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In this paper we explore the stability and dynamical relevance of a wide variety of steady,

time-periodic, quasiperiodic and chaotic flows arising between orthogonally stretching par-

allel plates. We first explore the stability of all the steady flow solution families formerly

identified by Ayats et al. [Ayats, R., Marques, F., Meseguer, A. and Weidman, P., Flows

between orthogonally stretching parallel plates, Phys. Fluids, 33, 024103 (2021)], con-

cluding that only the one that originates from the Stokesian approximation is actually sta-

ble. When both plates are shrinking at identical or nearly the same deceleration rates,

this Stokesian flow exhibits a Hopf bifurcation that leads to stable time-periodic regimes.

The resulting time-periodic orbits or flows are tracked for different Reynolds numbers and

stretching rates, whilst monitoring their Floquet exponents to identify secondary instabil-

ities. It is found that these time-periodic flows also exhibit Neimark-Sacker bifurcations,

generating stable quasiperiodic flows (tori) that may sometimes give rise to chaotic dynam-

ics through a Ruelle-Takens-Newhouse scenario. However, chaotic dynamics is unusually

observed, as the quasiperiodic flows generally become phase-locked through a resonance

mechanism before a strange attractor may arise, thus restoring the time-periodicity of the

flow. In this work we have identified and tracked four different resonance regions, also

known as Arnold tongues or horns. In particular, the 1 : 4 strong resonance region is

explored in great detail, where the identified scenarios are in very good agreement with

normal form theory.
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Phase-locking flows between stretching parallel plates

I. INTRODUCTION

The motion of wall-bounded viscous fluids induced by stretching or shrinking of their bound-

aries are of interest in many areas of science and technology such as cooling and extrusion pro-

cesses, paper production, polymer processing and metallurgy (Aziz and Mahomed, 2016; Merkin

and Pop, 2018). Furthermore, these type of flows can be used to mathematically model certain

physiological processes arising in cardiology (Waters, 2001, 2004). The mathematical formulation

of these type of flows usually assumes self-similarity of the Navier-Stokes solution, incorporating

in it the spatial dependence of the non-uniform boundary conditions at the stretching or shrinking

walls. We refer the reader to the monograph by Drazin and Riley (2006) for an extensive review of

exact Navier-Stokes solutions, including self-similar profiles, and to Wang (2011) for unbounded

flows induced by extended stretching boundaries.

Fluid motion induced by a single stretching flat plate, whose velocity is proportional to the

distance from the stagnation point, was first studied by Crane (1970). The three-dimensional

generalization of this problem, consisting of a biorthogonally stretching membrane, was later ad-

dressed in Wang (1984) and more recently in Weidman and Ishak (2015). Whereas in Crane’s

original formulation it is assumed that the wall-normal coordinate is unbounded, later studies have

explored flows arising in two-dimensional channels with confining parallel walls stretching and

shrinking in the streamwise direction (Brady and Acrivos, 1981; Marques et al., 2017). For

moderate Reynolds numbers, alternative formulations (Espín and Papageorgiou, 2009) that do not

assume self-similarity of the flow have provided dynamics which are consistent with self-similar

computations.

In Ayats et al. (2021) the generalized problem of a viscous fluid confined between two orthog-

onally stretching-shrinking parallel plates was studied numerically. In that work, five different

families of steady self-similar flows were identified and explored for a wide range of indepen-

dent orthogonal acceleration rates of the two walls. However, the dynamical relevance of these

solutions remained unclear. In the present work, we first aim at exploring the stability of the

aforementioned solution families and identifying their potential bifurcations that may lead to dy-

namically stable time-dependent flows. This is mainly motivated by the fact that flows arising

within two-dimensional shrinking plates have been reported to exhibit a rich variety of complex

dynamics, such as time-periodic regimes that become chaotic through period-doubling cascades

(Marques et al., 2017), for example. The emergence of complex flow dynamics when the walls
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Phase-locking flows between stretching parallel plates

bounding the fluid are shrinking has also been reported in non-cartesian geometries. This is the

case for fluids confined within elastic cylindrical pipes when the pipe wall is contracting in the

axial direction, with mild or absent azimuthal twist (Marques and Meseguer, 2019).

The paper is structured as follows. Section §II is devoted to the mathematical formulation of

the problem, where the Navier-Stokes equations under the self-similar assumption are obtained for

arbitrary time-dependent flows. The numerical methodologies are described in §III, where special

emphasis is given to the adaptation of these methods for the linear stability analysis of steady

flows, as well as to the computation of oscillatory flows and their Floquet analysis. The bifurca-

tion mechanisms that give rise to oscillatory flows are presented in section §IV, identifying the

parameter region where these stable time-periodic regimes may appear, and providing a detailed

description of their dynamical properties and symmetries, in particular when both plates contract

at the same deceleration rate. The stability of the oscillatory flows described in §IV is later on ad-

dressed in section §V, where the Neimark-Sacker bifurcation boundary is provided. This section

also describes the bifurcated quasiperiodic and chaotic flows that are discussed in detail in section

§VI, where the phase-locking regions are disclosed. This latter section devotes special attention

to the 1 : 4 strong resonance scenario. Finally, section §VII summarizes the main findings of the

current exploration.

II. MATHEMATICAL FORMULATION

In this section we closely follow Ayats et al. (2021), summarizing the formulation and adding

explicitly the time dependence, necessary for the linear stability analysis and computation of time

dependent solutions.

We consider a viscous fluid of kinematic viscosity ν and density ρ confined between two in-

finite parallel plates, located at the wall-normal coordinates z∗ = ±h, as depicted in Fig. 1(a).

The problem is formulated in Cartesian coordinates (x∗,y∗,z∗), where starred variables henceforth

stand for dimensional quantities. In this coordinate system, u∗ = (u∗,v∗,w∗) is the velocity field

describing the motion of the fluid. The lower and upper plates linearly stretch along the x∗ and y∗

coordinates, respectively, so that the fluid velocities at those impermeable boundaries are

u∗(x∗,y∗,−h) = ax∗, v∗(x∗,y∗,−h) = 0, w∗(x∗,y∗,−h) = 0, (1)

u∗(x∗,y∗,h) = 0, v∗(x∗,y∗,h) = by∗, w∗(x∗,y∗,h) = 0, (2)
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Phase-locking flows between stretching parallel plates

(a) (b)

FIG. 1. Schematics of the problem. (a) In dimensional form. (b) Using non-dimensional variables. From

Ayats et al. (2021) with permission of the publisher.

where a and b are the strain rate of stretching along the x∗ and y∗-axis respectively.

The problem is rendered nondimensional after using h, h2/ν , ν/h and ρν2/h2 as units of

length, time, velocity, and pressure, respectively, leading to the dimensionless incompressible

Navier-Stokes equations

∇ ·u = 0, ∂tu+(u ·∇)u =−∇p+∇2u. (3)

The boundary conditions in dimensionless coordinates read

u(x,y,−1) =
ah2

ν
x ≡ σ−x, v(x,y,−1) = 0, w(x,y,−1) = 0, (4)

u(x,y,1) = 0, v(x,y,1) =
bh2

ν
y ≡ σ+y, w(x,y,1) = 0, (5)

where σ− = ah2ν−1 and σ+ = bh2ν−1 correspond to the non-dimensional strain rates of the lower

and upper plates, respectively. There are two orthogonal straight lines, one in each of the boundary

planes, where the velocity is zero (non-stretching lines), shown as dashed lines in Fig. 1.

In what follows, we assume the flow solution admits the solenoidal self-similar ansatz

u(x,y,z, t) = x f ′(z, t), v(x,y,z, t) = yg′(z, t), w(x,y,z, t) =−( f +g), (6)

where f (z, t) and g(z, t) are time dependent functions defined within the wall-normal domain

z ∈ [−1,1], and primes henceforth denote differentiation with respect to the nondimensional wall-

normal coordinate z. After formal substitution of (6) into the incompressible Navier-Stokes equa-
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Phase-locking flows between stretching parallel plates

(a) (b) (c) (d)

FIG. 2. Four possible shrinking-stretching configurations of the plates as a function of α . (a) 0 < α < π/2

(top stretches, bottom stretches), (b) π/2 < α < π (top shrinks, bottom stretches), (c) π < α < 3π/2 (top

shrinks, bottom shrinks), and (d) 3π/2 < α < 2π (top stretches, bottom shrinks).

tions (3), and differentiation with respect the wall-normal variable, we obtain the nonlinearly cou-

pled equations

∂t f ′′ = f iv +( f +g) f ′′′− ( f ′−g′) f ′′, (7a)

∂tg
′′ = giv +( f +g)g′′′+( f ′−g′)g′′. (7b)

Following Ayats et al. (2021), we assume zero mass-flux along finite vertical planes parallel to the

x and y axes, so that the solutions f and g of system (7) satisfy the boundary conditions

f (−1) = 0, f ′(−1) = Rsinα, f (1) = 0, f ′(1) = 0, (8a)

g(−1) = 0, g′(−1) = 0, g(1) = 0, g′(1) = Rcosα, (8b)

where R =
√

σ2
++σ2

− is the Reynolds number, and 0 ≤ α ≤ 2π measures the relative strength

of the two stretching walls (Marques et al., 2017). This gives rise to four possible stretching-

shrinking configurations of the plates, depicted in Fig. 2.

A Stokesian flow solution of (7), satisfying f iv = giv = 0 and boundary conditions (8), can

be easily obtained after neglecting the nonlinear terms. This solution is given by the third order

polynomials

f0(z) =
σ−

4
(z−1)2(z+1) =

Rsinα

4
(z3 − z2 − z+1), (9a)

g0(z) =
σ+

4
(z+1)2(z−1) =

Rcosα

4
(z3 + z2 − z−1), (9b)

becoming a good approximation of the exact solution for small Reynolds numbers, as seen in

Ayats et al. (2021). Henceforth in this study, we will characterize the dynamical properties of the
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Phase-locking flows between stretching parallel plates

flow by monitoring the time evolution of the three quantities

U(z, t) = u(1,1,z, t) = f ′, V (z, t) = v(1,1,z, t) = g′, W (z, t) = w(1,1,z, t) =−( f +g), (10)

that is, the three velocity components of the fluid at x = y = 1. From them, the velocity field

everywhere (6) can be easily obtained: (u,v,w)(x,y,z, t) = (xU(z, t),yV (z, t),W (z, t)). For sim-

plicity, these components will hereafter be denoted by U(z), V (z) and W (z) whenever the flow

field is steady, and by U(t), V (t) and W (t) when the unsteady flow is evaluated at the midpoint

wall-normal coordinate z = 0.

The governing equations, the flow domain and the non-stretching lines are invariant under the

symmetry H consisting in a half turn (rotation of π) around the straight line x = y = 0, z = 0:

(x,y,z) 7→ (y,x,−z). The action of H on the velocity field is

H : [u,w,w](x,y,z, t)→ [v,u,−w](y,x,−z, t). (11)

However, the boundary conditions are not H-invariant, and in fact H exchanges σ+ and σ−, or what

is the same change α into π/2−α . A velocity field for parameter values (R,α) is transformed by

H into a velocity field for different parameter values (R,π/2−α). We can explicitly write

H : [u,w,w](x,y,z, t;R,α)→ [v,u,−w](y,x,−z, t;R,π/2−α). (12)

The symmetry H is only a symmetry of the governing equations plus boundary conditions for the

parameter values α = π/4 and α = 5π/4, the case where the two boundary planes are stretching

at the same rate, σ+ = σ−. The action of H on the functions f , g, U , V and W is (Ayats et al.,

2021)

H : [ f ,g](z, t;R,α)→ [−g,− f ](−z, t;R,π/2−α). (13a)

H : [U,V,W ](z, t;R,α)→ [V,U,−W ](−z, t;R,π/2−α). (13b)

III. COMPUTATIONAL METHODS

In what follows, we explore time-dependent flow solutions of (7). To simplify the numerical

setting, we introduce the splittings

f (z, t) = f0(z)+F(z, t), g(z, t) = g0(z)+G(z, t), (14)
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Phase-locking flows between stretching parallel plates

where f0(z) and g0(z) correspond to the basic Stokes profile (9), satisfying the boundary condi-

tions (8), and F(z, t) and G(z, t) are deviations from this profile, satisfying Dirichlet-Neumann

homogeneous boundary conditions

F(±1, t) = G(±1, t) = F ′(±1, t) = G′(±1, t) = 0. (15)

After introducing (14) in (7), the initial-boundary value problem reads

∂tF
′′
= F iv +( f0 +F +g0 +G)( f

′′′

0 +F
′′′
)− ( f ′0 +F ′−g′0 −G′)( f

′′

0 +F
′′
)

∂tG
′′
= Giv +( f0 +F +g0 +G)(g

′′′

0 +G
′′′
)+( f ′0 +F ′−g′0 −G′)(g

′′

0 +G
′′
).

(16)

or simply

∂tF
′′
= L(F)+N1(F,G, f0,g0)

∂tG
′′
= L(G)+N2(F,G, f0,g0),

(17)

where L stands for the fourth order linear biharmonic operator, and N1 and N2 for nonlinear dif-

ferential operators, implicitly depending on the two parameters R and α through the Stokesian

profiles f0 and g0. Equilibrium solutions (F0,G0) of (17) satisfying (∂tF
′′

0 ,∂tG
′′

0) = (0,0) were

computed by Ayats et al. (2021) using a Legendre spectral method. Accordingly, we discretize

(17) using the same type of spectral expansions for the time-dependent deviation fields F(z, t) and

G(z, t), of the form 
F(z, t)

G(z, t)


=

M

∑
m=0

am(t)Φ
(1)
m (z)+bm(t)Φ

(2)
m (z), (18)

where

Φ
(1)
m (z) =


φm(z)

0


 , Φ

(2)
m (z) =


 0

φm(z)


 , φm(z) = (1− z2)2Pm(z), (19)

and where Pm(z) is the mth Legendre polynomial. We introduce the inner Hermitian product

between two arbitrary vector fields Ψ(z) = [ψ1(z) ψ2(z)]
T and Θ(z) = [θ1(z) θ2(z)]

T

(Ψ,Φ)
.
=

∫ 1

−1
Ψ(z)T ·Θ(z)dz. (20)

The system of nonlinear partial differential equations (17) is transformed to a system of ordinary

differential equations for the spectral coefficients a(t) = [a0 a1 · · ·aM]T and b(t) = [b0 b1 · · ·bM]T

by a Galerkin projection method. This transformation involves a formal substitution of the spectral

expansion (18) in (17), followed by the Hermitian projection on the set of orthogonal vector fields
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Phase-locking flows between stretching parallel plates

Φ
(1)
m and Φ

(2)
m defined in (19), leading to the 2(M + 1)-dimensional dynamical system for the

amplitude coefficients a and b:

M

∑
m=0

Aℓm
dam

dt
=

M

∑
m=0

Bℓm am +Nℓ,1(a,b) (21a)

M

∑
m=0

Aℓm
dbm

dt
=

M

∑
m=0

Bℓm bm +Nℓ,2(a,b) (21b)

where the matrix elements Aℓm and Bℓm are given by Legendre inner products

Aℓm =
∫ 1

−1
φℓφ

′′

m dz, Bℓm =
∫ 1

−1
φℓφ iv

m dz. (22)

Similarly, Nℓ,1(a,b) and Nℓ,2(a,b) are the projections of the nonlinear terms

Nℓ,1 =
∫ 1

−1
φℓN1(a,b)dz, Nℓ,2 =

∫ 1

−1
φℓN2(a,b)dz. (23)

The wall-normal integrals appearing above are accurately computed using Gauss-Legendre quadra-

ture formulas (Quarteroni, Sacco, and Saleri, 2010). For simplicity, we henceforth express the

resulting system of nonlinear ordinary differential equations (21) as

Aẋ = Bx+N(x), (24)

where x = [a0 a1 · · ·aM b0 b1 · · ·bM]T, and ẋ stands for time differentiation.

The time integration is carried out using a 4th-order IMEX method (BDF4 backward-differences

linearly-implicit method for the linear biharmonic term and 4th-order explicit extrapolation of the

nonlinear term) with the linear multistep formula

(25A−12∆tB)x( j+1) =

A(48x( j)−36x( j−1)+16x( j−2)−3x( j−3))

+∆t(48N( j)−72N( j−1)+48N( j−2)−12N( j−3)),

(25)

where x( j) = x( j∆t), and where the time-stepper is initialized using a 4th-order Runge-Kutta

method (Meseguer, 2020). In all computations presented here, the time step used ranges within

the interval ∆t ∈ [1× 10−4,2.5× 10−4]. Decreasing the time step below those values did not re-

sult in noticeable changes of the computed time-dependent solutions. As to the spatial Legendre

discretization, the number of Legendre modes lied within the interval M ∈ [35,50], following the

resolutions previously used by Ayats et al. (2021).
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Phase-locking flows between stretching parallel plates

A. Linear stability of steady flows

Let (F0(z),G0(z)) be an equilibrium solution of system (16), satisfying ∂tF
′′

0 = ∂tG
′′

0 = 0. For

the linear stability analysis of this steady profile, we perturb the flow by adding infinitesimal

perturbations of order O(ε), so that the disturbed profile reads

F(z, t) = F0(z)+ εF̃(z, t),

G(z, t) = G0(z)+ εG̃(z, t),
(26)

where F̃(z, t) = eλ tF (z) and G̃(z, t) = eλ tG (z), with F (z) and G (z) being the eigenfunctions of

the perturbation associated with the eigenvalue λ , satisfying homogeneous boundary conditions

F (±1) = G (±1) = F
′(±1) = G

′(±1) = 0. (27)

Introducing the perturbed fields (26) in (16) and neglecting O(ε2) terms, leads to the system of

linear partial differential equations

λF
′′ = F

iv +( f0 +F0 +g0 +G0)F
′′′+( f

′′′

0 +F
′′′

0 )(F +G )

−( f
′′

0 +F
′′

0 )(F
′−G

′)− ( f ′0 +F ′
0 −g′0 −G′

0)F
′′,

λG
′′ = G

iv +( f0 +F0 +g0 +G0)G
′′′+(g

′′′

0 +G
′′′

0 )(F +G )

+(g
′′

0 +G
′′

0)(F
′−G

′)+( f ′0 +F ′
0 −g′0 −G′

0)G
′′,

(28)

or, for simplicity,

λF
′′
= C1(F ,G ,F0,G0, f0,g0),

λG
′′
= C2(F ,G ,F0,G0, f0,g0),

(29)

where C1 and C2 are the linear actions resulting from the biharmonic operator and advective terms,

linearized in a neighborhood of (F0,G0). We again discretize the eigenperturbations using Legen-

dre spectral expansions 
F (z)

G (z)


=

M

∑
m=0

ãmΦ
(1)
m (z)+ b̃mΦ

(2)
m (z), (30)

so that, after the Hermitian projection, the linear stability analysis is reduced to solve a 2(M+1)-

dimensional generalized eigenvalue problem of the form

λAx = Cx. (31)

In the present work, the linear stability of all the equilibria formerly reported in Ayats et al. (2021)

has been monitored by computing the ten rightmost eigenvalues of (31) using Arnoldi iteration

combined with suitable Cayley transformations in the complex plane (Trefethen and Bau, 1997).
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Phase-locking flows between stretching parallel plates

B. Computation and Floquet linear stability of time-periodic flows

To compute relative periodic orbits beyond their region of linear stability, a Poincaré-Newton-

Krylov (PNK) method is devised. The method is essentially an adaptation of the one used for the

computation of modulated traveling waves in plane Poiseuille flow (Mellibovsky and Meseguer,

2015; Ayats, Meseguer, and Mellibovsky, 2020). In this case, the method solves the nonlinear

system of equations resulting from root finding for the map defined by consecutive crossings of a

Poincaré section P:

x → x̃ = P(x) = ϕ(x; t(x)), (32)

where ϕ(·; t) is the action of the uniparametric group or flow generated by (24), and t(x) is the

flight-time of the return map associated with x. Due to the large dimension of the dynamical

system, periodic orbits are obtained by solving P(x)−x = 0 by means of a Jacobian-free Newton-

Krylov method (Kelley, 2003; Knoll and Keyes, 2004). In the present analysis, all the reported

periodic orbits have been converged satisfying the tolerance criterion ‖P(x)−x‖< 10−10. Once a

periodic orbit x0 has been converged to the required tolerance, its linear stability analysis consists

in computing the leading (largest moduli) eigenvalues of the linearized Poincaré map in a neigh-

borhood of x0. The aforementioned leading eigenvalues are accurately approximated by means of

the Arnoldi iteration (Trefethen and Bau, 1997) applied on the linearized action of the Jacobian of

the Poincaré map at x0,

DεP(x0)≈
P(x0 + ε)−P(x0)

‖ε‖
, (33)

where ε is a small numerical perturbation from the periodic orbit. In this case, the norm of the

perturbation ε must be suitably chosen, so that it genuinely captures the linearized dynamics in

a neighborhood of x0, whilst ϕ(x0 + ε; t) is accurately computed by the RK4-IMEX4 scheme

before described. In this work, the computed leading eigenvalues are provided with a relative

error smaller than 0.1%.

IV. OSCILLATORY INSTABILITIES OF STEADY FLOWS

In Ayats et al. (2021), up to five non-symmetrically related families of steady flows were identi-

fied, and tracked within the parameter space (α,R). When increasing the Reynolds number, these

families of steady solutions interact by means of saddle-node and codimension-2 cusp bifurcations

leading to intricated branches, especially in the neighborhood of α = 5π/4, when both membranes
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Phase-locking flows between stretching parallel plates

(a) (b)

(c)

FIG. 3. Families of steady flows formerly identified in Ayats et al. (2021) for R = 22. (a) Wall-normal

velocity of the steady flows as defined in (10) at z= 0, covering all possible stretching-shrinking acceleration

rates as a function of α . Colored branches are linearly unstable. The branch A1 (solid black) is linearly

stable. (b) Radial velocity field of stable A1 steady solution for identical shrinking deceleration rates of

the plates (α = 5π/4). (c) U(z), V (z) and W (z) steady velocity profiles of A1 solution as a function of the

wall-normal coordinate z, and for selected stretching-shrinking acceleration rates.

are shrinking at the same deceleration rate. Figure 3a shows the wall-normal velocity of the afore-

mentioned five steady flow families for R = 22, covering all possible stretching-shrinking accel-

eration rates, parametrized by α . Following Ayats et al. (2021), these families are designated by

A1, A2, A3, B1, and B2. The two remaining families B̃1 and B̃2 are symmetrically related to B1,

B2, respectively, by the H symmetry: B̃1 = H B1, and B̃2 = H B2.

To uncover the dynamical relevance of these steady flows, the linear Arnoldi stability analysis

formulated in §III A has been comprehensively applied to the aforementioned solutions within the
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Phase-locking flows between stretching parallel plates

parameter range (α,R) ∈ [0,2π]× [0,33]. This analysis concludes that the A1 branch is the only

linearly stable flow for low or moderate Reynolds numbers. The remaining families of steady so-

lutions have been found to be unstable, even for the lowest Reynolds numbers they were identified

in Ayats et al. (2021). Despite some of these unstable branches have been found to undergo several

bifurcations leading to other steady or time-dependent flows, the latter appear to be dynamically

irrelevant, as they inherit the instability of the steady branches they stem from. For this reason, we

henceforth restrict ourselves to report only those instabilities corresponding to the stable branch

A1.

Figure 3b shows the radial velocity distribution of the A1 stable steady flow, for R = 22 and

α = 5π/4. This solution originates from the Stokesian flow (9) and, when both plates are shrinking

at the same deceleration rate, it is characterized by two staggered near-wall layers of inflow (blue)

and outflow (yellow) orthogonal jets. The three steady velocity profiles U(z), V (z), and W (z),

as defined in (10), are depicted in Fig. 3c for five different values of α , covering distinguished

stretching-shrinking acceleration rates of the top and bottom plates. The motivation for illustrating

the solution A1 for α = 5π/4 in Fig. 3b is that the oscillatory flows identified in this study arise

precisely when both plates are shrinking at identical or similar deceleration rates.

The routes that lead to oscillatory and other unsteady non-periodic flows are far from being

trivial. Figure 4 outlines the main results of the present study, as they will be later on described

in detail in the current and forthcoming sections. This diagram is a zoom-in of Figures 9a and

9c formerly reported in Ayats et al. (2021), covering the range (α,R) ∈ [3.6,4.25]× [23.0,32.0],

where the stable steady solution A1 has been found to exhibit oscillatory instabilities. To better

illustrate the mechanisms that lead to oscillatory flows, panels (a), (b), and (c) of Fig. 5 depict the

α-continuation of the solution branches A1 and A3 for R = 23, R = 26 and R = 26.7, respectively.

For R < 23.4, the A1 branch (solid black curve) is univalued and linearly stable, whereas A3 (solid

gray curve) is unstable. However, for R = 23 (depicted in Fig. 5a), the A1 branch already exhibits

two inflectional points, anticipating a simultaneous pair of cuspidal bifurcations, that appear at

a critical Reynolds number R = 23.4 (red bullets C3 and C4 in Fig. 4), as previously reported in

Ayats et al. (2021). For R > 23.4, the A1 branch develops a pair of saddle-node bifurcation points

emerging from C3 and C4 (black solid curves in Fig. 4). These saddle-node points are illustrated in

Figs. 4 and 5b for R= 26 (squares SN1, SN′
1, SN2 and SN′

2). Within the range 23.4< R< 25.5, the

family of A1 steady solutions bounded between the two outer saddle-node boundaries is linearly

stable. However, for R = 25.5 and α = 5π/4, this branch exhibits a Hopf bifurcation (white bullet
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Phase-locking flows between stretching parallel plates

FIG. 4. Bifurcation scenarios leading to time-periodic, quasiperiodic, phase-locked, and chaotic flows.

Stable periodic flows exist within the light gray shaded region, bounded by the Hopf and Neimark-Sacker

bifurcation boundaries (gray solid curves). Resonance locking regions (Arnold tongues) 2 : 5 (red), 1 : 3

(magenta), 2 : 7 (green) and 1 : 4 (blue).

H0 along the symmetry line α = 5π/4 of Fig. 4). As the Reynolds number is increased, this Hopf

bifurcation progressively expands outwards from the α = 5π/4 symmetry line, destabilizing the

central segment of the A1 branch (gray solid segment of curve between points H and H′ in Fig. 5b

for R = 26). Continuation of the loci of the two symmetrical Hopf bifurcation points leads to the

Hopf instability boundary, depicted as a solid light gray curve in Fig. 4, spreading outwards the

symmetry line α = 5π/4. The growth of the Hopf boundary is however hampered immediately

after by the merging of the A1 and A3 branches through a pinch mechanism, engendering an isola

of solutions (gray solid curve in Fig. 5c for R = 26.7) whose central portion now inherits the Hopf

instability. As a result of this merging, the Hopf instability eventually reaches the bounding saddle-

nodes of the A1-A3 isola, resulting in a Fold-Hopf codimension-2 bifurcation point (diamonds FH

and FH′ in Fig. 4). The merging of branches A1 and A3 does not affect the topological structure of

the flow; see solution point E located at the isola in Fig. 5c, whose velocity distribution is depicted

in Fig. 5d, still showing the two staggered inflow-outflow orthogonal near-wall jets. However, the

steady flows along the dislocated branch are different, as it can be seen from the solution D in
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Phase-locking flows between stretching parallel plates

(a) (b)

(c) (d)

FIG. 5. Hopf bifurcation route leading to oscillatory flows. (a), (b) and (c) show wall-normal velocity W

at mid plane coordinate (x,y,z) = (1,1,0) of the A1 and A3 steady flows solutions for R = 23, R = 26 and

R = 26.7, respectively. Solid black (gray) curves stand for stable (unstable) solutions. (d) Cylindrical cross-

section of radial velocity vr isocontours of detached steady flow solutions D (stable) and E (Hopf unstable)

indicated in (c) for R = 26.7.

Fig. 5c, whose velocity distribution has lost one of the near-wall jets close to the bottom plate

(Fig. 5d).

The Hopf bifurcation that takes place along the A1−A3 isola branch leads to stable oscillatory

flows (i.e., stable limit cycles), whose main features are shown in Fig. 6 for α = 5π/4, where

panel (a) depicts time-series of the three velocity components of the flow defined in (10), and

panel (b) shows U-W phase portrait projections of three stable periodic orbits for R = 26, R = 28

and R = 30.5. For this particular value of α , the domain along with the governing equations

are invariant under the H-symmetry transformation (12). According to equivariant bifurcation

theory, the resulting time-periodic solution arising from the Hopf instability of the H-symmetric

steady flow A1 may only break that symmetry by means of the so-called half-period shift and flip
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Phase-locking flows between stretching parallel plates

(a) (b)

FIG. 6. Time dependence characterization of oscillatory flows arising from the Hopf bifurcation of the A1

steady flow for α = 5π/4, and R = 26, R = 28, and R = 30.5. Color coding in (a) as indicated in (b); see

legends. (a) Time-series of the oscillatory flow velocity components U(t), V (t), and W (t), as defined in

(10). (b) (U,W )-phase portrait projection of the bifurcated periodic orbits.

(a) (b) (c) (d) (e)

A1 (stable) 0 T/4 T/2 3T/4

FIG. 7. Isocontours of radial velocity for α = 5π/4. (a) Linearly stable steady flow A1 for R = 25. (b)-(e)

Snapshots of the bifurcated time-periodic flow for R = 26 at t = 0, t = T/4, t = T/2 and t = 3T/4. Panels

(d) and (e) are related to panels (b) and (c) through the half period and flip symmetry (34), respectively.

mechanism (Kuznetsov, 2004). This symmetry breaking can be observed by simple eye inspection

of the time-series of the three velocity components shown in Fig. 6a, being more apparent for

R = 30.5, satisfying

(U,V,W )(t +
T

2
) = (V,U,−W )(t), (34)
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Phase-locking flows between stretching parallel plates

FIG. 8. Oscillatory flow for R = 26 and α = 5π/4. First column shows the time evolution of the velocity

components. Second column shows the (U,W )-phase portrait and isocontours of radial velocity vr. Movie

1 (Multimedia view) animates the oscillatory flow during two periods (red dots in the figure correspond to

the instants of time at which the isocontour frames is taken).

with T being the period of the oscillatory flow. This symmetry can also be discerned after com-

paring panels (b) and (c) with (d) and (e) of Fig. 7, respectively, showing snapshots of isocontours

of radial velocity along a complete cycle of the stable oscillatory flow. Before the Hopf bifurca-

tion, the steady flow A1 is characterized by two layers of orthogonal jets of opposed orientation,

aligned with the x and y directions of the top and bottom shrinking boundaries. This is illustrated

in Fig. 7a, showing the inward (blue) and outward (yellow) radial velocity distribution throughout

a cylindrical unit cross section. After the Hopf bifurcation, the intensity of these jets becomes

modulated in time, showing an alternate predominance of the inward and outward radial velocity

every half a period of the cycle. Movie 1 (Multimedia view) animates the solution along two time

periods; Fig. 8 shows the snapshot of the movie at t = 0.
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Phase-locking flows between stretching parallel plates

(a) (b)

FIG. 9. Leading eigenvalues (largest modulus) of the Poincaré map of time-periodic flows for α = 5π/4. (a)

and (b) showing spectra of a linearly stable and linearly unstable periodic orbit for R = 30.5 and R = 31.2,

denoted by black and white triangles in Fig. 4, respectively.

V. QUASIPERIODIC AND CHAOTIC FLOWS

The time-periodic flows described in section §IV have also been tracked, and their linear sta-

bility monitored. These flows are stable and take over the dynamics within a wide region of

the parameters explored; gray shaded area shown in Fig. 4. However, these time-periodic flows

eventually become linearly unstable for higher Reynolds numbers through a Neimark-Sacker bi-

furcation, typically leading to quasiperiodic flows or tori (Kuznetsov, 2004). This secondary bi-

furcation takes place along the Neimark-Sacker boundary depicted as a solid dark gray curve in

Fig. 4. For an accurate computation of this bifurcation boundary, the leading eigenvalues (those

with largest modulus) of the time-periodic flows have been computed by means of the Arnoldi

method described in §III B. Figure 9 depicts the modulus-leading eigenvalues of the Poincaré map

associated with the time-periodic flow for α = 5π/4, slightly below and above the Neimark-Sacker

bifurcation boundary. For R = 30.5 (black triangle in Fig. 4), the periodic orbit is still linearly sta-

ble, as its leading eigenvalues λ1 and λ ∗
1 shown in Fig. 9a lie within the unit disk in the complex

plane; apart from the neutral eigenvalue λ2 ≈ 1, associated with the eigenvector pointing in the di-

rection tangent to the uniparametric group ϕ(·; t) induced by (24). For R = 31.2 (white triangle in

Fig. 4), Fig. 9b clearly shows that the leading complex conjugated pair λ1 and λ ∗
1 has just crossed

the |λ | = 1 unit circle, with non-zero imaginary part, thus revealing a Neimark-Sacker bifurca-
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Phase-locking flows between stretching parallel plates

M ‖ε‖ λ1 (λ ∗
1 ) ‖λ1‖ λ2

10−2 −0.8712±0.5205i 1.0148 1.0015

35 10−3 −0.8691±0.5278i 1.0169 1.0015

10−4 −0.8689±0.5286i 1.0171 1.0015

10−2 −0.8692±0.5365i 1.0215 1.0015

50 10−3 −0.8689±0.5294i 1.0175 1.0015

10−4 −0.8689±0.5287i 1.0171 1.0015

TABLE I. Accuracy of leading eigenvalues of the Poincaré map of the unstable periodic orbit for α = 5π/4

and R = 31.2 (white triangle in Fig. 4) as a function of wall-normal Legendre modes M and finite-difference

‖ε‖ used to approximate the action of the Jacobian.

tion. The shown spectra of eigenvalues have been computed using M = 35 Legendre wall-normal

modes, and taking ‖ε‖ = 10−3 for the approximation of the linearized action of the Jacobian.

Henceforth in our analysis, M and ‖ε‖ are fixed to the aforementioned values, as further increase

in the number of wall-normal modes, or decrease in the size of ‖ε‖, did not result in significant

changes in the real or imaginary parts of the eigenvalues. This is reflected in Table I, that outlines

the numerical accuracy of the computed spectrum for α = 5π/4, R = 31.2, and as a function of

the number of wall-normal modes, as well as the finite-difference parameter ‖ε‖.

Above the Neimark-Sacker boundary curve, the dynamics is governed by stable quasiperiodic

flows (tori), usually characterized by two rationally independent frequencies (Kuznetsov, 2004).

Figure 10 shows the (U(t),W (t))-phase portrait, Poincaré cross section, the power spectrum of

the bifurcated torus, and its originating unstable periodic orbit, for α = 5π/4 and R = 31.2 (white

triangle in Fig. 4), just above Neimark-Sacker bifurcation boundary. This unstable periodic orbit

is characterized by a single frequency f1 ≈ 5.32 (see power spectrum in Fig. 10c ; in red). The

bifurcated torus inherits this main frequency, but it also incorporates a secondary one f2 ≈ 2.21,

as it can be clearly identified in the Fourier’s power spectrum shown in Fig. 10c (black). This

secondary frequency integrates a modulation in the time-periodicity of the formerly stable oscil-

latory flow, as illustrated in the phase portrait of the torus T2 shown in Fig. 10a (gray curve). To

better discern the modulation introduced by the quasiperiodic behavior, the originating unstable

periodic orbit (UPO) has also been included in Fig. 10a (red curve), along with a fragment of the

stable quasiperiodic orbit (black). Three points along the quasiperiodic orbit have been selected in
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Phase-locking flows between stretching parallel plates

(a) (b) (c)

FIG. 10. Dynamics of a quasiperiodic flows for (α,R) = (5π/4,31.2), immediately after the Neimark-

Sacker bifurcation. (a) (U(t),W (t))-phase portrait of unstable periodic orbit (red) and the stable torus T2

(gray). The black curve shows part of the quasiperiodic orbit. (b) Poincaré section W = 3 of the unstable

periodic orbit (UPO; red disk) and torus (black curve) shown in (a). (c) Fourier power spectra corresponding

to the unstable periodic orbit (red) and torus (black), indicating the UPO’s frequency f1, and the new

frequency f2, leading to a quasiperiodic regime.

A (UPO) B (T2) C (T2) D (T2)

FIG. 11. Isocontours of radial velocity corresponding to local U(t)-minima points A (UPO), and B,C, and

D (T2 orbit), indicated in Fig. 10a.

Fig. 10a, at instants of time where the U component of the velocity field reaches a local minimum

(black disks B, C and D), along with a reference point A of the UPO. The flow fields correspond-

ing to points A, B, C and D are depicted in Fig. 11, where the time modulation introduced by the

new frequency can be clearly recognized for example by looking at the pulsating intensity of the

inflow jets (blue), in the lower part of the cross-sectional projection of radial velocity of the panels
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Phase-locking flows between stretching parallel plates

FIG. 12. Quasiperiodic flow for R = 31.2 and α = 5π/4. First column shows the time evolution of the

velocity components. Second column shows the (U,W )-phase portrait and isocontours of radial velocity vr.

Movie 2 (Multimedia view) animates the quasiperiodic flow during two periods of f1 (red and black dots in

the figure correspond to the instants of time at which the isocontour frames are taken).

B, C and D. The movie 2 (Multimedia view) animates T2 and the UPO along the black curve in

Fig. 10a; Fig. 12 shows the snapshot of the movie at t = 0.

In general, quasiperiodic flows may also exhibit tertiary instabilities when increasing the

Reynolds number, often leading to more complicated or even chaotic dynamics. Within the con-

text of self-similar flows, former studies have reported transition to chaotic attractors by means of

period-doubling cascades (Watson et al., 1990; Espín and Papageorgiou, 2009; Marques et al.,

2017). In the present study, chaotic flows seem to emerge through the classical Ruelle-Takens-

Newhouse scenario (Newhouse, Ruelle, and Takens, 1978), where the stable T2 tori, formerly

produced at the Neimark-Sacker bifurcation, eventually lose their differentiability by means of

a homoclinic Poincaré tangle, commonly producing a strange attractor before a third rationally

independent frequency may arise (Abraham and Shaw, 1992). Figure 13 shows a zoom-in of the
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Phase-locking flows between stretching parallel plates

(a) (b) (c)

FIG. 13. Ruelle-Takens-Newhouse transition scenario to chaotic flows. (a) Parameter region where strange

attractors have been identified. (b) (U,V ) projection of Poincaré cross section at W = 3 of stable tori (red

and blue) and chaotic attractor (black) at the points indicated in (a) with triangles using the same color code.

(c) Power spectrum of U(t) for the chaotic regime.

region where chaotic flows have been identified, far away from the symmetry line α = 5π/4.

Within this region, a stable torus T2 at (α,R) = (4.14,28.4), red triangle in Fig. 13a, has just

emerged from the Neimark-Sacker bifurcation (red Poincaré section in Fig. 13b). This torus can

be tracked within this region by following a suitable path, consisting in gradually increasing the

Reynolds number whilst reducing α . At (α,R) = (4.1378,28.5), blue triangle in Fig. 13a, the

torus has increased in amplitude (blue cross section in Fig. 13b). At (α,R) = (4.1371,28.55), the

torus differentiability has already been lost (black triangle in Fig. 13a and corresponding cross-

section in Fig. 13b), and a strange attractor has already been formed. In particular, Fig. 13b clearly

shows a wrinkled topology of the strange attractor, still reminiscent of the Poincaré homoclinic

tangle. The power spectrum of the time-series of U(t), depicted in Fig. 13c, shows that the dy-

namics is weakly chaotic. We anticipate here that further increase in the Reynolds number, or

slight variations in α typically destroy this attractor, relaminarizing to other stable periodic states.

As a matter of fact, chaotic flows in the current problem seem to be quite elusive and non-generic,

as the quasiperiodic dynamics above the Neimark-Sacker bifurcation curve seem to consistently

collapse with resonant periodic regions, a phenomenon that will be addressed in section §VI.
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Phase-locking flows between stretching parallel plates

points A A′ B B′ C C′ D D′

α 3.983 3.871 4.237 4.082 4.109 3.745 4.138 3.716

R 30.86 30.86 29.44 29.44 28.90 28.90 28.38 28.38

TABLE II. Coordinates of the points where the resonance regions, shown in Fig. 4, are born.

VI. PHASE-LOCKING FLOWS

The quasiperiodic and chaotic flows described in the previous section are not structurally sta-

ble, as we have surprisingly identified a rich variety of resonant regions where these flows gener-

ically recover time periodicities, that is, the flow undergoes a phase-locking. These regions, usu-

ally known as Arnold tongues or horns, are precisely born along the Neimark-Sacker bifurcation

boundary (dark gray curve in Fig. 4). In this work, we have overall tracked four resonant regions

within the parameter space (although many other may exist), namely 2 : 5, 1 : 3, 2 : 7 and 1 : 4,

depicted in red, magenta, green and blue, respectively, in Fig. 4. These Arnold tongues are born

at points A, B, C, and D whose (α,R) coordinates are enlisted in Table II. Mirror-symmetric res-

onant regions (reflected through the α = 5π/4 line) also emerge from the points A′, B′, C′, and

D′, whose coordinates can also be found in Table II. Inside those regions, the quasiperiodic orbits

densely filling the stable torus, collapse into a periodic orbit on the torus, called a phase-locked

flow. Dynamical systems theory predicts that, within the resonance region or horn, phase-locked

periodic orbits come in pairs (Kuznetsov, 2004), one stable and the other unstable. This pair of

periodic orbits are simultaneously created or annihilated at a saddle-node of cycles. The red, ma-

genta, green, and blue colored curves appearing in Fig. 4 are precisely the loci of the saddle-node

of phase-locked cycles, which are indeed the boundaries of the Arnold tongue regions. These

curves have been computed by tracking (continuation) the phase-locked periodic orbits in parame-

ter space using the PNK method described in section §III B. Although, in general, resonant regions

tend to be supercritical (i.e., entirely contained above the Neimark-Sacker bifurcation boundary),

our exploration reveals that some of them are mildly subcritical, as they slightly protrude below the

Neimark-Sacker bifurcation boundary; see the cases 1:3 or 1:4 shown in Fig. 4, for example. That

implies the possibility of hysteretical behavior resulting in oscillatory flows that may suddenly

become phase-locked even before they become quasiperiodic. Left panels of Figs. 14a-d illustrate

stable (nodal; solid black) and unstable (saddle; dashed gray) phase-locked periodic orbits within
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Phase-locking flows between stretching parallel plates

(a) (b)

(c) (d)

FIG. 14. (U(t),W (t))-phase portrait (left) and corresponding Poincaré section W = 3 (right) of phase-

locked periodic orbits. Black (gray) indicating nodal-stable (saddle-unstable) solutions. (a) 2:5 at (α,R) =

(5π/4,31.4), (b) 1:3 at (α,R) = (4.08,29.6), (c) 2:7 at (α,R) = (4.1,29.2), (d) 1:4 at (α,R) = (4.12,29).

the four identified resonant regions. The right panels show the Poincaré sections corresponding to

these orbit pairs (i.e., fixed points of the Poincaré map), indicating the ordinality of the crossing

sequences.

A detailed description of each one of the resonant regions is out of the scope of this work.

However, we consider that the strong resonant case 1 : 4 deserves special attention, as it is one of

the most challenging and not completely explored bifurcations found in dynamical systems the-

ory. This case may lead to a large variety of bifurcation scenarios, depending on parameter values,

some of which have been comprehensively scrutinized (Krauskopf, 1994; Wang, 1990). Figure 15

describes in detail the particular bifurcation scenario that has been identified in our exploration. In

particular, Fig. 15a illustrates the parametric path 1©-10© used to explore the flow regimes emerg-

ing within that resonant region. The Poincaré sections corresponding to these flow regimes are

shown in panels (b) to (k). At point 1©, the time-periodic flow is the only stable regime; red

disk Fig. 15b. However, at point 2©, slightly to the right of the saddle-node of cycles, and before

crossing the Neimark-Sacker bifurcation boundary, a pair of phase-locked periodic orbits emerge;

blue disks (focus-stable) and bullets (saddle-unstable) shown in Fig. 15c. In this case, the time-
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Phase-locking flows between stretching parallel plates

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

FIG. 15. Bifurcation sequence of time periodic (red), resonant phase-locked (blue), and quasiperiodic

(black) flows, crossing the 1 : 4 resonance region for R = 28.5. (a) Parametric path indicating different

regimes along the sequence 1©-10©, whose (U,V )-Poincaré cross sections at W = 3 are shown in panels (b) to

(k). Full (half) disks indicate stable (unstable; one complex conjugate pair of unstable Floquet eigenvalues)

focus periodic flows, whereas bullets indicate saddle periodic orbits (one real unstable Floquet eigenvalue).
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Phase-locking flows between stretching parallel plates

periodic flow is still linearly stable, coexisting with the other two phase-locked periodic orbits.

The stable manifold of the unstable phase-locked orbit is the boundary between the basins of at-

traction of the two stable regimes. Figure 15d shows the phase portrait at point 3©, just after the

Neimark-Sacker bifurcation boundary has been crossed. The original periodic orbit is unstable

(half red disk, denoting one pair of unstable complex conjugated eigenvalues), and a stable torus

is born from it (closed black curve, encircling the unstable orbit). From points 4© to 5©, this torus

grows in size, collides with the saddle phase-locked orbit, and eventually disappears at a hetero-

clinic connection bifurcation, as shown in Figs. 15e-f. After the torus breakdown, the dynamics

is governed by the phase-locked stable orbit; point 6© shown in Fig. 15g. However, at point 7©, a

large stable torus (black curve in Fig. 15h) appears through another homoclinic connection of the

saddle phase-locked orbit. Whilst this outer stable torus grows in size, separating from the saddle

orbit, an unstable torus appears from another homoclinic connection of the saddle orbit; in this

case the tangency appears on the other side of the unstable manifold of the saddle. The unstable

torus surrounds the linearly stable focus orbit (gray curve shown in the inset of Fig. 15i, depicting

point 8© for α = 4.13678). This unstable torus has been computed by means of the so-called

edge-tracking technique (Skufca, Yorke, and Eckhardt, 2006), widely used in the computation of

saddle Navier-Stokes solutions arising in shear flows. For slightly larger values of α , the unstable

torus shrinks, eventually collapsing into the stable focus orbit, destabilizing it through a subcritical

Neimark-Sacker bifurcation. Figure 16a shows the continuation of the upper and lower solution

branches of 1 : 4 phase-locked orbits along the resonance region, illustrating the aforementioned

subcritical Neimark-Sacker bifurcation. The stable upper branch (focus, solid black curve) be-

comes unstable at point NS, close to the fold of phase locked orbit (white squares). The unstable

torus, whose amplitude (relative to that of the phase-locked orbit) is qualitatively illustrated as a

gray solid curve, emerges subcritically from the NS point, destabilizing the remaining part of the

upper branch (dotted curve). Figure 16b depicts the cross-section of the iterated Poincaré map

started from the two sides of the unstable manifold of the saddle orbit. Both iterations (red and

orange points) eventually are attracted to the large outer torus (in black). To guide the eye, in-

set in Fig. 16b indicates the stable and unstable directions of the saddle, along with the unstable

torus (gray curve) that acts as the edge state separating the basins of attraction of the stable phase-

locked orbit and that of the outer stable torus. Fig. 15j depicts point 9©, located immediately after

the Neimark-Sacker bifurcation of the focus orbit (half blue disk shown in the inset), and slightly

before the saddle-focus unstable orbits are about to collide at the fold of cycles, i.e., the boundary
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Phase-locking flows between stretching parallel plates

(a) (b)

FIG. 16. Continuation and stability of upper and lower 1 : 4 phase-locked solution branches for R = 28.5.

(a) Mean velocity U = T−1

∫ T

0
U(t)dt of the flows, with T being the corresponding period of the solutions.

Solid and dashed linestyles indicate stability (focus) and instability (saddle, one real unstable eigenvalue;

1R+), respectively. Dotted curve indicating unstable focus solution (a complex pair of unstable eigenvalues;

1C+). Inset showing the stable orbit at 8© (black disk, to the left of the Neimark-Sacker bifurcation NS;

black bullet), with leading eigenvalues λ±
1 = 0.968±0.248i of modulus |λ±

1 | = 0.999. White squares

indicating the saddle-node (SN) or fold of cycles of the two solutions. (b) Poincaré map iterates (red and

orange points) starting from the two sides of the unstable manifold of the saddle (blue bullet). Inset showing

Poincaré map’s flow orientations near the saddle and the unstable edge state torus.

of the resonance region. After that fold bifurcation, the two phase-locked periodic orbits disap-

pear, the only remaining invariant sets being the unstable central periodic orbit (red half disk) and

the outer stable torus (black curve); see Fig. 15k, illustrating point 10©.

The family of phase portraits illustrated in Figs. 15(b-k) is consistent with those previously re-

ported in dynamical systems theory (Krauskopf, 1994; Chow, Li, and Wang, 1994; Kuznetsov,

2004). In the aforementioned works, the analysis is based on a normal form derived for continuous

dynamical systems, where the invariant sets are equilibria and periodic orbits. The present case,

however, deals with the dynamics associated with the Poincaré map, so that equilibria (now fixed

points of the first return map) must be replaced by periodic orbits, whilst the limit cycles are now

represented by tori, i.e., invariant circles. Despite the different contexts, it can be concluded that

the sequence of bifurcations 1©-10© depicted in Figs. 15(b-k) perfectly matches with the scenar-
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Phase-locking flows between stretching parallel plates

ios described in the so-called region VII of the codimension-two parameter space, following the

standard nomenclature used in Krauskopf (1994) or Kuznetsov (2004), as this is the only region

where the periodic orbits may exhibit a subcritical Neimark-Sacker bifurcation (subcritical Hopf

bifurcation of equilibria in the continuous case), as formally proved by Wang (1990).

VII. CONCLUSIONS

This work has comprehensively explored a wide variety of self-similar time-dependent flows

(periodic, quasiperiodic, chaotic and phase-locked) arising between two infinite parallel plates

that can independently stretch or shrink in orthogonal directions. For this particular problem, a

rich diversity of exact Navier-Stokes steady solutions were already accurately computed in Ayats

et al. (2021), covering an extensive range of Reynolds numbers, as well as all possible shrinking-

stretching rates of the two plates. The present work is an extension of the previous paper, analyzing

time dependent behaviours that were not considered in the previous analysis.

Exhaustive linear stability analyses provided here conclude that, among all the aforementioned

flow families found in Ayats et al. (2021), the one that originates from the Stokesian approximation

(solution branch A1) is particularly relevant from a dynamical point of view, as it is the only stable

solution of the Navier-Stokes problem, at least within the range of Reynolds numbers explored.

The present study has therefore been focused on determining the fate of this particular type of

flow, monitoring its stability and subsequent bifurcations that may lead to other time-dependent

flows of dynamical relevance.

The A1 solution branch is found to be linearly stable for low or even moderate Reynolds num-

bers. However, it is found that this flow destabilizes when both plates are shrinking at the same or

comparable deceleration rates, leading to stable time-periodic flows that take over the dynamics

after a Hopf bifurcation takes place. This is consistent with the oscillatory nature of flows reported

in other wall-bounded problems in cartesian or cylindrical geometries with stretching or shrinking

boundaries (Watson et al., 1990; Marques et al., 2017; Marques and Meseguer, 2019), even in the

absence of the self-similarity assumption (Espín and Papageorgiou, 2009), and particularly when

the boundaries are contracting. The resulting stable time-periodic flows identified have also been

tracked with Poincaré-Newton-Krylov continuation techniques within the parameter space. When

the two plates are shrinking at exactly the same deceleration rate, the oscillatory flows satisfy the

so-called half-period shift and flip symmetry, as predicted by the equivariance of the equations and
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Phase-locking flows between stretching parallel plates

boundary conditions.

To predict ensuing bifurcations, the linear stability of these time-periodic flows has also been

performed by computing their modulus-leading Floquet eigenvalues with an Arnoldi method. It is

found that these oscillatory flows eventually become unstable by means of a Neimark-Sacker bi-

furcation that consequently leads to stable quasiperiodic regimes, where the phase space dynamics

is confined to locally attracting tori. Sporadically, the quasiperiodic dynamics may be lost due to

a Poincaré tangle mechanism that destroys the smoothness of the tori, so that the classical Ruelle-

Takens-Newhouse route to chaos is at work, differing from the period-doubling cascades observed

in Watson et al. (1990), Marques et al. (2017) or Espín and Papageorgiou (2009).

The most relevant finding here is that neither quasiperiodic nor chaotic flows are dominant.

Surprisingly, both types of flows seem to systematically collapse with other periodic orbits, where

the flow remains phase-locked and oscillatory again. This phenomenon is clearly ascribed to the

emergence of multiple resonance regions, namely Arnold tongues or horns, that progressively pop-

ulate the parameter space, above the Neimark-Sacker bifurcation boundary. Within these regions,

the generic attractors are phase-locked periodic orbits. In the present study, up to four different

resonance regions have been identified and their boundaries tracked. Of particular interest is the

1:4 strong resonance case, as it is one of the less explored codimension-two bifurcation scenarios

in dynamical systems theory. In the present study, the 1:4 resonance region has been meticulously

explored, and all the invariant sets (time-periodic or quasiperiodic flows - stable and unstable)

within it, identified. The bifurcation sequences found in this exploration perfectly match the theo-

retical scenarios foreseen by normal form theory (Wang, 1990; Krauskopf, 1994).
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