hj has the same structure than in case I.� Case III (vr = 0). In this case, the condition (D.2) is reduced to the simple equationnv� = �rkvz (D.15)Consequently, the generic element of the basis of non-radial solenoidal �elds isv3j = 0@ 0�rkhjnhj 1A8n; k: (D.16)Proposition D.1.1 (Linear dependence of v2j .) The set of functions v2j is linearly de-pendent of v1j and v3j for k 6= 0.Proof. Consider the following linear combination of v1j and v3jnkv1j � v3j : (D.17)Without loss of generality, if can be considered a particular structure for the function hjhj = 1kD+fj (D.18)Formal substitution of hj in linear combination (D.17) gives to the generic vector �eld0@ �infjD(rfj)0 1A ; (D.19)which is an element of v2.Although there is not a formal conclusion, it is a well known fact that con�ned axiallyextended ows are linearly stable to axial uniform perturbations. Experimental and nu-merical evidences suggest a preferred �nite axial periodicity to inestabilize the ow. Thisproperty simpli�es considerably the Petrov-Galerkin formulation because the (k = 0) ele-ments in cases I or III may be neglected as a �rst glance. Therefore, the sets v1 and v3are going to be chosen in order to span the spectral approximations.At thi stage, a suitable set of test functions is needed to project the operator actingover the specr



124 Spiral Taylor-Couette Problem: Petrov-Galerkin FormulationD.2 Petrov-Galerkin ProjectionAs it was explained in previous section, the perturbed �elds can be expressed as linearcombinations of normal axial-azimuthal modes. Thus, perturbed velocity and pressure�elds are written as followsv(r; �; z; t) = vB(r) + ei(n�+kz)+�tu(r); (D.20)p(r; �; z; t) = pB(r; z) + p0(r)ei(n�+kz)+�t; : (D.21)Formal substitution of �elds (D.20) and (D.21) in the linearized Navier-Stokes equationof the perturbation �elds leads to a decoupled system of eigenvalues (5.28) whose explicitexpression of is�0@ vrv�vz 1A = 0BBBBB@ D+Dvr � (n2 + 1r2 + k2)vr � 2r2 inv�D+Dv� � (n2 + 1r2 + k2)v� + 2r2 invrD+Dvz � (n2 + 1r2 + k2)vz
1CCCCCA� (D.22)

(invBr + ikwB)0@ vrv�vz 1A�0BB@ �2r v�vB(vBr +DvB)vrvrDwB 1CCA+0B@ Dp0inr p0ikp0 1CAwhere vB = (0; vB ; wB) is given by (5.23) and the perturbation velocity �eld u = (vr; v�; vz)is enforced to vanish over the radial boundariesu(ri) = u(ro) = 0 (D.23)and to satisfy the solenoidal conditionD+vr + inr v� + ikvz = 0 (D.24)This is just the mathematical frame which has developed in the previous section. Conse-quently, the discretization of the eigenvalue problem is going to be accomplished with thespectral approximation u = MXj=0 aju1j + bju2j (D.25)for the velocity �eld. Where u1j and u2j are elements of v3 and v1, respectivelyu1j = (0;�rkhj(r); nhj(r)); (D.26)u2j = (�ikfj(r); 0;D+fj(r)): (D.27)At this stage, a suitable set of test functions is needed to project the linear operator(D.23) acting over the spectral approximation (D.25). The projection is now de�ned as



D.2 Petrov-Galerkin Projection 125the standard hermitian product< u;v >= Z rori u� � vrdr; (D.28)where � denotes complex conjugation. Therefore, the main goal is to �nd again a set ofsolenoidal test functions compatible with the previous sets v1 and v3. For this purpose,this set is chosen as followsu1i = (0;�rk~hi; n~hi) u2i = (�ik ~fi; 0;D+ ~fi); (D.29)where now, ~fi and ~hi are functions whose structure will depend not only on the boundaryconditions but also on the orthogonal family of polynomials selected for fj and hj . ForTchebyshev polynomials, it is necessary to modify slightly the power factor in the binomialelement (1� x2) of ~fj and ~hjfj(r) = (1� x2)2Tj(x); hj(r) = (1� x2)Tj(x); (D.30)~fj(r) = r2(1� x2)3=2Tj(x); ~hj(r) = r2(1� x2)1=2Tj(x): (D.31)This change is needed in order some orthogonality properties between the polynomials tobe satis�ed and to avoid sparse matrices in the numerical scheme. Nevertheless, it shouldbe remarked here that the matrix elements apparing eventually in the projection, can beexactly computed for the azimuthal components only. Unfortunately, the axial factorscontain logarithmic terms which destroy the band structure. On note that test functionsde�ned previously in (D.31) vanish over the boundary. In general, this condition is notnecessary for the anihilation of the pressure term in the projection scheme. The necessaryconditions are properly divergence-free and zero orthogonal component over the radialboundary. At this stage, the essential point is that the solenoidal condition in cylindricalgeometry enforces not only the anhiliation of the radial (normal) component of the velocity�eld but also the azimuthal one (in elements ~u2j , for example)Finally, the susbstitution of spectral approximation (D.25) and projection over the testfunctions (D.31) leads to a complex generalized 2(M +1)-dimensional eigenvalue problemwhich can be simbolically expressed as follows�Gx = Hx; (D.32)or, in matrix notation �� G11 G12G21 G22 �x = � H11 H12H21 H22 �x; (D.33)where �rst and second superindexes identify the projection and spectral elements withrespect which the inner product has been done. The explicit structures of the hermitianproducts appearing in (D.33) areG11ij = Z rori r~hi(r2k2 + n2)hjdr (D.34)



126 Spiral Taylor-Couette Problem: Petrov-Galerkin FormulationG12ij = nZ rori r~hiD+fjdr (D.35)G21ij = nZ rori r(D+ ~fi)hjdr (D.36)G22ij = Z rori r[k2 ~fi + (D+ ~fi)D+]fjdr (D.37)H11ij = Z rori ~hi[r2k2(D+D � n2 + 1r2 � k2)r + rn2(D+D � n2r2 � k2)]hjdr� iZ rori ~hi(r2k2 + n2)(nr vB + kwB)rhjdrH12ij = nZ rori ~hi[2k2fj + r(D+D � n2r2 � k2)D+]fjdr� iZ rori ~hi[k2r2(vBr + @rvB) + n(nvBr + kwB)D+ + kn(@rwB)]fjdrH21ij = nZ rori [2k2 ~fi + r(D+ ~fi)(D+D � n2r2 � k2)]hjdr+ iZ rori [2k2rvB ~fi � r(D+ ~fi)(nvBr + kwB)]hjdr (D.38)
H22ij = Z rori [rk2 ~fi(D+D � n2 + 1r2 � k2) + r(D+ ~fi)(D+D � n2r2 � k2)D+]fjdr� iZ rori [(nvBr + kwB)(k2 ~fi + (D+ ~fi)D+) + k(D+ ~fi)(@rwB)]fjdr (D.39)D.3 Computation of the Critical Points in the NSCConsider the equation which determines the marginal stability condition�(k;R) = 0 (D.40)where � is the real part of the �rst eigenvalue belonging to the spectrum of the problem(D.32) which is near to cross the imaginary axis. The parameter R represents one of theReynolds numbers (Ri, Ro or Rz) which control the dynamics of the physical problemwith two of them held �xed. The variable k is the axial wave number of the perturbation.



D.3 Computation of the Critical Points in the NSC 127From a geometrical point of view, the previous equation de�nes a curve in the (k;R) planewhich separates the stable physical con�gurations from the unstable ones. This curvesare so termed Neutral Stability Curves (NSC) and have the typical parabolic pro�le withan absolute minimum for some value of k = kc (see �g. 5.13). When studying physicalperturbations, all the possible real k�values must be considered simultaneously. Thecritical value kc will be conditioned by the minimum associated Rc value over the curve.The main goal is to compute numerically the value of kc where the NSC reaches itsminimum Rc. As a matter of fact, the dependence R = g(k) is not explicitly present inthe analysis. As a consequence, change of sign detection algorithms of the � function overa grid in the (k;R) plane are applied in order to compute the critical values. Changesign algorithms are useful in Taylor-Couette problem or in Benard convection due to thesimple geometrical structure of the NSC. Unfortunately, when an axial symmetry breakinge�ect O(2) to SO(2) is imposed in the problem, the topological features of the NSC arestrongly perturbed. As a consequence, some technical problems may arise. On the onehand, the NSC appear to be multievaluated and with sharpened pro�les so that changesof sign require high resolution in the (k;R) evaluation grid. On the other hand, there mayappear disconnected zones of instability (also termed islands of instability) far from theexpected critical values. Altogether, the computational cost may be prohibitive in orderto take advantage from change sign algorithms. Consequently, an alternative methodologyis needed.From an analytical point of view, Implicit Function Theorem ensures the existenceof a local branch R = g(k) near the (kc; Rc) point under some speci�c conditions. In otherwords, equation (D.40) de�nes locally over an open set A a unique function R = g(k) 2Cp(A) with Rc = g(kc) provided that:(i) �(k;R) 2 Cp(A); p 2 IN �; (kc; Rc) 2 A (D.41)(ii) �(kc; Rc) = 0 (D.42)(iii) @R�(kc; Rc) 6= 0 (D.43)Under the previous hypotheses, the necessary condition for kc to be an extreme point is�dgdk�k=kc = 0 (D.44)Making use of the implicit function theorem, the last equation can be expressed as acombination of partial derivatives of � with respect the variables k and R. Applying thechain rule in equation (D.44)ddk�(k;R) = ddk�(k; g(k)) = @k� + @R� dgdk = 0 (D.45)so that a very useful relation is obtaineddgdk = � @k�@R� (D.46)



128 Spiral Taylor-Couette Problem: Petrov-Galerkin Formulationwhich allows to express the extreme condition in the following form@k�(kc; Rc) = 0 (D.47)provided that @R�(kc; Rc) 6= 0. Simultaneously, the condition of minimum is given by thefollowing relation �d2gdk2�k=kc > 0 (D.48)Deriving (D.45) implicitly with respect the variable kddk [@k� + @R� dgdk ] = @2k;k� +�dgdk� [2@2k;R� +�dgdk� @2R;R�] +�d2gdk2� @R� = 0 (D.49)evaluating the previous expression in (kc; Rc), another important relation is obtained�d2gdk2�k=kc = � @2k;k@R�!(kc;Rc) (D.50)where equation (D.44) has been used. Therefore, the condition of minimum will be givennow by  @2k;k@R�!(kc;Rc) < 0 (D.51)D.4 Newton-Raphson Method for the Computation of (kc; Rc)The set of equations (D.42), (D.47) and (D.51) form a system of non-linear equations inIR2 which must be solved numerically. To formalize the problem, we consider a functionF : IR2 ! IR2 de�ned as followsF(k;R) = � �(k;R)@R�(k;R) � (D.52)Therefore, the problem can be expressed as followsF(k;R) = 0; @2k;k@R� < 0 (D.53)At this point, it should be regarded here that there is not a closed expression for �(k;R).In fact, the evaluation of this function requires the selection of the maximum real parteigenvalue. Assuming regular behaviour of the spectrum of the operator (??, the system(D.53) can be solved numerically making use of a Newton-Raphson algorithm which isdescribed by the following iteration expression(DF)(k(n); R(n))[� k(n+1)R(n+1) ��� k(n)R(n) �] + F(k(n); R(n)) = 0 (D.54)



D.4 Newton-Raphson Method for the Computation of (kc; Rc) 129The method considers a initial iteration point (k(0); R(0)) near the sought solution. Thisinitial point will be obtained by a prediction of the local behaviour of the function � nearthe critical point. DF(k(n); R(n)) stands for the jacobian matrix of F evaluated at then�iteration point. Explicitly, the previous system can be expressed in the following form� @k� @R�@2k;k� @R;k� �(k(n);R(n)) [� k(n+1)R(n+1) ��� k(n)R(n) �] +� �@k� �(k(n);R(n)) = � 00 �(D.55)The partial derivatives which appear in the scheme can not be evaluated analitically.The numerical alternative is to evaluate those derivatives with a �nite-di�erences methodover a discrete grid in the (k;R) plane. For this purpose, a centered nine-point reticularcon�guration has been used. Figure (D.1) represents the lattice
uuu uuu uuuk� = k � �k k k+ = k + �kR� = R� �RRR+ = R+ �R

Figure D.1: Nine-point �nite-di�erence lattice used for the evaluation of derivatives in theNewton-Raphson scheme.The partial derivatives have been computed numerically making use of a nine-pointrelations (see, for example Abramowitz & Stegun, 1972). In the centered prescription theyare @k� = 12�k [�(k+; R)� �(k�; R)] (D.56)@k� = 12�R [�(k;R+)� �(k;R�)] (D.57)@2k;k� = 12(�k)2 [�(k�; R)� 2�(k;R) + �(k+; R)] (D.58)@2k;R� = 14�k�R [�(k+; R+) + �(k�; R�)� �(k+; R�)� �(k�; R+)] (D.59)Newton-Raphson's method is cuadratically convergent whether the initial point ofiteration (k0; R0) is near the sought solution (kc; Rc) or not. Unfortunately, the topo-logical structure of the basin of attraction may be very complicated. As a consequence,



130 Spiral Taylor-Couette Problem: Petrov-Galerkin Formulationa predictor-steepest-descent method is required to optimize the scheme. The algorithmcomputes the gradient vector �eld of � in each point of the (k;R)-plane and the pre-dictor point is guided by the steepest path throughout which � exhibits maximum localvariations. This process is done departuring from di�erent points of the plane until � ispositive. Although there is not a formal conclusion, it can be conjectured (from numericalevidences) that the corrector NR method converges more rapidly if (k(0); R(0)) is in thepositive � zone. Nevertheless, it has been necessary to consider orientative values ex-tracted from geometrical analyses to initialize the global search process. Although it wasconsidered to modify the predictor method with a conjugate gradient scheme, the speedof the original one was enough for the present purposes.D.5 Parameters from Di�erent AuthorsThe functions c�(r), cz(r) (5.39) introduced by Ludwieg, 1964 are easily computed fromthe expressions (5.23): c�(r) = Ar2 �BAr2 +B; cz(r) = CrAr2 +B ; (D.60)where the constants A, B, C are given by (5.24). Evaluating these expressions at thegeometric mean radius �r = priro, we get~c� = 1 + �1� � Ro�RiRo+Ri; ~cz = � 1 + �p� ln(1=�) RzRo+Ri: (D.61)By Taylor expanding near � = 1 we obtainp� ln(1=�)1� � = 1� (1� �)224 + : : : ; (D.62)therefore (5.40) are the narrow gap approximations of the expressions (D.61). In fact theexpression for ~c� is exact, and the di�erence in ~cz is only 0.2% for � = 0:8, so we will usethe expressions (5.40) from now on. The di�erence in sign has been introduced for bettercomparison with the experiments, because if we simultneously change the signs of Rz, nand !c the marginal stability curve does not change (see x5.4 for a detailed account of thesystem symmetries).The variables used by HJM, �, ~
2 and R are related with the present parameters asRi = Rf �1� � ~
2 + sin�g; Ro = R~
21� � ; Rz = R cos�: (D.63)Their dependence with the Ludwieg parameters ~c� and ~cz is~
2 = 1 + a~c�p(a+ 1)2~c2z + (1� ~c�)2 ; sin� = 1� ~c�p(a+ 1)2~c2z + (1� ~c�)2 (D.64)where a = (1� �)=(1 + �) and Ro = 750 is held �xed. From (D.63), (D.64) we can easilyarrive at the same formulas (5.40), showing that HJM used the narrow{gap limiting valuesof ~c�, ~cz, or equivalently their values at the geometric mean radius �r = priro.



BibliographyM. Abramowitz & I. Stegun (eds.). Handbook of Mathematical Functions. Dover Publications,Inc., New York (1972).M E. Ali, P.D. Weidman. On the linear stability of cellular spiral Couette ow. Phys. Fluids A. 5,1188-1200 (1993)C. D. Andereck, S. S. Liu, and H. L. Swinney, Flow regimes in a circular Couette system withindependently rotating cylinders. J. Fluid Mech. 164, 155-83 (1986).D. Armbruster, A. Mahalov On the explicit symmetry breaking in the Taylor{Couette problem.Phys. Lett. A 167 (1992) 251-254.P. Berg�e, Y. Pomeau, Ch. Vidal. L�order dans le Chaos. Hermann (1984).C. Boldrighini, V. Franceschini. Commun. Math. Phys. 64, 159-170 (1979).R. Cafarelli, R. Kohn, L. Niremberg. Comm. Pure. Appl. Math., 35, 771 (1982).C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang. Spectral Methods in Fluid Dynamics.Springer-Verlag (Springer Series in Computational Physics) (1988).S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford Univ.Press (1961).K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura. High-speed coating of optical �bres withthermally curable silicone resin using a pressurized die. Electronic Letters, 18, 713{715 (1982).P. Chossat, G. Iooss, The Couette-Taylor problem. Springer-Verlag (Applied MathematicalSciences, Vol. 102), 1994.K. A. Cli�e, J.J. Kobine, T. Mullin, The role of anomalous modes in Taylor-Couette ow. Proc.R. Soc. London 439 (1992).M. M. Couette. Sour un nouvel apareil pour l'�etude du frotement des uids. Comptes Rendus 107,388-90 (1888).P. Coullet, E. A. Spiegel Amplitude equations for systems with competing instabilities. SIAM J.Appl. Math. 43: 776-821 (1983).



132 BIBLIOGRAPHYM. C. Cross, P. C. Hohenberg,. Pattern formation outside of equilibrium. Rev. Mod. Phy. Vol. 65,N. 3, Part II (1993). J. T. Stuart. On the nonlinear mechanics of wave disturbances in stableand unstable parallel ows. Part 1. The basic behaviour in plane Poiseuille ow. Journal ofFluid Mechanics. 9, 353-70 (1960).Y. Demay, G. Iooss. Calcul des solutions bifurqu�ees pour le probl�eme de Couette-Taylor avec lesdeux cylindres en rotation. Journal de M�ecanique th�eorique et apliqu�ee (n.e.) 193-216 (1984).P. G. Drazin, W. Reid Hydrodynamic Stability. Cambridge University Press (1981).W. Eckhaus The Ginzburg-Landau Manifold is an Attractor. Journal of Nonlinear Science Vol. 3pp. 329-348 (1993).W.S. Edwards, R.P. Tagg, B.C. Dornblaser, H.L. Swinney. Periodic traveling waves with nonperi-odic pressure. Eur. J. Mech. B Fluids, 10, 205{210 (1991).D. Farmer, J.P. Crutch�eld, H. Froehling, N.H. Packard, R. Shaw. Ann. N.Y. Acad. Sci. 357(1980), 453. Part I (1981).P. Grassberger, I. Procaccia. Characterization of Strange Attractors. Phys. Rev. Lett. 50,346(1983).J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations ofVector Fields. Springer-Verlag (Applied Mathematical Sciences, vol.42), (1986).M. M. Gupta, R. P. Manohar. J. Comput. Phys. 31, 265-288 (1979).H.C. Hu, R.E. Kelly. E�ect of a time-periodic axial shear ow upon the onset of Taylor vortices.Physical Review E, 51, 3242{3251 (1995)W.L. Hung, D.D. Joseph, B.R. Munson. Global stability of spiral ow. Part 2. Journal of FluidMechanics, 51, 593{612 (1972)G. Iooss, M. Adelmeyer, Topics in Bifurcation theory and applications. Advanced series inNonlinear dynamics, Vol. 3. World Scienti�c (1992).E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley & Sons, (1966).D. D. Joseph. Stability of Fluid Motions vol. I and II. Springer Tracts in Natural Philosophy,27-28. Springer-Verlag, Berlin (1976)H.B.Keller. Numerical Solution of bifurcation and nonlinear eigenvalue problems in Applicationsof Bifurcation Theory, edited by P.H. Rabinowitz. Academic, New York, (1977).I. Kiessling. Uber das Taylorsche Stabilitatsproblem bei zusatzlicher axialer Durchstromung derZylinder. Duetsche Versuchsanstalt fur Luft-Unraumfahrt|Bericht 290 (1963).K. Z. Korczak, A. T. Patera. Isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry. J. Comput. Phys. 62, 361-382 (1986).



BIBLIOGRAPHY 133M. Kubicek, M. Marek. Computational Methods in Bifurcation 3Theory and Dissipative Structures.Springer-Verlag (Springer Series in Computational Physics) (1983).L. D. Landau. C.R. Acad. Sci. U.R.S.S.M. 44, 311.L. D. Landau, E. M. Lifshitz, Fluid Mechanics (2nd ed.). Pergamon Press, Oxford (1987).W. F. Langford The Taylor-Couette System in Singularities and Groups in Bifurcation Theory.M. Golubitsky, I. Stewart, D. G. Schae�er. Springer-Verlag (Applied Mathematical Sciences,Vol. 69) (1988).C. C. Lin, The theory of hydrodynamic stability. Cambridge Univ. Press (1955).E.N. Lorenz. Deterministic Non-Periodic Flow, J. Atm. Sci. 20 (1963), 130-141.H. Ludwieg. Experimentelle Nachprufung des stabilitatstheorien fur reibungsfreie Stromungen mitschraubenlinienformigen stromlinien. Z. Flugwiss, 12, 304{309 (1964)P.A. Mackrodt. Stability of Hagen-Poiseuille ow with superimposed rigid rotation. Journal ofFluid Mechanics, 73, 153-164 (1976)A. Mallock. Determination of the viscosity of water., Proc. R. Soc. London, Ser. A 45, 126-32(1888).F. Marqu�es, Phys. Fluids A 2 (5) (1990), 729{737.F. Marques and J.M. Lopez. Taylor{Couette ow with axial oscillations of the inner cylinder:Floquet analysis of the basic ow Journal of Fluid Mechanics, to appear in September (1997)I. Mercader, M. Net, A. Falqu�es, Spectral Methods for high order equations. Computer Methodsin Applied Mechanics 91 (1991).A. Meseguer, F. Marqu�es, Centrifugal versus Shear Instability in the Spiral Couette Flow. (underrevision in Journal of Fluid Mechanics).A. Meseguer, F. Marques, J. Sanchez. Feigenbaum's Universality in a Four-Dimensional FluidModel. Int. J. of Bifurcation and Chaos, 6, 1587-1594 (1996)R.D. Moser, P. Moin, A. Leonard. A spectral numerical method for the Navier-Stokes equationswith applications to Taylor-Couette Flow. J. Comput. Phys. 52, 524-544 (1983).J.E. Mott, D.D. Joseph. Stability of Parallel Flow between Concentric Cylinders. Phys. Fluids 11,2065-2073 (1968).A.C. Newell, J. A. Whitehead. Finite Amplitude, Finite Bandwidth Convection. Journal of FluidMechanics 38 pp. 279-303 (1969)D.F. Ollis, E. Pelizzetti, N. Serpone. Photocatalyzed destruction of water contaminants. Environ.



134 BIBLIOGRAPHYSci. Technol., 25, 1523{1529 (1991)R. Peyret, T.D. Taylor. Computational Methods for Fluid Flow. Springer-Verlag. (Springer Seriesin Computational Physics) (1983).W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling. Numerical Recipes (the art ofscienti�c computing). Cambridge Univ. Press, (1986)R. H. Rand, D. Armbruster. Perturbation Methods, Bifurcation Theory and Computer Algebra.Springer-Verlag (Applied Mathematical Sciences, Vol. 65), (1987).D. Ruelle. Chaotic Evolution and Strange Attractors. Cambridge Univ. Press. (1989).V.M. Sadeghi, B.G. Higgins. Stability of sliding Couette-Poiseuille ow in an annulus subject toaxisymmetric and asymmetric disturbances. Phys. Fluids A 3(9) (1991).J. Sanchez, D. Crespo, F. Marques. Spiral Vortices Between Concentric Cylinders. Applied ScientifResearch, 51, 55{59 (1993).L. F. Shampine, M. K. Gordon. Computer Solution of Ordinary Di�erential Equations. The initialvalue problem. W. H. Freeman and Company, San Francisco, (1975).J. Shen. Hopf Bifurcation of the Unsteady Regularized Driven Cavity Flow. J. Comput. Phys. 95,228-245 (1991).J. Shen. Comput. Methods Appl. Mech. Eng. 80, 273 (1990).I. Shimada, T. Nagashima. Prog. Theor. Phys. 61 (1979), 1605-1615.J. T. Stuart. On the nonlinear mechanics of wave disturbances in stable and unstable parallelows. Part 1. The basic behaviour in plane Poiseuille ow. Journal of Fluid Mechanics. 9,353-70 (1960).G. I. Taylor. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans.Roy. Soc. London, Ser. A223, 289-343 (1923).Z. Tadmor, R.B. Bird. Rheological Analysis of stabilizing forces in wire-coating dies. PolymerEngineering and Science, 14, 124{136 (1974)J. Phys. Soc. Japan 46, 1935.R. Temam. In�nite Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag.New York (1988).J. Watson. On the nonlinear mechanics of wave disturbances in stable and unstable parallel ows.Part 2. The development of a solution for plane Poiseuille ow and for plane Couette ow.Journal of Fluid Mechanics. 9, 371-89 (1960).E. Wedemeyer. Einuss der Zahigkeit auf die Stabilitat der Stromung in einem schmalen Ringraum



BIBLIOGRAPHY 135mit zusatzlichem, axialem Durchuss. AVA{Bericht 67, A34 (1967).A.Y. Weisberg. Control of transition in Taylor-Couette ow with axial motion of the innercylinder. Ph.D. thesis, Princeton, Dep. of Mechanical and aerospace engineering. (1996)R. F. Wittenberg, P. Holmes. The limited efectiveness of normal forms: a critical review andextension of local bifurcation studies of the Brusselator PDE. Physica D 100 1-40.


