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Time-dependent patterns in quasivertical cylindrical binary convection
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This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation
in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret
coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect
in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈ 0.036 rad = 2◦ strongly
influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes
the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along
the direction of inclination, and produces an enhanced separation of the two components of the mixture. The
competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed
in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus
on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state
(SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical
confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential
ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where
regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We
characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of
convection.
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I. INTRODUCTION

The study of convective flows in binary mixtures plays an
important role in many natural phenomena and engineering
applications. Double-diffusive instabilities induced by the
interaction of two fields that diffuse at different time rates are
behind many noteworthy phenomena in geophysics [1], astro-
physics [2], and, especially, in oceanography [3–6]. Driven by
the difference in the molecular diffusivities of heat and salt,
the double diffusion of salinity and temperature contributes to
mixing and induces interesting flow phenomena in the ocean,
such as thermohaline staircases and salt fingers (see Radko [7]
for a detailed review of the role of double-diffusive convection
in oceanography). Examples of industrial applications include
crystal growth processes [8] and solar ponds [9].

The combined effects of thermal and solutal buoyancy
forces lead to complex flow structures that are also very
interesting from a fundamental fluid dynamics and bifurcation
theory perspective. Many theoretical and numerical studies on
this topic, though, are concerned with the double diffusive
problem, in which the flows induced by the buoyancy forces
result from the external imposition of both thermal and solutal
boundary conditions in the absence of cross-diffusion. How-
ever, the dynamics is especially interesting in the case of binary
mixtures, in which the generation of concentration fluxes by
temperature gradients, known as the Soret effect, gives rise
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to a variety of convection patterns. Thus, the components
of miscible ordinary two-component mixtures such as water-
alcohol, normal He3–He4 mixtures or salt–water mixtures, or
the components of colloidal fluids, such as ferrofluids [10], tend
to separate in an imposed thermal gradient, and this separation
in turn alters the driving force for convection. The Soret
coefficient ST measures the strength of the Soret coupling, and
its sign determines the behavior of the mixture. With ST > 0,
the heavier component of the fluid is driven into the direction of
lower temperature, while with ST < 0, the heavier component
migrates towards the hotter boundary. The driving mechanisms
in binary convection are controlled by two nondimensional
numbers: the Rayleigh number Ra, measuring the applied
temperature stress, and the separation ratio S, proportional to
ST , and quantifying the solutal driving.

In this work we are concerned with thermal convection in
a binary fluid layer heated from below, which is a prominent
example of a macroscopic dissipative system that undergoes a
great variety of pattern forming instabilities when driven away
from equilibrium by external stresses [11–13]. We will analyze
the behavior of mixtures with ST > 0, for which the solutal
density variations enhance the thermal density variations and
further destabilize the fluid layer heated from below. Since
the concentration gradient also contributes to the convective
behavior, the onset of convection takes place for smaller
heating than in the pure fluid case. Experiments on vertical
cylindrical cells performed in the 1980s [14,15] revealed that
near onset the motion is dominated by concentration gradients
(Soret regime), far from threshold convection selects structures
observed in pure fluid convection (Rayleigh regime), and in
the crossover region complex time-dependent dynamics arises.
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Direct numerical simulations in periodic rectangular cells,
and few-mode weakly nonlinear models, provided the phase
diagrams of the stable convective states (stationary squares,
rolls, crossrolls, and oscillatory crossrolls) that organize the
dynamics [16–18]. Although there have been previous three-
dimensional (3D) numerical simulations in cylindrical cells
with vertical heating in pure fluids (e.g., Refs. [19–22]), in
binary mixtures they are scarce and, to our knowledge, mainly
limit to ST < 0 mixtures [23,24].

The aim of the present work is to analyze the effect of
slightly tilting the cell an angle α on the stability of the
previous patterns. Tilting a cavity is a simple and intrinsic
way of introducing a shear mechanism in the convection
layer. The shear breaks the rotational isotropy of the layer
and generates a large-scale circulatory shear flow (LSSF). An
interplay with the double-diffusive convective mechanisms is
going to take place. The resulting vertically sheared motion
will differentially advect properties across lateral fronts and the
mixing and transport properties (heat, momentum), are going
to be affected. Determining to what extent the dynamics is
modified when a convective layer is tilted is an important issue
to many practical applications, since convective systems are
often inclined with respect to gravity in nature. Even when
the cavity is intended to be placed horizontally, a very slight
inclination exists in a real physical situation.

In spite of the importance of natural convection in tilted
cavities, previous numerical works on binary mixtures are
scarce and mostly limited to the linear regime and primary
bifurcations in two dimensional or extended configurations.
The effect of inclination on three-dimensional (3D) convection
in a cylindrical thermal diffusion cell (a laterally heated
cell designed to measure the Soret coefficient) was studied
numerically in Ref. [25], with the aim of modeling a spatial
(microgravity) environment. Many of the interesting effects
in Soret-induced convection originate from the difference in
relaxation times between the temperature and the concen-
tration field due to the sharp contrast between thermal and
solutal diffusivities, but this makes simulations much more
costly.

Very recent three-dimensional numerical works deal with
the study of inclined layer convection in one-component fluids.
Subramanian et al. [26] analyze in extended layers the rich
variety of spatiotemporal patterns that had been observed
experimentally by Daniels et al. [27,28] when varying the
inclination angle. Torres et al. [29] study the transition from
the Rayleigh-Bénard convection to the heated-from-the-sides
configuration in parallelepipedic cavities. Both works cover a
wide range of inclination angles, from quasi-Rayleigh-Bénard
convection to the heated from the side configuration. In
cylindrical geometry, a pick of the convective patterns arising
in a tilted cylinder, for much larger heating and angles also
covering the Rayleigh-Bénard case and vertical convection is
shown in Ref. [30].

Among the relevant numerical works in inclined 2D binary
convection, an analytic and numerical study of the natural con-
vection in an inclined shallow cavity is presented in Ref. [31],
where bifurcation diagrams for the onset of convection with
different boundary conditions are computed. Other 2D numer-
ical works in tilted cavities restrict to the particular case where
the opposing thermal and solutal buoyancy effects are of equal
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FIG. 1. Sketch showing the geometry of the cell and the choice
of axis orientation. The component of gravity along the inclination of
the cell, gx , is much smaller than the vertical component, gz.

magnitude, in which the system admits a conductive basic state
[32,33].

Very recently, an outstanding experimental work on slightly
inclined binary convection in ST > 0 mixtures reports time-
dependent convective patterns that differ substantially from
the square, roll, and cross-roll patterns observed in nonin-
clined binary convection [34]. Some unexpected results are
obtained: Pattern formation seems to be strongly affected
by marginal inclinations and complex time-dependent states
exhibiting flow motion in opposite directions along parallel
lanes, named superhighway convection (SHC) by the authors,
have been observed in the Soret regime. Motivated by this
work and using the same fluid parameter values as those of
the experiment, we seek to obtain numerically and charac-
terize the patterns observed in the experiment and explore
the dynamics for moderate values of the external heating
Ra and small inclinations of the cell. Numerical simulations
are a very useful tool to deepen in the knowledge of the
underlying dynamics, since they allow to overcome some of
the limitations of the experiment, such as the fact that optical
measurements could only be obtained in the central part of the
cell [34].

The organization of the paper is as follows. In Sec. II, we
formulate the equations, boundary conditions, and symmetries
of the system, and we explain the numerical methods used. In
Sec. III, the main results are discussed: the properties of the
LSSF, of the state of SHC, and of a complex state involving
a heteroclinic connection between the periodic SHC state and
the stationary longitudinal roll state (SHC-roll) are discussed in
Secs. III A, III B, and III C, respectively. Finally, we summarize
and outline the relevance of our results in Sec. IV.

II. FORMULATION OF THE PROBLEM: EQUATIONS,
SYMMETRIES AND NUMERICAL METHODS

We consider Boussinesq binary-fluid convection in a cylin-
drical cell of height H and radius R, slightly inclined an angle
α with respect to the horizontal. The cylinder is heated from
below, �T being the temperature difference between the lids.
The z axis is taken along the axis of the cylinder, the origin
is located in the hotter lid, and the x axis is chosen in such a
way that the gravity is contained in the x–z plane (see Fig. 1).
Thus,

g = g sinα êx − g cosα êz.

We split the temperature, T , and concentration of the denser
component, C, fields in a linear profile in z and fluctuations
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�∗ and �∗,

T = T0 + �T

(
1

2
− z

H

)
+ �∗, (1a)

C = C0 − C0(1 − C0)ST �T

(
1

2
− z

H

)
+ �∗, (1b)

where T0 and C0 are the mean values and ST is the Soret co-
efficient. With this decomposition the mass flux only depends
on the gradient of �∗ and �∗.

Scaling lengths with the height of the cylinder H , time
with the vertical thermal diffusion time H 2/κ , κ being the
thermal diffusivity, temperature with �T and concentration
with −C0(1 − C0)ST �T , inclined binary fluid convection is
described by the following nondimensional equations:

∇ · u = 0, (2a)

∂tu + (u · ∇)u = −∇P + σ∇2u + Razσ (� + S�)êz

− Raxσ (� + S�)êx

+ Raxσ (1 + S)
(
z − 1

2

)
êx, (2b)

∂t� + (u · ∇)� = w + ∇2�, (2c)

∂t� + (u · ∇)� = w + τ (∇2� − ∇2�), (2d)

where u denotes the nondimensional velocity field, w its
z component, P is the nondimensional kinematic pressure
plus the contributions of the gravitational force that can be
written as a gradient, � the nondimensional fluctuation of
the temperature and � stands for the rescaled fluctuation of
the concentration.

The system is specified by the inclination angle α and
four dimensionless parameters: the Rayleigh number Ra that
provides a dimensionless measure of the vertical imposed tem-
perature difference �T , the separation ratio S that measures
the concentration contribution to the buoyancy force due to
cross-diffusion, and the Prandtl and Lewis numbers σ , τ , in
addition to the aspect ratio 
 = R/H . These parameters are
defined as follows:

Ra = γg�T H 3

κν
, S = C0(1 − C0)

β

γ
ST ,

σ = ν

κ
, τ = D

κ
,

where γ and β are the thermal and concentration expansion
coefficients, D is the mass diffusivity, and ν is the kine-
matic viscosity. In the equations Rax = Ra sin α and Raz =
Ra cos α. More details about the obtention of these equations
can be found in some previous works in related configurations
[35,36].

We consider impermeable and nonslip boundary conditions,
with fixed temperature at the lids and insulating boundaries on
the lateral wall:

u = � = ∂z(� − �) = 0 on z = 0, 1, (3a)

u = ∂r� = ∂r (� − �) = 0 on r = 
. (3b)

As a measure of the strength of convection we will use the
dimensionless mean kinetic energy defined as

E =
∫ 1

0

∫ 2π

0

∫ 


0 u · u r dr dθ dz

2 π
2
. (4)

The previous system of nondimensional equations (2) are
written in cylindrical coordinates (r,θ,z) as follows:

∇ · u = 0, (5a)

∂tu + [(u · ∇)u]r = −∂rP + σ [∇2u]r − Raxσ

[
(� + S�)

− (1 + S)

(
z − 1

2

)]
cos θ, (5b)

∂tv + [(u · ∇)u]θ = −1

r
∂θP + σ [∇2u]θ + Raxσ

[
(� + S�)

− (1 + S)

(
z − 1

2

)]
sin θ, (5c)

∂tw + [(u · ∇)u]z = −∂zP + σ [∇2u]z + Razσ (� + S�),

(5d)

∂t� + (u · ∇)� = w + ∇2�, (5e)

∂t� + (u · ∇)� = w + τ (∇2� − ∇2�). (5f)

The system of Eqs. (5) and boundary conditions (3) has been
solved numerically using the algorithm described in Ref. [37],
which can be summarized as follows. To integrate the equa-
tions in time, we use the second-order time-splitting method
proposed in Ref. [38] combined with a pseudospectral method
for the spatial discretization, Galerkin-Fourier in the azimuthal
coordinate θ , and Chebyshev collocation in r and z. The radial
dependence of the functions is approximated by a Chebyshev
expansion between −R and R but forcing the proper azimuthal
parity of the variables at the origin [39,40]. Steady solutions
have been computed with a Newton’s method. We have used a
first-order version of the time-stepping code described above
for the calculation of a Stokes preconditioner that allows a
matrix-free inversion of the preconditioned Jacobian needed in
each Newton iteration [41]. The corresponding linear system
is solved by an iterative technique using a GMRES package
[42]. As far as the linear stability analysis of the steady states
is concerned, once they have been calculated by the method
described before, estimations of eigenvalues and eigenvectors
of the linearized problem have been obtained with an Arnoldi’s
method.

Equations and boundary conditions are equivariant under
the group of symmetries G that contains the transformations
{I,R1,R2,R3}, where I stands for the identity, R1 is a reflection
with respect to the middle longitudinal vertical plane (y =
0), R2 is a point symmetry with respect to the center of the
cylinder, and R3, which is the composition of the previous
transformations, is a rotation by π about the line x = 0, z =
1/2, the diameter parallel to the y axis located in the center of
the cylinder. The G group has three subgroups {I,R1}, {I,R2},
and {I,R3}, which are all different but isomorphic to Z2. In
addition, G can be generated by combining any two of these
three Z2 subgroups, so we write G = Z2 ⊗ Z2 ≡ D2, where
⊗ indicates the direct product of the groups, used when each

023108-3



ARANTXA ALONSO, ISABEL MERCADER, AND ORIOL BATISTE PHYSICAL REVIEW E 97, 023108 (2018)

element of either group commutes with every element of the
other group.

These transformations act on the cylindrical components of
the velocity field and deviation of the temperature u,v,w, as
follows:

R1 : (r,θ,z) → (r, − θ,z),

(u,v,w,�,�) → (u, − v,w,�,�),

R2 : (r,θ,z) → (r,π + θ,1 − z),

(u,v,w,�,�) → (u,v, − w, − �, − �),

R3 : (r,θ,z) → (r,π − θ,1 − z),

(u,v,w,�,�) → (u, − v, − w, − �, − �).

III. RESULTS

To perform the simulations discussed in this section we
have taken as reference values those of the experiment [34].
The nondimensional parameters for the isobutylbenzene–n-
dodecane at 50% weight fraction binary mixture used are
S = 0.13, τ = 0.011, and σ = 16. The value of the aspect ratio
of the cell has been reduced from 
 = 10 in the experiment,
to 
 = 5 in the numerical simulations. The majority of the
results that will be discussed have been obtained with an
inclination of α = 0.024 rad, one of the values used in the
experimental setup. Slight variations of S, τ , and α around
the reference values will be considered. Nondimensional time
units are used throughout the paper: one nondimensional time
unit corresponds to 20 s.

In our simulations we have used 34 collocation points in
the vertical direction, 150 Fourier modes in the azimuthal
direction, and 100 points in the radial direction. For steady
solutions (LSSF) we have used a resolution that ensures
variations of the values of Rayleigh number and frequency
at the bifurcation points smaller than 0.5%. In time-dependent
computations, for this grid size, a time step of 5 × 10−4 has
proved to be sufficient to achieve convergence. We have made
parallel simulations with a finer mesh, and time series follow
similar paths during the time of the integration. It is important
to emphasize that, due to the small value of the Lewis number
τ = 0.011, very long integration times are required for the
concentration field to establish.

Before showing results with inclination, we briefly discuss
the main features of the dynamics in the noninclined cell.
Setting α = 0, we have performed some numerical simulations
for the specific parameters of interest in this work. For a σ = 16
pure fluid in a 
 = 5 cell the onset of convection takes place at
Rac = 1700. When a positive separation ratio mixture replaces
the pure fluid, the heavier component tends to accumulate at the
upper cool plate, and this causes a substantial decrease in the
convective onset. In particular, our numerical simulations for
a S = 0.13, τ = 0.011 mixture set the threshold of convection
at Rac = 61.9. Convection starts very early in the form of
irregular large squares and, as Ra increases, the size of the cells
decreases and the convective patterns become progressively
more ordered until regular quasistationary square patterns are
reached. These structures are typical of the Soret regime, in
which convection is primarily driven by solutal buoyancy.
For our mixture, this regime approximately extends up to

Ra ≈ 1800, where the square patterns are replaced by time-
dependent cross-roll solutions, nearly stationary longitudinal
rolls, and convective structures characteristic of the Rayleigh
regime, where thermal driving dominates.

A. LSSF state

When an inclination as small as α = 0.024 rad is introduced
there is no motionless state and as soon as Ra is different from
zero a large-scale flow (LSSF) is naturally generated in the
cell, due to the interaction of the very small component of the
horizontal gravity, gx , and the vertical temperature gradient.
This circulation flow overcomes completely the square patterns
obtained in the Soret regime for the horizontal cylinder. The
main features of the LSSF can be visualized in Fig. 2, which
corresponds to a solution obtained for Ra = 1610. Figure 2(a)
shows the 3D isosurfaces of the deviation of temperature from
the vertical linear profile, �. Figure 2(b) shows the arrow plots
of the velocity field and the contour plots of � and C in a
vertical plane along the direction of inclination. Figure 2(c)
shows the u–v velocity field at the z = 0.8 plane and the
Figs. 2(d) and 2(e) the contour plots of � and C at the midplane
of the cell (z = 0.5). Throughout the paper, to represent the
temperature field we display the deviation from the vertical
linear profile �, while for the concentration field we show
the total concentration C of the denser component rather than
its deviation from the vertical linear profile �. Also, in the
colormap used to represent the contour plots, yellow (light)
corresponds to the higher values of the field and blue (dark) to
the lower values. The LSSF shares the three symmetries of the
system and, as expected, is an essentially horizontal circulatory
shear motion of the fluid layer into opposite directions: the
warm fluid near the lower lid of the cylinder moves horizontally
uphill (to negative x), parallel to the lid, and when arrives to
the lateral boundary, it flows vertically upwards generating
a narrow boundary layer; then, the fluid moves horizontally
downhill (to positive x), and flows vertically downwards in
the lower part of the cylinder. The temperature variations
from the vertical linear profile � are very small outside the
lateral boundaries so, away from the boundary layers, �

is approximately zero in any horizontal plane [Fig. 2(d)].
However, this is not the case for the concentration field, and
a nearly linear horizontal concentration profile is established
across the cylinder. The mechanism is as follows. In the
vertical direction, since S > 0, the heavier component of the
mixture diffuses towards the cooler region causing a vertical
stratification, with concentration accumulated near the top
boundary of the cylinder. In the horizontal direction, the
large-scale base flow, which is directed down the slope along
the top boundary, advects concentration to the less elevated part
of the cylinder. This leads to a substantial increase in C, and
a corresponding deficit in the more elevated part. A slow but
quite important separation of the mixture along the horizontal
(z = cnt) planes takes place and a roughly uniform horizontal
stable concentration gradient is established across the cylinder
[Fig. 2(e)].

A linear stability analysis of the LSSF reveals that this basic
flow undergoes a Hopf bifurcation at Rac = 1695 that breaks
the R2 and R3 symmetries and preserves the R1 left–right
symmetry. The critical frequency is ωLSSF

c = 2.19, and the
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FIG. 2. The LSSF obtained for Ra = 1610 and α = 0.024 rad. (a) Isosurfaces of temperature deviation from a vertical linear profile, �.
(b) Arrow plot of the u–w velocity field (top panel), contour plots of constant temperature fluctuation � (middle panel), and contour plots of
concentration of the denser component C (lower panel) in the vertical plane y = 0 along the direction of inclination of the cell. In these views,
the more elevated part of the cell is on the left. (c) Arrow plot of the u–v velocity field in a horizontal plane at height z = 0.8. (d) Contour plots
of constant temperature fluctuation � at midplane z = 0.5. (e) Contour plots of constant concentration of denser component C at z = 0.5. In
the colormap used here and throughout the paper yellow (light) corresponds to the higher values of the field and blue (dark) to the lower values.

critical eigenfunction superimposed to the LSSF gives rise
to pulsating transverse rolls, perpendicular to the direction of
inclination, as can be appreciated in Fig. 3. In time-dependent
numerical simulations just above this critical value Rac taking
as initial condition the steady LSSF flow, pulsating transverse
rolls are observed, but do not saturate, and the system evolves
towards erratic nonperiodic time-dependent patterns. This is
an indication that this bifurcation is subcritical.

B. SHC state

In this subsection we are going to analyze the peculiar
traveling patterns reported in the experiment of Croccolo
et al. [34], the so-called SHC states, which consist of drifting

FIG. 3. Contour plots of constant temperature at z = 0.5 for eight
time instants within a period showing the spatiotemporal structure
of the superposition of the LSSF and the eigenfunction associated to
the pair of leading eigenvalues in the Hopf instability of the LSSF
that takes place at Rac = 1695 with ωc = 2.19. This bifurcation is
subcritical.

flow structures moving in opposite directions along parallel
lanes. To emulate the experimental procedure, where a typical
measurement sequence consists of imposing a vertical tem-
perature difference to a homogeneously mixed sample and
observing the evolution of the system, we have integrated the
equations taking as initial condition for the time-stepper a no-
motion mixed state of uniform temperature and concentration
fields. In this way, we have obtained several stable states
with a spatiotemporal behavior consistent with the SHC states
described in the experiment.

Once we have obtained numerically the SHC state, we
can analyze its properties in detail. In Fig. 4 and Fig. 5 we
show the main features of a persistent SHC pattern obtained
for Ra = 1610, which coexists with the stable LSSF solution
represented in Fig. 2. Superimposed to the underlying circu-
latory LSSF, regions of ascending and descending fluid in the
vertical direction (z axis) emerge in the bulk and group within
parallel lanes aligned along the direction of inclination (x axis).
This pattern has a specific orientation: each lane, alternately,
contains either warm low concentration regions of ascending
fluid or cool high concentration regions of descending fluid.
In addition, and quite strikingly, these regions do not remain
stationary or drift slowly as happens in square patterns arising
in noninclined S > 0 binary convection [14,15,17], but instead
they move in the horizontal plane either downhill (x > 0
direction) if their concentration is higher than that of the
environment [corresponding to cooler regions, that is, to blue
(dark) zones in the temperature contour plot in Fig. 4(d)],
or uphill (x < 0 direction) if their concentration is lower
(corresponding to warmer regions, that is, to yellow (light)
zones in the temperature contour plot).

Table I provides an overview of some characteristic values
of the velocity and concentration fields corresponding to the
two stable coexisting solutions obtained for the same value
of the Rayleigh number, Ra = 1610, the LSSF and the SHC
patterns. The larger values of the velocity field in the case
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FIG. 4. The SHC obtained for Ra = 1610 and α = 0.024 rad. (a) Isosurfaces of constant temperature deviation from a vertical linear profile,
�. (b) Arrow plot of the u–w velocity field (top panel), contour plots of constant temperature fluctuation � (middle panel) and contour plots of
constant concentration of the denser component C (lower panel), in a vertical plane along the direction of inclination of the cell. (c) Arrow plot
of the u–v velocity field at midplane z = 0.5. (d) Contour plots of constant temperature fluctuation � at z = 0.5. (e) Contour plots of constant
concentration of denser component C at z = 0.5.

of the SHC solution reflect a more vigorous fluid motion
than in the LSSF solution. The decrease in the maximum
concentration difference across the cylinder in the direction
of inclination, �Cmax, in the SHC solution suggests that the
translation motion in opposite directions of the regions with
ascending and descending fluid that arises in the bulk of the
cell, produces a concentration pumping that results in a slight
decrease of the concentration gradient along the incline.

The temperature space-time plots at midplane, z = 0.5,
in Fig. 5 capture the translation motion of the location of
the warmer and cooler regions in opposite directions. The
top part of Fig. 5(a) shows the variation of � with time in
the diameter of the cell along the incline, while the bottom
part of Fig. 5(a) shows the space-time plot of � in an off-

diameter line, also parallel to the direction of inclination of
the cell. While the diameter of the cell is occupied by colder
regions of descending fluid with concentration higher than the
environment, which are pumped horizontally downhill, the
off-diameter line is occupied by hotter regions of ascending
fluid with a lower concentration, which are pumped uphill. The
time series in Fig. 5(b), which show the the vertical velocity
w at (r,θ,z) = (4.9,0.04,0.8) and the kinetic energy E of the
pattern, correspond to a periodic signal and confirm that
the SHC pattern is a periodic solution. Its frequency determines
the traveling velocity of the regions of ascending and descend-
ing fluid in the horizontal direction, and can be obtained from
the period of the time series in Fig. 5(b). For Ra = 1610 this
frequency is ω = 1.508, and Table II shows the frequency

FIG. 5. The SHC obtained for Ra = 1610 and α = 0.024 rad. (a) At top, contour plots of constant temperature fluctuation � at z = 0.5
and t = 0, and space-time plot showing the evolution of � in a cell diameter parallel to the direction of inclination (dotted line in the contour
plot) with time. At bottom, contour plots of constant temperature fluctuation � at z = 0.5 and t = 0, and space-time plot showing the evolution
of � in an off-diameter line (dotted line in the contour plot) with time. Within each line, the location of the cooler regions of descending fluid
forms a wave traveling downhill, while the location of the warmer regions of ascending fluid forms a wave propagating uphill. (b) Time series
showing the vertical velocity w at (r,θ,z) = (4.9,0.04,0.8) and the kinetic energy E of the periodic solution.
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TABLE I. A comparison between a LSSF and a SHC solution,
both obtained for Ra = 1610. Maximum values of: celerity, V max,
horizontal projection of the velocity field, V max

h , vertical velocity,
wmax, vertical velocity at midplane, wmax|z=0.5, temperature and
concentration difference across the cylinder, ��max and �Cmax.

V max V max
h wmax wmax|z=0.5 ��max �Cmax

LSSF 0.734 0.734 0.512 0.35 0.064 1.62
SHC 1.149 0.928 1.149 0.81 0.087 1.51

associated to SHC patterns obtained with different values of
Ra. Remarkably, this frequency remains approximately con-
stant, ωSHC ≈ 1.53, and reproduces quite accurately the value
reported in the experiment, ωexp ≈ 1.52. These observations
suggest that in the range of parameters considered in this work
the characteristic frequency of a SHC pattern hardly varies with
Ra, the vertical heating of the sample, and with the aspect ratio

 of the cell, since the experiment is performed in a 
 = 10
cell while simulations correspond to a 
 = 5 cylinder.

To allow for a closer inspection of the spatiotemporal
structure of a SHC pattern, we plot in Fig. 6 contour plots of
the temperature field in horizontal planes and, superimposed to
them, an arrow representation of the projection of the velocity
field at different time instants within a period. Although this
solution has also been obtained with Ra = 1610, it differs
from the SHC pattern shown in Fig. 5 in its transverse
wavenumber. While the pattern represented in Fig. 5 has an
odd number of lanes (nine rows) and the central diameter
along the inclination of the cylinder is occupied with cold
regions traveling horizontally downhill, the pattern shown in
Fig. 6 contains an even number of lanes (eight rows), with
hot regions traveling up the slope at the right-hand side of
the central diameter and cold cells traveling down the slope
at the left-hand side. Therefore, persistent SHC patterns with
a different number of traveling lanes can coexist for the same
value of Ra.

TABLE II. Frequency of oscillation of the SHC solution obtained
numerically, ωnum, for different values of Ra. This frequency remains
approximately constant, ωSHC ≈ 1.53, and matches extremely well
the value reported in the experiment, ωexp ≈ 1.52.

Ra 1575 1590 1600 1610 1620 1630

ωnum 1.508 1.571 1.571 1.508 1.532 1.508

To gain physical understanding of the SHC state and figure
out the motion of the fluid within a period we represent
in Fig. 6 isolines of constant temperature at different time
instants. In particular, in Fig. 6(a), we represent an arrow plot
of the u-v velocity field at midplane at a single time instant,
t = 0, while Fig. 6(b) and Fig. 6(c) contain a detail of the
central part of the cylindrical cell at four time instants, t =
0,T /4,T /2,3T/4, at z = 0.45 (below midplane) and at z =
0.55 (above midplane), respectively. The arrow plot of the u −
v velocity field at midplane [Fig. 6(a)], where the velocity of
the fluid due to the LSSF would vanish, reveals that the
fluid moves in opposite directions in alternating lanes. In
contrast, the velocity of the fluid below midplane is essentially
uphill [Fig. 6(b)], and above midplane essentially downhill
[Fig. 6(c)]; that is, the fluid is globally transported by the LSSF.
We also observe that, below midplane, the arrows converge in
the warmer spots, so the fluid moves from the colder areas
towards the warmer ones, while above midplane, the arrows
converge in the colder spots, which corresponds to a motion
from the warmer areas towards the colder ones. A closer
inspection reveals that, any of the cold spots below midplane
in the central part of the cell delivers fluid essentially to three
neighbor warm spots. More specifically, and alternating twice
within a period, the fluid goes from the cold spot to two warm
spots on its left and to one on its right (t = 0,T /2) and, after
a quarter of period, from the cold spot to two warm spots on
its right and to one on its left (t = T/4,3T/4). To complete
the picture of the motion of the fluid within a period it is also

FIG. 6. (a) Contour plot of constant temperature and arrow plot of the u–v velocity field at midplane z = 0.5 in time instant t = 0. Detail
of the contour plots of constant temperature and arrow plots of the u–v velocity field at (b) z = 0.45 and (c) z = 0.55 for four time instants
within a period showing the spatiotemporal structure of a SHC state in the central part of the cell. The isolines of temperature are � = ±0.015,
which correspond to ±0.35�max.
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FIG. 7. Contour plots of constant (a) temperature fluctuation � and (b) concentration C at midplane z = 0.5 showing the formation
of a SHC pattern for Ra = 1610, α = 0.024 rad, when simulations are initiated with an homogeneous state. The time instants correspond
to t = 1.5,2.5,10,145,250,350,371,385,500 (nondimensional units). (c) Concentration profile at midplane along a cell diameter parallel
to the direction of inclination of the cell at the previous time instants. Whereas the circulatory flow is rapidly established in the
cell, the horizontal concentration gradient is slowly generated by mass diffusion at a rate two orders of magnitude smaller than heat
diffusion.

necessary to focus on the actual location of the cold and warm
spots both below and above midplane. We can appreciate that
the cold spots translate downhill while the warm spots translate
uphill. As a result, as can be clearly visualized in Movie 1 in
the Supplemental Material [43], the regions of ascending and
descending fluid experience a left–right meandering motion
in their displacement along the x direction and a change of
shape within a period, due to their oscillating fluid interchange
between adjacent lanes. It is worth emphasizing that Fig. 6
reveals that it is the location of the regions of ascending and
descending fluid, rather than the fluid itself, what translates
uphill and downhill.

To analyze the process of formation of a SHC state, we
represent in Fig. 7 a sampling of some of the significant
states visited by the system when the mixture is initially
well-mixed and a temperature gradient is applied (numeri-
cally, we take an homogeneous state as initial condition for
the time-integration). Temperature and concentration contour
plots at midplane for Ra = 1610 at different time instants

are shown in Fig. 7(a) and Fig. 7(b), respectively. During
the very fast initial linear growth phase, convective patterns
develop and change fast. A large-scale circulatory flow, with
temperature variations confined to the narrow boundary layers,
is rapidly established in the cell and a solution sharing all the
symmetries of the system emerges (t = 2.5). In a slow, much
more ordered second phase, quasistationary square patterns
form (t = 10 − t = 145). A careful inspection of the contour
plots reveals that these patterns have already broken the R2

and R3 symmetries, but still keep the R1 reflection symmetry
along the diameter of the cell. At this stage, the cells are
not arranged as in a SHC pattern: Along the diameter of
the cell (and in lines parallel to it) warm and cool regions
are alternatively found. A reorganization of the pattern is
required to reach a SHC state, where only warm or cool
regions are found within the same lane. In a third phase, the
patterns confine along a diameter of the cell, in a transverse
direction with respect to the direction of inclination of the cell
(t = 250 − t = 385). After this localization, some oscillations
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FIG. 8. Persistent oscillations between a superhighway convection solution and nearly stationary longitudinal rolls (SHC–LHC oscillations)
obtained for Ra = 1680 and α = 0.024 rad. (a) At top, contour plots of temperature fluctuation � at z = 0.5 and t = 30, and space-time plot
showing the evolution of � in a cell diameter parallel to the direction of inclination (dotted line in the contour plot) with time. At bottom,
contour plots of temperature fluctuation � at z = 0.5 and t = 80, and space-time plot showing the evolution of � in an off-diameter line (dotted
line in the contour plot) with time. The contour plots of � at midplane at two time instants, t = 30 and t = 80, show the spatial structure of
the two different patterns between which the system oscillates. (b) Vertical velocity w at (r,θ,z) = (4.9,0.04,0.8) and kinetic energy E of the
periodic solution as a function of time t .

that seem to initiate in the bulk of the fluid trigger oscillations
of the boundary layer. At the final stage, regions of the same
type align in lanes parallel to the diameter, and begin to travel
in opposite directions: waves are generated and a SHC periodic
pattern is established (t = 500). Movie 2 in the Supplemental
Material [43] shows in more detail the process of formation
of the SHC state for Ra = 1610. As can be appreciated in
the concentration profiles represented in Fig. 7(b), all these
warm–cool convective regions are embedded in a horizontal
concentration gradient, which is slowly diffusing and takes a
long time to establish. To better visualize the growth of this
concentration gradient, we plot in Fig. 7(c) the concentration
difference in a cell diameter at z = 0.5 for time instants
t = 10,145,250,350,371,385,500. A minimum value of this
concentration difference seems to be required to generate the
body force that makes the different lanes travel in opposite
directions.

For S = 0.13, τ = 0.011, σ = 16, and α = 0.024 rad, we
have been able to observe such SHC periodic patterns for
Rayleigh numbers in the range Ra ∈ (1570,1650). However,
while for Ra ∈ (1570,1600) the SHC solution finally decays
away and the only stable solution is the LSSF, for Ra ∈
(1600,1650) SHC patterns are stable. Thus, the region of
stability of the SHC pattern overlaps that of the LSSF solution,
which is found to be stable for Ra < 1695.

In addition, we have explored the effect on the SHC
state of slightly changing the value of the inclination of the
cell α, the separation ratio S, and the Lewis number of the
mixture τ . On one hand, we obtain that the frequency of
the SHC state, ωSHC, which determines the velocity of the
traveling structures, increases with α: ωSHC(α = 0.018) =
1.35, ωSHC(α = 0.024) = 1.53 and ωSHC(α = 0.030) = 1.69.
However, we do not observe stable SHC patterns for α >

0.034, a fact coincident with experimental observations [34].
On the other hand, increasing the strength of the Soret effect
S also increases ωSHC. For S = 0.20 we have observed SHC
patterns in the range Ra ∈ (1580,1650) with a frequency of

ωSHC ≈ 1.71. For this value of S, the dynamics becomes
faster, i.e., the time required for the formation of a SHC
state when starting from an homogeneous state is reduced.
Since the horizontal stratification is enhanced when α and S

increase, these observations seem to indicate that the large
concentration separation across the cylinder induced by the
inclination provides the stratified environment that causes the
horizontal displacement uphill and downhill of the ascending
and descending regions of fluid due to buoyant effects. Finally,
increasing the value of τ also accelerates the dynamics and
increases the value of the frequency. For τ = 0.022, SHC
patterns arise in the range Ra ∈ (1580,1630), their frequency
being ωSHC ≈ 1.74.

C. Oscillations between superhighway convection patterns and
longitudinal rolls (SHC-LR state)

When the Rayleigh number is increased above Ra = 1650,
the SHC pattern becomes unstable and the system evolves
towards a nearly stationary configuration: longitudinal rolls
aligned along the direction of inclination of the cell superposed
to a LSSF (LR). But this state is in turn unstable and the
system returns then to the initial SHC state. A long-lived
oscillation between these two patterns takes place. Such a
state can be envisaged as an heteroclinic connection between
two unstable states, the SHC periodic orbit and the stationary
longitudinal roll state. We refer to this state as SHC–LR
oscillations and its spatiotemporal dynamics can be clearly
visualized in Movie 3 in the Supplemental Material [43].
Figure 8 shows the temperature and concentration contour plots
at midplane for Ra = 1680 as well as the space-time diagram of
temperature computed at two parallel lines along the direction
of inclination of the cylinder. In pure fluid inclined convection
and σ ≈ 1, the longitudinal roll configuration is observed for
inclination angles below 78◦ [26]. However, in the binary-fluid
configuration under consideration, we have not obtained stable
stationary longitudinal rolls in the range of Ra explored. Such
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TABLE III. Estimation of the pseudoperiod associated to the
SHC–LR oscillations as a function of Ra.

Ra 1680 1690 1700 1710 1720

TSHC−LR 96.7 95.8 96.0 100.3 105.4

a state could emerge for Ra numbers above the ones considered
in this work.

We have obtained states of long-lived SHC–LR oscillations
in the range Ra ∈ (1650,1700). The period associated to
this oscillation increases slightly with Ra, as can be seen in
Table III, so the time spent by the system visiting each state
becomes longer when the thermal forcing increases. Above
Ra > 1700, the oscillations between these two states disappear
completely and the system evolves towards nonoscillating
slowly changing patterns. By subsequently increasing Ra we
leave the region dominated by solutal effects and enter the
thermal regime.

IV. DISCUSSION AND CONCLUDING REMARKS

The numerical simulations presented in this paper confirm
that the intriguing SHC pattern observed recently in the
experiments of Croccolo et al. [34] is a periodic orbit of
the Boussinesq Navier-Stokes equations for slightly inclined
binary convection. We have been able to observe such orbits
for Rayleigh numbers in the range Ra ∈ (1570,1650). Ad-
ditionally, in the range Ra ∈ (1650,1700) we have obtained
a persistent heteroclinic structure, the SHC-LR state, where
regular oscillations between a SHC pattern and a state of
nearly longitudinal rolls takes place. The region of stability
of these states overlaps that of the LSSF, the basic circulatory
large-scale flow established with the inclination of the cylinder,
which is stable for Ra < 1695. The dynamics we obtain
matches extraordinary well the experimental observations, de-
spite the different values of the cell aspect ratio used. Although
numerical simulations often oversimplify the fluid physics,
and real experiments can easily deviate from the idealized
assumptions of numerical studies, in this case the agree-
ment between the experimental observations and the numerical
simulations of Oberbeck-Boussinesq Navier-Stokes equations
with Soret effect is excellent.

By obtaining numerically the time-dependent patterns that
arise in the Soret regime we have been able to characterize
them and gain insight in the underlying physical mechanisms
that might be relevant in their genesis. The spatiotemporal
structure of a SHC pattern could be envisaged as resulting
from the interplay of a large-scale shear flow around the cell,
which significantly in the case of a binary mixture has an
important horizontal concentration gradient, and a configura-
tion of opposite-traveling regions of ascending and descending
fluid arranged along parallel lanes in the bulk of the cell that
form oscillating asymmetric convective cells. These flows are
generated by the combination of buoyant effects in the vertical
direction and along the inclination of the cell. In particular,
in a S > 0 mixture, the concentration gradient induced across
the cell by its small inclination generates a stable stratified
environment along the horizontal direction. When regions of

less buoyant fluid (that is, denser fluid regions) generated by
the vertical heating encounter this stratified environment they
are pumped downhill, towards the less elevated part of the cell;
whereas patches of more buoyant fluid (lighter fluid regions)
are pumped uphill. However, it is important to notice that the
global motion of the fluid is dominated by the large-scale shear
flow, and is essentially uphill below midplane and downhill
above midplane, with fluid converging to hotter regions below
midplane and to colder regions above midplane; it is the
location of the hot (cold) spots of ascending (descending)
fluid that travels horizontally uphill (downhill) in opposite
senses.

Determining the precise origin of the SHC solution would
involve obtaining the complete bifurcation diagram of the
different solutions observed in the system. This is nonstraight-
forward task would require the computation of unstable time-
dependent solutions. The fact that the eigenfunction corre-
sponding to the oscillatory instability gives rise to transverse
structures (perpendicular to the direction of inclination) seems
to suggest that the SHC solutions do not arise from the
subcritical instability of the LSSF, since several subsequent
bifurcations from the primary LSSF would be required to
reach a SHC solution. Based on the long-lived oscillations
that take place between the SHC pattern and the longitudinal
rolls, and the spatial similarities between the two patterns
(same transverse wavenumber and alignment of ascending and
descending fluid regions), we find it more plausible that the
SHC pattern may arise from an instability of the longitudinal
rolls in the presence of the concentration gradient generated
by the LSSF. These conjectures will need to be confirmed in
a future work, since, to the authors’ best knowledge, not even
the bifurcation diagrams describing the square, rolls and cross-
rolls solution in a noninclined cylinder have been computed
to date.

With the present numerical investigation we have provided
a useful comparison with the experimental observations of
Croccolo et al. [34] and have confirmed the remarkable
observation that the smallest tilt in a binary layer under a
thermal stress adds an extra body force along the direction of
inclination that has a strong influence on the long-term stability
of a heated layer. Slightly inclined binary fluid convection in
a cylindrical cell under a vertical thermal stress turns out to
be a system where the interplay of shear and buoyancy caused
by both temperature and concentration variations in a confined
geometry self-sustains amazing stable wavelike patterns. This
system is well suited for the study of buoyancy- and shear
flow-driven instabilities in problems of oceanographic interest
and serves as a paradigm for anisotropic pattern forming
systems. The results presented in this paper suggest that for
multicomponent fluids, such as a binary mixture, the slightest
perturbation of a system can produce an enhanced modification
of the concentration field which can affect substantially the
fluid physics.
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