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Simulations of oscillatory binary fluid convection in large aspect ratio containers
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Direct numerical simulations of chevrons, blinking states, and repeated transients in binary fluid mixtures
with a negative separation ratio heated from below are described. The calculations are performed in two-
dimensional containers using realistic boundary conditions and the parameter values used in the experiments of
Kolodner @Phys. Rev. E47, 1038 ~1993!#. Particular attention is paid to the multiplicity of states, and their
dependence on the applied Rayleigh number and the aspect ratio of the container. Quantitative agreement with
the experiments is obtained, and a mechanism explaining the origin and properties of the repeated transients
observed in the experiments is proposed.
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I. INTRODUCTION

Binary fluid mixtures exhibit a wide variety of behavio
when heated from below. Of particular interest are mixtu
with a negative separation ratio. If the separation ratio
sufficiently negative, the conduction state undergoes a H
bifurcation with increasing Rayleigh number, creating a w
variety of traveling wave states at finite amplitude. In t
present paper, we are particularly interested in understan
the states observed in rectangular containers of modera
large aspect ratio, including the so-called ‘‘chevron’’ a
‘‘blinking’’ states @1,2#. The ‘‘chevrons’’~or counterpropagat
ing waves! consist of a pair of equal amplitude waves prop
gating~usually! outwards from the cell center; when the am
plitudes of these waves oscillate about the equal amplit
state the pattern is dominated alternately by left- and rig
traveling waves and is then called a ‘‘blinking’’ state. Th
blinking states were first observed in simulations of dou
diffusive convection@3#, and subsequently in experiments o
binary fluid convection@4,5#. In contrast to the chevrons
which have been observed in experiments only rarely@2#, the
blinking states appear to be much more robust. Both th
states owe their existence to the presence of sidewalls,
may be understood on the basis of both bifurcation theory@6#
and Ginzburg-Landau theory@7#. Of particular interest in the
present paper is a third state, the ‘‘repeated transients,’’
served by Kolodner and and co-workers@1,5,8# in water-
ethanol mixtures. These states consist of chevrons that g
exponentially from small amplitude without change of sha
until they reach a critical amplitude at which they becom
unstable and collapse back to small amplitude. The exp
ments reveal that the dynamics of these states depend s
tively on the aspect ratio of the system, and on the Rayle
number. Understanding of the repeated transients appea
lie outside of the Ginzburg-Landau type of description e
ployed in @7#.

The existing experiments@1,2,8# raise a number of inter
esting and important theoretical questions. These include

~i! What is the nature of the saturated state into which
initial instability develops?

~ii ! What is the origin of the sensitive dependence of
1063-651X/2001/65~1!/016303~19!/$20.00 65 0163
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final state on the aspect ratioG of the container, and on the
Rayleigh numberR?

~iii ! What is the mechanism by which stable chevrons t
into blinking states and/or repeated transients?

~iv! How do the repeated transients and the blinking sta
disappear?

~v! Is there hysteresis at the onset of the repeated t
sients?

Despite much experimental effort that has gone into
swering these types of questions the situation remains
from clear. To date, the most thorough study of a numbe
these issues is the paper by Kolodner@8#. This paper presents
a great deal of valuable information about the dynami
behavior near onset, but even with this information the ba
picture remains clouded. In particular, the basic mechan
responsible for the experimental results remains elusive
this paper, we set out to answer as many of the above q
tions as possible. Our approach involves experiments o
different kind, namely, direct numerical simulations of th
partial differential equations. Consequently, we focus on
parameter values used by Kolodner@8#, and integrate the
governing equations in two dimensions, using realis
boundary conditions on the four sides of the container. Us
the results of these simulations, we are able to answe
number of the outstanding questions. In particular, we
able to uncover a deterministic mechanism that provide
unified and coherent picture of the transitions between ch
rons, blinking states, and repeated transients, and that is
sistent with the results of all our simulations. This mech
nism is fundamentally low-dimensional, indicating that ev
extended systems may behave as low-dimensional sys
sufficiently close to onset. In certain cases, our numer
results disagree in detail with Kolodner’s experiments.
these cases, we are able to make clear and precise predic
that would confirm the basic dynamical systems mechan
we put forward. Some of our results have already been
ported@9#.

The paper is organized as follows. In Sec. II we introdu
the equations we solve. Section III summarizes the result
the simulations, followed in Sec. IV by a description of th
mechanism that accounts for them. The paper concludes
©2001 The American Physical Society03-1
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a brief summary of our results and their implications for t
experiments. Some of the more mathematical aspects of
discussion have been relegated to a couple of appendix

II. BASIC EQUATIONS

Binary fluid mixtures are characterized by the presence
cross-diffusion terms in the diffusion matrix. In wate
ethanol mixtures, the dominant cross-diffusion term is
Soret term. The sign of the Soret coefficient determines
behavior of the mixture in response to an applied tempe
ture gradient. In mixtures with a negative Soret coefficie
the heavier component migrates towards the hotter bound
i.e., a concentration gradient is set up that opposes the d
bilizing temperature gradient that produced it. Under th
conditions, the onset of convection may take the form
growing oscillations. This is the situation that is of intere
here.

We consider a binary mixture in a two-dimensional re
angular containerD[$x,zu0<x<G,2 1

2 <z< 1
2 % heated uni-

formly from below. We nondimensionalize the equations
ing the depth of the layer as the unit of length andtd , the
vertical thermal diffusion time, as the unit of time. In th
Boussinesq approximation appropriate to the experime
the resulting equations take the form@10#

] tu1~u•“ !u52“P1sR@u~11S!2Sh# ẑ1s¹2u,
~2.1a!

] tu1~u•“ !u5w1¹2u, ~2.1b!

] th1~u•“ !h5t¹2h1¹2u, ~2.1c!

together with the incompressibility condition

“•u50. ~2.1d!

Hereu[(u,w) is the velocity field in (x,z) coordinates,P is
the pressure, andu denotes the departure of the temperat
from its conduction profile in units of the imposed tempe
ture differenceDT. The variableh is defined such that its
gradient represents the dimensionless mass flux. Thuh
[u2C, whereC denotes the concentration of the heav
component relative to its conduction profile, scaled with
concentration difference that develops across the layer
result of the Soret effect. The system is specified by f
dimensionless parameters: the separation ratioS that mea-
sures the strength of the Soret effect, the Rayleigh numbR
providing a dimensionless measure of the imposed temp
ture differenceDT, and the Prandtl and Lewis numberss, t,
in addition to the aspect ratioG.

The boundary conditions adopted will be those relevan
the experiments. Thus, we take the boundaries to be no
everywhere, with the temperature fixed at the top and bot
and no sideways heat flux. The final set of boundary con
tions is provided by the requirement that there be no m
flux through any of the boundaries. The boundary conditio
are thus

u5n•“h50 on]D, ~2.2!
01630
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u50 atz561/2, ]xu50 atx50, G. ~2.3!

Here]D denotes the boundary ofD.
Although the above problem has been tackled by sev

authors@11#, the results obtained thus far are incomplete, a
the calculations were often not carried on for long enough
equilibrate properly. We show below that the above syst
possesses in general very long transients, requiring cons
able patience in order to obtain reliable results. Rather m
progress has been made on the related~but simpler! problem
in which the lateral boundary conditions are replaced by
riodic boundary conditions@12# or by artificial reflective
boundary conditions to mimic the presence of lateral bou
aries @12,13#. These studies have clarified the role of t
concentration distribution in traveling wave states, and id
tified spatially localized traveling wave states, i.e., sta
consisting of waves propagating under a stationary enve
attached to one of the boundaries. Our calculations con
these results. However, the aim of the present paper is m
ambitious, in that we focus on states with nontrivial dyna
ics, and do so with realistic lateral boundary conditions.

We solve Eqs.~2.1!–~2.3! using a time-splitting method
with an improved boundary condition for the pressure
described in Ref.@14#. The time integration scheme i
second-order accurate and is based on a modified Ada
Bashforth formula@14#. For the spatial discretization, we us
a Chebyshev collocation pseudospectral method@15#. In all
cases, the time step and the number of collocation po
used was adjusted until the solutions converged. Typica
we used 170 collocation points in thex direction and 30
collocation points in thez direction, with a time step of 1023

~in units of the vertical diffusion time!.
Equations~2.1!–~2.3! are equivariant with respect to th

operations

Rx :~x,z!→~G2x,z!, ~c,u,C!→~2c,u,C!, ~2.4!

k:~x,z!→~x,2z!, ~c,u,C!→~2c,2u,2C!,
~2.5!

where c(x,z,t) is the stream function, defined by (u,w)
5(2cz ,cx). These two operations generate the symme
group D2 of a rectangle. Bifurcation theory shows that in th
case, the eigenfunctions of the linear stability problem
the conduction stateu5u5h50 must be either even or od
under reflection inx5G/2. As a consequence, only branch
of even and odd solutions may bifurcate from the conduct
state@6#. Specifically, the even eigenfunctions are invaria
underRx , i.e.,

„c~x,z!,u~x,z!,C~x,z!…5„2c~G2x,z!,u~G2x,z!,C~G

2x,z!…

at each instant in time, while the odd eigenfunctions are
variant underkRx , i.e.,
3-2
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SIMULATIONS OF OSCILLATORY BINARY FLUID . . . PHYSICAL REVIEW E65 016303
„c~x,z!,u~x,z!,C~x,z!… 5 „c~G2x,2z!,2u~G2x,2z!,

2C~G2x,2z!…,

again at each instant of time. Note that at midlevel,z50, the
odd eigenfunction is odd in the conventional sense, i.e.,Rx
changes the sign of each component of the vector (c,u,C).
Consequently, the eigenfunction in the midplane is also
variant underRx followed by evolution through half the
Hopf period. Explicit solution of the linear stability problem
@16# indicates that the competition between even and
modes in such a system takes one of two basic forms,
pending on the separation and aspect ratios. WhenuSu is
small ~i.e., close touSTBu, the Takens-Bogdanov point! andG
not too large, the mode interaction takes the form fami
from Rayleigh-Be´nard convection with non-Neuman

FIG. 1. The eigenfunction (c,u,C) of the linear stability prob-
lem for G516.25, S520.021, s56.97, t50.0077, and~a! Rc

51776.30, vc52.819 ~even chevron!, ~b! Rc51787.47, vc

52.686~odd chevron!, shown in the form of space-time diagram
at z50 with 0<x<G drawn horizontally and time increasing up
wards. The solutions are sinusoidal with period 2p/vc .
01630
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boundary conditions: the neutral curvesRc(G) divide neatly
between different families with no intermingling amon
them. Each family consists of a pair of braided neut
curves, one for an odd mode and the other for an even m
with each family well separated from the next, at least for
low-lying families. The crossings between odd and ev
modes within each family are structurally stable because
their different parity. For the case of interest in the pres
paper, i.e.,G and uSu large enough, the situation is quit
different. There are now no distinct families of neutral curv
and all modes~including like-parity modes! cross. These
mode crossings are all structurally stable, either because
modes have opposite parity, or because their frequencie
the mode crossing are nonresonant. The transition betw
these two situations is discussed in detail in@16#.

In Figs. 1 and 2, we show the results of solving this line
problem for S520.021, s56.97, andt50.0077, corre-
sponding to the experimental mixture used by Kolodner@8#.
Depending on the aspect ratio, the critical eigenfunct
takes the form of either an even or an odd parity ‘‘chevron
shown in Fig. 1 in the form of space-time diagrams for t
three fields (c,u,C) evaluated atz50. An even parity chev-
ron consists of waves propagating outwards from a sourc
the center of the cell in such a way that the resulting solut
is symmetric at all times with respect to reflection aboux
5G/2. In contrast, as discussed above, an odd parity chev
~at z50) is at all times odd with respect to this reflectio
Note that, despite appearances, these solutions arestrictly
sinusoidalin time: the periodic defect formation atx5G/2
arises because the eigenfunctionc is a superposition of four
functions each of which has the formc j exp@i(vct6kjx)#, j
51, . . . ,4,with thekj possibly complex. Each of these func
tions describes waves propagating with~local! phase velocity
6vc /Rekj . In the bulk, the eigenfunction is dominated b
the largest contribution; this contribution has a real wa
number and describes oscillations that are almost stand
However, when the time-dependent amplitude of this co
ponent passes through zero~which occurs twice per period!
the remaining contributions briefly reveal themselves. In
eigenfunctions shown, the largest of these has a relativ
large phase velocity, and is responsible for the episo
propagation that is so characteristic of these eigenfunctio
The other two fields oscillate in the same manner, but wit
temporal phase lag relative toc that is determined by the
values of the Prandtl and Lewis numbers used. Note a
that, despite the nonuniformity in the amplitude of the eige
-

FIG. 2. ~a! The critical Rayleigh numberRc

and ~b! the corresponding frequencyvc for S5
20.021,s56.97, andt50.0077 as a function of
the aspect ratioG. Solid ~broken! lines indicate
even~odd! parity chevrons. The solid dots corre
spond to the solutions shown in Fig. 3.
3-3
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function in x, the dominant local wave number is in fa
remarkably uniform across the cell.

The critical Rayleigh numbersRc for the onset of these
states are shown in Fig. 2~a!, with the even modes indicate
by solid lines, and the odd modes by broken lines. The c
responding critical frequenciesvc are shown in Fig. 2~b!.
Figure 2~a! shows two neutral stability curves correspondi
to two different odd modes, with an intersection nearG
516.25, as well as an intersection between an odd and e
mode nearG516.8. The latter mode interaction is accessi
from the conduction state and will play an important role
the dynamics of the system. Note that both mode interact
are associated with a frequency jump if one always follo
the low-lying mode.

Throughout the remainder of the paper, we measure
applied Rayleigh number relative to the thresholdRc using
the reduced Rayleigh numbere[(R2Rc)/Rc .

III. RESULTS

In this section, we describe in detail the results of o
simulations for the parameter values used by Kolodner@8# in
his experiments,S520.021, s56.97, andt50.0077, fo-
cusing on Rayleigh numbers near threshold~i.e., ueu!1) and
on aspect ratios in the range 16<G<17.

Figure 3 summarizes the evolution for different values
G of the midplane vertical velocityw(x50.13G,z50,t) ob-
tained by integration over 2000td after an initial transient has
~almost! died out. We use the velocity at this point as a pro
for the intensity measured by Kolodner in his experimen
since the temporal properties of the corresponding time
ries will be the same, although amplitudes and spatial st
ture will not be so simply related. The figure illustrates t
sensitive dependence on the aspect ratio for comparison
Fig. 2 of @8#, as well as the long integration times required
get reliable results. The high frequency uniform amplitu
states correspond to nonlinear time-periodic chevron st
such as the one shown in Fig. 4. In the following, we refer

FIG. 3. An overview of the aspect ratio dependence of
equilibrated states near onset, in terms of the vertical velo
w(x50.13G,z50,t) for comparison with Fig. 2 of Ref.@8#. The
numbers at the right give the values of 104e and correspond to the
solid dots in Fig. 2~a!.
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the frequency of these states asv1. The figure shows tha
although the temperature departureu from the conduction
profile remains sinusoidal in space at this value ofe, this is
not so for the concentration departureC. As explained by
Bartenet al. @12#, this is a consequence of the small value
t and the associated expulsion of concentration fluctuati
from regions of closed streamlines in the~locally! commov-
ing reference frame. This effect is also responsible for
presence of open contours separating regions of high and
concentration, in evident contrast to the closed contours

e
y

FIG. 4. Periodic even parity chevron forG516.25, R51775.5
(e524.531024) in terms of the contours of~a! the temperature
perturbation u(x,z,t) and ~b! the concentration perturbatio
C(x,z,t) of the denser component, with time increasing upwards
intervals of 0.2td . ~c!, ~d! The same but for an odd parity chevro
for G517.25,R51774.3 (e525.231024). These nonlinear state
should be compared with the linear theory eigenfunctions in Fig
3-4



f
nt
tra
n

de

on
th
0

s
ct
w
e
th

(

e
is
he
te
a

al
-
Fi

f

he

the

the
,
ric
nly

e
s at

ns,
-
g
al,
the

he
n,

ity

s

is
c

nt
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the temperature~see Fig. 4!. The temporary straightening o
these meandering concentration contours in the cell ce
every half period accompanies the splitting of the cen
concentration roll into two. Both these properties of the co
centration field are absent from the Ginzburg-Landau
scription of this system.

In order to understand the origin and character of the n
periodic states seen in Fig. 3, we show in Figs. 5–9
results of fixingG at 16.00, 16.25, 16.50, 16.80, and 17.0
and varyinge in the vicinity of e50. We order these figure
with increasing aspect ratio in order to highlight the effe
that even small changes inG may have. These plots sho
that the initial bifurcation to the chevron state is in all cas
subcritical ~the dashed line across each figure indicates
corresponding linear stability threshold!, in agreement with
the prediction for standing wavesin a horizontally un-
bounded layer@10,17#. Figure 6 forG516.25 shows that the
chevron state may equilibrate at finite amplitudeR
51775.5). However, with increasinge, the stable chevrons
lose stability in a supercritical Hopf bifurcation@18#. This
bifurcation introduces a new frequencyv2k into the system,
seen in Fig. 6 (R51776.0) as an oscillation in the amplitud
of w(x50.13G, z50,t). Consequently, the resulting state
in general quasiperiodic. In the following, we refer to t
type of state that results as a ‘‘blinking’’ state. Such sta
may have a variety of spatiotemporal symmetries, and m
set in already fore,0. Since the bifurcation in Fig. 6 is
supercritical, the resulting blinking states blink with sm
amplitude and do so periodically; ase increases the ampli
tude increases and the blinking becomes nonperiodic. In
10, we show a larger amplitude blinking state forG516.00
andR51779 ~see Fig. 5!. The figure shows the contours o
the perturbation temperatureu(x,z) at two different instants,
roughly half a blinking period apart, in order to show that t

FIG. 5. Time seriesw(x50.13G, z50,t) for G516.00 and dif-
ferent values of the Rayleigh numberR. The first finite amplitude
state is a three-frequency state atR51777.2 (e521.831024).
This state gives way gradually and without detectable hysteres
repeated transient states neare50 and then to symmetric periodi
blinking states in a hysteretic transition betweenR51778.5 (e
55.531024) andR51779 (e58.331024). The state atR51782
(e52.531023) appears to have period-two modulation.
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waves at these times are localized in opposite halves of
container. The figure also presents the time series forw(x
50.13G, z50,t) andw(x50.87G, z50,t). Both time series
have the same amplitude and form, and are, modulo
chevron frequencyv1, exactly out of phase. In the following
we refer to solutions of this type as periodic symmet
blinking states. This type of description is possible here o
because the frequencyv1 is so large relative to the blinking
frequencyv2. This in turn is a consequence of the larg
aspect ratio that reduces the amplitude of the chevron
which the bifurcation to the blinking states takes place@6#.
We may therefore imagine averaging out the fast oscillatio
and discuss the symmetry properties~and the time depen
dence! of the blinking component alone, without payin
attention to the underlying chevron oscillation. In gener
there are then two types of blinking states, depending on
parity of the chevron state from which they bifurcate. T
blinking state in Fig. 6 arises from an even parity chevro
and so is left unchanged by the symmetryRx followed by
evolution in time through half the blinking period 2p/v2.
In contrast, blinking states that bifurcate from an odd par
chevron are left invariant by the combined operationkRx
followed again by evolution in time throughp/v2. We
have found that monitoring the two point quantitie

to

FIG. 6. Time seriesw(x50.13G, z50,t) for G516.25 and dif-
ferent values of the Rayleigh numberR. Stable chevrons are prese
for R51775.5 (e524.531024), but give way to symmetric peri-
odic blinking states whenR51776 (e521.731024) with no de-
tectable hysteresis. At largerR ~e.g.,R51778) the blinking states
are asymmetric.
3-5
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BATISTE, KNOBLOCH, MERCADER, AND NET PHYSICAL REVIEW E65 016303
w(x50.13G, z50,t) and w(x50.87G, z50,t) sufficed in
all cases to distinguish among the different types of blink
states.

The results forG516.00 ~Fig. 5! are quite different. In
this case, no subcritical stable chevrons are observed,
instead the first nontrivial state of the system appears to
three-frequency state (R51777.2). We shall see in Sec. I
that such states are entirely natural in systems of this ty
Figure 5 also shows that with increasinge, this state evolves
into one increasingly like Kolodner’s repeated transien
with a growth phase that becomes progressively shorter,
fore a~hysteretic! transition to the symmetric periodic blink
ing state shown in Fig. 10 takes place (1778.5,R,1779).
With further increase ine, this state gradually evolves into
chaotically blinking state much as in Fig. 6. Indeed, the ti
series forR51782 ~Fig. 5! suggests a periodic state with
period that is double the basic blinking period. Figure
shows an example forG516.25 in which the oscillations a
the left and right are both periodic in time and of very simi
form but with a phase difference between them that diff
substantially from 180°. Since this phase difference rema
constant, the resulting time series is quasiperiodic with t
basic frequencies, the chevron frequency and the blink
frequency. As seen in Fig. 6, this type of state, hereafte
asymmetric periodic blinking state, develops with increas
e from a symmetric blinking state, becoming chaotic ase
increases, much as observed in related experiments@1,2# and
expected theoretically@19,20#. Other possibilities are dis

FIG. 7. Time seriesw(x50.13G, z50,t) for G516.50 and dif-
ferent values of the Rayleigh numberR.
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FIG. 8. Time seriesw(x50.13G, z50,t) for G516.80 and dif-
ferent values of the Rayleigh numberR.

FIG. 9. Time seriesw(x50.13G, z50,t) for G517.00 and dif-
ferent values of the Rayleigh numberR. The repeated transient sta
gives way to a periodic blinking state in a hysteretic transition
tween R51777 (e53.731024) and R51777.5 (e56.531024).
The state atR51776.1 (e521.431024) eventually decays, while
that at R51780 (e52.131023) appears to have period-thre
modulation. The results follow closely the sequence shown in F
5.
3-6
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cussed in Sec. IV. Note that despite the lack of instantane
symmetry, the attractor shown in Fig. 11 is~almost! symmet-
ric as a set, as are those that result from it, i.e., for th
solutions, the behavior in the two halves of the containe
almost~statistically! identical. However, this is not so for a
the states we find, as described further below.

Stable subcritical chevrons were found for all the valu
of G explored exceptG516 and 17. Figure 7, forG516.5,
shows results qualitatively similar to those shown in Fig
with stable subcritical chevrons losing stability with increa
ing e to symmetric periodic blinking states that become c
otic with further increase ine. Figure 8 shows an exampl
for G516.8, a value very close to that for the interacti
between the first even and the first odd parity modes in lin
theory. The basic trend of the results remains the same a
Figs. 6 and 7 in that the stable chevron appears to lose
bility at a supercritical Hopf bifurcation located ate,0, pro-
ducing a symmetric periodic blinking state. The main effe
of the proximity to the linear theory mode interaction po

FIG. 10. Symmetric periodic blinking state forG516.0 andR
51779 (e58.331024). For these parameter valuesRc

51777.528,vc52.854. ~a!,~b! show the temperature field at tw
instants ~indicated by vertical arrows!, while ~c!,~d! show w(x
50.13G, z50,t) andw(x50.87G, z50,t). The fact that~c!, ~d! are
identical except for a 180° phase shift is indicative of a symme
blinking state. The blinking period is approximately 0.4 of the ho
zontal thermal diffusion time.

FIG. 11. An asymmetric periodic blinking state forG516.25,
R51778 (e59.631024), showing ~a! w(x50.13G, z50,t) and
~b! w(x50.87G, z50,t).
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at G'16.8 appears to be to extend the range of Rayle
numbers over which stable blinking states are observed
particular, stable symmetric periodic blinking states are n
observed even fore.0. This is in accord with theoretica
expectation~the onset of blinking is a consequence of t
interaction between odd and even chevrons in the nonlin
regime!, and accounts for the distinction betweenG516.8 in
Fig. 3 and other values of the aspect ratio. The blink
period we find,'90td , is comparable to the period mea
sured in the experiments whenG517.63, viz. 8000 s, since
td584.3s @8# and theG517.63 case behaves much likeG
516.63 ~for reasons explained below!. In contrast, further
away from the mode interaction point the range of sta
periodic blinking states shrinks, and these states are typic
found only fore,0. As a result, away from the mode inte
action point the first state that is observed ase passes
through zero is a nonperiodic state, and not a periodic s
metric blinking state~cf. Figs. 6, 7!. Of course, aspect ratio
nearG516.00 or 17.00 are an exception to this rule. Figu
12 explores the evolution of the blinking states at larger v
ues of e when G516.8 using time series for the vertica
velocity at mirror points in the two halves of the containe
The solutions are in general asymmetric with respect to
middle of the container, and may be periodic~as for R
51783, for example! or chaotic~as forR51784). The figure
also shows that with increasinge, the left ~right! traveling
waves becomes increasingly confined to the left~right! half
of the container, leading to characteristic time series of
type shown forR51787 and 1788. Note that the former
strongly spatially asymmetric, while the latter is symmetr
with both states being periodic. Thus, transitions that br
and restore the symmetry in the vertical midplane may oc

c

FIG. 12. Time series w(x50.13G, z50,t) and w(x
50.087G, z5o,t) for G516.80 and larger values of the Rayleig
numberR than in Fig. 8, showing successive transitions from asy
metric blinking states to symmetric ones and back again. The s
tions atR51781 and 1784 appear to be chaotic. Pauses, such a
one in the time series forR51784, were observed in the exper
ments as well.@See Fig. 3~b! of Ref. @8#.
3-7
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BATISTE, KNOBLOCH, MERCADER, AND NET PHYSICAL REVIEW E65 016303
repeatedly, with the symmetric states atR51786 and 1788
separated by an asymmetric one, suggesting the presenc
cascade of gluing bifurcations, cf.@21#. Note that the time
series forR51789 (e50.006) is very similar to the ‘‘fish’’
state observed by Kolodner forG516.75 ande50.0111,
even to the extent of capturing the strong amplitude dep
dence of the chevron frequency within this state. Moreov
the computed period of this state, 305td ~see Fig. 12! corre-
sponds almost exactly to that measured by Kolodner in
experiment.

Figure 9 shows the corresponding results forG517.00.
These results are very similar to those of Fig. 5 forG
516.00. In particular, one finds here the repeated transie
with a slow exponential growth of a pure parity chevr
state, followed by its characteristic oscillatory collapse.
fact, the results forG517.00 provide a somewhat clear
illustration of the origin of the three-frequency state, sin
they suggest that the oscillatory collapse phase connec
larger amplitude chevron state with a smaller amplitu
chevron, which then regrows again into the larger amplitu
state. The transition from this state to the blinking state
pears to be again hysteretic, while the largest Rayleigh n
ber solution (R51780) appears to be periodic but with
period that is three times the basic blinking period. The o
substantive difference between the results of Figs. 5 and
that the parity of the chevron state involved is differe
These results confirm Kolodner’s experimental results
the theoretical prediction@6# that the spatio-temporal dynam
ics in this system should be periodic with respect toG with a
period ofp/kc , wherekc'p is the wave number obtaine
from linear theory. Thus, increasing the aspect ratio by
allows the system in insert an extra roll thereby changing
parity of the basic state. Our calculations indicate that
wavelength of the rolls remains remarkably uniform acro
the container despite the substantial changes in ampli
that occur as a result of the dynamics of these states.

The explanation of these results is the subject of the n
section.

IV. THEORETICAL INTERPRETATION

In this section, we investigate the model problem

v̇5~2n1cz2!v2duvu2v, ~4.1!

ż5~m1az22z4!z2uvu2z, ~4.2!

constructed to retain the main properties of the partial diff
ential equations. Herez refers to the amplitude of the chev
ron state~either even or odd! and is not to be confused wit
the vertical coordinate of Sec. II. We takez to be a real
quantity despite the fact that the chevron states are in
time periodic, and justify this approximation using Fig.
which shows that, for the parameter values considered,
chevron frequencyv1 is high compared to the blinking fre
quency v2 or the slow frequencyv3 associated with the
repeated transients. The assumption thatz is real removes
one frequency from the system, and may be considered t
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the result of averaging over the fast chevron frequency. C
sequently, pure chevron states correspond to the solution
the equation

ż5~m1az22z4!z, ~4.3!

and we takem}R2Rc(G) to be a real parameter, with th
coefficienta also real. In view of the results of Sec. III, w
takea.0 so that the primary bifurcation to chevrons is su
critical, with a saddle-node bifurcation~hereafter SN! occur-
ring at z25a/2. The stability of these states with respect
perturbations in the form of chevrons of the same parity
therefore given by the linearization of Eq.~4.3! about the
solutionz5z0 satisfyingm1az0

22z0
450. We denote this ei-

genvalue byl. It follows that whena,0, this eigenvalue is
always negative~stable!, while if a.0, it is positive ~un-
stable! on the subcritical branch and becomes negative ab
the saddle-node bifurcation. Note that Kolodner and Su
@5# mistakenly fit the chevron amplitude to a curve of t
form ez01az0

22z0
450.

The variablev represents perturbations transverse to
chevron invariant subspace, and is complex because t
perturbations are destabilized at a secondary Hopf bifu
tion, hereafter H2. As a result, the coefficientsn, c, andd are
all complex. This Hopf bifurcation is responsible for the o
set of blinking. In the model, the amplitude of the blinking
given by

ẏ5~2nR1cRz2!y2dRy3 ~4.4!

and its frequency by the decoupled equation

u̇52n I1cIz
22d I y

2. ~4.5!

Here v[yeiu and the subscriptsR and I denote real and
imaginary parts, respectively. In these equations the imp
tant parameter isnR[nR(G).0 and we takecR.0. Because
of the decoupling ofu from the equations fory and z, the
resulting model is simple to analyze. Within the model, t
symmetryy→2y represents evolution in time by half th
blinking period so that solutions with opposite signs ofy are
in fact identical modulo time translation. The pure chevro
(y,z)5(0,z0) begin to blink whenz0

25nR /cR and do so with
frequency2n I1cIz0

2; the resulting blinking states take th
form (y,z)5(y0 ,z0), providedy0

2.0, z0
2.0. The stability

of these states is described by a quadratic dispersion rela
This relation shows that the blinking states either set in~su-
percritically! from the larger amplitude chevron branc
~hereafterA), or from the smaller amplitude branch~hereaf-
ter B). In the former case, the chevrons acquire stability
the saddle-node bifurcation before losing it again at lar
amplitude to stable blinking states. In the (y,z) variables,
this bifurcation looks like a pitchfork bifurcation, although
is of course a Hopf bifurcation. In the latter case, the blin
ing states are initially unstable but acquire stability at a t
tiary Hopf bifurcation H3. This Hopf bifurcation is of vital
importance in what follows since it introduces a third fr
quencyv3 into the dynamics of the partial differential equ
tions. As discussed further in Appendix A, its presence i
3-8
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SIMULATIONS OF OSCILLATORY BINARY FLUID . . . PHYSICAL REVIEW E65 016303
direct consequence of the passage of the Hopf bifurcation2
through the saddle-node bifurcation SN on the chev
branch whena.0, cR.0, as originally noted by Guckenhe
imer @22#. For a related analysis, also arising in the bina
fluid context, see@23#. In the following, we present the cor
responding results for the full model Eqs.~4.1! and ~4.2!.
These are summarized in Fig. 13 for the case in which
three-frequency state created from the blinking state bra
is stable. This is always the case whencR51, dR50, and
a.0, and hence for sufficiently small positive values ofdR
as well. The figure shows the loci of the primary (H1), sec-

FIG. 13. Codimension-one bifurcation surfaces in the (m,nR)
plane for Eqs.~4.1!,~4.2! with a52.0, cR51.0, anddR50.1. H1,:
primary ~Hopf! bifurcation to the chevron state (v,z)5(0,z0); SN,
saddle-node bifurcation on the chevron state; H2: ~secondary! Hopf
bifurcation to blinking states (v,z)5(v0 ,z0); H3: ~tertiary! Hopf
bifurcation from (v0 ,z0) responsible for the appearance of t
three-frequency states; andg, global bifurcation at which these
states disappear. The heavy broken line represents the asym
result ~A5!.
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ch

ondary (H2), and tertiary (H3) Hopf bifurcations, as well as
the locus of the saddle-node bifurcations~SN! on the chev-
ron branch. It should be remembered that in the (y,z) vari-
ables only the bifurcation H3 remains a Hopf bifurcation,
with H1 and H2 represented by pitchfork bifurcations. I
addition, the figure shows the curveg of global bifurcations
at which the limit cycle ~corresponding to the three
frequency states! created at H3 disappears by simultaneou
collision with the pure chevron statesA andB. The location
of this line must be determined numerically. An asympto
calculation of this curve near the codimension-two point~see
Appendix A! yields the heavy broken line; this line is tange
to g at the codimension-two point, as it must.

Figure 14 shows the bifurcation diagrams obtained by
versing the (m,nR) plane in Fig. 13 along the linesnR51.6
and 0.7. These capture the two fundamentally different bif
cation diagrams characterizing the binary mixture. Figu
14~a! shows a small interval of subcritical but stable che
rons, followed by a supercritical pitchfork bifurcation to
state withy0Þ0 that represents a blinking state in the phy
cal variables. In the example shown, this bifurcation occ
at m,0 so that the first stable state just above onsetm
50) is a finite amplitude blinking state. In contrast, in th
case shown in Fig. 14~b! the first stable state encountere
beyond m50 is a finite amplitude periodic state that w
identify with the three-frequency repeated transient state
covered by Kolodner. Figure 14~c! shows the time series
corresponding to this state whenm520.21. These oscilla-
tions represent the low frequency component of the thr
frequency state, i.e., the repeated transient state with the
quenciesv1 and v2 filtered out. Observe that during th
growth phase of the variablez the variabley vanishes, indi-
cating that the growing state is a pure chevron;y becomes
nonzero only during the collapse phase, indicating that
collapse is triggered by a symmetry-breaking instability~i.e.,
the loss of stability of the growing chevron!. Figure 15

otic
g.
-

h

n

FIG. 14. ~a!,~b! The bifurcation diagrams
along the linesnR51.6 andnR50.7 in Fig. 13.
Scenario~a! corresponds to that observed in Fi
6 for G516.25, while~b! corresponds to that ob
served in Fig. 5 forG516.0. In ~b!, the open
circles indicate the global bifurcation with whic
the oscillations terminate asm decreases, with the
states A and B labeled as in the text. Solid
~dashed! lines indicate stable~unstable! solutions.
~c! The time seriesy5uv(t)u ~dashed! and z(t)
~solid! for a stable repeated transient whe
m520.21, nR50.7, a52.0, cR51.0, and dR

50.1.
3-9
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FIG. 15. Plots of w(x50.13G,z50,t) vs
w(x50.87G,z50,t) for G516.0, R51778.5
during ~a! the growth and the collapse phase
and ~b! during the start of the collapse phas
together with the time series~c! w(x50.13G,z
50,t) and ~d! w(x50.87G,z50,t). Growing
symmetric chevrons evolve along the 45° line
~a! but evolve along the orthogonal direction du
ing the collapse phase@cf. Fig. 8~a! of @8##. The
growth, transition, and collapse phases used
construct~a!,~b! are indicated by vertical dashe
lines in ~c!,~d!.
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shows similar behavior obtained from the partial different
equations when G516.0: during the growth phas
w(0.13G,0,t)5w(0.87G,0,t) indicating a growing chevron, a
fact confirmed in Fig. 15~a! by the evolution of the system
away from the origin along the 45° line. The collapse pha
is initiated when the difference betweenw(0.13G,0,t) and
w(0.87G,0,t) begins to grow and the system begins to evo
in a direction orthogonal to the 45° line, much as shown
Fig. 8~a! of Ref. @8#. With the beginning of the collaps
phase, one starts to notice the onset of blinking as eviden
in the 180° phase difference between the decaying osc
tions in w(0.13G,0,t) and w(0.87G,0,t) @Figs. 15~c! and
15~d!#. The amplitude and the period 2p/v3 of the limit
cycle in Fig. 14~c! decreases with increasingm, with the
oscillations disappearing at H3. As already mentioned, we
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interpret this transition as the transition from the repea
transient state to the~symmetric! periodic blinking state with
increasing Rayleigh number~cf. Fig. 4 of @8#, where H3 is
located ate'2 3 1023, i.e., the minimum of the measure
‘‘modulation’’ period!. For the model parameters, this trans
tion is supercritical, indicating the absence of hysteresis.
m approaches closer to the global bifurcation atm5m* ,0,
indicated by open circles in Fig. 14~b!, the time series re-
mains similar to that shown in Fig. 14~c! but the oscillation
period 2p/v3 becomes longer, diverging as lnum2m* u for
m;m* , cf. Fig. 4 of@8#. In Fig. 16, we show another case,
which the global bifurcation atm* occurs very close tom
50. As a result, the chevron state grows from almost z
amplitude, and so resembles more closely the repeated
sient state discovered by Kolodner. In this case, there is
FIG. 16. ~a! As for Fig. 14~b! but with nR

50.15, a52.0, cR51.0, anddR50.2, showing a
global bifurcation very close tom50. ~b! The
corresponding time series whenm50.02.
3-10
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FIG. 17. ~a! As for Fig. 16~b! but over a
longer time interval.~b! The time series for@z
1vR(t)#sinv1t whenn I50.8, cI50, d I50, and
v1520. Note the exponential growth during th
chevron phase, followed by an overshoot wh
the blinking instability sets in, and the ringin
down during the subsequent collapse phase. T
time series resembles closely that in Fig. 6~a! of
Ref. @8#. ~c! uv(t)u for chaotic repeated transient
from Eqs. ~4.6!, ~4.7! with e150.110.1i , f 1
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most no hysteresis between this state and the conduc
state, and the system behavesas if the primary instability at
m50 were directly responsible for generating repeated tr
sients. Within the model, the corresponding state has all
properties of this state observed in the experiments, ex
for the ~apparent! absence of the oscillations during the co
lapse phase. In fact, if the frequenciesv1 and u̇[v2 deter-
mined by Eq.~4.5! are incorporated, and the quantity@z
1vR(t)#sinv1t[@z1y(t)cosv2t#sinv1t is plotted instead ofz
or uvu, these oscillations are present@Fig. 17~b!#, and their
amplitude depends on the chevron amplitudez in the manner
observed in the experiments. In fact, the time series show
Fig. 17~b! displays a number of qualitative features, inclu
ing the pointed overshoot at maximum as the modev begins
to grow and the ‘‘ringing down’’ due to the fact that th
variablez decays more rapidly thanv, that were documented
by Kolodner in Fig. 6~a! of Ref. @8#. This time series is no
periodic because, in general, the two~nonlinear! frequencies
v2 andv3 are incommensurate.

Several remarks are in order.
~1! The coefficientd may be zero without qualitative ef

fect on the above scenarios. However, we have chosendR
.0 to assure that the solutions remain bounded for all tim
and to move the secondary bifurcations away from the sa
node on the primary chevron branch.

~2! The invariance of the planez50 in the model system
~4.1! and ~4.2! prevents the formation of a connection b
tween the large amplitude chevron stateA and the origin
when m.0 ~see Appendix A!. Consequently, the global bi
furcation with which the stable three-frequency states fi
appear must involve the small amplitude chevron stateB,
and m* is necessarily negative. However, there is a la
range of values ofnR for which m* '0 ~see Fig. 13!. Con-
sequently, the absence of hysteresis between the condu
state and the repeated transients noted by Kolodner fin
ready explanation in Fig. 13.

~3! The model~4.1! and~4.2! lacks coupling between th
01630
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blinking frequencyv2 and the tertiary frequencyv3 because
of the built-in normal form symmetry. Since this symmetry
not exact, the coupling between these two frequencies sh
be restored. This leads one to consider the models

v̇5~2n1cz2!v2duvu2v1e1f 1~z2!v̄1•••, ~4.6!

ż5~m1az22z4!z2uvu2z, ~4.7!

where the coefficientse1 , . . . represent the coupling and a
assumed to be small, cf.@24#. When this is done, one find
that the invariant sphere withA and B at its poles breaks
down due to the transversal intersection of the unsta
manifold of A and the stable manifold ofB. These intersec-
tions occur in a heteroclinicregion in the (m,n r) plane
whose width increases withe1. This region contains a count
ably infinite number of ‘‘horseshoes’’ and hence is associa
with the presence of chaos. Note that the heteroclinic c
nection along the diameterBA is preserved by the perturba
tion e1Þ0. Figure 17~c! shows a solution of this type fo
e150.110.1i and f 15z2.

The model~4.1! and ~4.2! described above is completel
consistent with the two scenarios for generating blinki
states identified in the numerical solutions of the govern
partial differential equations. In the scenario observed foG
516.25, the blinking sets in via a supercritical Hopf bifu
cation above the saddle-node bifurcation, and does so
ready fore,0 ~Fig. 6!. Consequently, there is only a narro
range ofe between this bifurcation and the saddle-node
furcation with stable chevrons, before blinking sets in. T
blinking frequencyv2 is quite small because the chevro
amplitude at which the Hopf bifurcation takes place is sm
@6#. In contrast, the results forG516.00 ~Fig. 5! and G
517.00~Fig. 9! are entirely consistent with the second sc
nario, i.e., that the secondary Hopf bifurcation to blinkin
states now occurs below the saddle-node bifurcation, ther
3-11
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eliminating the stable chevrons entirely. Moreover, our
sults for, say,R51777.2~Fig. 5! andR51776.5~Fig. 9! are
suggestive of a quasiperiodic state with three independ
frequencies such as might be expected from the tertiary H
bifurcation H3 on the branch of blinking states identified
the model. Indeed, our calculations are consistent with
conjecture that the bifurcations SN and H2 on the chevron
branch coincide at an aspect ratioG somewhere betwee
16.0 and 16.25. Note that the observed period associ
with the third frequency is about 1000td . Such low frequen-
cies are characteristic of the scenario proposed in Fig.
since v3 vanishes at the codimension-two point (m,nR)
5(2a2/4,acR/2). Moreover, this scenario predicts that t
corresponding modulation period should increase rap
with decreasinge, diverging whene reaches the global bi
furcation ate5e* ,0, in accord with the experimental ob
servations~see Fig. 4 of@8#!. Figure 5 also suggests that th
repeated transients observed by Kolodner evolve from
three-frequency state ase increases frome* towardse'0, a
suggestion that is confirmed in Fig. 9, where the thr
frequency states look like Kolodner’s repeated transie
from the very beginning~heree* '0). In both cases, peri
odic blinking states are observed only after a~hysteretic!
transition from the three-frequency repeated transients. C
sequently, the branch of blinking states only acquires sta
ity at H3 and these states therefore blink with finite amp
tude when they first appear, resulting in a longer blinki
period than at H2, typically 100td ~compare Fig. 5 atR
51779 with Fig. 6 atR51776). This period is also compa
rable to the period observed in the experiments. With furt
increase ine, the blinking state appears to undergo peri
doubling as suggested by the time series forR51782 in Fig.
5 ~cf. @19,20#!, and gradually becomes more and more c
otic. Indeed, the time series forR51780 in Fig. 9 suggests
period-three blinking state. Available theory predicts@6# that
the blinking states terminate in another global bifurcation
which a hysteretic transition to a single-frequency localiz
state takes place. This state consists of waves that tr
under a stationary envelope attached to one or other la
wall @6#. It is likely that the period-doubling transitions, etc
are associated with this global bifurcation. Details of th
transition will be described elsewhere. Finally, the fact t
we have found the repeated transients only in the vicinity
G516.0 and 17.0, i.e., for aspect ratios differing by'1, is
also consistent with theoretical expectation@6#, and indeed
the experiments as well@8#.

Figures 14~b! and 16~a! lead to the following detailed
interpretation of the repeated transients computed from
partial differential equations, described here ase decreases
from a periodic blinking state at somee.0. The blinking
state first undergoes a~supercritical! Hopf bifurcation H3 that
introduces a third independent frequency,v3, into the dy-
namics. In fact, in both Figs. 5 and 9 this bifurcation appe
to be slightly subcritical, before the new branch turns arou
towards smallere, but this has no bearing on what follow
The new frequency is finite and decreases withe. At the
same time, the amplitude of the resulting modulation
creases@cf. Fig. 16~a!#, a fact that may be confirmed from
careful scrutiny of Fig. 9, and the three-frequency states
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proach simultaneously the unstable large and small am
tude chevron statesA and B. The character of the resultin
repeated transient is determined by the leading eigenva
of A and B in the chevron fixed point subspace, hereaft
2lA,0 andlB.0, and the leading eigenvalues in the pe
pendicular direction. As shown in Appendix B, if the latt
are real,aA.0 and2aB,0, say, andr[aBlA /aAlB.1,
the repeated transients will remain periodic and stable all
way to m* , where the period diverges and the global bifu
cation takes place. In contrast, when 0,r,1, the periodic
oscillations necessarily lose stability before the global bif
cation atm* . Similar results obtain in the case where t
leading stable symmetry-breaking eigenvalue atB is com-
plex, viz. 2aB1 ivB , aB.0, as suggested by the simula
tions ~see Appendix B!. In this case, stable periodic oscilla
tions will persist down tom* if r.1, but if 0,r,1
complex dynamics of Shil’nikov type will be present. In fac
Figs. 5 and 9 suggest that the leading unstable eigenva
aA andlB are also complex; this is to be expected since
bifurcations at H1 and H2 are in fact both Hopf bifurcations
In the following, we do not consider the resulting complic
tions further.

When lB is real, a trajectory escaping fromB describes
an exponentially growing chevron state. This growth pha
including the statesA and B, is clearly visible in the time
series forR51776.2 ~Fig. 9!. When the growing chevron
reaches the vicinity ofA it becomes unstable to symmetry
breaking oscillations, which take it back nearB. This is the
collapse phase of the repeated transient state@compare Figs.
14~c! and 16~b! with Fig. 15#. The frequency of the decayin
oscillations observed in the time series in Figs. 15~c! and
15~d! is given byvB . This frequency will in general be o
the same order as the blinking frequency associated with
branch of blinking states when these bifurcate from the sm
amplitude chevronB, but quite different from~and in general
larger than! the blinking frequency of thestable blinking
states beyond H3, cf. @8#. This observation explains the co
incidence of the period of the blinking states and of the
cillations during the collapse phase of the repeated trans
also noted by Kolodner. Note also that since the repea
transient state visits the statesA andB whose amplitude de-
creases~respectively, increases! ase becomes more negativ
the modulation amplitude along the branch of thre
frequency states should decrease towards the end of
branch. This is seen quite dramatically in Fig. 5. Moreov
sinceaB decreases ase decreases~it passes through zero a
H2, i.e., ate5e2) the collapse becomes slower and slow
as also seen in Fig. 5, but is still finite when the thre
frequency states disappear in the global bifurcation ate*
~sincee2,e* ,0) and the system makes a hysteretic tran
tion to the conduction state. The fact thataB decreases with
e makes it likely that the Shil’nikov condition 0,r,1
holds ate* ~see Appendix B!, resulting inchaotic repeated
transients prior to their disappearance@20#. This possibility
apparently does not occur in Figs. 5 and 9 but may occu
the experiments. In any case, even longer time series w
be required to test this prediction. Note that sincelB}ueu
only periodic repeated transients will occur ife* '0, al-
though even in this case, there may be a few bifurcat
3-12
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bubbles with chaotic dynamics, as in Ref.@25#. In @8#,
Kolodner notes that the growth phase of the repeated t
sient is inversely proportional toe, in accord with the above
scenario. It is of interest that the repeated transients are m
likely to be chaotic just prior to their extinction, ase de-
creases.

We note, finally, that despite the fact that the repea
transients are three-frequency states they are not neces
structurally unstable. In the model, this is because we h
averaged out the chevron frequencyv1. However, even if we
had not done so, genuinely three-frequency states ma
observed in open parameter regions@26# despite the Ruelle-
Takens theorem@27#.

V. DISCUSSION

In this paper, we have used direct numerical simulatio
of the partial differential equations governing binary flu
convection in a two-dimensional container with realis
boundary conditions applied on all four boundaries to
scribe in detail the behavior of the system near onset of o
stability. These calculations revealed a complex sequenc
transitions among states we have called chevrons and
other states called blinking and repeated transients as
aspect ratio or the applied Rayleigh number varies. We h
seen that:

~i! The primary bifurcation to convection is subcritical,
agreement with the prediction forstanding wavesin a hori-
zontally unbounded layer@10,17#. As a result, for some as
pect ratios, stable chevrons may be present, but are m
likely observed for negative values ofe.

~ii ! For many ~though not most! aspect ratios, the firs
nontrivial state of the system is a three-frequency repea
transient state. The transition to this state is hysteretic s
e* ,0 but for many parameter valuese* is so close to zero
as to make the detection of hysteresis highly unlikely.
deed, in some experiments no hysteresis was found@5#. The
three-frequency states appear via a global bifurcation
acquire the characteristic behavior associated with repe
transients only ase increases. Consequently the modulati
period 2p/v3 is infinite when the repeated transients fi
appear, but drops rapidly with increasinge, as observed in
Fig. 4 of @8#. When the conditionr,1 on the eigenvalues a
A andB holds~see Appendix B!, the resulting repeated tran
sients are expected to be chaotic. These states persist
over a narrow interval ofe close to onset, of order 1023 ~see
Fig. 8!, which compares well with the range 231023 given
by Kolodner forG516.75@8#, and give way to large ampli
tude blinking states in a~slightly! hysteretic transition when
e'1023. Our calculations suggest that dispersive effects
not of fundamental importance in this behavior~in contrast
to Kolodner’s conjecture!, but that the primary chevron stat
must bifurcate subcritically. In particular, we have been u
able to identify any fundamental role of the local wav
number changes observed in the experiments.

~iii ! Stable small amplitude blinking states set in wh
stable chevrons lose stability at a secondary Hopf bifur
tion.
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~iv! Stable large amplitude blinking states set in via
~typically hysteretic! bifurcation from the repeated transie
state. This bifurcation eliminates the slowest frequency fr
the time trace.

~v! In the experiments, the blinking states become irre
lar with increasinge and the blinking period gradually in
creases, until an abrupt transition to a localized travel
wave state attached to one boundary~or to steady overturn-
ing convection! takes place. The observed chaotic blinking
likely associated with the global bifurcation studied
@6,20#, and will be described elsewhere.

~vi! Although the chaotic asymmetric blinking states a
easily confused with the repeated transients because of
somewhat similar appearance, cf.@8#, their origin is undoubt-
edly quite different and most likely occurs via spatial sym
metry breaking followed by period doubling. This differenc
is seen clearly in the simulations, and is captured by
model system proposed in Sec. IV.

~vii ! Regular blinking states are observed near onset o
for aspect ratios differing roughly by unity, as in the expe
ments. Our simulations suggest~Fig. 3! that these specia
aspect ratios are in fact nothing but the mode interact
points~compare Fig. 2~a! with Fig. 3!. The location of these
points depends quite sensitively on the system parame
and in particular on the additional dissipation due to the
glected no-slip walls in the third~transverse! direction. Con-
sequently, differences between the experimental results
our calculations may be primarily due to differences in t
location of these points. For example, Kolodner finds t
blinking states persist down to small amplitudes forG
516.63 and 17.63 when the~dimensionless! width Gy53.0,
and forG516.25 and 17.25 whenGy54.9. In contrast, our
strictly two-dimensional calculations (Gy5`) show that
blinking states are most easily found nearG'16.8. In con-
trast to the experiments@8#, we do not find that repeate
transients predominate at all aspect ratios away from
mode interaction points. For example, atG'16.25, we found
subcritical stable chevrons that bifurcate into blinking sta
with increasinge ~Fig. 6!.

~viii ! The behavior exhibited by the partial differenti
equations is fundamentally low-dimensional even though
aspect ratio is quite large. This is because the dynamic
interest occurs in a small range ofe near onset,ueu!G22.

~ix! The numerical simulations support much of th
theory put forward by Dangelmayr and co-workers@6# ~see
also@19#! as to the origin of the different types of states, a
provide essential information supporting the interpretation
the repeated transients as a three-frequency state. The s
lations also confirm the significance of the parameterG mod
p/kc proposed in@6# and confirmed so dramatically in
Kolodner’s experiments@8#. This parameter reflects the fac
that whenG changes byp/kc , wherekc is the ‘‘wave num-
ber’’ of the waves, an additional roll fits into the containe
thereby changing the parity of the most unstable state.
tailed calculations@16# indicate that the wave number at on
set is in fact remarkably uniform across the cell~cf. @8#!,
despite the variation in amplitude, and thatkc'p. Thus,
when the neutral curves of both modes cross, the sys
feels comfortable with both, and oscillates regularly even
3-13
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the nonlinear regime. This is not so for other aspect ratios
which one or another mode is preferred: when the prefe
mode loses stability at finite amplitude to a symmet
breaking perturbation the competing state does not fit w
into the container and the system oscillates irregularly.

These results and the accompanying interpretation
count quantitatively for almost all of the experimental obs
vations of Kolodner@8#, and put forward a dynamical sys
tems explanation for the diversity of the observed states
their properties. The numerical simulations proved essen
first, to reproduce quantitatively the periods of the obser
states and their spatio-temporal character, in order to con
that the restriction to two dimensions is not fatal, and seco
to verify certain aspects of the dynamical systems desc
tion that could not be identified in the published experime
tal data. It is our view that the remaining quantitative d
crepancies may all be attributed to the sensitive depend
of the mode interaction point on the width of the contain
because of its effect on dissipative processes in the cell.

The results reported here indicate that for sufficien
small ueu sidewalls exert a critical influence on the dynam
of the system. This is to be expected since for suche the
behavior of the system is dominated by one~or at most two!
unstable modes of the system, whose spatial structure is
termined by the lateral boundary conditions. Order of m
nitude estimates@6,28# suggest that this will be the cas
wheneverueuG2&1, i.e., with increasingueu the sidewall in-
fluence becomes smaller, and indeed one may reach the
ation in which the collapse described by the subcriti
Ginzburg-Landau equation on an unbounded domain
comes a more and more appropriate description of the
namics@29#. The experiments of Kaplanet al. @29# suggest
that this is in fact so onceueuG2*10. The results of Ref
@30#, performed for slightly largeruSu and subcritical values
of e, may likewise be interpreted as showing thatueuG2'5
describes the transition between these two regimes. H
ever, the simulations reported here all satisfy the condit
ueuG2&1, and hence are always dominated by the sidewa

We conclude with a remark about modeling systems
this type using amplitude equations. Such equations ap
rigorously near the mode crossing point, and describe
interaction of the two competing chevrons. In a finite d
main, one cannot derive coupled equations for the am
tudes of left- and right-traveling waves, since such waves
not eigenstates of the linear problem. In the following,
therefore letz1 andz2 denote the~complex! amplitudes of
the even and odd chevron eigenfunctions~Fig. 1!. Owing to
the reflection symmetryx→2x, (c,u,h)→(2c,u,h) of
the original system~2.1!–~2.3! these equations must com
mute with the operation

~z1 ,z2!→~z1 ,2z2!. ~5.1!

Since the frequencies of the two competing modes are wi
about 10% of one another, we include two formally nonre
nant cubic terms in the amplitude equations and write th
in the form, cf.@31,32,16#,
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ż15~m11 iv1!z11A1uz1u2z11B1uz2u2z11C1z̄1z2
2 ,

~5.2a!

ż25~m21 iv2!z21A2uz2u2z21B2uz1u2z21C2z̄2z1
2 ,

~5.2b!

where A6 , B6 , C6 are complexO(1) coefficients, and
m6 , v6 denote the growth rates and frequencies of the t
modes at a particular point in the (R,G) plane. Renardy@28#
shows that equations of this form may also be derived,
center manifold reduction, from a pair of coupled compl
Ginzburg-Landau equations with generic boundary con
tions. Note that asuv12v2u becomes larger and larger, th
C6 terms become less and less important.

The model put forward in Sec. IV suggests that Eqs.~5.2!
are not adequate for describing the dynamics of binary fl
convection in the parameter regime considered. This is
cause to capture the repeated transients, the primary bifu
tion to the chevron state must be subcritical, i.e.,A6R.0,
and in this case, the amplitude equations must be determ
to higher order. It is for this reason that the mechanism
generating bursts put forward by Moehlis and Knobloch@33#
does not operate for these parameter values, and is pre
ably also the reason why the present system exhibits repe
transients, as opposed to the type of bursting observed
Sullivan and Ahlers@34# in He3-He4 mixtures. The same
argument applies to the derivation of coupled comp
Ginzburg-Landau equations for this system. It is for this re
son that we have not pursued this type of description furth
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APPENDIX A: THE GLOBAL BIFURCATION AT µÄµ*

In this Appendix, we summarize the results of analyzi
the interaction of the saddle-node bifurcation on the chev
branch with the pitchfork bifurcation to the blinking stat
and then explore the location of the global bifurcation ide
tified there for parameter values away from th
codimension-two point. The analysis is done within the s
tem ~4.1! and ~4.2!, written in real variables. For conve
nience, the subscripts onnR , cR , anddR are dropped.

1. The saddle-node–pitchfork interaction

Within the system~4.1! and ~4.2! the saddle-node bifur-
cation occurs atm52a2/4. The pitchfork coincides with
this bifurcation whenn5ac/2. Moving the saddle-node am
3-14
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FIG. 18. Solutions of Eqs.~A8!, ~A9! refor-
mulated as a nonlinear eigenvalue problem of t
form ~A12! for different values ofn[nR and a
52.0, c51.0, d50.1. ~a! n50.98, ~b! n50.7,
~c! n50.4, and~d! n50.1. The eigenvaluesm*
are all negative. Note thatm* '21022 when n
50.4, and'21026 whenn50.1.
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plitude zSN5Aa/2 to the origin, and scaling the resultin
equations appropriately~cf. @35#!, we can rewrite Eqs.~4.1!
and ~4.2! in the form

ṙ 5
c

a
rz1er S 2n11

c

2a3
z22

d

a2
r 2D , ~A1!

ż5m1a22z22r 21ezS m12
r 2

a2
2

2

a2
z2D . ~A2!

To obtain these equations, we have writtenm52(a2/4)
1e2m1 andn5(ac/2)1e2n1. The resulting equations con
stitute case III in the classification of Ref.@35#. The limit e
50 is integrable with the integral

F~r ,z!5r 2a/cFm1a22
a

a1c
r 22z2G . ~A3!

If we define a new time variablet usingdt5r (2a/c)21dt we
obtain on the right-hand side a vector field that is at lead
order divergence-free. It is therefore the divergence of
O(e) terms that determines the surviving periodic orbits

E E r (2a/c)21Fm12
2a

c
n12

1

a2 S 112d1
2a

c
d D r 2

2
5

a2
z2Gdrdz50, ~A4!

where the integral is to be taken over the interior of t
domain F(r ,z)5K. For example, for the valuesa52, c
51 used to generate Fig. 14~b! the heteroclinic loop corre
sponding toK50 is located along the curve
01630
g
e

n152
1

7
m1@119d#. ~A5!

As shown in Fig. 13, this result~dashed line! is tangent at the
codimension-two point to the locus of global bifurcatio
computed numerically, and is consistent with the bifurcat
diagram in Fig. 14~b! since the tertiary Hopf bifurcation is
present only forn,ac/2 ~i.e., n1,0), and the termination
point of the resulting oscillations must lie inm.2a2/4 ~i.e.,
m1.0).

It is of interest to examine the effects of breaking theS1

invariance of the normal form as discussed in Sec. IV. To t
end, we consider the system

v̇5~l1 iv!v1
c

a
vz1e2uvu2z, ~A6!

ż5m2z22uvu21e1z3. ~A7!

In this model, we have retained just one of the higher-or
terms (e1Þ0), and usee2Þ0 to break theS1 invariance. The
resulting equations have been investigated by Kirk@24#.
When e250 and e1,0 the oscillations created at H3 are
stable and disappear in a global bifurcation involving bo
the larger (A: z.0) and smaller (B: z,0) amplitude
chevrons, i.e., in a heteroclinic bifurcation. The bifurcati
diagram of Fig. 14~b! corresponds to Kirk’s Fig. 2 traverse
along the linem1sl5t, wheres,t.0. Whene2Þ0, Kirk
shows that the heteroclinic connection splits into ahetero-
clinic region in the (m) plane inside of which the unstabl
manifold of A intersects the stable manifold ofB in a struc-
turally stable way. Consequently, this region contains
countably infinite number of horseshoes~but no homoclinic
orbits!. Moreover, Kirk identifies a sequence of resonan
tongues in the (m) plane containing pairs of frequency
locked orbits with frequencies in the ratioP/Q, and shows
3-15
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that the tongue boundaries accumulate on the boundarie
the heteroclinic region asQ→`. HereQ denotes the numbe
of times in a period the orbit winds around thez axis~i.e., the
number of times it follows the primary periodic orbit (v,z)
5(r 0 expivt, z0), with (r 0 ,z0) constant!, while P is the num-
ber of times it twists around this orbit. Thus the heteroclin
region contains at least two heteroclinic orbits, as well a
variety of periodic orbits obtained by period doubling of t
different P/Q orbits. Moreover, the global bifurcation re
sponsible for the heteroclinic region always either prece
or coincides with that at which the lower fixed pointB is
annihilated in a saddle-node bifurcation with the extra fix
point introduced by the cubic term whene1,0
~ @36# and Fig. 3 of Ref.@24#!. Figure 13 indicates that this i
the case here as well, with the bifurcation atm50 playing
the role of the second saddle-node bifurcation in Kir
problem.

2. The nonlinear eigenvalue problem

Based on Figs. 13 and 18, we have argued that within
two-dimensional model~4.1! and ~4.2! the oscillations must
terminate in a heteroclinic bifurcation atm* ,0, i.e., that the
transition to the repeated transient state must always be
teretic. However, the discussion of Appendix A 1 sugge
that in some casesm* could vanish, eliminating all trace o
hysteresis. This issue remains unresolved. To appreciate
difficulties, it is helpful to rewrite the equations in the form

ṗ52p~m1ap2q2p2!, ~A8!

q̇52q~2n1cRp2dRq!, ~A9!

where p[z2 and q[y2. A further rescaling, using a sma
parameterg!1, of the form

~p,q!→g~p/a,q/dR!, ~m,n!→g~m,n!,

allows us to write this system in the equivalent form

pt5p~m1p1bq2gp2!, ~A10!

qt5q~2n1cp2q!, ~A11!

wheret52gt, b521/dR,0, c5cR /a.0, and a factor of
a2 has been absorbed in the definition ofg. As a result, the
existence of a connection between the points (p1,0) and
(0,0) amounts to the existence of a solutionm5m* >0 of
the nonlinear eigenvalue problem

dq

dp
5

q

p

~2n1cp2q!

~m1p1bq2gp2!
, ~A12!

subject to the conditions thatq(0)50, q(p1)50. We expect
the solutionq(p) to be single-valued. Typical solutions o
this problem for different values ofn are shown in Fig. 18.

3. The casegÄ0

In the limit g→0, the large amplitude fixed point move
off to infinity and the system~A10! and ~A11! becomes
01630
of

a

s

d

e

s-
s

the

pt5p~m1p1bq!, ~A13!

qt5q~2n1cp2q!. ~A14!

Whenm.0, n.0, there are then no fixed points on either
the axes, except for that at the origin (0,0). The result
equations may be solved using matched asymptotic exp
sions, valid even when the limit cycle comes close to
origin and hence is of large size.

In the regimep!1, p!q, we approximate Eqs.~A13!
and ~A14! by

pt5p~m1bq!, ~A15!

qt5q~2n2q!, ~A16!

with solution curves given by

p5K1q2m/n~n1q!~m2bn!/n. ~A17!

In the regimeq!1, q!p, we approximate Eqs.~A13! and
~A14! by

pt5p~m1p!, ~A18!

qt5q~2n1cp!, ~A19!

with solution curves given by

q5K2p2n/m~m1p!~n1cm!/m. ~A20!

Since these have to agree near the origin, i.e., forp!1, q
!1, we conclude that

K2
mmn1cm5K1

nnm2bn. ~A21!

The above solutions may be matched to the solution of
equations

pt5p~p1bq!, ~A22!

qt5q~cp2q!, ~A23!

obtained from Eqs.~A13! and ~A14! under the assumption
p@1, q@1. This equation has solution curves given by

pc5Kc21qUb2
q

pU
2~11bc!/~11b!

, ~A24!

where b5(c21)/(b11). Matching to the solution forp
!1, p!q yields

K15Kb11. ~A25!

Matching to the solution forq!1, q!p yields

K25K12cubu~11bc!/~11b!. ~A26!

On substitution of these expressions into the relation~A21!
we obtain finally

K5ubu(11bc)/~11b)mdmd(n1cm)nd(2m1bn), ~A27!
3-16
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whered5@(11b)n2m(12c)#21.
The above calculation shows that form.0 there is al-

ways a finite amplitude limit cycle. This limit cycle i
unique, in the sense that there is a single solution for e
pair (m,n). The only exception arises in the limitd→`. This
limit will be recognized as the integrable limit and indeed
this case there is a one-parameter family of solutions, one
eachK.0. WhendÞ0 the solution near the origin (0,0) i
given by

pnqm5ubud(11bc)mnmdn(11b)(n1cm)ndm(12c)(2m1bn).
~A28!

This expression may be used to obtain the closest distan
the origin (0,0) as a function, for example, ofm. Moreover,
one may check that there is always a solution to the equa
qt50, qÞ0, so that the solutions cannot escape to infinity
the q direction, and likewise for thep direction. These con-
clusions continue to hold whenm50. Thus, at least in the
limit g→0, the global bifurcation must occur atm* ,0.
Note, finally, that Eq.~A24! implies that depending on th
sign of (11bc)/(11b) eitherp or q must diverge along the
line q5bp, and hence that both do so. Sincec.0 this ‘‘con-
nection to infinity’’ requires thatb.0. In a closely related
problem, Tobiaset al. @37# show that such a connection ma
occur oncem reaches a finite value.

APPENDIX B: STABILITY OF THE LIMIT CYCLE
NEAR e*

The stability of the limit cycle identified in both the mod
and in the partial differential equations~PDEs! near the glo-
bal bifurcation may be determined using appropriately c
structed return maps. It turns out that although the mo
captures the essence of all the important transitions obse
in the PDEs, it oversimplifies the situation near this bifurc
tion. This is of course because the model cannot desc
complex dynamics. To appreciate the difference between
model and the PDEs, we treat first the model, and then c
pare the results with the corresponding ones for the PDE

We let $a,l% be the eigenvalues of the chevrons (0,z0) in
the symmetry-breaking and the symmetry-preserving dir
tions, respectively. In the model, these eigenvalues are
essarily real and are easily computed:$a,l%5$2nR

1cRz0
2,2(a22z0

2)z0
2%, wherez05zA or zB . Hereafter, we re-

fer to these eigenvalues as$aA ,2lA%, and$2aB , lB%, re-
spectively, withaA,B.0, lA,B.0. Explicit expressions are
readily obtained. For example,

lB5Aa214m~a2Aa214m!'22m

when umu!a. In the PDEs, the role of these eigenvalues
taken by theleading symmetry-breaking and theleading
symmetry-preserving eigenvalues, respectively; the lead
eigenvalues are those in each category with thesmallestreal
part ~in absolute value!. In the present paper we do not com
pute these eigenvalues from the pdes, although some ind
tion of their character and magnitude can be gleaned f
the time series for the repeated transients~Figs. 5 and 9!.
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We identify e-neighborhoods ofA and B and construct
surfaces of section aty5e ~labeledS0 at B andS3 at A!,
and z2zB5e ~labeled S1) and z2zA52e ~labeled S2).
See Fig. 19. Whene is small enough, the flow nearB can be
approximated by the linear flow

ẏ52aBy, ż5lBz, ~B1!

wherez5z2zB.0. The mapT01:S0→S1 that takes points
of the form (e,z0)PS0 to (y1 ,e)PS1 then takes the form

y15e~z0 /e!aB /lB. ~B2!

Since trajectories starting near (0,e)PS1 follow the structur-
ally stable heteroclinic connection connectingB to A ~i.e.,
y50), the linearized mapT12:S1→S2 takes the form

y25ay1 , ~B3!

wherea.0 is a constant. NearA, the linear flow takes the
form

ẏ5aAy, ż52lAz, ~B4!

wherez5z2zA,0. A similar calculation now gives the ma
T23:S2→S3:

z352e~y2 /e!lA /aA. ~B5!

Finally, the mapT30:S3→S0 is given by linearizing the
flow around the near heteroclinic trajectoryA→B:

z05bz31s, ~B6!

whereb,0 is another constant, ands}m2m* . Thus, when
s50 the point (e,0)PS3 is mapped into (e,0)PS0, i.e.,
there is a heteroclinic connection fromA to B, and hence a
heteroclinic cycle of the formB→A→B. This is exactly
what happens atm* .

Using the four maps just defined we may now comp
the return mapT00:S0→S0 taking (e,z)PS0 to (e,z8)
PS0 once around the heteroclinic cycle. The result is

z85czr1s, r[
aBlA

aAlB
.0, ~B7!

where c.0. Note that the exponentr is the ratio of the
product of the two stable eigenvalues to the product of
two unstable eigenvalues. This equation has a fixed p
given by the solution of the equation

z2s5czr. ~B8!

A fixed point with z!1 corresponds to a periodic trajecto
in the original system lying close to the heteroclinic cyc
z50 at s50. Its stability is determined by the slope of th
right side of Eq.~B7! at the fixed point. Thus, whenr.1
such a fixed point exists only fors.0, i.e., form.m* , and
it is then stable. In contrast, when 0,r,1 the fixed point
exists only fors,0, i.e., for m,m* , and is then unstable
The former case describes a limit cycle that approaches
global bifurcation from above without loss of stability, whil
3-17
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in the latter case, the branch of stable oscillations oversh
m* , and turns around at a saddle-node bifurcation bef
approachingm* from below.

It is important to observe that in the model we may tre
the unstable directions6y independently. However, as a
ready mentioned, the fact that the bifurcation at H2 is in fact
a Hopf bifurcation relates these two directions, and impl
that trajectories starting nearB can arrive atA from either
direction. To apply the present approach to the PDEs i
necessary therefore to generalize it to the case where
leading stable eigenvalue of the steady stateB is a member
of a complex conjugate pair,2aB6 ivB , say. In the follow-
ing, we retain the notation$aA ,2lA% for the leading eigen-
values of the large amplitude chevrons in the symme
breaking and the symmetry-preserving directio
respectively, withlB the unstable eigenvalue atB. Since the
stable manifold ofB is now two-dimensional, we use pola
coordinates to describe the linearized flow

ṙ 52aBr , u̇5vB , ż5lBz. ~B9!

For S0 we choose a part of the planeu5u0 around one of
the points (r ,z)5(h,s), where the unstable manifold ofA
intersects it. Since the symmetryy→2y implies that there
are two such intersections, we takeS05S0

2øS0
1 , with S0

1

chosen if the intersection is withu5u0 andS0
2 if it is with

u5u01p. Note thath is a small but finite quantity, whiles
takes values nears50. The mapT01:S0→S1 then takes the
form

r 15r 0~z0 /e!aB /lB, u152
vB

lB
ln~z0 /e!1u0 ,

~B10!

while the mapT12:S1→S2 is given by

x25r 1 cos~u11c!, y25r 1 cos~u11f!. ~B11!

What happens next depends on the sign of the quantityy2,
which determines whether the trajectory will exit the neig
borhood ofA along throughS3

1 or S3
2 ~Fig. 19!. This map is

FIG. 19. Sketch of the surfaces of section used to construct
Poincare´ return map near the global bifurcation for~a! the model,
and~b! the PDEs. In~a!, all the eigenvalues are real while in~b! the
leading stable eigenvalue ofB is complex.
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given by Eq.~B5!, with y2 replaced byuy2u. The remaining
map,T30

6 :S3
6→S0

6 , is given by

r 05h1aux3u1bz3 , z05s1cux3u1dz3 , ~B12!

wherea, . . . are constants,s}e2e* , andx3 represents the
x coordinate in the planeS3 in the direction of the leading
stable symmetry-breaking eigenvector. If this eigenvalue
more stable thanlA this map may be simplified by noting
that at leading orderr 0'h, so that Eqs.~B12! may be ap-
proximated by

z85s1dz3 . ~B13!

The final return map then takes the form

z85s1ezr cosdAS vB

lB
ln z1F D ,

r[ aBlAaAlB.0,

dA[lA /aA.0, ~B14!

where e.0 and F are constants, and is defined fo
cos@(vB /lB) ln z1F#.0 only. Fixed points of this map rep
resent asymmetric periodic orbits, while symmetric orbits
found as fixed points of the other ‘‘half’’ of this map

z85s1ezr cosdAS vB

lB
ln z1F1p D , ~B15!

where, once again, the cosine must be positive. The resu
map ~cf. @38#!, has properties similar to the standa
Shil’nikov map @39#, although the details depend on bo
eigenvalue ratiosr and dA . The simplest case is againr
.1: in this case, a single-stable periodic orbit becomes h
eroclinic ass↓0. When 0,r,1, an infinite cascade of glu
ing bifurcations accumulates ats50 from s.0 and does so
at a geometric rate:sn11 /sn5exp2plB /vB . At these bifur-
cations, a pair of asymmetric orbits glues to form a symm
ric orbit or a symmetric orbit splits into two asymmetr
ones, depending on whethern is even or odd. These orbit
become increasingly more complex asn increases sincen
counts the number of half twists about the lineBA. When
dA.1 the orbits that glue are stable, but they are unsta
~and degenerate! when 0,dA,1. However, regardless o
the value ofdA , each gluing bifurcation is preceded by
cascade of period-doubling bifurcations and chaos
Shil’nikov type. It should be emphasized that while asy
metric orbits undergo period-doubling cascades, the symm
ric orbits must first undergo a bifurcation to asymmetry. W
surmise that for the parameter values for which the dir
numerical simulations were carried out the ratior.1. In this
case, the repeated transients remain quasiperiodic ase↓e* ,
as observed in Figs. 5 and 9. Note that the ratior depends on
e primarily through the eigenvaluesaB andlB both of which
are small and so vary withe dramatically. Thus, it is prima-
rily the properties of the stateB that are responsible for th
presence or absence of chaotic repeated transients, an
use this fact as a justification for ignoring the imaginary pa
of the eigenvaluesaA and lB . These introduce complica
tions akin to those studied in Ref.@40#.

e
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@13# W. Barten, M. Lücke, and M. Kamps, inNonlinear Evolution
of Spatio-temporal Structures in Dissipative Continuous S
tems, Vol. 225 of NATO Series Advanced Studies Institute,
Physics, edited by F. H. Busse and L. Kramer~Plenum Press,
New York, 1990!, pp. 131–148.

@14# S. Hugues and A. Randriamampianina, Int. J. Numer. Meth
Fluids 28, 501 ~1998!.

@15# S. Zhao and M. J. Yedlin, J. Comput. Phys.113, 215 ~1994!.
@16# O. Batiste, I. Mercader, M. Net, and E. Knobloch, Phys. Rev

59, 6730~1999!.
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