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Subharmonic instabilities of Tollmien-Schlichting waves in two-dimensional Poiseuille flow

A. Drissi, M. Net, and I. Mercader
Universitat Politècnica de Catalunya, Jordi Girona Salgado s/n. Campus Nord. Mo`dul B-4, 08034 Barcelona, Spain

~Received 14 August 1998; revised manuscript received 17 May 1999!

The stability of theupper branchof shear traveling waves in two-dimensional Poiseuille flow, when the total
flux through the channel is held constant, is considered. Taking into account the length of the periodic channel,
perturbations of the same wave number~superharmonic!, and different wave number~subharmonic! of the
uniform wave trains are imposed. We mainly consider channels long enough to containM54 andM58 basic
wavelengths. In these cases, subharmonic bifurcations are found to be dominant except in a small region of
parameters. From this type of bifurcation, we show that if the wave number is decreased, the periodic train of
finite amplitude waves evolves continuously towards the stable localized wave packets obtained in long
channels by other authors and whose existence has been associated to the vicinity of an inverted Hopf
bifurcation. Depending on the basic wave number of the periodic train destabilized, different types of solutions
for a given length of the channel can be obtained. Furthermore, for moderate Reynolds numbers, configurations
of linearly stable wave trains exist, provided that their basic wave number isa'1.5.@S1063-651X~99!15208-5#

PACS number~s!: 47.20.Ft, 47.20.Lz, 47.20.Ky
in

D
ny
lly
o
ke
an

m
th
de
a
in

ith
, o
th
re
s
D

le
m

s
al
na
ca
a
ic
st
ns
pe
is

s
ili

-
m-
of

he
e
ral

al-
the
ese
.

ing
n-

-
is

f a

g
la-

nal
le
ns
ary
we

ula-

-

lso
e-

ave

o
for
ish
, a
in
I. INTRODUCTION

Although it is known that the transition to turbulence
wall-bounded flows is three-dimensional~3D!, several au-
thors @1–3# have shown interest in the study of pure 2
flows in spatially periodic Poiseuille flow, because ma
properties of the 2D flows obtained are observed in fu
turbulent three-dimensional flows. This system is a go
model to look for two-dimensional turbulence, since unli
other 2D flows, the basic flow becomes linearly unstable
develops finite-amplitude two-dimensional waves@4#, which
in turn become unstable and lead to more complicated
tions. In @5#, the author established the hypothesis that
transition from the laminar state to the turbulent state is
pendent on the existence of intermediate vortical states,
that the transition to turbulence is the three-dimensional
stability of these states. These vortical states could be e
two-dimensional traveling waves, quasiperiodic solutions
three-dimensional waves. The more information about
existence of 2D attractors we can obtain, the better th
dimensional transitions can be established. Bearing thi
mind, our goal is to supply more information about the 2
scenario, analyzing the successive bifurcations that may
to different 2D flows obtained for moderated Reynolds nu
bers.

In plane Poiseuille flow, neither the critical Reynold
number for the instability of the basic flow nor the critic
Reynolds number for the existence of the two-dimensio
waves coincides with the experimentally observed criti
Reynolds number when finite-amplitude disturbances
considered. Then, the two-dimensional wave trains wh
bifurcate subcritically from the basic flow are only the fir
step of the transition. The stability of the uniform wave trai
have been studied by two different approaches. One is
formed by time-dependent numerical simulations of the d
turbances~see Refs.@1,2,6,7# among others!. The other,
based on the fact that traveling waves are steady solution
a moving frame of reference, uses the customary stab
analysis~see Refs.@8,3# for the 2D case and@9# for the 3D
PRE 601063-651X/99/60~2!/1781~11!/$15.00
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case!. Using this last approach@8#, and@3# considered super
harmonic disturbances of a uniform wave train of wave nu
bera51.1. The values of the Reynolds number and period
the Hopf bifurcation they obtained agree quite well with t
results of@1# and@2# for short periodic boxes, employing th
first approach. If the box is long enough to contain seve
wavelengths, the results of@2# and@7# ~for basic wavelength
a52p) reveal the existence of stable and attracting loc
ized wave packets that appear for moderate values of
Reynolds number. These authors link the presence of th
solutions with the vicinity of a subcritical Hopf bifurcation
The connection is justified by the works of@10# and@11#, in
which structurally stable pulse solutions of the correspond
complex Ginsburg-Landau equation including a quintic no
linearity were obtained. However,@10# showed that the nec
essary condition for the existence of this type of solution
more restrictive than the condition for the existence o
subcritical Hopf bifurcation. In addition,@2# pointed out the
possibility of obtaining different configurations dependin
on the initial conditions used in his time-dependent simu
tions.

This paper is devoted to analyzing the two-dimensio
stability of the 2D uniform wave trains in plane Poiseuil
flow to both superharmonic and subharmonic bifurcatio
when a constant flux is imposed as a longitudinal bound
condition. By using the second approach quoted above,
analyze superharmonic bifurcations, extending the calc
tions of @3# for any value ofa. With a technique similar to
@12# used in Rayleigh-Be´nard convection, we analyze sub
harmonic bifurcations in boxes that containM54 and M
58 basic wavelengths of any basic periodicity. We a
present a series of nonperiodic solutions obtained from tim
dependent numerical simulations to show that the w
packets obtained by@2# and @7# come from a subharmonic
bifurcation of the uniform wave trains. This instability is als
responsible for the coexistence of different configurations
the same periodic channel. Another important point we w
to emphasize is that, according to our stability analysis
stable structure of uniform wave trains can exist, even
1781 © 1999 The American Physical Society
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1782 PRE 60A. DRISSI, M. NET, AND I. MERCADER
long boxes, for some values of the parameters: Reyn
number and basic wave number.

The paper is organized as follows. In Sec. II we derive
equations and boundary conditions, explaining the two o
nary parametrizations used in this problem, to make re
ences to the results of other authors more understandab
this section we also present the method used to analyze
superharmonic and subharmonic instabilities and nonp
odic solutions. The results are given in Sec. III and the pa
concludes with a discussion in Sec. IV.

II. EQUATIONS AND NUMERICAL METHOD

Plane Poiseuille flow is established between two horiz
tal plates and is driven by a streamwise pressure grad
We have chosen horizontal plates placed aty56h and thex
coordinate in the direction of this gradient.

The two-dimensional, incompressible, and viscous fl
will be governed by the Navier-Stokes equations

]u

]t
1~u•¹!u52¹p1n¹2u, ~2.1a!

¹•u50, ~2.1b!

where u5(u,v) and p is the pressure field over densit
No-slip boundary conditions at the horizontal plates impl
u(x,6h,t)50. If the pressure gradient has a uniformx av-
erageP8, these equations and boundary conditions admi
exact solution with a parabolic velocity profileub5U0(1
2 y2/h2,0), known as the basic laminar solution, and whe
U0 is related toP8 in the following way:U052h2P8/2n.
For this solution the flux through the channel isQ8
54hU0/3.

We introduce a stream functionC8(x,y,t), related to the
two components of the velocity field byu5Cy8 , v52Cx8 ,
and we expandC8 in the following way

C8~x,y,t !5U0S y2
y3

3h2D 1(
2N

N

Cn8~y,t !einax,

with the value ofU0 unspecified and beinga the wave num-
ber associated with the lengthL of the periodic channel. The
reality of C8 implies

C2n8 ~y,t !5C̃8n~y,t !,

where the tilde denotes complex conjugate. Scaling leng
by the channel half widthh, velocities byU0, and eliminat-
ing the prime to denote dimensionless quantities, Eqs.~2.1a!
and ~2.1b! are equivalent to the stream function formulati

]¹2C

]t
1Cy¹

2Cx2Cx¹
2Cy5

1

Re
¹4C, ~2.2!

where Re is the Reynolds number

Re5
hU0

n
.

The modal no-slip boundary conditions are
ds
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]Cn

]y
50aty56h,n>0, ~2.3a!

Cn50aty56h, n.0. ~2.3b!

Since we will solve Eq.~2.2! for every Fourier mode, we stil
need to specify two additional boundary conditions forC0.
As C is arbitrary to within a constant, we setC0(21)50
and one boundary condition is still undetermined. This fac
associated with not having yet chosen the value ofU0.

Our choice is to fix the average fluxQ8, and setU0,Q
53Q8/4h. Then, the other boundary condition forC0 will
be C0(11)50. The Reynolds number is related with th
average fluxQ8 by ReQ53Q8/4n, the dimensionless fluxQ
will always beQ5 4

3 , and the dimensionless uniform avera
pressure gradientPQ for this parametrization of the problem
is

PQ~ t !52
2

ReQ
S 12

1

4
@C0,yy

Q ~1,t !2C0,yy
Q ~21,t !# D , ~2.4!

where indexQ means that all quantities refer to a consta
flux parametrization.

Other authors have used as a different parametrizatio
the problem the fixing of a constant average pressure gr
ent P8, and setting the valueU0,p as U0,p52 h2P8/2n.
Then, the Reynolds number is related toP8 as Rep5
2 h3P8/2n2, the dimensionless average pressure gradien
P52 2/Rep , and the dimensionless fluxQp is

Qp~ t !5
4

3
1@C0

p~1,t !2C0
p~21,t !#, ~2.5!

where the indexp means that all quantities refer to a consta
average pressure gradient parametrization.

This parametrization is the usual one when a formulat
in primitive variables (u,p) is used@6,13#, or in other for-
mulations whenever thex-momentum equation for the zer
Fourier mode of thex component of the velocity~as inde-
pendent variable! is a governing equation@9#. However, if a
stream function formulation for the 2D case is used with t
parametrization, as discussed in detail in@3#, the additional
boundary condition for the dimensionless stream funct
C0

p is obtained from thex average of the Navier-Stoke
equation in thex direction and integrating over the chann
width. This boundary condition is

]C0
p

]t
~11,t !2

]C0
p

]t
~21,t !

52
1

Rep
@C0,yy

p ~1,t !2C0,yy
p ~21,t !#. ~2.6!

Notice that the left hand side of this equation coincides w
]Qp(t)/]t.

For the basic laminar flow Rep5ReQ , and its stability to
infinitesimal 2D disturbances of the formF(y,x,t)
5F(y)eiaxelt gives rise to the marginal stability curv
R@l(Re,a)#50, obtained by minimizing the Reynold
number for everya ~Here R indicates the real part!. This
curve, labeledRb , is represented in Fig. 1. This bifurcatio
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is in general subcritical, and the new solution consists i
family of periodic traveling shear waves. If one defines
characteristic amplitude of these waves—the disturbance
ergy, for example—and fixesa varying the Reynolds num
ber near the bifurcation point, thelower branchfor decreas-
ing Reynolds number is obtained. When it reaches a va
RN(a), the amplitude turns around towards higher Reyno
numbers, increasing its value and forming theupper branch.
As is known@14#, the lower branchis unstable to 2D super
harmonic bifurcations. For these steady wave trains, the R
nolds numbers corresponding to two different parametr
tions of the problem are related by the expression

Rep5ReQS 12
1

4
@C0,yy

Q ~1!2C0,yy
Q ~21!# D , ~2.7!

and represent only different scaling of the problem@3#. In
this case, sinceC0

Q andC0
p are time independent, if one fixe

the average fluxQ, PQ is time independent, and so isQp if
one fixes the average pressure gradient@see Eqs.~2.4! and
~2.5!#. For this last parametrization, sinceQp is time inde-
pendent,C0,yy

p (1)5C0,yy
p (21).

There exist other two-dimensional solutions, described
@13# and obtained for wave numbersa'0.3, ~long-
wavelength secondary flows!, for which Qp andPQ are both
time independent, but are not traveling waves. This fact
only be explained if

C0,yy
p ~1,t !5C0,yy

p ~21,t !

is satisfied. For these solutions this value is zero, which
be deduced from Figs. 6 and 7 of that paper.

FIG. 1. Critical Reynolds number versus the wave numbera for
different types of bifurcations. The dash-dotted line~labeledRb)
corresponds to the bifurcation of the parabolic profile, the das
line ~labeledRN) corresponds to the minimum Reynolds number
which periodic traveling waves appear, and the solid line~labeled
d50) corresponds to superharmonic bifurcations of the waves
longing to theupper branch.
a

n-

e
s

y-
-

n

n

n

As far as the numerical method is concerned, we comp
the steady traveling waves by assuming time independ
coefficientsan j in the expansion ofC(x,y,t):

CTW~x,y,t !5Cb1 (
n52N

N

(
j 50

J

an jgj~y!eina(x2ct),

~2.8!

wheregj (y) is a function satisfying the boundary condition
composed of a superposition of Tchebyshev polynomi
gj (y) is symmetric forj even and antisymmetric forj odd.
Letting x̃5x2ct, we solve the steady equation

~Cy2c!¹2C x̃2C x̃¹
2Cy2

1

ReQ
¹4C50,

obtained from Eq.~2.2!, by a Galerkin technique inx̃ and a
collocation method iny. For given values of Re anda, the
algebraic equations for the coefficientsan j are solved by a
Newton-Raphson iteration method. Since the phase of
traveling waves is arbitrary, we fix it by prescribing

E
21

1

(
j 50

J

I~a1 j !gj~y!50,

whereI(a1,j ) denotes the imaginary part ofa1,j . The corre-
sponding equation serves for the determination of the ph
velocity c. To obtain these type of solutions a truncationN
54 andJ540 is performed in the developments. Consid
ing N.4 and J.40 causes no significant changes in t
disturbance energy and phase velocity of a given solutio

To study the stability of the two-dimensional waves w
proceed in the same way as@12#. We are interested in ana
lyzing the case where the periodic box is long enough
contain M basic wavelengthsa, a5 2p/a being the basic
wave number. Since the waves are steady in a moving fra
of reference, we can apply the usual stability analysis.

The basic solution has perioda, and hence the associate
linear operator also has perioda. We use Floquet theory to
split the set of perturbations to be considered as

$Cm* ~ x̃,y,t !5Cm~ x̃,y!eidma x̃elmt%m50 ,. . .,M21 ,
~2.9a!

where

Cm~ x̃,y!5Cm~ x̃1a,y! ~2.9b!

anddm5m/M . ThusCm* ( x̃,y,t) admits the following devel-
opment

Cm* ~ x̃,y,t !5 (
n52N

N

(
j 50

J

bn jgj~y!ei (n1dm)a x̃elmt.

~2.10!

The cased50 corresponds to superharmonic disturbanc
and has been considered by@3# for a51.1. In this case, the
perturbation has the same wavelength as the t
dimensional waves, and the solution that bifurcates still c
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tains M basic wavelengths. In this stability analysis, we
ways obtain a zero eigenvalue corresponding to the tri
phase shift solution@8#.

In the casedÞ0, subharmonic disturbances are cons
ered, the basic periodicitya is now broken, and a new solu
tion with a larger basic period emerges. As discussed in@12#,
the eigenfunctions for the problem withdM2m can be ob-
tained by conjugating those withdm ; in addition, lM2m

5l̃m . Then it suffices to consider perturbations withdm
P(0,1/2#. If a bifurcation of a shear traveling wave wit
phase velocityc of this type exists@R(l)50#, new subhar-
monic wave numbers an5(n1dm)a and an85(n
1dM2m)a appear. The corresponding frequencies are,
spectively, vn5(n1dm)ac1v* and vn85(n1dM2m)ac
2v* , wherev* 52I(lm). Then, for the bifurcated solu
tion near a pair of frequencies and wave numbers (v0n
5nac,a0n5na) of the basic solution, two pairs (vn ,an)
and (vn218 ,an218 ) appear, which allows us to estimate
group velocity as

cg'c1
v*

dma
. ~2.11!

Notice that the linear subharmonic stability analysis cor
sponding to a valuedm for a box that containsM basic wave-
lengths coincides with that corresponding to a valuedm/k for
a box that containsM /k ones, provided thatm/k and M /k
are integer. We call theequivalent subharmonic analysis
dm* , M* , that which corresponds to the minimum pairs
integers valuesm/k and M /k. For example, a subharmon
stability d3 for a box that containsM56 basic wavelengths
has theequivalentsubharmonic analysisdm* 5d1 , M* 52.

To obtain quantitative convergence in the superharmo
and subharmonic stability, it is necessary to use a less se
truncation than that allowed in the case of obtaining travel
waves. This subject will be discussed in detail in subsequ
sections.

The integration in time of the problem~2.2! with the cor-
responding boundary conditions in the case of fixing the
erage flux is carried out by using a semimplicit second or
stiffly stable scheme, Fourier-Galerkin inx and Chebyshev
collocation in they direction . Because this part of the wor
is devoted to showing how subharmonic instabilities act
Tollmien-Schlichting waves, the number of Fourier mod
used varies depending on the numberM that are extended
periodically. The Fourier nonlinear term is calculated ps

dospectrally, increasing the number of modes (3
2 N) to obtain

a de-aliased evaluation. A minimum of 64 Chebyshev mo
is used in vertical direction.

III. RESULTS

In two parts of this section we present results correspo
ing to superharmonic and subharmonic bifurcations. Trav
ing wave solutions then need to be computed to analyze t
stability. As a test of our code, we have reproduced the
ues RN,p , scaling our valueRN,Q by using Eq.~2.7!, and
phase speeds at these points, for different wave numbea,
obtained by@15# and @3#.

As discussed in@15#, the more unstable mode at the b
-
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furcation of the basic flow is known to be symmetric iny;
then in the expansion~2.8! of the bifurcating traveling waves
in the lower branch, all coefficientsan j with n1 j even van-
ish. So the nonlinear mean flow

U~y!5~12y2!1(
j 50

J

a0 j

]gj~y!

]y
~3.1!

is a symmetric function ofy (a0 j50, if j 52̇). Thus, for this
type of solution,CTW has the following symmetry:

C~x,y,t !52CS x1
a

2
,2y,t D . ~3.2!

Traveling wave solutions belonging to theupper branchalso
have this symmetry, and a symmetry breaking, if prese
can be detected with our stability analysis. Because of
symmetry, disturbances of the form~2.10! separate into two
classes:odd disturbances with vanishing coefficientsbn j for
evenn1 j andevendisturbances with vanishing coefficien
bn j for oddn1 j . This analysis looks very similar to the cas
of symmetric thermal Rossby waves in the small-gap
proximation studied by@16#, since these waves have th
same symmetry as the traveling waves we analyze.

A. Superharmonic bifurcations

In this section we present the results corresponding
superharmonic bifurcations. This analysis has two meanin
first, it is the complete stability analysis corresponding to
periodic box whose lengthL coincides with 2p/a (M51);
second, for a periodic box that containsM basic wave-
lengths, this is the case in which perturbations of the sa
basic wave number as the traveling waves are conside
This constitutes only a part of the whole stability analys
and subharmonic perturbations (dm , with mÞ0! also need to
be considered in order to complete it.

In Fig. 1 we plot the Reynolds number for which a supe
harmonic bifurcation appears. All traveling waves belongi
to the upper branchwith Reynolds number fromRN to the
values in the curve labeled byd50 are stable to this type o
perturbation. In contrast to the case of thermal Ros
waves, a bifurcation withI(lm)50 ~mean flow instability!
has not been found to be dominant, and then a quasiperi
time-dependent regime appears. So for any value ofa, the
bifurcation is a Hopf bifurcation. The corresponding fr
quencies are plotted in Fig. 2, where we include the fun
mental frequency of the traveling waves at the bifurcat
point. In this figure we also indicate the parity of the dom
nant disturbances. Dominantodd disturbances would give
rise to a bifurcated solution with the same symmetry~3.2! as
that of the traveling waves. In Fig. 3 we plot the mean flo
of the traveling wave~the parabolic profile is not included!
and that corresponding to the dominant disturbance~real and
imaginary parts of they derivative of the zero Fourier mode!,
at bifurcation points belonging to different zones where
jump of frequencies has appeared.

Superharmonic bifurcations have been obtained by@8#
and@3# for a51.1 by using the same method employed he
but with less resolution in the streamwise direction. Our
sults agree with those obtained by them for a Fourier tr
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PRE 60 1785SUBHARMONIC INSTABILITIES OF TOLLMIEN- . . .
cation N51 andN52. However, forN53 andN54, we
obtain a different period than that plotted in Table 2 in@3#.
We believe there may be a misprint in that table, since
period for N53 does not agree with the imaginary part
the eigenvalue~frequency of the Hopf bifurcation! plotted in
Fig. 2 of the same paper. We have calculated the pe
associated with this frequency and have obtained the s
result.

Although for analyzing superharmonic stability@1# indi-
cates that the results become roughly stabilized for more
N57 andJ533, we present in Table I the results for diffe
ent truncations to show how the results fluctuate. The crit
values are obtained by imposing thatuR(l)u,1027. The
values plotted in Figs. 1 and 2 have been obtained by usi
truncationN514 andJ560, which guarantees an error o
less than 1% in the values of the Reynolds number and in
period for the Hopf bifurcation.

Bifurcated solutions from superharmonic bifurcatio
have been analyzed by@1# and @2# ~short boxes! by using a
time-dependent code, for values ofa'1. Since the bifurca-
tion seems to be supercritical, from this author’s results
can deduce the Reynolds number for which this bifurcat
sets in. Furthermore, the period of the zero Fourier m
gives information about the frequency of the Hopf bifurc
tion. We have compared our results with those of this aut
and, as can be seen in Fig. 2, they agree quite well.

B. Subharmonic bifurcations

In this section we present the results corresponding
subharmonic bifurcations (dÞ0). We suppose that the per
odic box containsM structures of periodicitya52p/a and
we have analyzed their stability from any perturbati

FIG. 2. Frequencies of the Hopf bifurcation corresponding
superharmonic bifurcations~solid line! plotted in Fig. 1 and that
corresponding to the traveling waves in the bifurcation point~dotted
line! versus the wave numbera. We have included results obtaine
by @2# ~solid triangles! by using a time-dependent code. Labelseven
andodd mean the type of disturbances that are responsible for
bifurcation; see text.
e
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which, maintaining the periodicityMa, breaks the basic pe
riodicity a. Hereafter we will denote bya8 the wave number
associated with the periodic channel, soa85a/M . In this
case, disturbances of the form~2.10! also separate intoeven
and odd disturbances. However, the bifurcated soluti
would manifest a symmetry only in the case where
equivalentsubharmonic linear stability analysis was for a
odd value ofM* andevendisturbances form* odd ~vanish-
ing bn j for n1 j odd! or odddisturbances form* even~van-
ishing bn j for n1 j even!. Then, the bifurcated solution
characterized by a symmetric mean flow, would have
following symmetry:

C~x,y,t !52CS x1
M* a

2
,2y,t D . ~3.3!

Here, we have analyzed mainly the casesM54 andM58.

e

FIG. 3. ~a! Mean flow of the traveling wave~the parabolic pro-
file is not included! and ~b! real ~solid line! and imaginary~dotted
line! part of the mean flow corresponding to the most unsta
disturbance for different points in the marginal curve correspond
to superharmonic bifurcations. The values ofa at these points are
1.2, 1.45, and 1.55.
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1786 PRE 60A. DRISSI, M. NET, AND I. MERCADER
As we discussed in Sec. II, we have considered disturba

of the form ~2.10! for valuesdm51/M , . . . ,1
2 .

In Fig. 4 we have plotted with dotted lines the values
the Reynolds number as a function of the basic wave num
a that limit the zone where a periodic traveling wave
periodicity a contained in a box of periodicity 4a is linearly
stable to this type of perturbation. For this analysis, it
necessary to consider two values ofdm , d15 1

4 and d25 2
4 .

As can be seen in the figure, the stability limits of a config
ration of four Tollmien-Schlichting waves are due to subh
monic perturbations, except in a region neara51.4. Since
the subharmonic stability zone is always associated with

TABLE I. Tabulation of the Reynolds number and periodT at
the superharmonic bifurcation fora51.1 for different values ofN
andJ.

N J Reynolds T

4 40 5803.2 11.60
4 70 5812.6 11.62
8 40 5091.0 11.82
8 50 5056.0 11.84
8 60 5054.0 11.84

12 40 5778.9 11.24
12 50 5189.0 11.80
12 60 5189.1 11.82
14 40 5840.3 11.38
14 50 5386.1 11.62
14 60 5221.2 11.80
16 40 5970.8 11.29
16 50 5424.9 11.62

FIG. 4. Reynolds number versus basic wave number co
sponding to subharmonic bifurcation points of periodic travel
waves in a box that containsM54 basic wavelengths~dotted line!
and M58 wavelengths~dotted-solid line!. The curve labeledd
50 corresponds to subharmonic bifurcation, and the curve lab
RN corresponds tonosepoints. We have denoted by an asterisk
point where@2# obtained a stable train of wave packets.
es
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valued1, wherever this instability dominates a new solutio
with periodicity 4a emerges. As we explained in a previou
section, as a result of this bifurcation, which is always os
latory, new subharmonic wave numbers and frequencies
pear and we can estimate a group velocity by the expres
~2.11!. In Fig. 5 we have plotted for different values of th
Reynolds number the estimated group velocity and ph
velocity of the traveling waves at the two points~left and
right! which limit the stability zone. Circles~left! and solid
circles ~right! denote the phase velocity and triangles~left!
and solid triangles~right! denote the estimated group velo
ity.

In Fig. 4 we denote by an asterisk one point~Re'5000,
a51! in which @2# obtained a stable train of wave packe
This author used a time-dependent code and, starting fro
established nonlinear wave train ofa51, the solution was
extended periodically and perturbed slightly. The box is lo
enough to contain at least four wavelengths (a850.25). No-
tice that this point remains outside of the zone whereM
54 wave trains are stable, which confirms our findings.
addition, Jimenez says that the phase speed of the indivi
waves (c'0.35) is similar to that of the uniform wave train
but the propagation speed of the groups is fastercg
'0.75– 0.8). Similar results were obtained by@7# for the
caseM510, a51, and Re52400, and the wave packet
propagated at a constant velocitycg'0.7, while the constitu-
ent waves progressed with about half the wave pac
velocity.

If we look for the estimated value of the group veloci
~5! at Reynolds number Re55000, on the left side of the
curve that limits the stability zone (ac51.35), we obtain
cg'0.95 and a phase speedcTW50.48, which are close to
Jimenez’s results. We can appreciate the effect of this in

e-

d

FIG. 5. Phase speed and estimated group velocity versus
nolds number at the subharmonic bifurcation points displayed
Fig. 4 for a box that containsM54 wavelengths. For a given Rey
nolds number, circles and triangles correspond to the phase s
and estimated group velocity at the bifurcation points for low
wave number~left side!, and solid circles and solid triangles t
those for higher wave number~right side!.
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bility if we approximate the bifurcating solution at this poi
by a superposition of the basic wave train and the lin
eigenmode. In Fig. 6~a! we display a shaded plot of the vo
ticity v52DC at y521 as a function ofxP(0,2p/ac8) at
a time sequence fromt50 to t52(2p/vTW8 ), wherevTW8 is
the fundamental frequency of the uniform wave train (M
54) at the bifurcation point Re55000, ac51.35. Notice
how the propagation of the groups is approximately twice
phase speed of the individual waves. In the following sect
we will show how this type of plot reproduces the behav
of the solution near the bifurcation point. To appreciate
effect of a negative group velocity~the groups travel in the
opposite direction to the individual waves! we also display in
Fig. 6~b! a similar plot for the bifurcation point Re
59500, ac51.36, andac850.34. The estimated group ve
locity and phase speed of the traveling wave arecg'
21.03, andcTW50.51, respectively.

We have also checked if for a channel of periodicitya8
50.25 and for some of the Reynolds numbers analyzed
@2#, stable uniform wave trains could appear. The res
from our subharmonic stability analysis show that at least
Re54000 and Re55000, a structure containingM56
Tollmien-Schlichting waves~a51.5! would remain linearly
stable.

In Fig. 4 we also plot with a dotted-solid line the values
the Reynolds number that limit the stability zone for a pe
odic box containingM58 uniform wave trains, also consid
ered by@2#, and in Fig. 7~similar to Fig. 5! the correspond-
ing phase velocity and estimate group velocity at
bifurcation points. The marginal curve~a, Re! for the case
M58 is close to the marginal curve for the caseM54,
except in the zone where the superharmonic instability do
nates, and also in the neighborhood of the minimum of
nosecurve, where theM58 curve narrows notably. In ad
dition, notice that forM58 there is a small gap between th
nosecurve and the marginal curve for the subharmonic
stability. On the left side of the marginal curve, for Reynol
numbers Re.10 000, the marginal curve coincides with th
curve forM54. This is because the dominant subharmo
instability is for d25 2

8 , which is the same analysis asd1
5 1

4 for the M54 case. Save for this zone, the domina
subharmonic analysis is ford15 1

8 .
There exist other 2D solutions that might come from

subharmonic bifurcation of the traveling waves. These
the solutions quoted in the previous section, obtained by@13#
for a8'0.3. We suppose that they come from a travel
wave in a box that containsM53 basic wavelengths. We
base this supposition on the results shown in Table 3 in@13#
(ReQ52723, a850.3387). Here, the value of the phase v
locity corresponding to the odd part of Fourier moden53
~this is the mode of maxim energy! of thex component of the
velocity is the same (c50.315) as the even part of Fourie
moden56. This is the parity of modesn53 andn56 in an
expansion of anM53 traveling wave. The value of th
phase velocity and that of the frequencyv050.26 of the zero
odd Fourier mode (v0 should beM53 times v* at the
bifurcation point! could agree with the results we have o
tained from a subharmonic instability for the caseM53. We
have checked this instability for one of the smaller values
the Reynolds number on the left side of the marginal cu
r
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for M53 ~not plotted in this paper!, and we have obtained
for Re52950, ac851.24/350.41, c50.410966, andv* 5
20.187. Although the phase velocity and the associated
quency of the zero Fourier mode at the bifurcation po
(v0'0.56) are higher, in the next section we will show th
these values decrease whena8 does.

C. Nonperiodic solutions

In this section we wish to show how a stable wave train
Tollmien-Schlichting waves evolves when the size of t
periodic channel varies, allowing a subharmonic instabi
to act on it. In particular, we have considered a fixed R
nolds number Re54250, and starting from a periodic chan
nel that contains a structure formed byM54 uniform wave
trains (a850.3551.4/4; see Fig. 4!, we have obtained dif-
ferent perturbed solutions; those which whena8 reaches a
value of 0.25 look similar to the wave packet obtained by@2#
for this periodicity. This sequence is displayed in Fig.
where the vorticityv(x,21,t) ~lower wall! is plotted at a
sequence of time fromt50 to t5100 for different values of
a8. Notice that the propagation speed of the groups is fa
than the phase speed of the individual waves, in agreem
with our results in the previous section: For this value
Reynolds number, the subharmonic instability appears
ac51.35, the phase speed is 0.48, and the estimated g
velocity is 0.93. As the value ofa8 decreases, so does th
group velocity and the phase speed, which would be
agreement with the results obtained by@2# at a850.25 (c
'0.35, cg'0.7520.8). The same occurs with the fre
quency of the zero Fourier mode: fora51.3: this frequency
is v0'0.58 (v0'4v* , since the dominant subharmonic b
furcation is ford5 1

4 ), and fora51, this value isv050.38.
This behavior could explain the difference between the
sults obtained by@13# and our subharmonic instability re
sults, quoted in the previous section for the caseM53.

Another aspect worthy of note is the coexistence of so
tions for a given periodicity. These solutions come from p
turbations of different numberM of wave trains. For ex-
ample, for Re54250, in a periodic channel ofa850.25 one
could find the solution that comes fromM54 wave trains of
periodicity a51 @wave packet in Fig. 8~d!#, which is far
from its bifurcation point; the solution displayed in Fig. 9~a!
that comes fromM55 wave trains of periodicitya51.25,
which is near to its bifurcation point~a51.38!, and the
stableM56 wave trains of periodicitya51.5 @see Fig.9~b!#.

We have also analyzed how these different configurati
are interconnected. To make the discussion more underst
able, we have used the length of the periodic box,L, as a
parameter, and we have drawn a diagram in Fig. 10
outlines the connection: where solid lines represent stablM
uniform wave trains and dashed lines represent nonperi
solutions that bifurcate from them. The subharmonic stabi
analysis tells us that, for Re54250, M54 uniform wave
trains are stable in periodic boxes of lengths betweenL4,min
515.6 andL4,max518.6, M55 in boxes betweenL5,min
519.6 and L5,max522.7, and M56 in boxes between
L5,min523.5 andL5,max527.0. Thus, when starting from
stableM54 uniform wave train, we increase continuous
the length of the box, and we obtain atL525.13 the solution
displayed in Fig. 8~d!. If we go on increasingL, the n54
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1788 PRE 60A. DRISSI, M. NET, AND I. MERCADER
FIG. 6. Shaded space-time plot of the vorticityv(x,21,t) of an
approximated bifurcated solution~see text! as a function ofx
P(0,2p/ac8) at a time sequence fromt50 to t52(2p/vTW8 ). The
values ofvTW8 and ac8 are the fundamental frequency and wa
number of theM54 traveling waves at the bifurcation point:~a!
Re55000 ~left!, ~b! Re59500 ~left!.
Fourier mode of this solution decreases, while then55 in-
creases, until at a certain valueL4,5, this solution coincides
with that coming from a subharmonic bifurcation of anM
55 uniform wave train. Then, if we decrease the value ofL,
at L525.13 we obtain the solution displayed in Fig. 9~a!,
which for L5L5,max becomes anM55 uniform wave train.
If starting again from the solution obtained atL4,5 we in-
creaseL, we obtain at some valueL5,6 a solution that coin-
cides with that coming from a subharmonic instability
M56 uniform wave trains. Then, if we decreaseL once
more until L525.13, we obtain the solution plotted in Fig
9~b!. Different behavior is obtained when, starting from
stableM uniform wave train solution, the length of the box
decreased slightly, allowing the subharmonic instability
act on it. In this case, although the subharmonic instabi
looks as though it is going to act, after a transient, the so
tion jumps to the solution that comes from the subharmo
instability of M21 uniform wave trains whenL increases,
which is a sign of a subcritical bifurcation. To show th
latter effect, we plot in Fig. 11 the time series of modesn
54 andn55 for a value ofL519.4, when we use as initia
condition the stableM55 uniform wave train solution ob-
tained forL519.63.

IV. CONCLUSIONS

In this paper we have analyzed the competition betw
superharmonic and subharmonic instabilities of 2D sh
traveling waves, contained in a periodic box of a given p
riodicity, in the problem of 2D Poiseuille flow. We hav
considered boxes long enough to containM51, M54, and
M58 basic wavelengthsa5 2p/a for any value ofa. The
caseM51 in a periodic box of lengthL5a can also be
understood as the stability analysis, in a periodic box t
contains any valueM 8 of basic of wavelengthsa (L8
5M 8a), with respect to perturbations that maintain the ba
periodicity a ~superharmonic stability analysis!, This case
has been considered by other authors@15,8,3#, for some val-
ues ofa. We have extended their results to any value ofa, as

FIG. 7. As in Fig. 5 forM58.
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FIG. 8. Shaded space-time plot of vorticityv(x,21,t) ~lower wall! as a function ofxP(0,2p/a8) at a time sequence fromt50 to t
5100 for different values ofa8. ~a! a850.35, ~b! a850.3, ~c! a850.275, and~d! a850.25. The Reynolds number is Re54250.
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FIG. 9. Shaded space-time plot of vorticityv(x,21,t) ~lower
wall! as a function ofxP(0,2p/a8) at a time sequence fromt
50 to t5100 for different configurations obtained witha850.25.
~a! This configuration comes from a subharmonic instability ofM
55 Tollmien-Schlichting waves~a51.25!, and ~b! stable M56
uniform wave train~a51.5!. The Reynolds number is Re54250.
well as analyzing the symmetry breaking that this bifurcat
could give rise to.

The main objective of this paper was to analyze the
quence of bifurcations that, from the basic state, led to sta
wave packets, obtained in long boxes by@2# and @7#, which
extended to very low Reynolds numbers. The manner
which they were obtained in some cases, starting from

FIG. 10. Diagram that outlines differentM solutions obtained in
the time dependent simulations as a function of the length of
periodic boxL. The Reynolds number is Re54250.

FIG. 11. Time evolution of two differentn Fourier modes~a!
n54 and~b! n55 in a periodic box ofL519.4, starting from the
M55 uniform wave train obtained forL519.63. The Reynolds
number is Re54250.
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nonlinear wave train extended periodically and perturb
slightly, suggested that they might arise from a subharmo
bifurcation of the periodic wave train. Since this type
bifurcation is oscillatory, it has the minimum ingredients
lead to a wave packet. By employing a method widely us
in thermal convection@12# to analyze this type of bifurca
tion, our results show the existence of a stable zone for
uniform wave trains, outside of which the wave packets w
found. For small Reynolds numbers, the estimated group
locity for both casesM54 andM58 is near to the value
obtained in the referred works. Although the values of
basic wave numbera used by these authors are far from t
value on the curve that limits the stability zone, by using
time-dependent code we have shown, that starting from
bifurcated solution anddecreasingthe wave number, the so
lution evolves continuously to the wave packets. This s
harmonic bifurcation behaves in the Poiseuille problem d
ferently from the way it does if the Hopf bifurcation of th
basic state is supercritical. In this case, the subharmonic
furcation can be explained by considering the interaction
tween different processing modes@17#. If when fixing the
control parameter one moves the wave numbera, the sub-
harmonic instability, which limits the range of realizab
wave numbers, usually has the tendency to shift the b
wave numbera of the unstable solution towards the critic
wave number. Thus, according to@2,7,10#, and@11#, the tran-
sition of the uniform wave trains towards the localized so
d
ic

d

e
e
e-

e

a
e

-
-

i-
e-

ic

-

tions, when these trains undergo a subharmonic bifurca
by decreasing the wave number, takes place because o
vecinity of the subcritical Hopf bifurcation.

Another question we wished to answer was if stable c
figurations of uniform wave trains could exist for big boxe
In the results of@2# and @7#, these authors used a Fouri
spectral decomposition in thex direction, and they stated tha
they consider four, eight, and ten Tollmien-Schlichtin
wavelengths in boxes of lengthL58p, 16p, and 20p, re-
spectively. This means that they were working with subh
monic wave numbers ofa51, which is clearly outside of the
linearly stable zone. This imposition has been critical
obtaining the wave packets. Our results show that, for m
erate Reynolds numbers, stable Tollmien-Schlichting wa
could be found, provided that their basic wave number w
a'1.5. This means that the numberM of stable uniform
wave trains must be related to the lengthL of the periodic
channel by the expressionL'M 2p/1.5. However, other
configurations, depending strongly on the initial condition
can appear in the same channel. These other configura
can be obtained from subharmonic instabilities of unifo
wave trains contained in channels of different periodicity
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