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Navier-Stokes equilibrium solutions of a viscous fluid confined between two infinite par-

allel plates that can independently stretch or shrink in orthogonal directions are studied.

It is assumed that the admissible solutions satisfy spatial self-similarity in the stretching

or shrinking perpendicular coordinates. The nonlinear steady boundary-value problem is

discretized using a spectral Legendre method, and equilibrium solutions are found and

tracked in the two-dimensional parameter space by means of pseudoarclength continua-

tion Newton-Krylov schemes. Different families of solutions have been identified, some of

which are two-dimensional and correspond to the classical Wang & Wu self-similar flows

arising in a plane channel with one stretching-shrinking wall; C. A. Wang and T. C. Wu,

Comput. Math. Applic., 30, 1-16 (1995). However, a large variety of three-dimensional

solutions have also been found, even for low stretching or shrinking rates. When slightly

increasing those rates, some of these solutions disappear at saddle-node bifurcations. By

contrast, when both plates are simultaneously stretching or shrinking at higher rates, a

wide variety of new families of equilibria are created-annihilated in the neighbourhood of

cuspidal codimension-2 bifurcation points. This behaviour has similarities with the one

observed in other planar and cylindrical self-similar flows.
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I. INTRODUCTION

The study of viscous fluid motions bounded by stretching or shrinking surfaces is of fundamen-

tal importance in the mathematical modelling of physiological fluid flows (Waters, 2001, 2004).

In these type of flows, it is usually assumed self-similarity of the Navier-Stokes solution, where

the velocity field incorporates the spatial dependence of the non-uniform boundary conditions

at the stretching or shrinking walls. Fluid motion induced by a single stretching flat plate was

first studied by Crane (1970). The generalized problem, consisting of a biorthogonally stretching

membrane was later addressed in Wang (1984) and more recently in Weidman and Ishak (2015).

For a comprehensive review of exact Navier-Stokes solutions, including self-similar flow profiles

see the monograph by Drazin and Riley (2006). For a recent update on these type of unbounded

flows induced by extended stretching boundaries, see the more recent review by Wang (2011). In

Crane’s original formulation, as well as in its biorthogonal generalization, it is assumed that the

wall-normal coordinate is unbounded. By contrast, other studies have explored flows arising in

two-dimensional channels with confining parallel walls stretching and shrinking in the streamwise

direction (Brady and Acrivos, 1981; Marques et al., 2017). In these planar geometries, alternative

finite difference discretizations providing more realistic boundary conditions have been recently

proposed (Espín and Papageorgiou, 2009). Although these formulations do not impose the self-

similarity ansatz in the interior of the computational domain, the observed dynamics are consistent

with the extensional computations, at least for moderate Reynolds numbers.

In this work, we address the generalization of extensional flows in planar channels whose con-

fining parallel walls are biorthogonally and independently stretching or shrinking at arbitrary ac-

celeration rates. In particular, we search for equilibrium solutions (steady flows) which are exact

solutions of the Navier-Stokes equations under the assumption of the self-similar ansatz. We aim

to provide a comprehensive and detailed description of possible equilibria by means a highly ac-

curate Legendre spectral spatial discretisation of the Navier-Stokes self-similar boundary value

problem, followed by a robust pseudoarclength Newton-Krylov continuation method, capable of

tracking all solutions and their potential bifurcations. The use of spectral methods is particularly

convenient in this case due to the simplicity of the geometry and boundary conditions, allowing

for an exponential (or spectral) convergence of the discretized solutions.

The paper is structured as follows. Section §II is devoted to the mathematical formulation of the

problem, where the self-similar ansatz is introduced and the governing system of nonlinear partial
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(a) (b)

FIG. 1. Schematics of the problem. (a) In dimensional form. (b) Using non-dimensional variables.

differential equations are obtained. Section §II also introduces the symmetry transformations that

leave invariant the domain, the boundary conditions, and the self-similarity of the solution. The

spectral Legendre spatial discretization of the aforementioned partial differential equations is de-

scribed in detail in Section §III. Section §IV is focused on the search of steady flow solutions for

moderate stretching-shrinking rates of the plates. Section §V describes the mechanism by which

new and old solutions are created and annihilated when the stretching-shrinking rates are increased

and, in particular, the role of codimension-2 cusp bifurcations in such mechanism. Finally, Section

§VI summarizes the main findings of the current exploration.

II. MATHEMATICAL FORMULATION

We consider a viscous fluid of kinematic viscosity ν and density ρ confined between two in-

finite parallel plates separated by a distance 2h, as depicted in Fig. 1(a). The problem is formu-

lated in Cartesian coordinates (x∗,y∗,z∗), where starred variables henceforth stand for dimensional

quantities. In this coordinate system, the motion of the fluid between the parallel plates is described

by the velocity field u∗ = (u∗,v∗,w∗). As shown in Fig. 1(a), the lower and upper plates are lo-

cated at the wall-normal coordinates z∗ =±h, linearly stretching along the x∗ and y∗ coordinates,

respectively. The velocities of the fluid on the lower and upper impermeable plates are

u∗(x∗,y∗,−h) = ax∗, v∗(x∗,y∗,−h) = 0, w∗(x∗,y∗,−h) = 0, (1)

u∗(x∗,y∗,h) = 0, v∗(x∗,y∗,h) = by∗, w∗(x∗,y∗,h) = 0 (2)
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where a and b are the strain rate of stretching along the x∗ and y∗-axis respectively.

The problem is rendered nondimensional after using h, h2/ν , ν/h and ρν2/h2 as units of

length, time, velocity, and pressure, respectively, leading to the dimensionless incompressible

Navier-Stokes equations

∇ ·u = 0, ∂tu+(u ·∇)u =−∇p+∇
2u. (3)

In dimensionless coordinates, the boundary conditions read

u(x,y,−1) =
ah2

ν
x≡ σ−x, v(x,y,−1) = 0, w(x,y,−1) = 0, (4)

u(x,y,1) = 0, v(x,y,1) =
bh2

ν
y≡ σ+y, w(x,y,1) = 0, (5)

where the new dimensionless quantities σ− = ah2ν−1 and σ+ = bh2ν−1 introduced in (4) and (5)

measure the strain rates of the lower and upper plates, respectively. In what follows, we assume

the solenoidal self-similar ansatz

u(x,y,z, t) = x f ′(z, t), v(x,y,z, t) = yg′(z, t), w(x,y,z, t) =−( f +g). (6)

Formal substitution of (6) into the incompressible Navier-Stokes equations (3) yields the nonlin-

early coupled relations

f ′′′+( f +g) f ′′− f ′2−∂t f ′ = β1, (7a)

g′′′+( f +g)g′′−g′2−∂tg′ = β2, (7b)

where a prime denotes differentiation with respect to the nondimensional wall-normal coordinate

z, and β1 and β2 are constants to be determined. The corresponding pressure distribution is

p(x,y,z, t) =
1
2
(β1x2 +β2y2)− f ′−g′− 1

2
( f +g)2 +∂t

∫
( f +g)dz. (8)

Assuming zero mass-flux along finite vertical planes parallel to the x and y axes, the solutions f

and g of system (7) satisfy the boundary conditions

f ′(−1) = σ−, f (−1) = 0, f (1) = 0, f ′(1) = 0, (9a)

g′(−1) = 0, g(−1) = 0, g(1) = 0, g′(1) = σ+. (9b)

Following Marques et al. (2017), we introduce the two alternative parameters

σ+ = Rcosα, σ− = Rsinα, (10)

where R =
√

σ2
++σ2

− is the Reynolds number, and 0≤ α ≤ 2π measures the relative strength of

the two streching walls. This gives rise to four regions
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Region 1. 0≤ α ≤ π/2 (top stretches, bottom stretches)

Region 2. π/2≤ α ≤ π (top shrinks, bottom stretches)

Region 3. π ≤ α ≤ 3π/2 (top shrinks, bottom shrinks)

Region 4. 3π/2≤ α ≤ 2π (top stretches, bottom shrinks)

For purposes of integration we take the derivative of (7) to obtain the 8th order system

∂t f ′′ = f iv +( f +g) f ′′′− ( f ′−g′) f ′′, (11a)

∂tg′′ = giv +( f +g)g′′′+( f ′−g′)g′′, (11b)

and calculate the pressure gradients from any of the relevant equations as

β1 = f ′′′(1) = f ′′′(−1)−1, β2 = g′′′(−1) = g′′′(1)−1. (12)

Relations for the x and y directed wall shear stresses at the upper and lower walls are given in

nondimensional form (unit ρν2/h2) as

τx = τxz = x f ′′(±1), τy = τyz = yg′′(±1). (13)

We have used the dimensional expression

τ
∗
i j = µ(∂iu j +∂ jui)

∗ =
ρν2

h2 (∂iu j +∂ jui) =
ρν2

h2 τi j. (14)

Assuming the flow is steady, and neglecting the nonlinear terms appearing in (11), the solution

must satisfy f iv = giv = 0. In this case we obtain the third order polynomials

f0(z) =
σ−
4
(z−1)2(z+1) =

Rsinα

4
(z3− z2− z+1), (15a)

g0(z) =
σ+

4
(z+1)2(z−1) =

Rcosα

4
(z3 + z2− z−1), (15b)

that lead to the base Stokes flow

u0(x,z) = x
Rsinα

4
(3z2−2z−1), v0(y,z) = y

Rcosα

4
(3z2 +2z−1), (16a)

w0(x,y,z) =
R
4
(1− z2)[sinα(z−1)+ cosα(z+1)], (16b)

depicted in Fig. 2 for R = 8 and selected values of α . This base flow is not a solution of the

Navier-Stokes equations and the advection term modifies the flow, as can be seen by comparing

the base flow in Fig. 2 with the steady solution A1 in Fig. 5, which is the self-similar solution of
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FIG. 2. Structure of the base Stokes flow (16) at R = 8 for the α values indicated. Panels show velocity

profiles of u0, v0 and w0 of (16) at x = 1 and y = 1.

the Navier-Stokes equations at R = 8 that smoothly connects with the base flow for R→ 0. This

connection can be clearly seen in Fig. 5, where the U and V components of the A1 solution are

very similar to the Stokesian profile u0 and v0, respectively, shown in Fig. 2. However, the effects

of the advection already lead to noticeable differences in the wall-normal components W and w0,

particularly for α = π and α = π/2.

A. Symmetries

The domain, along with the governing equations (11), the boundary conditions (9), and the

self-similar ansatz (6), are invariant with respect to the two specular reflections about the planes

x = 0 and y = 0

Kx : (x,y,z) 7→ (−x,y,z), Ky : (x,y,z) 7→ (x,−y,z). (17)

The domain and governing equations (but not the boundary conditions) satisfy the additional re-

flectional symmetry about the mid plane

Kz : (x,y,z) 7→ (x,y,−z). (18)

In order to get the correct direction of the velocities on the domain boundary, we can compose

this reflection with a reflection about the plane bisector of the first quadrant, x = y, resulting in the
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rotation of π around the straight line x = y, z = 0:

H : (x,y,z) 7→ (y,x,−z). (19)

This symmetry operation leaves invariant the domain and governing equations, and exchanges σ+

and σ− (or what is the same, changes α into π/2−α). It is therefore a true symmetry of the

problem for the particular cases σ+ = σ−, i.e. for α = π/4 and 5π/4.

According to the previous considerations, the induced action of the symmetries on the velocity

field are

Kx : [u,v,w](x,y,z, t;R,α) 7→ [−u,v,w](−x,y,z, t;R,α), (20a)

Ky : [u,v,w](x,y,z, t;R,α) 7→ [u,−v,w](x,−y,z, t;R,α), (20b)

H : [u,v,w](x,y,z, t;R,α) 7→ [v,u,−w](y,x,−z, t;R,π/2−α). (20c)

The self-similar anzatz (6) is left invariant by Kx and Ky: Kxu = Kyu = u. The only non-trivial

action that remains in the self-similar formulation is the half-turn H, whose square is the identity.

The action of H on f and g is

H : [ f ,g](z, t;R,α) 7→ [−g,− f ](−z, t;R,π/2−α). (21)

As a consequence of the H-symmetry, from any solution for (R,α), another solution for (R,π/2−

α) is obtained. Therefore, it is sufficient to compute the solutions for α ∈ [π/4,5π/4], and then

apply the H symmetry to obtain the solutions in the whole interval α ∈ [0,2π].

It is convenient to represent the velocity field of a given solution by plotting the z-profiles

u(1,1,z, t):

u(1,1,z, t) =
(
U(z, t),V (z, t),W (z, t)

)
= ( f ′,g′,− f −g). (22)

From them the whole velocity field at any (x,y) value is obtained by using (6). The action of H on

(U,V,W ) is

H : [U,V,W ](z, t;R,α) 7→ [V,U,−W ](−z, t;R,π/2−α). (23)

Another useful feature of the flow is its helicity, defined as

h = u · (∇×u), (24)

that is a pseudo-scalar (i. e., it changes sign under reflections Kx and Ky), and it is a true scalar for

rotations H. For a self-similar solution, the expression of h is

h(x,y,z, t) = xy(g′ f ′′− f ′g′′). (25)

7



Orthogonally stretching parallel plates

Its symmetry properties are

h(x,y,z, t;R,α) =−h(−x,y,z, t;R,α) =−h(x,−y,z, t;R,α), (26a)

H : h(x,y,z, t;R,α) 7→ h(y,x,−z, t;R,π/2−α). (26b)

III. SPECTRAL LEGENDRE DISCRETIZATION

Henceforth in this study we seek steady solutions of (11), satisfying

f iv +( f +g) f ′′′− ( f ′−g′) f ′′ = 0, (27a)

giv +( f +g)g′′′+( f ′−g′)g′′ = 0, (27b)

where f (z) and g(z) are functions defined within the domain z ∈ [−1,1], that satisfy the boundary

conditions

f (−1) = 0, f ′(−1) = Rsinα, f (1) = 0, f ′(1) = 0, (28)

and

g(−1) = 0, g′(−1) = 0, g(1) = 0, g′(1) = Rcosα. (29)

To simplify the numerical setting, we consider the splittings

f (z) = f0(z)+F(z), g(z) = g0(z)+G(z), (30)

where f0(z) and g0(z) constitute the basic Stokes solution (15) satisfying the boundary conditions

(28) and (29), and F(z) and G(z) are deviations from the basic flow satisfying Dirichlet-Neumann

homogeneous boundary conditions

F(±1) = G(±1) = F ′(±1) = G′(±1) = 0. (31)

After introducing (30) in (27), the BVP reads

F iv +( f0 +F +g0 +G)( f
′′′
0 +F

′′′
)− ( f ′0 +F ′−g′0−G′)( f

′′
0 +F

′′
) = 0

Giv +( f0 +F +g0 +G)(g
′′′
0 +G

′′′
)+( f ′0 +F ′−g′0−G′)(g

′′
0 +G

′′
) = 0,

(32)

or simply

N(F,G, f0,g0) =

N1(F,G, f0,g0)

N2(F,G, f0,g0)

=

0

0

 , (33)
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where N1 and N2 stand for nonlinear differential operators acting on the sought functions F and G,

implicitly depending on the Stokes base fields f0 and g0. We discretize the nonlinear differential

system (32) using spectral expansions of the formF(z)

G(z)

=
M

∑
m=0

amΦ
(1)
m (z)+bmΦ

(2)
m (z), (34)

where

Φ
(1)
m (z) =

φm(z)

0

 , Φ
(2)
m (z) =

 0

φm(z)

 , φm(z) = (1− z2)2Pm(z), (35)

and where Pm(z) is the mth Legendre polynomial. We introduce the inner Hermitian product

between two arbitrary vector fields Ψ(z) = [ψ1(z) ψ2(z)]T and Θ(z) = [θ1(z) θ2(z)]T

(Ψ,Φ)
.
=
∫ 1

−1
Ψ(z) ·Θ(z)dz. (36)

The Galerkin formulation consists in formally substituting the spectral expansion (34) in (33) and

projecting on the set of quasi-orthogonal vector fields Φ
(1)
m and Φ

(2)
m defined in (35). These Her-

mitian products are computed with a Gauss-Legendre quadrature, which provides a maximum

exactness with a reduced number of nodes (Quarteroni, Sacco, and Saleri, 2010), and the spec-

tral expansion is evaluated on the corresponding nodes so that the wall-normal integral can be

accurately computed. This results in an algebraic system of nonlinear equations for the spectral

coefficients a = [a0 a1 · · ·aM] and b = [b0 b1 · · ·bM], that is:(
Φ

(1)
m ,N(F,G, f0,g0)

)
= N1(a,b,R,α) = 0,(

Φ
(2)
m ,N(F,G, f0,g0)

)
= N2(a,b,R,α) = 0.

(37)

The above system defines a and b as implicit functions of R and α . All derivatives in the wall-

normal direction have been computed by means of differentiation matrices based on Legendre

nodes (Meseguer, 2020). System (37) is solved using matrix-free Newton-Krylov methods (Kel-

ley, 2003) that only require the action of the Jacobian operator instead of the full matrix typ-

ically required by classical Newton-Raphson methods. The numerical solution of system (37)

is particularly challenging in the neighbourhood of folds or cuspidal points, where the Jacobian

is extremely ill-conditioned. All the solutions of system (37) reported henceforth in the present

work are computed using M = 50 Legendre polynomials and converged to the tolerance condition√
N 2

1 +N 2
2 < 10−12, which ensures reliable results for all bifurcations and singular points, as
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Appendix A illustrates. The solutions found have been subsequently tracked (homotopic trans-

formations) in the two-dimensional (α,R) parameter space by means of pseudoarclength con-

tinuation methods Kuznetsov (2004). It is worth mentioning that these methods are specially

challenging when a branch approaches a critical point, like cusps or folds, as the Jacobian ma-

trix is ill-conditioned near to singular points. The homotopic methods employed in the present

work, along with complementary methodologies to identify saddle-node (fold) bifurcations or

cusp points, have been previously used successfully for the continuation of equilibria in exten-

sional planar and cylindrical geometries (Marques et al., 2017; Marques and Meseguer, 2019)

and also in more generic shear or annular hydrodynamic and hydromagnetic flows (Meseguer

et al., 2009; Deguchi, Meseguer, and Mellibovsky, 2014; Ayats et al., 2020; Ayats, Meseguer,

and Mellibovsky, 2020).

IV. FAMILIES OF STEADY SOLUTIONS FOR LOW-MODERATE R

We start the exploration of steady solutions by reproducing the results of a former analysis car-

ried out in Wang and Wu (1995) for a two-dimensional channel, where one of the plates stretches

at a constant rate and the other remains stationary. In our formulation, Wang & Wu’s problem

can therefore be recovered by setting in system (37) α = 0 (top plate stretching in the y-direction

and lower plate stationary), or α = π/2 (lower plate stretching in the x-direction and upper plate

stationary). Figure 3 shows the continuation curves of all identified branches for α = 0 as a func-

tion of the Reynolds number within the range R ∈ [−20,110]. One of these branches, namely A1

(black curves in Fig. 3), is the solution branch found in Wang and Wu (1995). For consistency,

Fig. 3(a) also includes an inset plot depicting Wang & Wu’s solution in terms of the normalized

pressure factor β = −β2/R used in their analysis, showing a perfect agreement with the zoom in

of branches II and III detailed in Figure 2 of Wang and Wu (1995). The analysis carried out in

Wang & Wu also studied the flow for negative acceleration (shrinking) of one of the plates, that

is for R < 0. In our computations, branch A1 has also been continued for negative values of the

Reynolds number. In particular, Fig. 3(a) shows branch A1 intercepting the ordinate β2 = 334.4

for R =−20, leading to a pressure factor β =−16.7 that is in very good agreement with the value

of β showed in Figure 2 of Wang and Wu (1995).

The other branches appearing in Fig. 3 have been found after performing a comprehensive ex-

ploration of solutions of system (37) for different values of the parameter α and tracking them
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FIG. 3. Continuation of solution branches for α = 0. In black, Wang & Wu’s (A1) solution branch formerly

reported in Wang and Wu (1995). (a) Pressure factor β2 (the inset shows the normalized factor β =−β2/R,

following Figure 2 of Wang and Wu (1995)). (b) Wall-normal velocity W at mid-plane z = 0. A gray dashed

vertical line has been placed at R = 8, along with color coded bullets, to guide the eye in the α-unfolding of

the solution branches, depicted in Fig. 4.

back to α = 0 via pseudoarclength continuation. Figure 4 illustrates this homotopic unfolding in

α for a constant value of R = 8, which corresponds to continuations along the cross-section de-

picted as a dashed gray vertical line in Fig. 3(b). To guide the eye, color coded bullets have been

placed along the gray dashed line in order to identify the unfolded branches. For R = 8, we have

overall identified 7 solution branches: A1,2,3, B1,2, and B̃1,2. Branches Ai are H-symmetric, while

branches B̃1 and B̃2 are in fact H-symmetry-related to the B1 and B2, respectively: a reflection

z→ −z plus a reflection around α = π/4 (and 5π/4). Figures 5 and 6 illustrate panels of the

velocity profiles U , V , and W of each one of the genuinely independent types of flows (i. e., not

related through symmetry transformations) for R = 8 and for certain selected values of α , cov-

ering representative stretching-shrinking configurations of the top and bottom plates. To avoid

redundancy, the panels only include values of α corresponding to genuinely different stretching-

shrinking configurations of the plates. For example, the case α = 0 is not included, since it can

be recovered from the case α = π/2 (after performing a suitable symmetry transformation), as
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FIG. 4. Wall-normal velocity W at mid plane z = 0 corresponding to the families of steady solutions found

for R = 8. A dashed gray vertical line has been placed to guide the eye when identifying the unfolded

branches shown in Fig. 3(b) by color coded bullets.

illustrated before for the Wang & Wu case. All seven families of solutions are in general three-

dimensional. However, branch A1 solutions become two-dimensional for α = π/2 (bottom plate

stretching in the x-direction, top plate stationary) or α = π (top plate shrinking in the y-direction

and bottom plate stationary). This is clearly reflected in the top panel of Fig. 5, where V = 0 for

α = π/2, and U = 0 for α = π . A careful inspection of the speed profiles shown in panel A1 of

Fig. 5 reveals, as it has been stated in Section §II, a remarkable similarity to those corresponding

to the Stokes flow (16) previously shown in Fig. 2. In fact, the A1 solution branch is actually the

nonlinear continuation of the Stokesian flow when, after increasing the Reynolds number, the non-

linearities can no longer be neglected. Furthermore, Fig. 5 and Fig. 6 also reveal that all solution

branches except A1 exhibit their maximum and minimum values of velocities U and V inside the

channel, significantly far from the walls and independently of the value of α . By contrast, the

low relevance of the nonlinear term in the case of A1 produces a simpler solution whose velocity

profiles peaks are always governed by the walls. These nonlinear effects, already reported in the

two-dimensional extensional channel flow Marques et al. (2017), allow disturbances coming from

the boundaries that interfere with the velocity field and produce such kind of solutions.
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FIG. 5. Structure of the steady solutions A1, A2, and A3, at R = 8 for the α values indicated. Panels show

velocity profiles of U , V and W .

To have more insight regarding the flow structure of these new families of solutions, and to

compare them with the Stokesian base flow, Fig. 7 depicts helicity h isocontours of these solutions

over a cylinder of unit radius placed at (x,y,z) = (0,0,0). A visual inspection of h confirms that all
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FIG. 6. Same as Fig. 5 for solutions B1 and B2. The profiles of the solutions B̃1,2 have not been included, as

they are symmetry related to B1,2.

solutions satisfy the symmetry relations (26). It is worth mentioning that for α = π/4 both the base

Stokesian flow and the Ai solutions are self-symmetric: invariant under the H−rotation described

in (26b). By contrast, the Bi solutions are not H−invariant: the symmetry transforms one branch

into the other, H: Bi 7→ B̃i. Similarly, Fig. 8 shows radial velocity vr isocontours for the same

cases previously depicted in Fig. 7. All solutions satisfy velocity field symmetries (20) in the same

terms as the aforementioned for the helicity. As expected, solutions BF and A1 are very similar,

both having their maximum radial velocities located at the boundary planes. By contrast, the other

solutions show intense internal return jets (in yellow) in the x and y directions. More remarkably,

the maximum velocity of these jets is larger than the stretching velocity at the boundaries. A

very similar phenomenon has recently been observed in flows arising in stretching pipes, where

dominant axial jets appear in the center line of the pipe, and with velocities considerably larger
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FIG. 7. Isocontours of helicity h over a cylinder of unit radius for base Stokes flow (BF), solutions A1,2,3,

B1,2 and B̃1,2. Red and yellow colors indicate positive and negative h values, respectively. All cases are

for R = 8 and α = π/4; top and bottom plates stretching with the same acceleration rate in the directions

indicated by the arrows. For a correct interpretation, these projections are aligned with the symmetry plane

x = y.

than the ones induced nearby the stretching wall Marques and Meseguer (2019).

In order to reveal the origin and fate of these and other solution branches, we have carefully

tracked the number of solutions of system (37) throughout the two-dimensional parameter space

(α,R). Figure 9(a) summarizes the results by depicting the parameter regions where a differ-

ent number (boxed) of equilibrium solutions has been identified. These regions are delimited

by boundaries (solid black curves) along which solutions are created or annihilated by means

of a saddle-node bifurcation (fold) mechanism. The figure has two vertical reflection symme-

tries, about α = π/4 and 5π/4 due to the symmetry H. The bifurcation curve starting at C1

for α > 5π/4 has a local minimum at the point F1 (white bullet), located at the coordinates

(α,R) = (4.54,10.54). The bifurcation curve symmetric about α = 5π/4 has the symmetric of

the F1 minimum at α = 3.31 (not shown). The bifurcation curve starting at C2 for α > π/4 has its
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FIG. 8. Isocontours of radial velocity vr for R = 8 and α = π/4. Red and yellow colors indicate positive

and negative values of vr, respectively.

minimum at the point F2, with coordinates (α,R) = (1.6,9.019). The symmetric counterpart with

respect α = π/4 has the minimum at α = 0.0293, or α = 6.2539 due to the natural 2π-periodicity

of the diagram. We have extended the α range beyond the interval [0.2π] in the figure to facili-

tate following the bifurcaton curves. As a result, the aforementioned starting 7 solutions exist for

Reynolds numbers within the range [0,9.019].

For Reynolds numbers slightly below and above the critical value 9.019, and α nearby 0 or

π/2, two of the seven solutions are lost, as it can be observed from Figures 10(a) and 10(b), for

R = 9 and R = 10, respectively. Specifically, in a neighbourhood of α = π/2 and R = 9.019,

branches A3 and B1 exhibit a pinch, indicated by red vertical arrows in Fig. 10(a) for R = 9. These

two branches eventually merge, annihilating two solutions in that neighbourhood and creating

two detached new branches that separate apart, as indicated by red horizontal diverging arrows

in Fig. 10(b) for R = 10. As expected, A3 curve simultaneously merges with the symmetric B̃1

branch for α = 0 or α = 2π , also indicated by vertically converging red arrows in Fig. 10(a). For

R = 10, other regions, away from α = 0,π/2,2π , may still have seven solutions. However, a slight
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FIG. 9. (a) Explored domain in parameter space (α,R) indicating the number of equilibrium solutions

(squared inset numbers) found in each region. (b)− (c) show detailed views of selected regions in (a).

Dashed vertical symmetry lines are located at abscissas α = π/4 and α = 5π/4.

increase of the Reynolds number beyond R= 10.54 also induces the loss of some of these solutions

as well. In particular, branches A2 and B2 exhibit another pinch phenomenon for R = 10.54 in the

neighbourhoods of α = 3π/2 (also exhibited by branches A2 and B̃2 nearby α = π), as indicated

by vertically converging blue arrows in Fig. 10(b). For R = 10.8, these two pair of branches have

already merged and destroyed two solutions nearby α = 3π/2 and α = π , eventually creating two
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FIG. 10. (a)−(d) Continuations in α of the families of steady solutions for the indicated R values. Red-blue

vertically converging and horizontally diverging arrows have been included to indicate the regions where

pairs of solutions are lost. Violet arrows in (d) indicate saddle-node bifurcations movements converging to

cusp bifurcation point C2.

detached independent connections that separate apart, as indicated by horizontal diverging blue

arrows in Fig. 10(c). This mechanism of creation-annihilation of branch pairs is similar to the one

recently observed in extensional planar or cylindrical flows Marques et al. (2017); Marques and

Meseguer (2019).

V. CODIMENSION-2 CUSP BIFURCATION POINTS

When crossing the saddle-node bifurcation curves, two solutions merge and disappears. This

is the generic situation in steady bifurcations of ODEs or PDEs. However, the presence of the

symmetry H (symmetry group Z2) for α = π/4 and 5π/4 modify the scenario. The generic steady

bifurcation of a Z2-symmetric solution (α = π/4 or 5π/4 fixed, and increasing R) is a pitchfork.
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Here three different solutions merge and only one survives after the bifurcation; the solution that

remains is Z2-symmetric, and the other two are symmetrically related Kuznetsov (2004). What

we observe in a neighborhood of α = π/4 and 5π/4 is a cusp bifurcation, of codimension two.

The cusp points C1, C2, C5 and C8 are of this type, with the symmetry H playing a critical role.

Figures 10(c) and 10(d) illustrate the formation of the cusp C1, located at (α,R) = (5π/4,12.92).

In Figure 10(c), for α = 5π/4, we see three solutions (B2, A2 and B̃2) on the same S-shaped

bifurcation curve. When increasing R the three solutions approach each other, merge at R =

12.92, and only one remains at larger R, as can be seen in Figure 10(d), where the S-shaped curve

has become a smooth univalued function. The same happens at cusp C2, located at (α,R) =

(π/4,24.02). Figure 10(d) at R = 15 shows that the three solutions B1, A3 and B̃1 on the same

S-shaped bifurcation curve approach (purple arrows in the figure), and merge at R = 24.02.

The two saddle-node bifurcation curves that meet at a cusp point are different. For example, at

C1, the saddle-node curve that has minimum F1 (for α > 5π/4) correspond to the merging of B2

and A2, while the symmetric counterpart (for α < 5π/4) correspond to the merging of A2, and B̃2.

Two different saddle-node bifurcation curves can meet in the absence of symmetry (away from

the lines α = π/4 and 5π/4), resulting also in a codimension-2 cusp bifurcation point without

symmetry Kuznetsov (2004). This is what happens at the cusp points C3, C4, C6 and C7.

For moderately larger Reynolds numbers, our parametric exploration reveals a remarkable in-

crease in the complexity of the topology of equilibria. This feature can be clearly seen in Figures

9(a) and 9(c) for R = 23.4 and beyond, showing the presence of multiple cuspidal points, namely

C3 and C4, for α = 3.792 and α = 4.062, very close to their central value α = 5π/4, respectively.

These two symmetric cuspidal bifurcation points lead to two small regions inside which we may

find 7 equilibria again, as summarized in Fig. 9(c). Figures 11(a) and (b) are detailed views slightly

below and above C3,4 for R = 22 and R = 25, respectively. The simultaneous cusp bifurcations

appear along branch A1, bounded by two saddle-node bifurcations (white squares in Fig. 11), lead-

ing to the new solution branch A4. As the Reynolds number is increased, Fig. 11(c) shows that

A1−A4 and A3 branches approach and exhibit a pinch near two of the saddle-nodes leading to an

α-isolated A1−A3 branch, which is clearly depicted in Fig. 11(d). However, as this isola reduces

significantly, two of these seven solutions soon disappear again for R > 30.

Figure 12 shows the structure of the seven solutions indicated in blue in Fig. 11(d), coexisting

for the same value of the parameters (α,R) = (4.18,27), and including two solutions on the isola.

These solutions are close to but no equal to α = 5π/4, therefore none of them is H-symmetric.

19



Orthogonally stretching parallel plates

FIG. 11. Continuations in α in a neighbourhood of α = 5π/4 (dashed line) for selected Reynolds number.

(a)− (d) show all solution branches corresponding to Fig. 9(c). (e)− (h) depict detail continuations of the

isolated A1−A3 branch. White squares are saddle-node bifurcations and violet arrows indicate branch shifts

leading to (e) C5 and (g) C8 cuspidal points for α = 5π/4. Blue symbols in (d) correspond to the seven

solutions coexisting for the same parameter values (α,R) = (4.18,27) that are described in the text and in

Fig. 12.

Comparing these solutions at R = 27 with the solutions at R = 8 shown in Fig. 8, there are two

main differences. One is the increased strength of the internal return jets. The other difference is

that the number of jets increases; this is clearly seen in solutions V and Y, exhibiting four layers,

two at the boundary planes, and other two in the interior, with opposite radial velocity. This results

in an increased shear stress between layers, which can be a source of dynamical instabilities. This

increase in the number of layers and its strength has also been observed in two-dimensional planar

channels Marques et al. (2017) when the walls are simultaneously shrinking, as in Figure 12.

Notice that the solutions for R = 8 shown in Fig. 8 correspond to a stretching situation (α = π/4).

For Reynolds numbers within the range R∈ [34.15,55.34], and in a very narrow neighbourhood
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FIG. 12. Radial velocity vr for solutions at α = 4.18 and R = 27. Red and yellow colors indicate positive

and negative vr values, respectively.

of α = 5π/4, 7 solutions are available again. This region is bounded by two cusp points, namely

C5 and C8, located along the line α = 5π/4, for R = 33.73 and R = 55.34, respectively. In fact, C5

is the cusp bifurcation located along the α-isolated branch responsible for the appearance of a new

solution branch, namely A5. Violet arrows in Fig. 11(e) illustrate this process of solution creation

by indicating branch displacements and Fig. 11(f) depicts the isola with these new A5 solutions.

If the Reynolds number is further increased, the outermost pair of saddle-node bifurcations move

towards the symmetry line α = 5π/4, indicated with violet arrows in Fig. 11(g), and merge to-

gether forming C8. As a result, in a neighbourhood of α = 5π/4 and for R > 55.34 five solutions

remain; see Fig. 11(h) for R = 60. This increase of complexity in the topology of equilibria when

the boundaries are shrinking has also been recently reported in flows arising inside contracting

pipes and two-dimensional parallel plates Marques et al. (2017); Marques and Meseguer (2019).

We end our analysis by describing the last pair of symmetric cuspidal points that simultane-

ously appear in a neighbourhood of α = π/4 when both plates are stretching at the same higher
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FIG. 13. (a)− (d) Continuations in α in a neighbourhood of α = π/4 (dashed line) for selected Reynolds

number. White squares indicate saddle-node bifurcations.

accelation rate. Fig. 9(a) depicts these cuspidal points for R = 50.49, namely C6 and C7, located at

α = 0.7784 and α = 0.7924, respectively. These two cusps are so close that an inset has been also

provided in Fig. 9(b) to facilitate visualization. This pair of symmetric cusps also are responsible

for generation of two more solutions in an extremely narrow region of the parameter space. In

this case, however, increasing the Reynolds number leads to the creation of a total number of 9

equilibria. For R . 50.49, only 5 solution branches coexist within the interval α ∈ [0.755,0.815],

as shown for example in Fig. 13(a) for R = 50. For R & 50.49, after the cuspidal points C6 and

C7 appear along branch A2, a new solution branch A6 is born, bounded by two saddle-node points,

depicted as white squares in Fig. 13(b) for R = 52. Further increase of the Reynolds number leads

to a separation of these saddle-node points, widening the range of α values for which up to 9

solution branches coexist, as depicted in Fig. 13(c) and Fig. 13(d) in a neighbourhood of α = π/4

for R = 55 and R = 60, respectively. Table I summarizes the location of the two fold and eight

cuspidal points identified in this exploration.

VI. CONCLUSIONS

A comprehensive exploration of equilibrium flows arising between two parallel plates that

stretch-shrink orthogonally and independently has been performed. The exploration has covered

a wide range of stretching-shrinking acceleration rates. For moderately low Reynolds numbers,
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Point α R

F1 4.54 10.54

F2 1.6 9.019

C1 5π/4 12.92

C2 π/4 24.02

C3 3.792 23.40

C4 4.062 23.40

C5 5π/4 33.73

C6 0.7784 50.49

C7 0.7924 50.49

C8 5π/4 55.34

TABLE I. Locations of fold and cuspidal points in Fig. 9.

up to seven steady flows have been identified. Three of these flows are genuinely independent,

whereas two of the remaining four flows are related through rotational symmetry transformations.

For higher Reynolds numbers, however, the number of equilibrium solutions may range between

three and nine. For moderate Reynolds numbers, our exploration reveals that equilibria tend to

be created or annihilated more likely when both plates are simultaneously shrinking. These new

solutions are the result of codimension-2 cusp bifurcations. Similar cuspidal points have been

identified for higher Reynolds numbers when both plates are simultaneously stretching. In this

case, the cusps only favour the creation of new solutions. All cusp bifurcations and new solutions

are close to the H-symmetry lines, corresponding to stretching or shrinking planes with the same

acceleration rate. In fact it is the breaking of the H-rotational symmetry that results in this plethora

of new solutions and cusp bifurcations.

The presence of cuspidal points when the boundaries are shrinking is consistent with recent

analyses carried out in cylindrical geometries and in two-dimensional channels Marques et al.

(2017); Marques and Meseguer (2019). The natural continuation of the present work would be

the exploration of the dynamical properties of the found solutions. This would require performing

time integration of the original equations in order to clarify the linear and nonlinear stability of

these solutions. However, these aspects are far from the scope of the present analysis.
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Appendix A: Spectral convergence

All the solutions reported in the present study have been confirmed to satisfy spectral conver-

gence, that is, the exponential decay of the coefficients am and bm corresponding to the Legendre

expansions (34). Figure 14 illustrates this property by depicting on a linear-log plot the modulus of

these coefficients as function of m. Figure 14(a) shows the decay of the Legendre coefficients cor-

responding to the 2-dimensional solution of (Wang and Wu, 1995) shown in Fig. 3(a) for R = 90

and α = 0. In this case, the lower plate is at rest, whereas the upper one is stretching at the

maximum acceleration rate, inducing fluid motion in the y direction only, the u-component of the

velocity therefore being zero. This is reflected in the almost negligible, to machine precision,

magnitude of the am Legendre coefficients associated with the u-component of the flow. The v-

component of the flow is governed by the bm coefficients, that show a clear exponential decay,

covering nearly 14 orders of magnitude, as a distinctive characteristic of spectral convergence.

Figure 14(b) corresponds to the Legendre coefficients of the solution Z(B̃1) shown in Fig. 12, for

R = 27. In this case, the fluid motion has non-zero components in the x and y directions and

exhibits multiple inner jets. We have chosen this solution precisely because of its complexity,

therefore demanding a higher number of Legendre modes. In this case, both coefficients also ex-

hibit a very neat spectral convergence law, overall showing an exponential decay of early 12 orders

of magnitude using M = 50 Legendre polynomials.

The reliability of the Legendre spectral discretization used in this work has been tested by

computing the coordinates of cuspidal and fold points, and for a number of Legendre polynomials

within the range M ∈ [20,55]. Table II outlines this test, exhibiting an outstanding exponential con-

vergence in the coordinates of the codimension-1 and 2 bifurcation points F2 and C8, respectively,
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FIG. 14. Exponential convergence of the spectral Legendre expansions (34).

M R(F2) α(F2) R(C8)

20 9.0189805916 1.5981603583 55.3506994615

30 9.0190144077 1.5981489100 55.3359422714

40 9.0190143788 1.5981488209 55.3359568841

45 9.0190143803 1.5981488213 55.3359562436

50 9.0190143793 1.5981488215 55.3359567273

55 9.0190143793 1.5981488213 55.3359561122

TABLE II. Locations of fold F2 and cusp C8 points in the (α,R)-plane as a function of the Legendre modes,

M, used in the discretization. The cuspidal point appears along the symmetry line α = 5π/4.

shown in Fig.9. We can conclude that M = 50 Legendre polynomials already provides nearly 10

exact figures in the critical R of the fold point, and 6 in the cuspidal one (located at α = 5π/4).

Increasing the number of Legendre polynomials does not improve the accuracy of the presented

results, being overall more than satisfactory.
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