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The stability of theupper branctof shear traveling waves in two-dimensional Poiseuille flow, when the total

flux through the channel is held constant, is considered. Taking into account the length of the periodic channel,
perturbations of the same wave numigsuperharmonic and different wave numbesubharmonig of the

uniform wave trains are imposed. We mainly consider channels long enough to ddntadnandM =8 basic
wavelengths. In these cases, subharmonic bifurcations are found to be dominant except in a small region of
parameters. From this type of bifurcation, we show that if the wave number is decreased, the periodic train of
finite amplitude waves evolves continuously towards the stable localized wave packets obtained in long
channels by other authors and whose existence has been associated to the vicinity of an inverted Hopf
bifurcation. Depending on the basic wave number of the periodic train destabilized, different types of solutions
for a given length of the channel can be obtained. Furthermore, for moderate Reynolds numbers, configurations
of linearly stable wave trains exist, provided that their basic wave numleris5.[S1063-651X99)15208-5

PACS numbdis): 47.20.Ft, 47.20.Lz, 47.20.Ky

I. INTRODUCTION case. Using this last approad®], and[3] considered super-
harmonic disturbances of a uniform wave train of wave num-
Although it is known that the transition to turbulence in bera=1.1. The values of the Reynolds number and period of
wall-bounded flows is three-dimension@D), several au- the Hopf bifurcation they obtained agree quite well with the
thors [1-3] have shown interest in the study of pure 2D results of{1] and[2] for short periodic boxes, employing the
flows in spatially periodic Poiseuille flow, because manyfirst approach. If the box is long enough to contain several
properties of the 2D flows obtained are observed in fullywavelengths, the results 2] and[7] (for basic wavelength
turbulent three-dimensional flows. This system is a gooda=27) reveal the existence of stable and attracting local-
model to look for two-dimensional turbulence, since unlikeized wave packets that appear for moderate values of the
other 2D flows, the basic flow becomes linearly unstable and&Reynolds number. These authors link the presence of these
develops finite-amplitude two-dimensional wayd$ which  solutions with the vicinity of a subcritical Hopf bifurcation.
in turn become unstable and lead to more complicated moFhe connection is justified by the works [d0] and[11], in
tions. In[5], the author established the hypothesis that thevhich structurally stable pulse solutions of the corresponding
transition from the laminar state to the turbulent state is deeomplex Ginsburg-Landau equation including a quintic non-
pendent on the existence of intermediate vortical states, arthearity were obtained. However] 0] showed that the nec-
that the transition to turbulence is the three-dimensional inessary condition for the existence of this type of solution is
stability of these states. These vortical states could be eithenore restrictive than the condition for the existence of a
two-dimensional traveling waves, quasiperiodic solutions, osubcritical Hopf bifurcation. In additior{2] pointed out the
three-dimensional waves. The more information about thgossibility of obtaining different configurations depending
existence of 2D attractors we can obtain, the better threesn the initial conditions used in his time-dependent simula-
dimensional transitions can be established. Bearing this itions.
mind, our goal is to supply more information about the 2D  This paper is devoted to analyzing the two-dimensional
scenario, analyzing the successive bifurcations that may leagtability of the 2D uniform wave trains in plane Poiseuille
to different 2D flows obtained for moderated Reynolds num-flow to both superharmonic and subharmonic bifurcations
bers. when a constant flux is imposed as a longitudinal boundary
In plane Poiseuille flow, neither the critical Reynolds condition. By using the second approach quoted above, we
number for the instability of the basic flow nor the critical analyze superharmonic bifurcations, extending the calcula-
Reynolds number for the existence of the two-dimensionations of [3] for any value ofa. With a technique similar to
waves coincides with the experimentally observed critica[12] used in Rayleigh-Beard convection, we analyze sub-
Reynolds number when finite-amplitude disturbances aréarmonic bifurcations in boxes that contdih=4 and M
considered. Then, the two-dimensional wave trains which=8 basic wavelengths of any basic periodicity. We also
bifurcate subcritically from the basic flow are only the first present a series of nonperiodic solutions obtained from time-
step of the transition. The stability of the uniform wave trainsdependent numerical simulations to show that the wave
have been studied by two different approaches. One is pepackets obtained bf2] and[7] come from a subharmonic
formed by time-dependent numerical simulations of the disbifurcation of the uniform wave trains. This instability is also
turbances(see Refs.[1,2,6,71 among others The other, responsible for the coexistence of different configurations for
based on the fact that traveling waves are steady solutions he same periodic channel. Another important point we wish
a moving frame of reference, uses the customary stabilitjo emphasize is that, according to our stability analysis, a
analysis(see Refs[8,3] for the 2D case an{®] for the 3D  stable structure of uniform wave trains can exist, even in
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long boxes, for some values of the parameters: Reynolds o,

number and basic wave number. oy =0aty=*h,n=0, (2.39
The paper is organized as follows. In Sec. Il we derive the

equations and boundary conditions, explaining the two ordi- ¥, =0aty=+h, n>0. (2.3

nary parametrizations used in this problem, to make refer-

ences to the results of other authors more understandable. &nce we will solve Eq(2.2) for every Fourier mode, we still
this section we also present the method used to analyze boffeed to specify two additional boundary conditions .
superharmonic and subharmonic instabilities and nonperias W is arbitrary to within a constant, we sit,(—1)=0

odic solutions. The results are given in Sec. Ill and the papesnd one boundary condition is still undetermined. This fact is

concludes with a discussion in Sec. IV. associated with not having yet chosen the valu® gf
Our choice is to fix the average flu®', and setUyq
Il. EQUATIONS AND NUMERICAL METHOD =3Q’'/4h. Then, the other boundary condition far, will

Plane Poiseuille flow is established between two horizonpe Wo(+1)=0. The Reynolds number is related with the

tal plates and is driven by a streamwise pressure gradien"il.Verage fwQ’ by Rey=3Q'/4v, the dimensionless flug

We have chosen horizontal plates placegat-h and thex will always beQ= 5, and t_he dimensiqnlgss uniform average
coordinate in the direction of this gradient pressure gradierR, for this parametrization of the problem

The two-dimensional, incompressible, and viscous flow'
will be governed by the Navier-Stokes equations 2 1

PQ(t)Z—@ 1—Z[wgyy(l,t)—quyy(—l,t)] . (29

where indexQ means that all quantities refer to a constant
flux parametrization.

Other authors have used as a different parametrization of
the problem the fixing of a constant average pressure gradi-
ent P’, and setting the valudJ,, as Ug,=— h?P’/2v.

SThen, the Reynolds number is related B as Rg=
— h3P’/2,2, the dimensionless average pressure gradient is
b= 2/Re,, and the dimensionless flu,, is

Ju
E+(u~V)u=—V7-r+ vVZ2u, (2.1a

V.-u=0, (2.1b

whereu=(u,v) and 7 is the pressure field over density.
No-slip boundary conditions at the horizontal plates implie
u(x,*=h,t)=0. If the pressure gradient has a unifoxnav-
erageP’, these equations and boundary conditions admit a
exact solution with a parabolic velocity profile,=Uq(1
— y?/h?,0), known as the basic laminar solution, and where

4
Uy is related toP’ in the following way:Uy=—h?P’/2y. Qp(t)= §+[1P8(1,t)—\1f8(—1,t)], (2.5
For this solution the flux through the channel @’

:4h U0/3

where the index means that all quantities refer to a constant

We introduce a stream functioft’ (x,y,t), ’related tothe  4yerage pressure gradient parametrization.
two components ,O,f the velocity field by=", v=—V,, This parametrization is the usual one when a formulation
and we expand'’ in the following way in primitive variables (,p) is used[6,13], or in other for-
3 N mulations whenever the-momentum equation for the zero
, i Fourier mode of thex component of the velocityas inde-
! = -+ Inax o : . .
P(xy.)=Uo 3h2) _EN Wiy, e, pendent variableis a governing equatiof®]. However, if a

stream function formulation for the 2D case is used with this
with the value ofJ, unspecified and being the wave num-  parametrization, as discussed in detai[3), the additional
ber associated with the lengthof the periodic channel. The boundary condition for the dimensionless stream function

reality of W' implies W is obtained from thex average of the Navier-Stokes
~ equation in thex direction and integrating over the channel
T (y, )= (y,1), width. This boundary condition is

where the tilde denotes complex conjugate. Scaling lengths
by the channel half widtt, velocities byU,, and eliminat-

ing the prime to denote dimensionless quantities, E2j143
and(2.1b are equivalent to the stream function formulation

A . A .
T(Jr ’t)_T(_ b

1
=— (VB (L) —WB,(—1D]. (2.6

2 Re,
avew 5 e 1,
at T VALY Wy_ﬁgv v, (22 Notice that the left hand side of this equation coincides with
dQp(t)/ dt.
where Re is the Reynolds number For the basic laminar flow Re-Re,, and its stability to
infinitesimal 2D disturbances of the formb(y,x,t)
hU, =d(y)e'XeM gives rise to the marginal stability curve

Re=— R[N (Re,a)]=0, obtained by minimizing the Reynolds
number for everya (Here R indicates the real part This

The modal no-slip boundary conditions are curve, labeledR,, is represented in Fig. 1. This bifurcation
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15000 =0 As far as the numerical method is concerned, we compute
- the steady traveling waves by assuming time independent
coefficientsa,,; in the expansion o' (x,y,t):
12000 N
Ry Vo x,y, =P+ > > an;g;(y)ene-en,
T / n=-N |=0
E 9000 / (2.8
=
=]
3z whereg;(y) is a function satisfying the boundary conditions,
S composed of a superposition of Tchebyshev polynomials.
g 6000 - : . : . M
> , g;(y) is symmetric forj even and antisymmetric fgrodd.
&, , o~ .
. , Letting x=x—ct, we solve the steady equation
30007 e 2 2 1 o4
(Vy—c) VU= Vew, — @V v=0,
0 ' ' ' obtained from Eq(2.2), by a Galerkin technique ir and a

0.8

1.2
wave number

1.6

2.0

collocation method iry. For given values of Re and, the

algebraic equations for the coefficierdty; are solved by a

FIG. 1. Critical Reynolds number versus the wave numbtaer ~ Newton-Raphson iteration method. Since the phase of the
different types of bifurcations. The dash-dotted lifiebeled R,) traveling waves is arbitrary, we fix it by prescribing
corresponds to the bifurcation of the parabolic profile, the dashed
line (labeledRy) corresponds to the minimum Reynolds number for
which periodic traveling waves appear, and the solid (iabeled
d=0) corresponds to superharmonic bifurcations of the waves be-
longing to theupper branch

J
1
f > J(ay))g;(y)=0,
—-1j=0

whereJ(a, ;) denotes the imaginary part af ;. The corre-

is in general subcritical, and the new solution consists in gponding equation serves for the determination of the phase

family of periodic traveling shear waves. If one defines avelocity ¢. To qbtain these type of solutions a truncati‘cl_n
'y ot periodi velng wav I =4 andJ=40 is performed in the developments. Consider-

characteristic amplitude of these waves—the disturbance en- N>4 andJ=40 anifi h i th
ergy, for example—and fixea varying the Reynolds num- Ing N>4 and J>40 causes no significant changes in the

ber near the bifurcation point, tHewer branchfor decreas- disturbance energy and phase velocity of a given solution.

ing Reynolds number is obtained. When it reaches a value '° s(;u_dy ;he stability of the :)/Vvo-dime_znsional (\;vgves we
Rn(a), the amplitude turns around towards higher Reynold roceed in the same way ész]‘. e are interested in ana-
numbers, increasing its value and forming thpper branch yzing the case where the periodic box |s'long enough to
As is known[14], thelower branchis unstable to 2D super- CcontainM basic wavelengths, a= 2/a being the basic

harmonic bifurcations. For these steady wave trains, the ReyYave number. Since the waves are steady in a moving frame

nolds numbers corresponding to two different parametriza9f referencg, we can apply th.e usual stability anaIyS|s..
The basic solution has peri@l and hence the associated

tions of the problem are related by the expression . .
P y P linear operator also has peri@d We use Floquet theory to
split the set of perturbations to be considered as

1
Re,=Rey| 1— =[P (1)— ¥ (—1 ) 2. 5 .
ep % 4[ O,yy() O,yy( )] ( 7) {\If:(n(x,y,t):\Pm(xyy)eldmaxe)\mt}mzo,...,M—l!

2.9
and represent only different scaling of the problgdf In (293
this case, sinc@§ andW§ are time independent, if one fixes where
the average fluxQ, Pq is time independent, and so @, if 5 5
one fixes the average pressure gradiesee Eqs(2.4) and Yon(x,y)=V(x+a,y) (2.9

(2.5)]. For this last parametrization, sin€g, is time inde-

pendent ¥, (1)=Wg, . (—1). andd,,=m/M. ThusW* (x,y,t) admits the following devel-
There exist other two-dimensional solutions, described irppment

[13] and obtained for wave numbera~0.3, (long-

wavelength secondary floyy$or which Q, andPg are both ~ N _ 5

time independent, but are not traveling waves. This fact can ~ Wx(x,y,t)= > X, byg;(y)e "+ dmaxghnt,

only be explained if n=-Nj=0 210

The cased=0 corresponds to superharmonic disturbances,
and has been considered [8] for «=1.1. In this case, the

is satisfied. For these solutions this value is zero, which caperturbation has the same wavelength as the two-
be deduced from Figs. 6 and 7 of that paper. dimensional waves, and the solution that bifurcates still con-

\Ifg,yy(lyt) = \Pg,yy( - 11)
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tains M basic wavelengths. In this stability analysis, we al-furcation of the basic flow is known to be symmetricyin
ways obtain a zero eigenvalue corresponding to the triviathen in the expansio(2.8) of the bifurcating traveling waves
phase shift solutiof8]. in the lower branch all coefficientsa,; with n+j even van-
In the cased# 0, subharmonic disturbances are consid-ish. So the nonlinear mean flow
ered, the basic periodicitg is now broken, and a new solu-
tion with a larger basic period emerges. As discussedah ag;(y)
the eigenfunctions for the problem witl,_,, can be ob- U(y)=(1—y2)+2 0j 3.7
) . : . : - j=0 y
tained by conjugating those witl,,; in addition, \yy_

=Am. Then it suffices to consider perturbations wily, g a symmetric function of (ag; =0, if j=2). Thus, for this

€(0,1/2]. If a bifurcation of a shear traveling wave with tyne of solution, Wy, has the following symmetry:
phase velocityc of this type exist§ R(\)=0], new subhar-

monic wave numbers a,=(n+d,)a and «a,=(n

+dy_m)a appear. The corresponding frequencies are, re- v(xy,t)=—-w¥
spectively, w,=(n+d,)ac+ w* and o,=(n+dy_my) ac

—o*, wherew*=—7J(\y). Then, for the bifurcated solu- Traveling wave solutions belonging to theper branchalso
tion near a pair of frequencies and wave numbeig,( have this symmetry, and a symmetry breaking, if present,
=nac,ap,=na) of the basic solution, two pairsw,,@,)  can be detected with our stability analysis. Because of this
and (w,_,,a,_,) appear, which allows us to estimate a symmetry, disturbances of the forf2.10 separate into two

J

a
X+ E,—y,t). (3.2

group velocity as classesodd disturbances with vanishing coefficierits; for
evenn+j andevendisturbances with vanishing coefficients
w* by; for oddn+j. This analysis looks very similar to the case
Cg~Ct dpa” (211 of symmetric thermal Rossby waves in the small-gap ap-

proximation studied by[16], since these waves have the

Notice that the linear subharmonic stability analysis corre-S2mMe symmetry as the traveling waves we analyze.

sponding to a valud,, for a box that contain® basic wave-
lengths coincides with that corresponding to a valyg, for A. Superharmonic bifurcations
a box that containd//k ones, provided thamn/k and M/k In this section we present the results corresponding to
are integer. We call thequivalentsubharmonic analysis gynerharmonic bifurcations. This analysis has two meanings:
dm, M, that which corresponds to the minimum pairs of first it is the complete stability analysis corresponding to a
integers valuesn/k and M/k. For example, a subharmonic periodic box whose length coincides with 2/a (M=1):
stability d for a box that contain$1 =6 basic wavelengths gecond, for a periodic box that contaihd basic wave-
has theequivalentsubharmonic analysidmx =dy, M*=2.  jengths, this is the case in which perturbations of the same
To obtain quantitative convergence in the superharmoniggsic wave number as the traveling waves are considered.
and subharmonic stability, it is necessary to use a less sevefgis constitutes only a part of the whole stability analysis,
truncation than that allowed in the case of obtaining travelingyng subharmonic perturbations,{, with m+0) also need to
waves. This subject will be discussed in detail in subsequere considered in order to complete it.
sections. o . In Fig. 1 we plot the Reynolds number for which a super-
The integration in time of the problef2.2) with the cor-  armonic bifurcation appears. All traveling waves belonging
responding boundary conditions in the case of fixing the avyg the upper branchwith Reynolds number fronRy to the
erage flux is carried out by using a semimplicit second orde{,5 1 es in the curve labeled =0 are stable to this type of
stiffly stable scheme, Fourier-Galerkin ynand Chebyshev neryrhation. In contrast to the case of thermal Rossby
collocation in they direction . Because this part of the work waves, a bifurcation witli(\ ;) =0 (mean flow instability
is devoted to showing how subharmonic instabilities act o 55 ot been found to be dominant, and then a quasiperiodic

Tollmien-Schlichting waves, the number of Fourier mOdeStime-dependent regime appears. So for any value,dhe
used varies depending on the numbérthat are extended i rcation is a Hopf bifurcation. The corresponding fre-

periodically. The Fourier nonlinear term is calculated PSeUquencies are plotted in Fig. 2, where we include the funda-
dospectrally, increasing the number of modéhl) to obtain  mental frequency of the traveling waves at the bifurcation
a de-aliased evaluation. A minimum of 64 Chebyshev modegoint. In this figure we also indicate the parity of the domi-

is used in vertical direction. nant disturbances. Dominaidd disturbances would give
rise to a bifurcated solution with the same symmegy) as
Il RESULTS that of the traveling waves. In Fig. 3 we plot the mean flow

of the traveling wavedthe parabolic profile is not includgd
In two parts of this section we present results correspondand that corresponding to the dominant disturbaneal and
ing to superharmonic and subharmonic bifurcations. Travelimaginary parts of thg derivative of the zero Fourier moge
ing wave solutions then need to be computed to analyze theat bifurcation points belonging to different zones where a
stability. As a test of our code, we have reproduced the valjump of frequencies has appeared.

uesRy ,, scaling our valueRy o by using Eq.(2.7), and Superharmonic bifurcations have been obtained[&ly
phase speeds at these points, for different wave numbers and[3] for «=1.1 by using the same method employed here,
obtained by[15] and[3]. but with less resolution in the streamwise direction. Our re-

As discussed iff15], the more unstable mode at the bi- sults agree with those obtained by them for a Fourier trun-
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1.0 0.06
odd 0.04 - a=12
0.02 —
0.8 1 0.00 —|
-0.02 —
Iy
g -0.04 ] T ]
s 064 40 05 00 05 10
& y
0.15
04 u 0.10 - a =145
even 0.05
0.00 —
0.2 T T T T -0.05 —
0.8 1.0 1.2 14 1.6 1.8
wave number -0.10 ] | | T T T

) . . . -10 05 00 05 10 -10 05 00 05 10
FIG. 2. Frequencies of the Hopf bifurcation corresponding to

superharmonic bifurcation&olid line) plotted in Fig. 1 and that
corresponding to the traveling waves in the bifurcation p@iotted
line) versus the wave number. We have included results obtained  0.15
by [2] (solid triangle$ by using a time-dependent code. Lab&len

and odd mean the type of disturbances that are responsible for the
bifurcation; see text.

0.10 - a =1.55

0.05

cationN=1 andN=2. However, forN=3 andN=4, we 0.00 —

obtain a different period than that plotted in Table 3.
We believe there may be a misprint in that table, since the
period forN=3 does not agree with the imaginary part of -0.10 T I T T T T
the eigenvaluéfrequency of the Hopf bifurcatigrplotted in -10 05 00 05 10 -10 -05 00 05 10
Fig. 2 of the same paper. We have calculated the period y y
associated with this frequency and have obtained the sam
result. (a) ®)

Although for analyzing superharmonic stabilit¥] indi- . :
cates that the results become roughly stabilized for more thaﬁ]e'?éer{o?t’.igfgll?gz;na:?jv(vb;) tég?(tsrg\i/del;irr']ge)ﬁ?]\frrsag?r:?;ggt?erg'
N=7 andJ= 33, we present in Table | the results for differ-aillj

-0.05 —

. how h h Its fi Th .. _line) part of the mean flow corresponding to the most unstable
ent truncations to show how the results fluctuate. The criticayjgyrhance for different points in the marginal curve corresponding

: - : —7
values are obtained by imposing thaB(\)|<10"". The {5 syperharmonic bifurcations. The valuescofit these points are
values plotted in Figs. 1 and 2 have been obtained by using f 1 45 and 1.55.

truncationN= 14 andJ=60, which guarantees an error of
less than 1% in the values of the Reynolds number and in thg hich maintaining the periodicit¥a, breaks the basic pe-
period for the Hopf bifurcation. o _riodicity a. Hereafter we will denote by’ the wave number
Bifurcated solutions from superharmonic bifurcations ;¢ qciated with the periodic channel, 86=a/M. In this
have been analyzed ] and[2] (short boxesby using a 546 " gisturbances of the forf.10 also separate inteven
time-dependent code, for values @f1. Since the bifurca- 5,4 odd disturbances. However, the bifurcated solution
tion seems to be supercritical, from this author’s results ong,,,id manifest a symmetry only in the case where the
can deduce the Reynolds number for which this bifurcation, iy ajentsubharmonic linear stability analysis was for an
sets in. Furthermore, the period of the zero Fourier mode 4 yajue ofi* andevendisturbances fom* odd (vanish-
gives information about the frequency of the Hopf bifurca-ing by, for n+j odd) or odd disturbances fom* even(van-
tion. We have compared our results with those of this a”thofshingjb for n+j even. Then, the bifurcated solution
T . nj . , ,
and, as can be seen in Fig. 2, they agree quite well. characterized by a symmetric mean flow, would have the

following symmetry:

B. Subharmonic bifurcations
*

In this section we present the results corresponding to X+ —y t).
subharmonic bifurcationsd 0). We suppose that the peri- 2
odic box containdM structures of periodicitya= 27/« and

we have analyzed their stability from any perturbationHere, we have analyzed mainly the catés 4 andM =8.

Y(x,yt)=—-¥ (3.3
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TABLE |. Tabulation of the Reynolds number and peribat 1.2
the superharmonic bifurcation far=1.1 for different values oN
andJ. pabsbsael
0.8 —| A L aAAAas adsaasns

N J Reynolds T

- LR R
4 40 5803.2 11.60 04 - o °
4 70 5812.6 11.62
8 40 5091.0 11.82 g
8 50 5056.0 11.84 < 00—
8 60 5054.0 11.84 >
12 40 5778.9 11.24 04
12 50 5189.0 11.80 ’
12 60 5189.1 11.82 O Phase velocity (left)

n  Group velocity (left)

14 40 5840.3 11.38 0.8 — @ Phase velocity (right) N
14 50 5386.1 11.62 A Group veloity (right) P
14 60 5221.2 11.80 o
16 40 5970.8 11.29 12 | | \ |
16 50 5424.9 11.62 0 3000 6000 9000 12000 15000

Reynolds number

. . . . FIG. 5. Phase speed and estimated group velocity versus Rey-
As we discussed in Sec. I, we have considered d'Sturbanc%%lds number at thz subharmonic bifur(?atioﬁ pointstydisplayed ir¥
of the form(2.10 for valuesd,,=1/M, ... 3. Fig. 4 for a box that containlsl =4 wavelengths. For a given Rey-

In Fig. 4 we have plotted with dotted lines the values ofnolds number, circles and triangles correspond to the phase speed
the Reynolds number as a function of the basic wave numbemd estimated group velocity at the bifurcation points for lower
a that limit the zone where a periodic traveling wave of wave number(left side), and solid circles and solid triangles to
periodicity a contained in a box of periodicityatis linearly  those for higher wave numbéright side.
stable to this type of perturbation. For this analysis, it is
necessary to consider two valuesdyf, d,=2 andd,=2.  valued;, wherever this instability dominates a new solution
As can be seen in the figure, the stability limits of a configu-with periodicity 4a emerges. As we explained in a previous
ration of four Tollmien-Schlichting waves are due to subhar-section, as a result of this bifurcation, which is always oscil-
monic perturbations, except in a region neat1.4. Since latory, new subharmonic wave numbers and frequencies ap-
the subharmonic stability zone is always associated with thpear and we can estimate a group velocity by the expression

(2.13). In Fig. 5 we have plotted for different values of the

15000 Reynolds number the estimated group velocity and phase
d=0 velocity of the traveling waves at the two pointeft and
right) which limit the stability zone. Circlegleft) and solid
12500 circles (right) denote the phase velocity and trianglésft)
and solid trianglegright) denote the estimated group veloc-
ity.
E 10000 In Fig. 4 we denote by an asterisk one paiRe~5000,
= a=1) in which [2] obtained a stable train of wave packets.
g This author used a time-dependent code and, starting from a
3 7500 established nonlinear wave train a1, the solution was
§ extended periodically and perturbed slightly. The box is long
2 50004 enough to contain at least four wavelengths € 0.25). No-

tice that this point remains outside of the zone whiste
; =4 wave trains are stable, which confirms our findings. In
2500 - : addition, Jimenez says that the phase speed of the individual
waves €~ 0.35) is similar to that of the uniform wave trains,
but the propagation speed of the groups is fastey (
0 1 | ~0.75-0.8). Similar results were obtained Pg| for the
0.5 10 L5 20 caseM =10, «=1, and Re=2400, and the wave packets
wave number propagated at a constant velooity~0.7, while the constitu-
FIG. 4. Reynolds number versus basic wave number corre€Nt waves progressed with about half the wave packet
sponding to subharmonic bifurcation points of periodic travelingVelOCity. _ _
waves in a box that contaid =4 basic wavelength&lotted ling If we look for the estimated value of the group velocity
and M=8 wavelengths(dotted-solid ling. The curve labeledd (5 at Reynolds number Re5000, on the left side of the
=0 corresponds to subharmonic bifurcation, and the curve labele@Urve that limits the stability zonea(.=1.35), we obtain
Ry corresponds tmosepoints. We have denoted by an asterisk aCq~0.95 and a phase speegl,=0.48, which are close to
point where[2] obtained a stable train of wave packets. Jimenez’'s results. We can appreciate the effect of this insta-
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bility if we approximate the bifurcating solution at this point for M =3 (not plotted in this paperand we have obtained,
by a superposition of the basic wave train and the lineafor Re=2950, «/=1.24/3=0.41, c=0.410966, and»* =
eigenmode. In Fig. @) we display a shaded plot of the vor- —0.187. Although the phase velocity and the associated fre-
ticity o=—AW¥ aty=—1 as a function ok e (0,27/a;) at  quency of the zero Fourier mode at the bifurcation point
a time sequence from=0 tot=2(2m/ why,), Wherewhyis  (©0~0.56) are higher, in the next section we will show that
the fundamental frequency of the uniform wave tram ( these values decrease wheh does.

=4) at the bifurcation point Re5000, «a.=1.35. Notice

how the propagation of the groups is approximately twice the C. Nonperiodic solutions

phase speed of the individual waves. In the following section

; . . In this section we wish to show how a stable wave train of
we will show how this type of plot reproduces the behavior

Tollmien-Schlichting waves evolves when the size of the

of the solution near the b|furcat|.on point. To appreciate theperiodic channel varies, allowing a subharmonic instability
effect of a negative group velocitghe groups travel in the "o onit. In particular, we have considered a fixed Rey-

opposite direction to the individual wavese also display i nolds number Re 4250, and starting from a periodic chan-
Fig. 6b) a similar plot for the bifurcation point Re pg| that contains a structure formed by=4 uniform wave
=9500, a.=1.36, anda;=0.34. The estimated group Ve- trains (' =0.35=1.4/4; see Fig. } we have obtained dif-
locity and phase speed of the traveling wave age-  ferent perturbed solutions; those which wheh reaches a
—1.03, andcr=0.51, respectively. value of 0.25 look similar to the wave packet obtained by

We have also checked if for a channel of periodicity  for this periodicity. This sequence is displayed in Fig. 8,
=0.25 and for some of the Reynolds numbers analyzed byhere the vorticityw(x,—1t) (lower wall) is plotted at a
[2], stable uniform wave trains could appear. The resultsequence of time frort=0 tot= 100 for different values of
from our subharmonic stability analysis show that at least for’. Notice that the propagation speed of the groups is faster
Re=4000 and Re&5000, a structure containingdd=6  than the phase speed of the individual waves, in agreement
Tollmien-Schlichting wavega=1.5 would remain linearly ~ with our results in the previous section: For this value of
stable. Reynolds number, the subharmonic instability appears for

In Fig. 4 we also plot with a dotted-solid line the values of a.=1.35, the phase speed is 0.48, and the estimated group
the Reynolds number that limit the stability zone for a peri-velocity is 0.93. As the value ok’ decreases, so does the
odic box containingVl =8 uniform wave trains, also consid- group velocity and the phase speed, which would be in
ered by[2], and in Fig. 7(similar to Fig. 9 the correspond- agreement with the results obtained [8] at o’ =0.25
ing phase velocity and estimate group velocity at the~0.35, c;~0.75-0.8). The same occurs with the fre-
bifurcation points. The marginal curver, Re for the case quency of the zero Fourier mode: far=1.3: this frequency
M=8 is close to the marginal curve for the caBe=4, is wy~0.58 (wg~4w™*, since the dominant subharmonic bi-
except in the zone where the superharmonic instability domiturcation is ford=%), and fora=1, this value iswy=0.38.
nates, and also in the neighborhood of the minimum of théThis behavior could explain the difference between the re-
nosecurve, where thévl =8 curve narrows notably. In ad- sults obtained by13] and our subharmonic instability re-
dition, notice that fotM =8 there is a small gap between the sults, quoted in the previous section for the chbe 3.
nosecurve and the marginal curve for the subharmonic in- Another aspect worthy of note is the coexistence of solu-
stability. On the left side of the marginal curve, for Reynoldstions for a given periodicity. These solutions come from per-
numbers Re-10 000, the marginal curve coincides with the turbations of different numbeM of wave trains. For ex-
curve forM=4. This is because the dominant subharmonicample, for Re=4250, in a periodic channel @f’ =0.25 one
instability is for d,= %, which is the same analysis @  could find the solution that comes froki=4 wave trains of
=3 for the M=4 case. Save for this zone, the dominantperiodicity =1 [wave packet in Fig. @))], which is far
subharmonic analysis is faf; = 3. from its bifurcation point; the solution displayed in Figa9

There exist other 2D solutions that might come from athat comes fromM =5 wave trains of periodicityx=1.25,
subharmonic bifurcation of the traveling waves. These aravhich is near to its bifurcation pointe=1.38, and the
the solutions quoted in the previous section, obtainefllBy  stableM =6 wave trains of periodicityg=1.5[see Fig.%)].
for a’~0.3. We suppose that they come from a traveling We have also analyzed how these different configurations
wave in a box that contains! =3 basic wavelengths. We are interconnected. To make the discussion more understand-
base this supposition on the results shown in Table[3%  able, we have used the length of the periodic boxas a
(Ren=2723, a’'=0.3387). Here, the value of the phase ve-parameter, and we have drawn a diagram in Fig. 10 that
locity corresponding to the odd part of Fourier maue 3  outlines the connection: where solid lines represent stéble
(this is the mode of maxim enerpygf thex component of the uniform wave trains and dashed lines represent nonperiodic
velocity is the sameq=0.315) as the even part of Fourier solutions that bifurcate from them. The subharmonic stability
moden=6. This is the parity of modes=3 andn=6 inan  analysis tells us that, for Re4250, M =4 uniform wave
expansion of anM =3 traveling wave. The value of the trains are stable in periodic boxes of lengths betwegp;,
phase velocity and that of the frequensy=0.26 of the zero =15.6 andL4p,,=18.6, M=5 in boxes between_ sy,
odd Fourier mode ¢, should beM=3 times w* at the =19.6 and Lgn.—=22.7, and M=6 in boxes between
bifurcation poinj could agree with the results we have ob- Lsnin=23.5 andLsmax=27.0. Thus, when starting from a
tained from a subharmonic instability for the cade=3. We  stableM =4 uniform wave train, we increase continuously
have checked this instability for one of the smaller values othe length of the box, and we obtainlat 25.13 the solution
the Reynolds number on the left side of the marginal curvalisplayed in Fig. &). If we go on increasind., then=4
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Fourier mode of this solution decreases, while the5 in-
creases, until at a certain vallg s, this solution coincides
with that coming from a subharmonic bifurcation of &h

=5 uniform wave train. Then, if we decrease the valué of
(@) X at L=25.13 we obtain the solution displayed in Figa®
which for L =Lg . becomes aM =5 uniform wave train.

If starting again from the solution obtained lag s we in-
creasel, we obtain at some valuies g a solution that coin-
cides with that coming from a subharmonic instability of
M =6 uniform wave trains. Then, if we decreakeonce
more untilL=25.13, we obtain the solution plotted in Fig.
9(b). Different behavior is obtained when, starting from a
stableM uniform wave train solution, the length of the box is
decreased slightly, allowing the subharmonic instability to
act on it. In this case, although the subharmonic instability
looks as though it is going to act, after a transient, the solu-
tion jumps to the solution that comes from the subharmonic
instability of M —1 uniform wave trains wheh increases,
which is a sign of a subcritical bifurcation. To show this
latter effect, we plot in Fig. 11 the time series of modes
=4 andn=5 for a value ofL=19.4, when we use as initial
condition the stablevl =5 uniform wave train solution ob-
tained forL=19.63.

IV. CONCLUSIONS

In this paper we have analyzed the competition between
superharmonic and subharmonic instabilities of 2D shear
traveling waves, contained in a periodic box of a given pe-
riodicity, in the problem of 2D Poiseuille flow. We have
considered boxes long enough to cont®l=1, M=4, and
M =8 basic wavelengtha= 27/« for any value ofa. The

(b) X caseM =1 in a periodic box of length.=a can also be

FIG. 6. Shaded space-time plot of the vorticityx, —1t) ofan  understood as the stability analysis, in a periodic box that
approximated bifurcated solutiofsee text as a function ofx contains any valueM’ of basic of wavelengthsaa (L’
€(0,2m/ ag) at a time sequence frot=0 tot=2(27/wry). The  =M'a), with respect to perturbations that maintain the basic
values ofwr,, and a are the fundamental frequency and wave periodicity a (superharmonic stability analy$jsThis case
number of theM =4 traveling waves at the bifurcation poirg) has been considered by other authdrs,8,3, for some val-
Re=5000 (left), (b) Re=9500 (left). ues ofa. We have extended their results to any valuercdis
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FIG. 8. Shaded space-time plot of vorticig(x,—1,t) (lower wall) as a function ok e (0,27/a") at a time sequence from=0 to t
=100 for different values o&'. (a) «'=0.35,(b) @’=0.3,(c) «'=0.275, andd) «’'=0.25. The Reynolds number is Ré250.
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the time dependent simulations as a function of the length of the
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well as analyzing the symmetry breaking that this bifurcation
could give rise to.

The main objective of this paper was to analyze the se-
quence of bifurcations that, from the basic state, led to stable
wave packets, obtained in long boxes [} and[7], which
extended to very low Reynolds numbers. The manner in
which they were obtained in some cases, starting from a
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30,
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(b) X -0.08
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FIG. 9. Shaded space-time plot of vorticigy(x,—1t) (lower (b) t

wall) as a function ofxe (0,27/a') at a time sequence from

=0 tot=100 for different configurations obtained withl =0.25. FIG. 11. Time evolution of two different Fourier modeda)
(@) This configuration comes from a subharmonic instabilitybf  n=4 and(b) n=5 in a periodic box ol.=19.4, starting from the
=5 Tollmien-Schlichting wavega=1.25), and (b) stable M =6 M =5 uniform wave train obtained fob =19.63. The Reynolds
uniform wave train(a=1.5). The Reynolds number is Rel250. number is Re=4250.
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nonlinear wave train extended periodically and perturbedions, when these trains undergo a subharmonic bifurcation
slightly, suggested that they might arise from a subharmoniby decreasing the wave number, takes place because of the
bifurcation of the periodic wave train. Since this type of vecinity of the subcritical Hopf bifurcation.

bifurcation is oscillatory, it has the minimum ingredients to  Another question we wished to answer was if stable con-
lead to a wave packet. By employing a method widely usedigurations of uniform wave trains could exist for big boxes.

in thermal convectiorf12] to analyze this type of bifurca- In the results off2] and [7], these authors used a Fourier
tion, our results show the existence of a stable zone for thepectral decomposition in thedirection, and they stated that
uniform wave trains, outside of which the wave packets werdghey consider four, eight, and ten Tollmien-Schlichting
found. For small Reynolds numbers, the estimated group vewavelengths in boxes of length=87, 16w, and 20, re-
locity for both casedVi=4 andM =8 is near to the value spectively. This means that they were working with subhar-
obtained in the referred works. Although the values of themonic wave numbers af=1, which is clearly outside of the
basic wave numbet used by these authors are far from thelinearly stable zone. This imposition has been critical for
value on the curve that limits the stability zone, by using aobtaining the wave packets. Our results show that, for mod-
time-dependent code we have shown, that starting from therate Reynolds numbers, stable Tollmien-Schlichting waves
bifurcated solution andecreasinghe wave number, the so- could be found, provided that their basic wave number was
lution evolves continuously to the wave packets. This subw~1.5. This means that the numbbt of stable uniform
harmonic bifurcation behaves in the Poiseuille problem dif-wave trains must be related to the lengttof the periodic
ferently from the way it does if the Hopf bifurcation of the channel by the expression~M 2#/1.5. However, other
basic state is supercritical. In this case, the subharmonic beonfigurations, depending strongly on the initial conditions,
furcation can be explained by considering the interaction beean appear in the same channel. These other configurations
tween different processing modgs7]. If when fixing the  can be obtained from subharmonic instabilities of uniform
control parameter one moves the wave numdethe sub- wave trains contained in channels of different periodicity.
harmonic instability, which limits the range of realizable
wave numbers, usually has the tendency to shift the basic
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