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A 6N-dimensional alternative formulation is proposed for constrained Hamiltonian systems. In
this context the noninteraction theorem is derived from the world-line conditions. A model of two
interacting particles is exhibited where physical coordinates are canonical.

I. INTRODUCTION

The theory of action at a distance in relativistic dynam-
ics! was very enhanced with Dirac’s work,> where a pro-
gram to construct this kind of theory was established.
Dirac’s program consists of obtaining a realization of the
Poincaré group & by ten functions which are the infini-
tesimal generators of & through the Poisson brackets.
The subgroups of &7 with generators maintaining their
free form were chosen and three possibilities were studied
in Dirac’s paper: the instant form, the front form, and the
point form. The noninteraction theorems (NIT’s)>* in-
volve the Dirac program adding new difficulties because
canonical positions and the correct world-line behavior
are allowed only in the free-particle case.

These difficulties are now solved in several ways. In
the predictive-relativistic-mechanics® formalism, which
works in the Dirac instant form, by removing the canoni-
cal condition for the position coordinates, the difficulties
were transferred to finding the symplectic form. In the
constrained Hamiltonian formalism®~® another point of
view was developed. It works in a (6N + 1)-dimensional
extended phase space and the evolution of the system is
given by a new generator which is independent of the
Poincaré generators, and the positions are rarely canoni-
cal.

The main aim of this work is to study the relations ex-
isting between this generator and those of the Poincaré
group, and also to clarify in what form the noninteraction
theorem is circumvented in the constrained Hamiltonian
formalism. We also exhibit a model with canonical posi-
tion coordinates that describes interacting particles.

II. CONSTRAINED HAMILTONIAN SYSTEMS

We shall consider this formalism as it was used in Refs.
6 and 7. This approach starts from T*MY endowed with
the symplectic form

N
Q= 3 dq¥ Ndp,, ,

a=1

(2.1

where (gf,p;) are a set of 8 N adapted coordinates for the
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symplectic form Q and with appropriate transformation
properties under the action of the Poincaré group Z; i.e.,
qF behave like positions and pj behave like momenta.
The generating functions of the Poincaré group associ-
ated to the Poisson brackets are
N N
Pu: Zpaw J,uvz 2 (qappau_qampav) .

a=1 a=1

(2.2)

To obtain the right number of variables, i.e., 6 N for the
dynamical problem of N point particles without spin, a
6N submanifold =, is defined. The pullback of Q gives
us a closed form wy on = and it can be obtained by defin-
ing =, through 2N functions:

Ka(q,p)zo, Xa(q,P)=0, a =15 .. ’N ’
verifying the relations

{Ka’Kb}:O’ {Ka?Xb] =S_lab s

(2.3)

where S !, is an invertible matrix.

The Poisson brackets associated to w, are the Dirac
brackets and can be expressed in terms of the constraints
(2.3) by the classical expression®

{f,g}*:{f7g} +{f:Ka}Sba |Xb7g}
- {era }Sab {Kb’g]
- {faKa }Sba {Xb’xc }Scd[Kd:g} .

In order to obtain a realization of the Poincaré group in
3, in general we cannot use the infinitesimal generators
given by

(2.4)

Po={Py,...}, Tu=1J,

s -} 2.5)

because they are not tangent fields to X, except for the
very special case in which X, and K, are Poincaré invari-
ants (and the Poincaré generators can be expressed as in
the free case). The standard option requires all the K,’s
to be Poincaré invariant while it requires some among the
X, not to be. Then there is an elegant procedure to obtain
a realization of 2 on =;° it consists of looking for the

combinations of the fields K,={K,,...} which are
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tangent to T*MY (but not to 2 because {X,,X b} is an in-
vertible matrix) with the A ; fields of the T*MY realiza-

tion of the Poincaré group, getting in this way for each:

Ara unique field At 7 tangent to 2,

N

2 {AI’Xb }Sbaf{a ’
a,b=1

Kj=K,— (2.6)
where S, is the inverse matrix of { K,;,X; 1.

Moreover, since the K, are Poincaré invariant, the Lie
algebra of these fields (2.6) agrees with the Lie algebra of
the Poincaré group.

We have got a symplectic 6N submanifold (phase
space) with a realization of the Poincaré group, A% 1, that
allows us to describe the dynamics of an N-particle sys-
tem.

Let z be the 6 N coordinates of Z; the time evolution of
any dynamical variable f(z) can be obtained through the
action of _P53, the generator for time translations on X:

a2 _Br=(Po.s)”

The parameter ¢t must be handled here with care: it is
not a common physical time (the phase-space points do
not correspond to simultaneous configurations of parti-
cles). We have, however, kept the symbol ¢ since this pa-
rameter is the one associated to Py.

Nevertheless, the constrained Hamiltonian formal-
isms®~® are a description of the physical system in a
(6 N 4 1)-dimensional submanifold, i.e., the extended
phase space containing =, and the parameter 7 to describe
the evolution of the physical variables.

It can be inserted in the description through the X, con-
straints that now depend on 7. Generally the 7 depen-
dence is chosen to be®

2.7

X1(q,p,7)=h(q,p)—T (2.8)

and the remaining X ,(g,p), A =2, ..., N, are 7 indepen-
dent.

Now for each value of 7 we have a 6 N-dimensional
space 2, and their union for every 7 gives us a (6N +1)-
dimensional extended phase space = that can be expressed
through the equations K,=0, a=1,...,N, and X ,=0,
A=2,...,N. In 2 we helye the same Poincaré realiza-
tion (2.6); in fact, each A7 field leaves =, invariant.

Furthermore, there is only a combination of the K,, fields

that is tangent to X verifying the conditions
HX, 40X, /9r=0,

- Noox, - N =

H= 2 or SbaKa: 2 SlaKa (2.9)

a,b=1 a=1

For the second equality we have taken into account the
particular expression of the X, constraints, in which
Xi=h —1and X4, A=2,...,N, are 7 independent. The
vector field H commutes with the Poincaré generators
(2.6) and the application

eoHis L3 (2.10)

commutes with the action of & in each =,. An isomor-
phism can be established among the 3, that preserves the

realization of Z in each =..° In this way a contact struc-
ture on X is defined, where an Abelian extension of the
Poincaré group ##® .« acts. ./ is the one-dimensional
algebra generated by H. Then the equation of evolution
for any physical variable f(q,p) is given by
af Hf .

dr

Any of these models must be completed by giving the
relation between the (g,p) coordinates on X, or z in X,
and the physical positions x% of the particles in Min-
kowski space for any inertial observer. In all the models
we know the physical positions are identified with the
coordinates on X.

The N projections

=M,

(2.11)

(g,p)—q¥ (2.12)

allow us to build the N world lines of the N-particle sys-
tem using the solution in = of the following equations of
motion:

dgf ., apf -,

dr =Hgqg/, dr =Hpy . | (2.13)
Let (¢4(7390,p0 W5 (T390,P0)) be the general solution.

The problem is how the Poincaré standard action on
M, and the realization (2.6) of the Poincaré group can be
made compatible. The M, projections of a = trajectory of
the system and the ones of the Poincaré-transformed tra-
jectory in = must be related by the standard transforma-
tion of Z in M,,%" ie., given a transformation (A,A)
with parameters (ep;I=1,...,10), functions
74(T;q0,P0;€r) must exist such that

e (74;G*(€13q0,p0)) = A [ e (1390,p0) — A1,

where G* is the action of the realization of & in = on
(go,po)- Their infinitesimal expressions are

(2.14)

v ® Sy |i=1,23

(A* A) Ho l [t i

T e g, 00, (2.15)
(Ri—ADe He |,y ... .

These equations are restrictions on the constraints and
they are known as the world-line conditions (WLC). If
the constraints do not verify (2.15) the M, trajectories of
the particles do not transform correctly under the Poin-
caré group. In this way, we have constructed two dif-
ferent dynamical systems: the one with the H generator
gwmg the “time evolution” and the other one in = with
Po as evolution operator How can both systems be relat-
ed? It can be shown’ that this relation is the same as the
one existing between the (6N + 1)-dimensional extended
phase space and the 6 N-dimensional phase space in classi-
cal mechanics. We are going to prove that the M, trajec-
tories of the particles, projecticns of the = and = ones,
coincide by adding the time ¢ to the zero component for
every inertial observer to the projections of the trajectories
in 20.
The equations of motion in X, are
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495 _px.p dp§
dt =04,

and let

(2.16)

(f(t;90,p0),85(t;90,P0))

be its solution corresponding to the initial conditions

(go,po)EZy. Then we can choose N functions
74(2390,P0) in such a way that

N6t +&(2;90,P0)=8%(74390,P0) - 2.17)
Their infinitesimal expressions are

t(nh+Phgt)=1,Hgt . (2.18)

The functions 7, can be eliminated by using the zero
component and we obtain

—

Ptq.  Hg!

Ptgd—1 Hg?

i=1,2,3,
1=1,...,N.

(2.19)

These equations coincide with (2.15) for the _PSE genera-
tor because ﬁoqa =mnf. Then the physical trajectories are
the same provided that the WLC (2.15) holds. From
(2.15) and (2.19) we obtain the WLC in the =, description:

== ; (2.20)

From this result we can see the “irrelevance” of the
eleventh generator H on 2, since it does not contain any
dynamical information which has not been previously in-
troduced by the ten Poincaré generators. The use of H
and 3 instead of P§ on 3, is a question of taste or con-
venience, but it is empty of any physical content. A simi-
lar situation can be found in classical dynamics between
the extended phase space and the phase space.

There is, however, a difference between the common
6N +1 to 6N transition in analytical mechanics and the
one presented in this paper. The equivalence here has
been established paying attention only to world lines (i.e.,
to the ¢’s and not to the p’s at all).

In predictive relativistic mechanics (PRM) we have a
similar situation. There are two equivalent formula-
tions,'° one in a 6 N-dimensional space with P, generating
the evolution and another in an 8 N-dimensional space
adding to the Poincaré group an Abelian extension gen-
erated by commuting fields. The choice between them is
also a question of taste or convenience.

III. THE NONINTERACTION THEOREM

The relativistic models of action at a distance run into
difficulties with the noninteraction theorem (NIT),>* and
hinder the construction of relativistic theories. We will
use the Leutwyler version of the NIT:*

(i) We have a 6 N-dimensional symplectic manifold with
adapted coordinates.

(ii) In this manifold a realization of the Poincaré group
with functions A; through the Poisson brackets acts.

(iii) The equations of evolution are

={P0’P¢§}

and the trajectories in M, are given by (t,g.(1)), where
q.(t), a=1,...,N are the solutions of the evolution
equations.

(iv) The trajectories in M, transform correctly under
the Poincaré group, i.e.,

{Pi’qa” :“5{, {Ji,%j}=€ijk%k ’ .

. (3.1
{Kis9aj} = —4ai{P0,94} -

Then the trajectories of the particles are straight lines,
i, a canonical formalism with canonical ¢, and
representing the instantaneous physical positions can only
describe free particles.

Provided that the constrained Hamiltonian models usu-
ally work in a (6N + 1)-dimensional extended phase space
and the evolution operator is not §0 but the eleventh gen-
erator H, some authors® have suggested the existence of
this generator as the reason for giving up the NIT.
Nevertheless, we have seen in Sec. II the equivalence of
the (6N +1)-dimensional formulation with the 6N-
dimensional one using —P)S as evolution generator, that is
to say, the trajectories of both models coincide. Then we
can look at the 6 N-dimensional version and see if the NIT
holds.

When we check if this 6 N-dimensional version agrees
with hypotheses (i) and (ii) of the NIT, we can easily see
that two conditions are not generally accomplished.

(a) The g, coordinates are not generally canonical with
respect to the Dirac brackets associated with the symplec-
tic form w, of 2, i.e., {q,,,qb} 0.

(b) The g, coordinates are generally not simultaneous;
i.e., (£,gi(¢)) is not the trajectory for the particle in Min-
kowsk1 space. This is so because the constraints K, =0
and X, =0 fix the values for q2 and p? as functions of 9
and p/} (it happens to be so in all the models we know, al-
though nobody has imposed this condition explicitly), and
from (2 17) we have as the trajectory in
M, (t +£2¢t;C.1),fi(¢;C.1.)). Then condition (iv) is not
accomplished.

Now it can be asked, if only one of these conditions (a)
or (b) is given up , whether or not we arrive at the nonin-
teraction theorem; in Ref. 6 the authors proved that
simultaneity in the two-particle case leads to no interac-
tion. We are going to prove that this is true also when we
have an N-partlcle system

Lemma. X,=

[Xa,Xb}Z{%?,Qb}=O ,
{Xa»q5} =1{q5»q5} =0 .

Then from (2.4) we have

{Qa,qb }* =0, effectively

{qﬁ,q; }* = {%ﬁ?ql}’} =0,
i.e., the simultaneity (g2=r, Va) leads to canonical posi-
tions g, [condition (i)] and furthermore in Zy(7=0) we
have ¢, =0, Va =1, ..., N, and the trajectory in M, for
the particle is (z,q.(¢)) [condition (iii)]. The WLC guaran-
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tees that the trajectory has the right Poincaré behavior’
[condition (iv)], and the system verifies all the hypotheses
of the NIT; then in the constrained Hamiltonian models
the simultaneity (in =) for the g, leads to noninteraction:
the trajectories are straight lines.

Therefore the nonsimultaneity for different particles is
an essential condition in the constrained Hamiltonian
models to describe interacting-particle systems.

Now we give an example where it can be seen that
canonicity for the physical coordinates ¢, permits
interacting-particle systems.

IV. AN INTERACTING MODEL
WITH CANONICAL PHYSICAL COORDINATES

From expression (2.4) we can easily find some condi-
tions! assuring the canonical property of the g, coordi-
nates in 2. These are

{Xa,Xblzo, {Xaaql;}zo- (4-1)

These can be done by choosing the X, constraints de-
pending only on the coordinates g%, .

Furthermore the model must verify the WLC to assure
the correct transformation of the trajectories by the action
of the Poincaré group. An easy way to guarantee the
WLC is to take all the X, excepting one Poincaré invari-
ant.’

Let us introduce the following notation for a two-
particle system:

+
X"=il—5—qi, z¢=qf —q%, P*=pi+pt,

(4.2)
u PP © p P'P, FE—TI* g"
yr= ) :Hv=7’v— PZ,a:H,,a

(P,X) and (y,z) are canonical conjugate variables and @ *
is the orthogonal projection of a* to the vector P¥.

The following constraints verifying the above-
mentioned conditions give us an interacting model of a
two-particle system:

K,=5(p,*+m)+V(Z), a=1.2
(4.3)

X1=X%—1, X,=2>4+4,

where V' is an arbitrary function and A4 a constant.
The K,, a =1,2 are chosen in this way to guarantee!!
that

{Kme } =

Let us look for the invertibility of the matrix S,,.
Straightforward calculation gives us

1

(KaX1} = (X, 2(P,2)— (X,p,)

{Ka Xz } =(—=1)2(p,,2) , (4.4)
1

DetS ™! = 2 (X )Pz —2(X,p)(p2.2)

+(X’P2)(P1,Z)]=A B

where (a,b)=a"b, is the product of the space M.
We can see that detS=£0, except perhaps for very spe-
cial configurations that can be excluded from 2,.or =.

The evolution field H generating the evolution in X
from (2.9) will be

H= 2 51K, "‘—[(Pz,Z)K1—(P1,Z)K2] 4.5)

a=1

A lengthy and tedious calculation gives us
ﬁq#:Bﬁ“-}—C,pf ,

H(Hg!)=B,*+C,pt+

- (4.6)
AZ Z(P Z)(y,Z)(pa,Z)Pa ’

where B;,C;, i =1,2 are involved scalar functions of the
variables g¥ and pj}.

We can see now that H( ﬁqé‘) is not parallel to ﬁq{,‘ and
the trajectories are not straight lines; therefore the parti-
cles interact. The constraints (4.3) give us the g2 py com-
ponents but the spatial coordinates are arbitrary.

So the vectors Z#, p¥, p4 are linearly independent ex-
cept for some very special configurations. Furthermore,
in gerieril B,/B,#C,/C,. Therefore from (4.6) we see
that H(Hg/') cannot be parallel to I_:Iq!,‘ except for some
isolated points (inflection points) of the trajectory.

Then this model with canonical position coordinates is
proved not to be a free-particle model due to the non-
simultaneity of the g, coordinates.

The model proposed here has been worked out in the
(6N +1)-dimensional version because most of the models
in the literature are presented in this way. Hence, the
eleventh generator H has been used to define the “veloci-
ties” and ‘“‘accelerations,” i.e., ﬁq,’,‘ and ﬁ(ﬁq,ﬁ‘ ). Howev-
er, dealing with the model in the 6 N-dimensional formal-
ism would not represent any additional work. The 7-
dependent constraint X 1— X%—7 would then become
X;=X?and Poq,, and PO(P 0g4) would have to be taken
as velocities and accelerations, respectively. As in the case
we dealt with, the latter vectors would not be parallel,
anyhow.

V. CONCLUSION

There are two main conclusions to this paper. One is
the existence of an alternative 6 N-dimensional approach
to the usual®’ constrained Hamiltonian models. In this
6 N-dimensional formulation we can obtain the same
world lines (generated by P§) as in the (6N + ll-
dimensional approach. The trajectories generated by H
are defined through the N projections Il,, while the _P%
ones are obtained adding the time ¢ to the zero component
of the solution (2.17). This is the same mechanism used
in classical mechanics to obtain the relation between the
trajectories in the phase space or in the extended phase
space.

The second conclusion is the poss1b111ty of the applica-
tion to this formalism of the known noninteraction
theorem>* due to the 6 N formulation of the model. The
known results from other relativistic formulations (predic-
tive relativistic mechanics and constrained systems) seem
to make us conclude that the noncanonical property of the
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positions permits us to circumvent the NIT, but we have
shown that the nonsimultaneity is the essential property
to give up the noninteraction theorem in the case of con-
strained Hamiltonian models. The example in Sec. IV
shows that the canonical behavior for the physical posi-
tions is not enough to forbid interaction.
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