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Simulations of oscillatory binary fluid convection in large aspect ratio containers
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Direct numerical simulations of chevrons, blinking states, and repeated transients in binary fluid mixtures
with a negative separation ratio heated from below are described. The calculations are performed in two-
dimensional containers using realistic boundary conditions and the parameter values used in the experiments of
Kolodner[Phys. Rev. E47, 1038(1993]. Particular attention is paid to the multiplicity of states, and their
dependence on the applied Rayleigh number and the aspect ratio of the container. Quantitative agreement with
the experiments is obtained, and a mechanism explaining the origin and properties of the repeated transients
observed in the experiments is proposed.
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[. INTRODUCTION final state on the aspect ratid of the container, and on the
Rayleigh numbeR?

Binary fluid mixtures exhibit a wide variety of behavior  (iii) What is the mechanism by which stable chevrons turn
when heated from below. Of particular interest are mixturesnto blinking states and/or repeated transients?
with a negative separation ratio. If the separation ratio is (iv) How do the repeated transients and the blinking states
sufficiently negative, the conduction state undergoes a Hopdisappear?
bifurcation with increasing Rayleigh number, creating a wide (v) Is there hysteresis at the onset of the repeated tran-
variety of traveling wave states at finite amplitude. In thesients?
present paper, we are particularly interested in understanding

the states observed in rectangular containers of moderately Despite much experimental effort that has gone into an-
large aspect ratio, including the so-called “chevron” andswering these types of questions the situation remains far
“blinking” states [1,2]. The “chevrons”(or counterpropagat- from clear. To date, the most thorough study of a number of
ing waves consist of a pair of equal amplitude waves propa-these issues is the paper by Kolodf@I This paper presents
gating(usually outwards from the cell center; when the am- a great deal of valuable information about the dynamical
plitudes of these waves oscillate about the equal amplitudgehavior near onset, but even with this information the basic
state the pattern is dominated alternately by left- and rightpicture remains clouded. In particular, the basic mechanism
traveling waves and is then called a “blinking” state. The responsible for the experimental results remains elusive. In
blinking states were first observed in simulations of doublythis paper, we set out to answer as many of the above ques-
diffusive convectior{3], and subsequently in experiments ontions as possible. Our approach involves experiments of a
binary fluid convection[4,5]. In contrast to the chevrons, different kind, namely, direct numerical simulations of the
which have been observed in experiments only rdi2lythe  partial differential equations. Consequently, we focus on the
blinking states appear to be much more robust. Both thesgarameter values used by Kolodn@&], and integrate the
states owe their existence to the presence of sidewalls, arfbverning equations in two dimensions, using realistic
may be understood on the basis of both bifurcation thg®ly  boundary conditions on the four sides of the container. Using
and Ginzburg-Landau theofy]. Of particular interest in the  the results of these simulations, we are able to answer a
present paper is a third state, the “repeated transients,” obhumber of the outstanding questions. In particular, we are
served by Kolodner and and co-workdis5,8| in water-  able to uncover a deterministic mechanism that provides a
ethanol mixtures. These states consist of chevrons that growhified and coherent picture of the transitions between chev-
exponentially from small amplitude without change of shaperons, blinking states, and repeated transients, and that is con-
until they reach a critical amplitude at which they becomesistent with the results of all our simulations. This mecha-
unstable and collapse back to small amplitude. The experiism is fundamentally low-dimensional, indicating that even
ments reveal that the dynamics of these states depend sengitended systems may behave as low-dimensional systems
tively on the aspect ratio of the system, and on the RayleigRufficiently close to onset. In certain cases, our numerical
number. Understanding of the repeated transients appears igsults disagree in detail with Kolodner’s experiments. In
lie outside of the Ginzburg-Landau type of description em-these cases, we are able to make clear and precise predictions
ployed in[7]. that would confirm the basic dynamical systems mechanism

The existing experimentsl, 2,8 raise a number of inter- e put forward. Some of our results have already been re-
esting and important theoretical questions. These include: ported[9].

The paper is organized as follows. In Sec. Il we introduce

(i) What is the nature of the saturated state into which théhe equations we solve. Section Ill summarizes the results of
initial instability develops? the simulations, followed in Sec. IV by a description of the

(i) What is the origin of the sensitive dependence of themechanism that accounts for them. The paper concludes with
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a brief summary of our results and their implications for theand
experiments. Some of the more mathematical aspects of our
discussion have been relegated to a couple of appendixes. =0 atz==1/2, 4,6=0 atx=0,I. (2.3

Il. BASIC EQUATIONS Here 9D denotes the boundary &f.
¢ Although the above problem has been tackled by several
cross-diffusion terms in the diffusion matrix. In water- authorgq 11], the results obtained thus far are incomplete, and

ethanol mixtures, the dominant cross-diffusion term is thethe calculations were often not carried on for long enough to

Soret term. The sign of the Soret coefficient determines thgduilibrate properly. We show below that the above system
behavior of the mixture in response to an applied temperal0SSesses in general very long transients, requiring consider-

ture gradient. In mixtures with a negative Soret coefficientable patience in order to obtain reliable r_esults. Rather more
the heavier component migrates towards the hotter boundar§f©9ress has been made on the reldted simplej problem
_which the lateral boundary conditions are replaced by pe-

i.e., a concentration gradient is set up that opposes the des g o g .
bilizing temperature gradient that produced it. Under thesél?dic boundary conditiong12] or by artificial reflective
conditions, the onset of convection may take the form o oundary conditions to mimic the presence of lateral bound-

growing oscillations. This is the situation that is of interest21€S[12,13. These studies have clarified the role of the
here.

concentration distribution in traveling wave states, and iden-

We consider a binary mixture in a two-dimensional rect-t'f'Ed, spatla:cly localized travellng v(\j/ave statgs, ie., staltes
angular containeD={x,z|0<x<T, - i<z<1} heated uni- consEtlgg 0 wavefs Erotr))agagng un gr a stlatlcl)nary envef(_)pe
formly from below. We nondimensionalize the equations us-2tached to one of the boundaries. Our calculations confirm

ing the depth of the layer as the unit of length agd the thesz.a_resul_ts. However, the aim of the present Paper 1S more
ambitious, in that we focus on states with nontrivial dynam-

vertical thermal diffusion time, as the unit of time. In the ; . - -
Boussinesq approximation appropriate to the experimentéc,:s’ and do so with realistic Iat'eral bqundary' qond|t|ons.
the resulting equations take the fofrt0] “We so_Ive Eqgs(2.1)—(2.3) using a_tlme-spllttlng method
with an improved boundary condition for the pressure as
_ _ : 2 described in Ref[14]. The time integration scheme is
aut(u-V)u==VP+oR(1+S) = Syjzt oV FZ 19 second-order accurate and is based on a modified Adams-
' Bashforth formuld 14]. For the spatial discretization, we use

Binary fluid mixtures are characterized by the presence o

9,0+ (Uu-V)0=w+ V24, (2.1b a Chebyshe\_/ collocation pseudospectral metHdd. !n all _
cases, the time step and the number of collocation points
g+ (u-V)p=17V27+ V20, (2.19 used was adjusted until the solutions converged. Typically,
we used 170 collocation points in thedirection and 30
together with the incompressibility condition collocation points in the direction, with a time step of 1G
(in units of the vertical diffusion time
V-u=0. (2.10 Equations(2.1)—(2.3) are equivariant with respect to the
operations

Hereu=(u,w) is the velocity field in &,z) coordinatesP is
the pressure, and denotes the departure of the temperature R, (x%,2)—(T'=x,2), (4,6,C)—(—,6,C), (2.9
from its conduction profile in units of the imposed tempera-
ture differenceAT. The variabley is defined such that its
gradient represents the dimensionless mass flux. Thus,
= #—C, whereC denotes the concentration of the heavier
component relative to its conduction profile, scaled with the . ) )
concentration difference that develops across the layer as'§here #(x,z,t) is the stream function, defined by,)
result of the Soret effect. The system is specified by four=(—#z.¥x). These two operations generate the symmetry
dimensionless parameters: the separation ratthat mea- 9roup D; of arectangle. Bifurcation theory shows that in this
sures the strength of the Soret effect, the Rayleigh nuRber Case, the e!genfunctlons of the linear stgblhty problem for
providing a dimensionless measure of the imposed temperdbe conduction state= 6= »=0 must be either even or odd
ture differenceA T, and the Prandtl and Lewis numbers r, under reflection ik=1'/2. As a consequence, only branches
in addition to the aspect ratib. of even and odd solutions may bifurcate from the conduction
The boundary conditions adopted will be those relevant istate[6]. Specifically, the even eigenfunctions are invariant
the experiments. Thus, we take the boundaries to be no-slighderRy, i.e.,
everywhere, with the temperature fixed at the top and bottom
and no sideways heat flux. The final set of boundary condi- (¥(x,z),0(x,z),C(x,2))=(— ¢(I'—x,z),0(I' - x,z),C(I"
tions is provided by the requirement that there be no mass
flux through any of the boundaries. The boundary conditions
are thus

K:(X,2)—(X,—2), (4,0,C)—(—¢,—6,—C),
(2.9

—X,2))

at each instant in time, while the odd eigenfunctions are in-
u=n-Vx=0 ondD, (2.2 variant undemxR,, i.e.,
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Stream function Temperature Concentration boundary conditions: the neutral curvieg(I") divide neatly
between different families with no intermingling among
them. Each family consists of a pair of braided neutral
curves, one for an odd mode and the other for an even mode,
with each family well separated from the next, at least for the
low-lying families. The crossings between odd and even
modes within each family are structurally stable because of
their different parity. For the case of interest in the present
paper, i.e.,I' and |S| large enough, the situation is quite
different. There are now no distinct families of neutral curves
and all modes(including like-parity modeks cross. These
mode crossings are all structurally stable, either because the
modes have opposite parity, or because their frequencies at

the mode crossing are nonresonant. The transition between
these two situations is discussed in detai[16].

In Figs. 1 and 2, we show the results of solving this linear
problem for S=—0.021, 0=6.97, andr=0.0077, corre-
sponding to the experimental mixture used by Kolodi@dr
Depending on the aspect ratio, the critical eigenfunction
takes the form of either an even or an odd parity “chevron,”

EVEN MODE

ODD MODE

shown in Fig. 1 in the form of space-time diagrams for the
three fields (¢, 6,C) evaluated az=0. An even parity chev-
ron consists of waves propagating outwards from a source at
. . . o the center of the cell in such a way that the resulting solution
FIG. 1. The eigenfunctioni, ¢,C) of the linear stability prob- 5 symmetric at all times with respect to reflection absut
lem for I'=16.25, S=—0.021, 0=6.97, 7=0.0077, and@ R.  _ )5 |n contrast, as discussed above, an odd parity chevron
=1776.30, w,=2.819 (even chevrop (b) R.=1787.47, w, . . . . .
=2.686(odd chevrol, shown in the form of space-time diagrams (atz=0) is at a!l limes odd with respect to thls ref!ecuon'
at z=0 with O=x=<T" drawn horizontally and time increasing up- I\!ote t.hat,. dgsplte appea.ran.ces, these solu.tlonsstamly
wards. The solutions are sinusoidal with periog/a, . sinusoidalin time: the periodic defect formation at=1"/2
arises because the eigenfunctigns a superposition of four
(¥(x,2),0(x,2),C(x,2)) = (YT —x,—2),— (T —x,—2), functions egch of which _has the forgy exdi(wt=kx)], |
=1,...,4,with thek; possibly complex. Each of these func-
—C(I'=x,-2)), tions describes waves propagating withcal) phase velocity
* w./Rek;. In the bulk, the eigenfunction is dominated by
again at each instant of time. Note that at midlexel0, the  the largest contribution; this contribution has a real wave
odd eigenfunction is odd in the conventional sense, Rg., number and describes oscillations that are almost standing.
changes the sign of each component of the veafgp(C). However, when the time-dependent amplitude of this com-
Consequently, the eigenfunction in the midplane is also inponent passes through zemshich occurs twice per period
variant underR, followed by evolution through half the the remaining contributions briefly reveal themselves. In the
Hopf period. Explicit solution of the linear stability problem eigenfunctions shown, the largest of these has a relatively
[16] indicates that the competition between even and oddarge phase velocity, and is responsible for the episodic
modes in such a system takes one of two basic forms, deropagation that is so characteristic of these eigenfunctions.
pending on the separation and aspect ratios. Wigns  The other two fields oscillate in the same manner, but with a
small(i.e., close tdSrg|, the Takens-Bogdanov pojrandl”  temporal phase lag relative # that is determined by the
not too large, the mode interaction takes the form familiarvalues of the Prandtl and Lewis numbers used. Note also
from Rayleigh-Beard convection with non-Neumann that, despite the nonuniformity in the amplitude of the eigen-

¢=6.97 1=0.0077 S=-0.021

1788 3
- S~ (b) - .
2 1786 29 Tee FIG. 2. (a) The critical Rayleigh numbeR,
E 1784 & T~ and (b) the corresponding frequeney, for S=
c < .
1782 Tog —0.021,0=6.97, andr=0.0077 as a function of
51780 g the aspect ratid". Solid (broken lines indicate
& To7b~~_ even(odd) parity chevrons. The solid dots corre-
T 1778 spond to the solutions shown in Fig. 3.

1776 = 26

16 16.2 164 16.6 16.8 17 16 16.2 164 16.6 16.8 17
aspect ratio aspect ratio
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(b) Concentration
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FIG. 3. An overview of the aspect ratio dependence of the|[0|0|010101010/00/00(010/0}0

equilibrated states near onset, in terms of the vertical velocity‘ '0‘O’@\O’@‘O‘@|O}@‘O‘@\O'@|O‘0\‘

w(x=0.13",z=0,t) for comparison with Fig. 2 of Ref8]. The
0000100161010/01010010/0

numbers at the right give the values of*&Gand correspond to the
(c) Temperature

solid dots in Fig. 2a).
[0080800° 00008009]
The critical Rayleigh numberR. for the onset of these

states are shown in Fig(&, with the even modes indicated mm@@@@@@@m
by solid lines, and the odd modes by broken lines. The cor{ [SJlBICRIIORI0II0RI0El

responding critical frequencies, are shown in Fig. @). WTH—WH
Figure 2a) shows two neutral stability curves corresponding 0010918010010 CB00l
Llel0leoleoieioolciailelolelof]

to two different odd modes, with an intersection ndar

=16.25, as well as an intersection between an odd and eve

mode neal’=16.8. The latter mode interaction is accessible‘ HO@lOHOH ‘ "‘O]OI@‘OI@M ‘
from the conduction state and will play an important role in 0l0Bl0lolo]e||alolEl0IBI0
the dynamics of the system. Note that both mode interaction

?hrz Ia?)::\,/\i(l)Ciirf];lter(:l1 g\(/jit8h. a frequency jump if one always follows m@@@@@@@@m
Throu)g;hc?ut the remainder of the paper, we measure th IE@@@@@@@@E‘
applied Rayleigh number relative to the threshBldusing  [olg[olelclelolelolelolelollole] |
the reduced Rayleigh numbe=(R—R.)/R;. ‘ ‘ O}@‘O’@IO‘ @|O|®‘O‘®‘O\®\O’@‘O’O| ‘ W @@\O/@\U/@\O/@\W@\%]N
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FIG. 4. Periodic even parity chevron fbr=16.25,R=1775.5
(e=—4.5x10"% in terms of the contours ofa) the temperature
perturbation 6(x,z,t) and (b) the concentration perturbation
cusing on Rayleigh numbers near threshalel, |e|<1) and C(x,z,t) of the denser component, with time increasing upwards in
on aspect ratios in the range<t6'<17. intervals of 0.24. (c), (d) The same but for an odd parity chevron

Figure 3 summarizes the evolution for different values offor I'=17.25,R=1774.3 = —5.2x 10" %). These nonlinear states
I' of the midplane vertical velocitw(x=0.13",z=0,) ob-  should be compared with the linear theory eigenfunctions in Fig. 1.
tained by integration over 2000after an initial transient has
(almos} died out. We use the velocity at this point as a proxythe frequency of these states as. The figure shows that
for the intensity measured by Kolodner in his experimentsalthough the temperature departutefrom the conduction
since the temporal properties of the corresponding time seprofile remains sinusoidal in space at this value:pthis is
ries will be the same, although amplitudes and spatial strucrot so for the concentration departute As explained by
ture will not be so simply related. The figure illustrates theBartenet al.[12], this is a consequence of the small value of
sensitive dependence on the aspect ratio for comparison with and the associated expulsion of concentration fluctuations
Fig. 2 of[8], as well as the long integration times required tofrom regions of closed streamlines in ttecally) commov-
get reliable results. The high frequency uniform amplitudeing reference frame. This effect is also responsible for the
states correspond to nonlinear time-periodic chevron statgsresence of open contours separating regions of high and low
such as the one shown in Fig. 4. In the following, we refer toconcentration, in evident contrast to the closed contours of

[098YaYaYaY600007
POUAAA AN
LoRoavAYA AR
(d) Concentration
(9[0808Y8UAURUATRY
(elBYAUAUAUAUACARY
€08089%3%Y8Y0010Y
P00AVA A AI00Y
1000aYAYAYRRU00Y]
(/0080808080808
[F080aUBYA0R0ETY
[6808YaUYaUR0RTY
([5@0608% 69808097
1900 VR

function in x, the dominant local wave number is in fact
remarkably uniform across the cell.

Ill. RESULTS

In this section, we describe in detail the results of our
simulations for the parameter values used by Kolodigmn
his experimentsS= —0.021, 0=6.97, and7=0.0077, fo-
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=16 r=16.25
R=1782

R=1780
R=1779
R=1778.5

R=1780.0

R=1779.0

R=1778.0
___________________________ .
N R=17775
I~
R R=1777.0
I~
- ~
- N~
I~
t' R=1776.5
0 2000

time

FIG. 5. Time seriesv(x=0.13", z=0) for '=16.00 and dif-
ferent values of the Rayleigh numbBr The first finite amplitude
state is a three-frequency state Rt&1777.2 (=—1.8x10 %).

This state gives way gradually and without detectable hysteresis to
repeated transient states near0 and then to symmetric periodic
blinking states in a hysteretic transition betweBr-1778.5
=5.5x10"% andR=1779 (¢=8.3x10"%). The state aR=1782
(e=2.5x10"%) appears to have period-two modulation.

R=1776.0

R=1775.5

R=1775.1

the temperatur¢see Fig. 4. The temporary straightening of .
these meandering concentration contours in the cell center © ime 1000

every half period accompanies the splitting of the central

concentration roll into two. Both these properties of the con- FIG. 6. Time seriesv(x=0.13", z=0,) for I'=16.25 and dif-
centration field are absent from the Ginzburg-Landau deferent values of the Rayleigh numider Stable chevrons are present
scription of this system. for R=1775.5 = —4.5x 10 %), but give way to symmetric peri-

In order to understand the origin and character of the nonedic blinking states wheR=1776 (e=—1.7x10"*) with no de-
periodic states seen in Fig. 3, we show in Figs. 5-9 thdectable hyste_resis. At larg& (e.g.,R=1778) the blinking states
results of fixingl" at 16.00, 16.25, 16.50, 16.80, and 17.00,are asymmetric.
and varyinge in the vicinity of e=0. We order these figures
with increasing aspect ratio in order to highlight the effectswaves at these times are localized in opposite halves of the
that even small changes in may have. These plots show container. The figure also presents the time seriesnfor
that the initial bifurcation to the chevron state is in all cases=0.13", z=0,t) andw(x=0.87", z=0). Both time series
subcritical (the dashed line across each figure indicates théave the same amplitude and form, and are, modulo the
corresponding linear stability threshgldn agreement with  chevron frequencw,, exactly out of phase. In the following,
the prediction forstanding wavesin a horizontally un- we refer to solutions of this type as periodic symmetric
bounded layef10,17]. Figure 6 forl'=16.25 shows that the blinking states. This type of description is possible here only
chevron state may equilibrate at finite amplitud® ( because the frequenay, is so large relative to the blinking
=1775.5). However, with increasing the stable chevrons frequencyw,. This in turn is a consequence of the large
lose stability in a supercritical Hopf bifurcatidii8]. This  aspect ratio that reduces the amplitude of the chevrons at
bifurcation introduces a new frequenayy into the system, which the bifurcation to the blinking states takes plf6g
seen in Fig. 6 R=1776.0) as an oscillation in the amplitude We may therefore imagine averaging out the fast oscillations,
of w(x=0.13", z=0.). Consequently, the resulting state is and discuss the symmetry propertignd the time depen-
in general quasiperiodic. In the following, we refer to thedence of the blinking component alone, without paying
type of state that results as a “blinking” state. Such statesttention to the underlying chevron oscillation. In general,
may have a variety of spatiotemporal symmetries, and maghere are then two types of blinking states, depending on the
set in already fore<0. Since the bifurcation in Fig. 6 is parity of the chevron state from which they bifurcate. The
supercritical, the resulting blinking states blink with small blinking state in Fig. 6 arises from an even parity chevron,
amplitude and do so periodically; asincreases the ampli- and so is left unchanged by the symmeRy followed by
tude increases and the blinking becomes nonperiodic. In Figevolution in time through half the blinking periodnZw,.

10, we show a larger amplitude blinking state I6+=16.00  In contrast, blinking states that bifurcate from an odd parity
andR=1779(see Fig. 5. The figure shows the contours of chevron are left invariant by the combined operatioR,
the perturbation temperatug€x,z) at two different instants, followed again by evolution in time throughr/w,. We
roughly half a blinking period apart, in order to show that thehave found that monitoring the two point quantities
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r=16.5 r-16.8
R=1782.0 R=1781.0
R=1779.0 R=1780.0
R=1778.0 R=1779.5
T R=177819 _ _ _ _ _ _ _
R=1777.5
R=1776.0 R=1777.0

R=1775.5 R=1776.0

R=1775.0 R=1775.4
R=1774.5 R=1775.0
I
1000 0 1000
time time
FIG. 7. Time seriesv(x=0.13", z=0) for I'=16.50 and dif- FIG. 8. Time seriesv(x=0.13", z=0) for I'=16.80 and dif-
ferent values of the Rayleigh numbir ferent values of the Rayleigh number

w(x=0.13", z=0,;t) and w(x=0.87",z=0;) sufficed in
all cases to distinguish among the different types of blinking

states.
The results forl'=16.00 (Fig. 5 are quite different. In
this case, no subcritical stable chevrons are observed, and =17

instead the first nontrivial state of the system appears to be a
three-frequency stateR=1777.2). We shall see in Sec. IV
that such states are entirely natural in systems of this type.
Figure 5 also shows that with increasiagthis state evolves
into one increasingly like Kolodner’s repeated transients,
with a growth phase that becomes progressively shorter, be-
fore a(hystereti¢ transition to the symmetric periodic blink-
ing state shown in Fig. 10 takes place (178B<1779). R=1776.34--------------- -1
With further increase i, this state gradually evolves into a
chaotically blinking state much as in Fig. 6. Indeed, the time
series forR=1782 (Fig. 5 suggests a periodic state with a
period that is double the basic blinking period. Figure 11
shows an example fdr =16.25 in which the oscillations at
the left and right are both periodic in time and of very similar h
form but with a phase difference between them that differs time
substantially from 180°. Since this phase difference remains £ 9 Time seriesv(x=0.13", z=04) for [ =17.00 and dif-
constant, the resulting time series is quasiperiodic with tWqgrent values of the Rayleigh numberThe repeated transient state
basic frequencies, the chevron frequency and the blinkingives way to a periodic blinking state in a hysteretic transition be-
frequency. As seen in Fig. 6, this type of state, hereafter afyeen R=1777 (€=3.7x10"%) and R=1777.5 €=6.5x10"%).
asymmetric periodic blinking state, develops with increasingrhe state aR=1776.1 = — 1.4x 10~4) eventually decays, while

e from a symmetric blinking state, becoming chaoticeas that at R=1780 (¢=2.1x10 %) appears to have period-three
increases, much as observed in related experinjérsand  modulation. The results follow closely the sequence shown in Fig.
expected theoretically19,20. Other possibilities are dis- 5.

1777.0

1776.3

1776.1

1776.0

2000
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0=6.97 1=0.0077 S=-0.021 R=1779 I'=16 w left w right

A080808000" 00004 ™2 *W'W'“ o
£18000008000ROR00 M2, @-19-0-90-~-
(PO :::::z

1786.0
20 200 400 600 800 1000

b= 1781.0
2 9 (d)
z . . p ; 17785
200 400 600 800 1000
time 1778.0
FIG. 10. Symmetric periodic blinking state fér=16.0 andR ~ © time 1000 0 time 1000

=1779 (¢=8.3x10 %). For these parameter valueR, ] )
=1777.528,w,=2.854.(a),(b) show the temperature field at two ~ FIG. 12. Time series w(x=0.13",z=0f) and w(x
instants (indicated by vertical arrows while (c),(d) show w(x  =0.087",z=o,t) for I'=16.80 and larger values of the Rayleigh
=0.13", z=04t) andw(x=0.87", z=0). The fact tha{c), (d) are numberR than in Fig. 8, showing successive transitions from asym-
identical except for a 180° phase shift is indicative of a symmetricMetric blinking states to symmetric ones and back again. The solu-
blinking state. The blinking period is approximately 0.4 of the hori- tions atR=1781 and 1784 appear to be chaotic. Pauses, such as the
zontal thermal diffusion time. one in the time series foR=1784, were observed in the experi-
ments as well[See Fig. &) of Ref.[8].

cussed in Sec. IV. Note that despite the lack of instantaneous
symmetry, the attractor shown in Fig. 11(@mos} symmet- at I'~16.8 appears to be to extend the range of Rayleigh
ric as a set, as are those that result from it, i.e., for thesaumbers over which stable blinking states are observed. In
solutions, the behavior in the two halves of the container isarticular, stable symmetric periodic blinking states are now
almost(statistically identical. However, this is not so for all ghserved even foe>0. This is in accord with theoretical
the states we find, as described further below. expectation(the onset of blinking is a consequence of the
Stable subcritical chevrons were found for all the valuesnteraction between odd and even chevrons in the nonlinear
of I' explored except’'=16 and 17. Figure 7, foF =16.5,  regima, and accounts for the distinction betwelér 16.8 in
shows results qualitatively similar to those shown in Fig. 6Fig. 3 and other values of the aspect ratio. The blinking
with stable subcritical chevrons losing stability with increas-period we find,~90t,, is comparable to the period mea-
ing € to symmetric periodic blinking states that become chasyred in the experiments whéh=17.63, viz. 8000 s, since
otic with further increase ire. Figure 8 shows an example ty=84.3s[8] and theI'=17.63 case behaves much like
for I'=16.8, a value very close to that for the interaction = 16.63 (for reasons explained belgwin contrast, further
between the first even and the first odd parity modes in lineagway from the mode interaction point the range of stable
theory. The basic trend of the results remains the same as fieriodic blinking states shrinks, and these states are typically
FIgS 6 and 7 in that the stable chevron appears to lose St%und On|y fore<0. As a resu“:, away from the mode inter-
bility at a supercritical Hopf bifurcation located &0, pro-  action point the first state that is observed aspasses
ducing a symmetric periodic blinking state. The main effectthrough zero is a nonperiodic state, and not a periodic sym-
of the proximity to the linear theory mode interaction point metric blinking statecf. Figs. 6, . Of course, aspect ratios
nearl’=16.00 or 17.00 are an exception to this rule. Figure

0=6.97 1=0.0077 $=-0.021 R=1778 I'=16.25 12 explores the evolution of the blinking states at larger val-
1 ‘ ‘ ' ‘ ues of e whenI'=16.8 using time series for the vertical
kS OWM (@)  Velocity at mirror points in the two halves of the container.
z ‘ ‘ . ‘ The solutions are in general asymmetric with respect to the
‘10 200 400 600 800 1000 middle of the container, and may be period&s for R
b= =1783, for exampleor chaotic(as forR=1784). The figure
20 (b) also shows that with increasing the left (right) traveling
3_1 ‘ ‘ . ‘ waves becomes increasingly confined to the (gght) half
0 200 400 fime 600 800 1000 of the container, leading to characteristic time series of the

type shown forR=1787 and 1788. Note that the former is

FIG. 11. An asymmetric periodic blinking state fbr=16.25,  strongly spatially asymmetric, while the latter is symmetric,
R=1778 (€=9.6x10 %), showing (a) w(x=0.13",z=0t) and  With both states being periodic. Thus, transitions that break
(b) w(x=0.8T", z=0). and restore the symmetry in the vertical midplane may occur
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repeatedly, with the symmetric statesRet 1786 and 1788 the result of averaging over the fast chevron frequency. Con-

separated by an asymmetric one, suggesting the presence a$equently, pure chevron states correspond to the solutions of

cascade of gluing bifurcations, df21]. Note that the time the equation

series forR=1789 (¢=0.006) is very similar to the “fish” .

state observed by Kolodner fdf=16.75 ande=0.0111, z=(u+az?—z%z, 4.3

even to the extent of capturing the strong amplitude depen-

dence of the chevron frequency within this state. Moreoverand we takeuxR—R(I') to be a real parameter, with the

the computed period of this state, 39%see Fig. 12corre-  coefficienta also real. In view of the results of Sec. Ill, we

sponds almost exactly to that measured by Kolodner in théakea>0 so that the primary bifurcation to chevrons is sub-

experiment. critical, with a saddle-node bifurcatidhereafter S\Noccur-
Figure 9 shows the corresponding results For17.00.  ring at z?=al2. The stability of these states with respect to

These results are very similar to those of Fig. 5 for perturbations in the form of chevrons of the same parity is

=16.00. In particular, one finds here the repeated transient§)erefore given by the linearization of E¢.3 about the

with a slow exponential growth of a pure parity chevron solutionz=z, satisfyingu+azz—z3=0. We denote this ei-

state, followed by its characteristic oscillatory collapse. Ingenvalue byi. It follows that whena<0, this eigenvalue is

fact, the results fol'=17.00 provide a somewhat clearer always negativgstablg, while if a>0, it is positive (un-

illustration of the origin of the three-frequency state, sincestablg on the subcritical branch and becomes negative above

they suggest that the oscillatory collapse phase connectsthe saddle-node bifurcation. Note that Kolodner and Surko

larger amplitude chevron state with a smaller amplitudg5] mistakenly fit the chevron amplitude to a curve of the

chevron, which then regrows again into the larger amplituddorm ez,+ az%—zgzo.

state. The transition from this state to the blinking state ap- The variablev represents perturbations transverse to the

pears to be again hysteretic, while the largest Rayleigh nunehevron invariant subspace, and is complex because these

ber solution R=1780) appears to be periodic but with a perturbations are destabilized at a secondary Hopf bifurca-

period that is three times the basic blinking period. The onlytion, hereafter H. As a result, the coefficients, c, andé are

substantive difference between the results of Figs. 5 and 9 isll complex. This Hopf bifurcation is responsible for the on-

that the parity of the chevron state involved is different.set of blinking. In the model, the amplitude of the blinking is

These results confirm Kolodner's experimental results angjiven by

the theoretical predictiof6] that the spatio-temporal dynam-

ics in this system should be periodic with respeck twith a y=(—vgrt+Ccrzd)y— ry° (4.9

period of 7r/k;, wherek.~ 7 is the wave number obtained

from linear theory. Thus, increasing the aspect ratio by on@nd its frequency by the decoupled equation

allows the system in insert an extra roll thereby changing the )

parity of the basic state. Our calculations indicate that the 6=—v,+c, 22— 8)y>. 4.5

wavelength of the rolls remains remarkably uniform across :

the container despite the substantial changes in amplituddere v=ye? and the subscript® and | denote real and

that occur as a result of the dynamics of these states. imaginary parts, respectively. In these equations the impor-
The explanation of these results is the subject of the nex@nt parameter isg= v(I')>0 and we taker>0. Because
section. of the decoupling of¢ from the equations foy and z, the

resulting model is simple to analyze. Within the model, the
symmetryy— —y represents evolution in time by half the
IV. THEORETICAL INTERPRETATION blinking period so that solutions with opposite signsyaire
In this section, we investigate the model problem in fact identical modulo time translation. The pure chevrons
(y,2)=(0,zy) begin to blink Wherz(z)= vr/Cr and do so with
(4.1) frequency — v,+c|z§; the resulting blinking states take the
form (y,2)=(yo.2o), providedy3>0, z3>0. The stability
) of these states is described by a quadratic dispersion relation.
z=(u+az-z%z-|v|’z, (42 This relation shows that the blinking states either sefsin
percritically) from the larger amplitude chevron branch
constructed to retain the main properties of the partial differ{hereafterA), or from the smaller amplitude branc¢hereaf-
ential equations. Hererefers to the amplitude of the chev- ter B). In the former case, the chevrons acquire stability at
ron state(either even or oddand is not to be confused with the saddle-node bifurcation before losing it again at larger
the vertical coordinate of Sec. Il. We taketo be a real amplitude to stable blinking states. In the,%) variables,
qguantity despite the fact that the chevron states are in fachis bifurcation looks like a pitchfork bifurcation, although it
time periodic, and justify this approximation using Fig. 3, is of course a Hopf bifurcation. In the latter case, the blink-
which shows that, for the parameter values considered, thiag states are initially unstable but acquire stability at a ter-
chevron frequencyo is high compared to the blinking fre- tiary Hopf bifurcation H. This Hopf bifurcation is of vital
guency w, or the slow frequencyw; associated with the importance in what follows since it introduces a third fre-
repeated transients. The assumption théd real removes quencyws into the dynamics of the partial differential equa-
one frequency from the system, and may be considered to li®mns. As discussed further in Appendix A, its presence is a

v=(—v+c)v-&v|%,
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a=2 CR=1 5R=0.1

H, H,

I1_

TolF————
-
N

FIG. 13. Codimension-one bifurcation surfaces in the 1)
plane for Eqs(4.1),(4.2) with a=2.0, cg=1.0, anddg=0.1. H,,:
primary (Hopf) bifurcation to the chevron state (z) = (0,zo); SN,
saddle-node bifurcation on the chevron statg; (decondaryHopf
bifurcation to blinking statesu(,z) = (vq,2y); Hs: (tertiary) Hopf

PHYSICAL REVIEW E65 016303

ondary (H), and tertiary (H) Hopf bifurcations, as well as
the locus of the saddle-node bifurcatioi®N) on the chev-
ron branch. It should be remembered that in thez) vari-
ables only the bifurcation Hremains a Hopf bifurcation,
with H; and H, represented by pitchfork bifurcations. In
addition, the figure shows the curgeof global bifurcations
at which the limit cycle (corresponding to the three-
frequency statgscreated at H disappears by simultaneous
collision with the pure chevron statésandB. The location
of this line must be determined numerically. An asymptotic
calculation of this curve near the codimension-two pésee
Appendix A) yields the heavy broken line; this line is tangent
to y at the codimension-two point, as it must.

Figure 14 shows the bifurcation diagrams obtained by tra-
versing the f,vg) plane in Fig. 13 along the linesz=1.6
and 0.7. These capture the two fundamentally different bifur-
cation diagrams characterizing the binary mixture. Figure
14(a) shows a small interval of subcritical but stable chev-
rons, followed by a supercritical pitchfork bifurcation to a
state withy,# 0 that represents a blinking state in the physi-

bifurcation from @,2,) responsible for the appearance of the cal variables. In the example shown, this bifurcation occurs
three-fre_quency states; ang global b?furcation at which these at u<0 so that the first stable state just above onget (
states disappear. The heavy broken line represents the asymptoticQ) s a finite amplitude blinking state. In contrast, in the

result (A5).

case shown in Fig. 1#) the first stable state encountered
beyond =0 is a finite amplitude periodic state that we

direct consequence of the passage of the Hopf bifurcation Hidentify with the three-frequency repeated transient state dis-
through the saddle-node bifurcation SN on the chevrortovered by Kolodner. Figure 1) shows the time series
branch whera>0, cg>0, as originally noted by Guckenhe- corresponding to this state wher= —0.21. These oscilla-
imer [22]. For a related analysis, also arising in the binarytions represent the low frequency component of the three-
fluid context, se¢23]. In the following, we present the cor- frequency state, i.e., the repeated transient state with the fre-

responding results for the full model Eqgl.1) and (4.2).

quenciesw; and w, filtered out. Observe that during the

These are summarized in Fig. 13 for the case in which thgrowth phase of the variablethe variabley vanishes, indi-
three-frequency state created from the blinking state brancbtating that the growing state is a pure chevrgrhecomes

is stable. This is always the case wheg=1, 6g=0, and
a>0, and hence for sufficiently small positive valuesdaf
as well. The figure shows the loci of the primary,{Hsec-

nonzero only during the collapse phase, indicating that the
collapse is triggered by a symmetry-breaking instability.,
the loss of stability of the growing chevrpbnFigure 15

FIG. 14. (a),(b) The bifurcation diagrams
along the linesvg=1.6 andvg=0.7 in Fig. 13.
Scenario(a) corresponds to that observed in Fig.
6 for I'=16.25, while(b) corresponds to that ob-
served in Fig. 5 for'=16.0. In (b), the open

(@) vg=1.8 a=2c_=1 §.=0.1 (b) vg=07
2 2
A__ -
A
AY
N
AN
N
N B
\
0 1 0 1
-1 0 1 2 -1 0 1
u [

2 circles indicate the global bifurcation with which
the oscillations terminate as decreases, with the
statesA and B labeled as in the text. Solid

2(solid) y(dashed)

(dashedllines indicate stabléunstablé solutions.
(c) The time serieg/=|v(t)| (dashed and z(t)
(solid) for a stable repeated transient when
pn=-0.21, vg=0.7, a=2.0, cg=1.0, and 6y
=0.1.

0 20 40 60 80 100 120 140 160
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(a) t=[100-330], [420-600] (b) t=[330-420]
.5

FIG. 15. Plots of w(x=0.13",z=0}) vs
w(x=0.8T",z=0t) for I'=16.0, R=1778.5
during (@) the growth and the collapse phases,
and (b) during the start of the collapse phase,
together with the time serieg) w(x=0.13",z
=0t) and (d) w(x=0.87T",z=0;t). Growing
symmetric chevrons evolve along the 45° line in
(a) but evolve along the orthogonal direction dur-

© ing the collapse phadef. Fig. 8a) of [8]]. The
growth, transition, and collapse phases used to

w right

|
1 L1 L 1 1 L . R .
~o 100 200 300 400 500 600 700 800 900 1000 construct(a),(b) are indicated by vertical dashed
T
|
|

lines in (c),(d).

()

Ll
400 500 600 700 800 900 1000
time

shows similar behavior obtained from the partial differentialinterpret this transition as the transition from the repeated
equations whenI'=16.0: during the growth phase transient state to thesymmetrig periodic blinking state with
w(0.13,0t)=w(0.87",0}) indicating a growing chevron, a increasing Rayleigh numbecf. Fig. 4 of [8], where H is

fact confirmed in Fig. 1&) by the evolution of the system located ate~2 X 10~ 3, i.e., the minimum of the measured
away from the origin along the 45° line. The collapse phasé¢modulation” period). For the model parameters, this transi-
is initiated when the difference between(0.137,0t) and tion is supercritical, indicating the absence of hysteresis. As
w(0.87",01t) begins to grow and the system begins to evolvey approaches closer to the global bifurcationuat u* <0,

in a direction orthogonal to the 45° line, much as shown inindicated by open circles in Fig. 8, the time series re-
Fig. 8@ of Ref. [8]. With the beginning of the collapse mains similar to that shown in Fig. 1@ but the oscillation
phase, one starts to notice the onset of blinking as evidencggbriod 2/ w5 becomes longer, diverging as| in— u*| for

in the 180° phase difference between the decaying oscillag~ u*, cf. Fig. 4 of[8]. In Fig. 16, we show another case, in
tions in w(0.13",0t) and w(0.87",0t) [Figs. 18c) and  which the global bifurcation att* occurs very close tqu
15(d)]. The amplitude and the periodn2w; of the limit ~ =0. As a result, the chevron state grows from almost zero
cycle in Fig. 14c) decreases with increasing, with the  amplitude, and so resembles more closely the repeated tran-
oscillations disappearing ats;HAs already mentioned, we sient state discovered by Kolodner. In this case, there is al-

(@) vg=0.15 a=2 c_=1 §.=0.2

FIG. 16. (a) As for Fig. 14b) but with vy
=0.15,a=2.0,cg=1.0, andsg=0.2, showing a
(b) u=0.02 v_=0.15 global bifurcation very close tqw=0. (b) The
T T . T T . corresponding time series when=0.02.

2(solid) y(dashed)

200
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u=0.02 a=2 VH=0'15 V|=0.8 CR=1 C|=0 5H=0.2 5I=0 8R=0 8|=0

-
2

-
T
1

a)
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o
T

1

FIG. 17. (@) As for Fig. 18b) but over a
longer time interval.(b) The time series fofz

L +vg(t)]sinwt when»,=0.8, ¢,=0, §,=0, and

0 50 100 150 200 250 300 350 400 450 500 w1=20. Note the exponential growth during the

chevron phase, followed by an overshoot when

the blinking instability sets in, and the ringing

z(heavy) |v|(thin)

OD

R)sin(m 1t)

b) down during the subsequent collapse phase. The
2 . . . . . . . . . time series resembles closely that in Fi¢a)6of
8- 50 100 150 200 250 300 350 400 450 500 Ref.[8]. (c) |v(t)| for chaotic repeated transients
time from Egs. (4.6), (4.7) with €;=0.1+0.1i, f,
p=0.02 a=2 v_=0.15 v=0.8 c =1 ¢=0 §.=0.2 §=0 ¢ _=0.1 £=0.1 =22
2 T T T T T T T T T
= LLLLLLCLLLAR AR LA
o0 500 1000 1500 20IOO 2500 3000 3500 4000 4500 5000
time

most no hysteresis between this state and the conductidrinking frequencyw, and the tertiary frequency; because
state, and the system behawesif the primary instability at  of the built-in normal form symmetry. Since this symmetry is
=0 were directly responsible for generating repeated trannot exact, the coupling between these two frequencies should
sients. Within the model, the corresponding state has all thbe restored. This leads one to consider the models
properties of this state observed in the experiments, except

for the (apparentabsence of the oscillations during the col- v=(—v+cPA)v— Slv|?v + 61f1(22)v_+ S, (4.9
lapse phase. In fact, if the frequencies and 6= w, deter-

mined by Eq.(4.5 are incorporated, and the quantity i=(u+a22—24)2—|v|22, 4.7
+ug(t)]sinwt=[z+y(t)coswst]sinw,t is plotted instead of

or |v|, these oscillations are presdiftig. 17b)], and their  where the coefficients,, . .. represent the coupling and are

amplitude depends on the chevron amplitadie the manner  assumed to be small, df24]. When this is done, one finds
observed in the experiments. In fact, the time series shown ithat the invariant sphere witA and B at its poles breaks
Fig. 17b) displays a number of qualitative features, includ-down due to the transversal intersection of the unstable
ing the pointed overshoot at maximum as the modeegins  manifold of A and the stable manifold d. These intersec-

to grow and the “ringing down” due to the fact that the tions occur in a heteroclinizegion in the (u,v,) plane
variablez decays more rapidly tham, that were documented whose width increases withy. This region contains a count-
by Kolodner in Fig. €a) of Ref. [8]. This time series is not ably infinite number of “horseshoes” and hence is associated
periodic because, in general, the t¢wmnlineaj frequencies with the presence of chaos. Note that the heteroclinic con-
w, and w, are incommensurate. nection along the diamet&A is preserved by the perturba-

Several remarks are in order. tion e;#0. Figure 17c) shows a solution of this type for
(1) The coefficientd may be zero without qualitative ef- ¢,=0.1+0.1 andf,=2°.

fect on the above scenarios. However, we have chdgen
>0 to assure that the solutions remain bounded for all time, The model(4.1) and (4.2) described above is completely
and to move the secondary bifurcations away from the saddleonsistent with the two scenarios for generating blinking
node on the primary chevron branch. states identified in the numerical solutions of the governing
(2) The invariance of the plane=0 in the model system partial differential equations. In the scenario observedTor
(4.1) and (4.2 prevents the formation of a connection be- =16.25, the blinking sets in via a supercritical Hopf bifur-
tween the large amplitude chevron sta@eand the origin cation above the saddle-node bifurcation, and does so al-
when u>0 (see Appendix A Consequently, the global bi- ready fore<0 (Fig. 6). Consequently, there is only a narrow
furcation with which the stable three-frequency states firstange ofe between this bifurcation and the saddle-node bi-
appear must involve the small amplitude chevron site furcation with stable chevrons, before blinking sets in. The
and u* is necessarily negative. However, there is a largeblinking frequencyw, is quite small because the chevron
range of values oy for which u*~0 (see Fig. 13 Con- amplitude at which the Hopf bifurcation takes place is small
sequently, the absence of hysteresis between the conductig®]. In contrast, the results foF=16.00 (Fig. 5 and I’
state and the repeated transients noted by Kolodner findsa17.00(Fig. 9 are entirely consistent with the second sce-
ready explanation in Fig. 13. nario, i.e., that the secondary Hopf bifurcation to blinking
(3) The model(4.1) and(4.2) lacks coupling between the states now occurs below the saddle-node bifurcation, thereby
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eliminating the stable chevrons entirely. Moreover, our reproach simultaneously the unstable large and small ampli-
sults for, sayR=1777.2(Fig. 5 andR=1776.5(Fig. 9 are  tude chevron state& and B. The character of the resulting
suggestive of a quasiperiodic state with three independenmepeated transient is determined by the leading eigenvalues
frequencies such as might be expected from the tertiary Hopéf A and B in the chevron fixed point subspace, hereafter
bifurcation H; on the branch of blinking states identified in —A,<0 andAg>0, and the leading eigenvalues in the per-
the model. Indeed, our calculations are consistent with th@endicular direction. As shown in Appendix B, if the latter
conjecture that the bifurcations SN and Bin the chevron are real,ap,>0 and—ag<<0, say, anthb=aghp/aarg>1,
branch coincide at an aspect rafio somewhere between the repeated transients will remain periodic and stable all the
16.0 and 16.25. Note that the observed period associateglay to u*, where the period diverges and the global bifur-
with the third frequency is about 100Q Such low frequen- cation takes place. In contrast, wherp<<1, the periodic
cies are characteristic of the scenario proposed in Fig. 13)scillations necessarily lose stability before the global bifur-
since w; vanishes at the codimension-two poing,{g) cation atu*. Similar results obtain in the case where the
=(—a?/4,acg/2). Moreover, this scenario predicts that the leading stable symmetry-breaking eigenvalueBais com-
corresponding modulation period should increase rapidlyplex, viz. —ag+iwg, @g>0, as suggested by the simula-
with decreasinge, diverging whene reaches the global bi- tions (see Appendix R In this case, stable periodic oscilla-
furcation ate=€* <0, in accord with the experimental ob- tions will persist down tou* if p>1, but if 0<p<1
servationgsee Fig. 4 of8]). Figure 5 also suggests that the complex dynamics of Shil’nikov type will be present. In fact,
repeated transients observed by Kolodner evolve from thifigs. 5 and 9 suggest that the leading unstable eigenvalues
three-frequency state asincreases frome* towardse~0,a  a, and\g are also complex; this is to be expected since the
suggestion that is confirmed in Fig. 9, where the threebifurcations at H and H, are in fact both Hopf bifurcations.
frequency states look like Kolodner's repeated transientén the following, we do not consider the resulting complica-
from the very beginninghere e* ~0). In both cases, peri- tions further.
odic blinking states are observed only after(hg/stereti¢ When \g is real, a trajectory escaping froB describes
transition from the three-frequency repeated transients. Coran exponentially growing chevron state. This growth phase,
sequently, the branch of blinking states only acquires stabilincluding the stateg\ and B, is clearly visible in the time
ity at Hy and these states therefore blink with finite ampli- series forR=1776.2 (Fig. 9. When the growing chevron
tude when they first appear, resulting in a longer blinkingreaches the vicinity oA it becomes unstable to symmetry-
period than at H, typically 10@4 (compare Fig. 5 aR  breaking oscillations, which take it back neé&rThis is the
=1779 with Fig. 6 alR=1776). This period is also compa- collapse phase of the repeated transient $taimpare Figs.
rable to the period observed in the experiments. With furtheid4(c) and 16b) with Fig. 15]. The frequency of the decaying
increase ine, the blinking state appears to undergo periodoscillations observed in the time series in Figs(cland
doubling as suggested by the time seriesRer1782 in Fig.  15(d) is given bywg. This frequency will in general be of
5 (cf. [19,20), and gradually becomes more and more chathe same order as the blinking frequency associated with the
otic. Indeed, the time series f&=1780 in Fig. 9 suggests a branch of blinking states when these bifurcate from the small
period-three blinking state. Available theory predi@$that  amplitude chevrom, but quite different fron{and in general
the blinking states terminate in another global bifurcation alarger than the blinking frequency of thestable blinking
which a hysteretic transition to a single-frequency localizedstates beyond # cf. [8]. This observation explains the co-
state takes place. This state consists of waves that travélicidence of the period of the blinking states and of the os-
under a stationary envelope attached to one or other lateralllations during the collapse phase of the repeated transient
wall [6]. It is likely that the period-doubling transitions, etc., also noted by Kolodner. Note also that since the repeated
are associated with this global bifurcation. Details of thistransient state visits the statdsand B whose amplitude de-
transition will be described elsewhere. Finally, the fact thatcreasegrespectively, increasgas e becomes more negative
we have found the repeated transients only in the vicinity othe modulation amplitude along the branch of three-
I'=16.0 and 17.0, i.e., for aspect ratios differing 4y, is  frequency states should decrease towards the end of the
also consistent with theoretical expectati@j, and indeed branch. This is seen quite dramatically in Fig. 5. Moreover,
the experiments as wdl8]. sinceag decreases as decreasesit passes through zero at
Figures 14b) and 1&a) lead to the following detailed H,, i.e., ate=¢,) the collapse becomes slower and slower,
interpretation of the repeated transients computed from thas also seen in Fig. 5, but is still finite when the three-
partial differential equations, described hereeadecreases frequency states disappear in the global bifurcationeat
from a periodic blinking state at some>0. The blinking (sincee,<e* <0) and the system makes a hysteretic transi-
state first undergoes(aupercritical Hopf bifurcation H that  tion to the conduction state. The fact theg decreases with
introduces a third independent frequenay, into the dy- e makes it likely that the Shil'nikov condition 9p<1
namics. In fact, in both Figs. 5 and 9 this bifurcation appears$olds ate* (see Appendix B resulting inchaotic repeated
to be slightly subcritical, before the new branch turns aroundransients prior to their disappearar|@®]. This possibility
towards smallek, but this has no bearing on what follows. apparently does not occur in Figs. 5 and 9 but may occur in
The new frequency is finite and decreases withAt the  the experiments. In any case, even longer time series would
same time, the amplitude of the resulting modulation in-be required to test this prediction. Note that singe|e|
creasesgcf. Fig. 16a)], a fact that may be confirmed from a only periodic repeated transients will occur éf ~0, al-
careful scrutiny of Fig. 9, and the three-frequency states apghough even in this case, there may be a few bifurcation
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bubbles with chaotic dynamics, as in R¢R5]. In [8], (iv) Stable large amplitude blinking states set in via a
Kolodner notes that the growth phase of the repeated trartypically hystereti¢ bifurcation from the repeated transient
sient is inversely proportional te, in accord with the above state. This bifurcation eliminates the slowest frequency from
scenario. It is of interest that the repeated transients are mogie time trace.
likely to be chaotic just prior to their extinction, asde- (v) In the experiments, the blinking states become irregu-
creases. lar with increasinge and the blinking period gradually in-
We note, finally, that despite the fact that the repeatedreases, until an abrupt transition to a localized traveling
transients are three-frequency states they are not necessaffve state attached to one boundéoy to steady overturn-
structurally unstable. In the model, this is because we having convection takes place. The observed chaotic blinking is
averaged out the chevron frequenay. However, even if we  likely associated with the global bifurcation studied in
had not done so, genuinely three-frequency states may [§6,20], and will be described elsewhere.

observed in open parameter regig@6] despite the Ruelle- (vi) Although the chaotic asymmetric blinking states are
Takens theoren27]. easily confused with the repeated transients because of their
somewhat similar appearance, [], their origin is undoubt-
V. DISCUSSION edly quite different and most likely occurs via spatial sym-

metry breaking followed by period doubling. This difference

In this paper, we have used direct numerical simulationgs seen clearly in the simulations, and is captured by the
of the partial differential equations governing binary fluid model system proposed in Sec. IV.
convection in a two-dimensional container with realistic  (vii) Regular blinking states are observed near onset only
boundary conditions applied on all four boundaries to defor aspect ratios differing roughly by unity, as in the experi-
scribe in detail the behavior of the system near onset of overments. Our simulations sugge@tig. 3) that these special
stability. These calculations revealed a complex sequence @fspect ratios are in fact nothing but the mode interaction
transitions among states we have called chevrons and twgoints(compare Fig. @) with Fig. 3). The location of these
other states called blinking and repeated transients as timints depends quite sensitively on the system parameters
aspect ratio or the applied Rayleigh number varies. We havand in particular on the additional dissipation due to the ne-
seen that: glected no-slip walls in the thir(transversgdirection. Con-

sequently, differences between the experimental results and

(i) The primary bifurcation to convection is subcritical, in our calculations may be primarily due to differences in the
agreement with the prediction fetanding wavedn a hori-  location of these points. For example, Kolodner finds that
zontally unbounded lay€gri0,17. As a result, for some as- blinking states persist down to small amplitudes for
pect ratios, stable chevrons may be present, but are most16.63 and 17.63 when theimensionlesswidth I'y= 3.0,
likely observed for negative values ef and for['=16.25 and 17.25 wheh=4.9. In contrast, our

(i) For many(though not mostaspect ratios, the first strictly two-dimensional calculationsI'(==) show that
nontrivial state of the system is a three-frequency repeateblinking states are most easily found ndae16.8. In con-
transient state. The transition to this state is hysteretic sinceast to the experiment8], we do not find that repeated
€* <0 but for many parameter value$ is so close to zero transients predominate at all aspect ratios away from the
as to make the detection of hysteresis highly unlikely. In-mode interaction points. For example lat 16.25, we found
deed, in some experiments no hysteresis was f¢6hdrhe  subcritical stable chevrons that bifurcate into blinking states
three-frequency states appear via a global bifurcation andith increasinge (Fig. 6).
acquire the characteristic behavior associated with repeated (viii) The behavior exhibited by the partial differential
transients only ag increases. Consequently the modulationequations is fundamentally low-dimensional even though the
period 2w/ w5 is infinite when the repeated transients firstaspect ratio is quite large. This is because the dynamics of
appear, but drops rapidly with increasieg as observed in interest occurs in a small range efnear onsetje|<I" 2.
Fig. 4 of[8]. When the conditiop< 1 on the eigenvalues at (ix) The numerical simulations support much of the
A andB holds(see Appendix B the resulting repeated tran- theory put forward by Dangelmayr and co-workgés (see
sients are expected to be chaotic. These states persist ordiso[19]) as to the origin of the different types of states, and
over a narrow interval oé close to onset, of order 16 (see  provide essential information supporting the interpretation of
Fig. 8, which compares well with the rangex2l0 2 given  the repeated transients as a three-frequency state. The simu-
by Kolodner forl’=16.75[8], and give way to large ampli- lations also confirm the significance of the paramétenod
tude blinking states in éslightly) hysteretic transition when /K. proposed in[6] and confirmed so dramatically in
e~10"3. Our calculations suggest that dispersive effects ar&olodner’s experiment8]. This parameter reflects the fact
not of fundamental importance in this behaviar contrast that whenl" changes byr/k., wherek, is the “wave num-
to Kolodner’s conjectune but that the primary chevron state ber” of the waves, an additional roll fits into the container,
must bifurcate subcritically. In particular, we have been un-thereby changing the parity of the most unstable state. De-
able to identify any fundamental role of the local wave-tailed calculation$16] indicate that the wave number at on-
number changes observed in the experiments. set is in fact remarkably uniform across the c@f. [8]),

(iii) Stable small amplitude blinking states set in whendespite the variation in amplitude, and that~=. Thus,
stable chevrons lose stability at a secondary Hopf bifurcawhen the neutral curves of both modes cross, the system
tion. feels comfortable with both, and oscillates regularly even in

016303-13



BATISTE, KNOBLOCH, MERCADER, AND NET PHYSICAL REVIEW E65 016303

the nonlinear regime. This is not so for other aspect ratios for,,
which one or another mode is preferred: when the preferred
mode loses stability at finite amplitude to a symmetry-
breaking perturbation the competing state does not fit well (5.2a
into the container and the system oscillates irregularly.

+=(petiw )z, +A+|Z+|22++B+|Z—|ZZ++C+?+ZZ—,

z =(p_+iw )z_+A_|z_|?z_+B_|z,|?z_+C_z_72,

These results and the accompanying interpretation ac-
count quantitatively for almost all of the experimental obser- (5.2b
vations of Kolodner[8], and put forward a dynamical sys-
tems explanation for the diversity of the observed states anglhere A.., B., C. are complexO(1) coefficients, and
their properties. The numerical simulations proved essential, , , w. denote the growth rates and frequencies of the two
first, to reproduce quantitatively the periods of the observegnodes at a particular point in th&(I") plane. Renard{28]
states and their spatio-temporal character, in order to confirshows that equations of this form may also be derived, via
that the restriction to two dimensions is not fatal, and seconcgenter manifold reduction, from a pair of coupled complex
to verify certain aspects of the dynamical systems descripGinzburg-Landau equations with generic boundary condi-
tion that could not be identified in the published experimen+ions. Note that a$w, — w_| becomes larger and larger, the
tal data. It is our view that the remaining quantitative dis-C. terms become less and less important.
crepancies may all be attributed to the sensitive dependence The model put forward in Sec. IV suggests that H§2)
of the mode interaction point on the width of the container,are not adequate for describing the dynamics of binary fluid
because of its effect on dissipative processes in the cell. convection in the parameter regime considered. This is be-

The results reported here indicate that for sufficientlycause to capture the repeated transients, the primary bifurca-
small| €| sidewalls exert a critical influence on the dynamicstion to the chevron state must be subcritical, i&.,z>0,
of the system. This is to be expected since for sedime  and in this case, the amplitude equations must be determined
behavior of the system is dominated by doeat most twd  to higher order. It is for this reason that the mechanism for
unstable modes of the system, whose spatial structure is dgenerating bursts put forward by Moehlis and Knobl{g8]
termined by the lateral boundary conditions. Order of magdoes not operate for these parameter values, and is presum-
nitude estimateg6,28] suggest that this will be the case ably also the reason why the present system exhibits repeated
whenevere]I'?<1, i.e., with increasinge| the sidewall in-  transients, as opposed to the type of bursting observed by
fluence becomes smaller, and indeed one may reach the sitgullivan and Ahlers[34] in He*-He* mixtures. The same
ation in which the collapse described by the subcriticalargument applies to the derivation of coupled complex
Ginzburg-Landau equation on an unbounded domain beginzburg-Landau equations for this system. It is for this rea-

comes a more and more appropriate description of the dyson that we have not pursued this type of description further.
namics[29]. The experiments of Kaplaet al. [29] suggest

that this is in fact so oncée|['>=10. The results of Ref.
[30], performed for slightly largefS| and subcritical values
of €, may likewise be interpreted as showing theli"?~5 We thank Vivien Kirk for helpful discussions. This work
describes the transition between these two regimes. Howwas supported by Fulbright US-Spain Science and Technol-
ever, the simulations reported here all satisfy the conditioopgy Joint Research Grant No. 99231 and by
|e|l'2<1, and hence are always dominated by the sidewallsDGICYT under Grant No. PB97-0683. Additional support
We conclude with a remark about modeling systems ofrom National Science Foundation Grant No. DMS-0072444
this type using amplitude equations. Such equations applis gratefully acknowledged. Computer time was provided by
rigorously near the mode crossing point, and describe the EPBA.
interaction of the two competing chevrons. In a finite do-
main, one cannot derive coupled equations for the ampli-
tudes of left- and right-traveling waves, since such waves are
not eigenstates of the linear problem. In the following, we In this Appendix, we summarize the results of analyzing
therefore letz, andz_ denote thelcomplex amplitudes of the interaction of the saddle-node bifurcation on the chevron
the even and odd chevron eigenfunctidkig. 1). Owing to  branch with the pitchfork bifurcation to the blinking state,
the reflection symmetrx— —x, (¢,0,7)—(—.,0,7) of  and then explore the location of the global bifurcation iden-
the original system2.1)—(2.3) these equations must com- tified there for parameter values away from this

ACKNOWLEDGMENTS

APPENDIX A: THE GLOBAL BIFURCATION AT p=p*

mute with the operation codimension-two point. The analysis is done within the sys-
tem (4.1 and (4.2), written in real variables. For conve-
(2,2 )—=(z, ,—2.). (5.1) nience, the subscripts ark, Cr, and g are dropped.

Since the frequencies of the two competing modes are within 1. The saddle-node pitchfork interaction

about 10% of one another, we include two formally nonreso- Within the system(4.1) and (4.2) the saddle-node bifur-
nant cubic terms in the amplitude equations and write theseation occurs afu=—a?/4. The pitchfork coincides with
in the form, cf.[31,32,14, this bifurcation wherv=ac/2. Moving the saddle-node am-
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(@) v =0.98 p=-0.927518 (b)  Vvg=07 u=-0.210914
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o o
0.1 05
/_\ FIG. 18. Solutions of Eqs(A8), (A9) refor-
0 0 mulated as a nonlinear eigenvalue problem of the
05 "3 15 0 :) 2 form (A12) for different values ofv=vg anda
() vy=0.4 =-0.0108713 (d) v, =01 p=-8.31486x10” =20,¢=10, 6=0.1. (& »=0.98, (b) »=07,
R 3 (c) v=0.4, and(d) v=0.1. The eigenvalueg*
are all negative. Note thai*~—10"2 whenv
=0.4, and~—10 % when»=0.1.
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1 1
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plitude zgy=val/2 to the origin, and scaling the resulting 1
equations appropriatelicf. [35]), we can rewrite Eqs4.1) V1=~ 7ua[1+94]. (AS)
and (4.2 in the form

5 As shown in Fig. 13, this resultlashed lingis tangent at the
- C c dimension-two point to the locus of global bifurcations
=—rz+er| —v+—22——r? ot - : i i i i
' arZ €l mn 3% 2! ) (AD) computed numerically, and is consistent with the bifurcation

diagram in Fig. 14b) since the tertiary Hopf bifurcation is

2 5 present only forv<<ac/2 (i.e., v1<0), and the termination
. r . . . . . . _ 2 .
7=p@2— 22— 12+ ez| py— —- _222) _ (A2) p0|2t00)f the resulting oscillations must lie pp> —a“/4 (i.e.,
a M1 .

It is of interest to examine the effects of breaking e
To obtain these equations, we have written- —(a2/4)  invariance of the normal form as discussed in Sec. IV. To this
+ €2, andv=(ac/2)+ €2v,. The resulting equations con- €nd, we consider the system
stitute case Il in the classification of R¢B5]. The limit e .
=0 is integrable with the integral v=(\+iw)+ Jvzt elv|?z, (A6)

a
wia’— ——r2—272

F(r,z)=r2c
a+c

(A3) z=pu—22—|v|?+ 2. (A7)

) . . . _ (2al0)-1 In this model, we have retained just one of the higher-order
If we define a new time variable usingdt=r d7We  terms (e, #0), and use,# 0 to break thest invariance. The
obtain on the right-hand side a vector field that is at 'ead'n%sultmg equations have been investigated by Ki2k].
order divergence-free. It is therefore the divergence of thgyhen ,=0 and e,<0 the oscillations created at;Hare
O(e) terms that determines the surviving periodic orbits  gaphje and disappear in a global bifurcation involving both
2a chevrons, i.e., in a heteroclinic bifurcation. The bifurcation
diagram of Fig. 14b) corresponds to Kirk’s Fig. 2 traversed
along the lineu+ o\ = 7, whereo, 7>0. Whene,# 0, Kirk
5
- —zzzldrdz=0, (A4) clinic region in the (u) plane inside of which the unstable
a manifold of A intersects the stable manifold Bfin a struc-
turally stable way. Consequently, this region contains a
domain F(r,z)=K. For example, for the valuea=2, c orbits). Moreover, Kirk identifies a sequence of resonance
=1 used to generate Fig. (B} the heteroclinic loop corre- tongues in the &) plane containing pairs of frequency-
sponding toK=0 is located along the curve locked orbits with frequencies in the ratR/Q, and shows

__Vl__
a?

2a
1+25+—5

the larger A: z>0) and smaller B: z<<0) amplitude

f f r(2a/c) 1
shows that the heteroclinic connection splits inthietero-
where the integral is to be taken over the interior of thecountably infinite number of horseshog@sit no homoclinic
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that the tongue boundaries accumulate on the boundaries of p,=p(u+p+ba), (A13)
the heteroclinic region a®—«. HereQ denotes the number
of times in a period the orbit winds around thexis(i.e., the g,=q(—v+cp—q). (Al14)

number of times it follows the primary periodic orbit &)

= (ro expiwt, Z), with (rq,z,) constant, while P is the num- Whenu>0, v>0, there are then no fixed points on either of
ber of times it twists around this orbit. Thus the heteroclinicthe axes, except for that at the origin (0,0). The resulting
region contains at least two heteroclinic orbits, as well as &quations may be solved using matched asymptotic expan-
variety of periodic orbits obtained by period doubling of the sions, valid even when the limit cycle comes close to the
different P/Q orbits. Moreover, the global bifurcation re- origin and hence is of large size.

sponsible for the heteroclinic region always either precedes In the regimep<1, p<q, we approximate EqSA13)

or coincides with that at which the lower fixed poiBtis  and(A14) by

annihilated in a saddle-node bifurcation with the extra fixed

point introduced by the cubic term whene;<0 p,=p(u+ba), (A15)
([36] and Fig. 3 of Ref[24]). Figure 13 indicates that this is

the case here as well, with the bifurcation st 0 playing 9.=a(—»—q), (A16)
the role of the second saddle-node bifurcation in Kirk's

with solution curv iven b
problem. solution curves given by

p:Klq_,lL/V(V_l_q)(/.L—bV)/V. (Al?)
2. The nonlinear eigenvalue problem
the regimeq<1, gq<p, we approximate EqgA13) and

Based on Figs. 13 and 18, we have argued that within th%”AM) by

two-dimensional mode(4.1) and(4.2) the oscillations must

terminate in a heteroclinic bifurcation at <0, i.e., that the p.=p(u+p) (A18)
transition to the repeated transient state must always be hys- 7 ’
teretic. However, the discussion of Appendix A1l suggests q.=q(—v+cp), (A19)

that in some caseg* could vanish, eliminating all trace of
hysteresis. This issue remains unresolved. To appreciate thgth solution curves given by
difficulties, it is helpful to rewrite the equations in the form

_ , q=Kop™ " (putp)eme, (A20)
p=2p(pntap—q-p9), (A8) _ o
Since these have to agree near the origin, i.e.pfarl, g
q=2q(— v+ crp—xa), (A9) <1, we conclude that
wherep=2z2 and q=y?. A further rescaling, using a small KEu"*or=KipH b, (A21)

parametery<1, of the form . )
The above solutions may be matched to the solution of the

(p.a)—y(p/a,aldr),  (m,v)—y(p,v), equations
allows us to write this system in the equivalent form p,=p(p+baq), (A22)
p,=p(p+p+bg—yp?), (A10) q,=q(cp—q), (A23)
q.=q(—v+cp—q), (A1l)  obtained from Eqgs(A13) and (A14) under the assumption

where r=29t, b= — 1/64<0, c=cx/a>0, and a factor of p>1, g>1. This equation has solution curves given by

a® has been absorbed in the definitionywfAs a result, the
existence of a connection between the points,0) and pt=K°® 1q
(0,0) amounts to the existence of a solutios u*=0 of
the nonlinear eigenvalue problem

—(1+bc)/(1+b)

a , (A24)

P

where 8=(c—1)/(b+1). Matching to the solution foip

d — ytcCp— <1, p<q yields
q_q (—wv+cp—q) (A12)

dp P (u+p+bg—yp?’ K,=KP*L, (A25)

subject to the conditions thg{0)=0, q(p*) =0. We expect Matching to the solution fog<1, q<p yields
the solutionq(p) to be single-valued. Typical solutions of
this problem for different values aof are shown in Fig. 18. Ky=K1—¢|g|(trboldrh), (A26)

On substitution of these expressions into the relatidl)

3. The casey=0 o
&Y we obtain finally

In the limit y— 0, the large amplitude fixed point moves
off to infinity and the systentA10) and (A11) becomes K=|g|(PA+bInd  olvrew),,d=ptby) - (AD7)
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wheres=[(1+b)v—u(1—c)] L. We identify e-neighborhoods ofA and B and construct
The above calculation shows that far>0 there is al- surfaces of section gt=e€ (labeledX, at B andX; at A),

ways a finite amplitude limit cycle. This limit cycle is and z—zg=¢€ (labeled ;) and z—z,=—¢€ (labeled,).

unique, in the sense that there is a single solution for eacBee Fig. 19. Whe is small enough, the flow ne& can be

pair (w,v). The only exception arises in the limit—-«~. This  approximated by the linear flow

limit will be recognized as the integrable limit and indeed in

this case there is a one-parameter family of solutions, one for y= —agy, Z= \g{, (B1)
eachK>0. Whené+ 0 the solution near the origin (0,0) is ]
given by where{=z—2zz>0. The mapTy;:2,— >, that takes points

of the form (e,{y) € 2 to (y1,€) € 24 then takes the form

VoM — S(1+bc)uv,, Sv(1+b)(v+cu),,éu(l—Cc)(—un+br)
p a“=|p| © v (A28 yi=€({ol€)?8/ s, (B2)

hi . b d btain the cl di Since trajectories starting near épPe 2., follow the structur-
This expression may be used to obtain the closest distance H?Iy stable heteroclinic connection connectiBgto A (i.e.,

the origin (0,0) as a function, for example, @f Moreover, =0), the linearized mafi ,:3,—3, takes the form
one may check that there is always a solution to the equatio%

g,=0, g#0, so that the solutions cannot escape to infinity in yo,=ay, (B3)
the g direction, and likewise for the direction. These con-

clusions continue to hold whep=0. Thus, at least in the wherea>0 is a constant. Neah, the linear flow takes the
limit y—0, the global bifurcation must occur at*<0. form

Note, finally, that Eq.(A24) implies that depending on the . .

sign of (1+bc)/(1+b) eitherp or g must diverge along the y=apy, {=—Aal, (B4)
line q= Bp, and hence that both do so. Sirce 0 this “con-

nection to infinity” requires tha3>0. In a closely related whereg=2-2z,<0. Asimilar calculation now gives the map

problem, Tobiagt al.[37] show that such a connection may T3 2= 23!
occur onceu reaches a finite value. L= —e(y,le) /o, (B5)
APPENDIX B: STABILITY OF THE LIMIT CYCLE Finally, the mapTzo:25—2, is given by linearizing the
NEAR &* flow around the near heteroclinic trajectoky- B:
The stability of the limit cycle identified in both the model {o=bl3t T, (B6)

and in the partial differential equatioltBDES near the glo- )
bal bifurcation may be determined using appropriately conWhereb<0 is another constant, angb u— w*. Thus, when
structed return maps. It turns out that although the mode =0 the point €,0)eX; is mapped into ,0)e X, ie.,
captures the essence of all the important transitions observé@ere is a heteroclinic connection froto B, and hence a
in the PDESs, it oversimplifies the situation near this bifurca-heteroclinic cycle of the formB—A—B. This is exactly
tion. This is of course because the model cannot describ&hat happens at*.
complex dynamics. To appreciate the difference between the Using the four maps just defined we may now compute
model and the PDEs, we treat first the model, and then confhe return mapTo:2o—2, taking (e,{) e %o to (e,')
pare the results with the corresponding ones for the PDEs. € o once around the heteroclinic cycle. The result is

We let{a,\} be the eigenvalues of the chevronsz),in
t_he symmetry_—breaking and the symmetr_y-preserving direc- {'=ciP+o, p=
tions, respectively. In the model, these eigenvalues are nec- aplg
essarily real and are easily computefla, \}={- vy
+cgrz3,2(a— 223)Z5}, wherezy=1z, or z . Hereafter, we re-
fer to these eigenvalues &8, ,—\a}, and{—ag, Ag}, re-
spectively, withas >0, Ny g>0. Explicit expressions are
readily obtained. For example,

aghp

>0, (B7)

where c>0. Note that the exponeni is the ratio of the
product of the two stable eigenvalues to the product of the
two unstable eigenvalues. This equation has a fixed point
given by the solution of the equation

{—o=ceP. (B8)

Ag=\a’+4u(a—a’+4u)~—2u

A fixed point with /<1 corresponds to a periodic trajectory
when|u|<a. In the PDEs, the role of these eigenvalues isin the original system lying close to the heteroclinic cycle
taken by theleading symmetry-breaking and thieading (=0 ato=0. Its stability is determined by the slope of the
symmetry-preserving eigenvalues, respectively; the leadingght side of Eq.(B7) at the fixed point. Thus, whep>1
eigenvalues are those in each category withstimallestreal ~ such a fixed point exists only fer>0, i.e., foru>u*, and
part(in absolute value In the present paper we do not com- it is then stable. In contrast, when<g»<1 the fixed point
pute these eigenvalues from the pdes, although some indicaxists only fore<0, i.e., foru<u*, and is then unstable.
tion of their character and magnitude can be gleaned fronThe former case describes a limit cycle that approaches the
the time series for the repeated transigiiigis. 5 and 9 global bifurcation from above without loss of stability, while
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@ (b) given by Eq.(B5), with y, replaced byly,|. The remaining
map,T3:23 —30 , is given by

] L ro=n+alXs|+bls, {o=0+clxs[+dls, (B12

z; wherea, ... are constantgree— e*, andxs represents the
WY(A) WY(A) x coordinate in the plan& ; in the direction of the leading
stable symmetry-breaking eigenvector. If this eigenvalue is
more stable tham , this map may be simplified by noting
that at leading ordery~ 7, so that Eqs(B12) may be ap-
proximated by

I

{=0+dis. (B13)

The final return map then takes the form

FIG. 19. Sketch of the surfaces of section used to construct the
Poincarereturn map near the global bifurcation fta the model,
and(b) the PDEs. Ina), all the eigenvalues are real while (i) the
leading stable eigenvalue &fis complex. p= aghpap\g>0,

w
§’=cr+e§”cos‘3A()\—Bln (+D
B

in the latter case, the branch of stable oscillations overshoots Sa=Aplap>0, (B14)
p*, and turns around at a saddle-node bifurcation before . .
approachingu* from below. where e>0 and & are constants, and is defined for
It is important to observe that in the model we may treatfgge(rﬁB;g;)r#%ggi];e.iiggilz';g;d veﬁillnetss;rfnrt'r&lgrirgz?bgtespz;re
the unstable directionsy independently. However, as al- . ; ' .
n rect y Indep Y wev found as fixed points of the other “half” of this map

ready mentioned, the fact that the bifurcation atislin fact
a Hopf bifurcation relates these two directions, and implies wg

that trajectories starting ne& can arrive atA from either {'=o+el’ COSsA()\—m {+ P+
direction. To apply the present approach to the PDEs it is B

necessary therefore to generalize it to the case where thghere, once again, the cosine must be positive. The resulting
leading stable eigenvalue of the steady stigs a member map (cf. [38]), has properties similar to the standard
of a complex conjugate paif; ag*iwg, say. In the follow-  Shil'nikov map [39], although the details depend on both
ing, we retain the notatiofies, —\a} for the leading eigen- eigenvalue ratiop and 5,. The simplest case is agan
values of the large amplitude chevrons in the symmetry=>1: in this case, a single-stable periodic orbit becomes het-
breaking and the symmetry-preserving directions.eroclinic aso| 0. When 0<p<1, an infinite cascade of glu-
respectively, with\ g the unstable eigenvalue Bt Since the ing bifurcations accumulates at=0 from ¢>0 and does so
stable manifold ofB is now two-dimensional, we use polar at a geometric rater,, ; /o,=exp—m\g/wg . At these bifur-

: (B15)

coordinates to describe the linearized flow cations, a pair of asymmetric orbits glues to form a symmet-
) ) ) ric orbit or a symmetric orbit splits into two asymmetric
r=—agl, 6=wg, {=\gl. (B9  ones, depending on whetheris even or odd. These orbits

become increasingly more complex asncreases since
counts the number of half twists about the liB&. When
. el NS 6,>1 the orbits that glue are stable, but they are unstable
Intersects It. Smce the_ symmetyy——y !nplle+s th"?‘t the+re (and degeneratewhen 0<§,<1. However, regardless of
are two such intersections, we takg=2o U2, , With 2o he value ofs,, each gluing bifurcation is preceded by a
chosen if the intersection is with= 6, and2, if itis with  cascade of period-doubling bifurcations and chaos of
6= 6o+ m. Note thaty is a small but finite quantity, while:  ghjI'nikov type. It should be emphasized that while asym-
takes values near=0. The mapTy;:Xo— 2 then takes the  metric orbits undergo period-doubling cascades, the symmet-
form ric orbits must first undergo a bifurcation to asymmetry. We
surmise that for the parameter values for which the direct
ri=ro({o/e)®™s, 6,=— ﬁ|n(§o/€)+ 0o, numerical simulations were carried out the ratie 1. In this
Ag case, the repeated transients remain quasiperiodid &,

(B10)  as observed in Figs. 5 and 9. Note that the ratdepends on

€ primarily through the eigenvalues; and\ g both of which

are small and so vary witk dramatically. Thus, it is prima-

Xo=r,C040;+¢), Yy,=r;codf;+¢). (BL rily the properties of the stat® t_hat are responsib_le for the

presence or absence of chaotic repeated transients, and we

What happens next depends on the sign of the quayity use this fact as a justification for ignoring the imaginary parts
which determines whether the trajectory will exit the neigh-of the eigenvaluesy, and \g. These introduce complica-
borhood ofA along througt® 3 or 35 (Fig. 19. This mapis tions akin to those studied in Re#0].

For %, we choose a part of the plarte= §, around one of
the points ¢,{)=(#,0), where the unstable manifold &f

while the mapT,,:%,—3, is given by
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