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Tangent double Hopf bifurcation in a differentially rotating cylinder flow
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A tangent double Hopf bifurcation has been found in a rotating cylinder flow driven by the counter-rotation
of the top endwall. The codimension-3 tangent double Hopf point has been located using linear stability
analysis. The nonlinear analysis of the multiple solutions in a neighborhood of this bifurcation point is per-
formed by numerical solutions of the three-dimensional Navier-Stokes equations. At the tangent double Hopf
point, two rotating waves and an unstable modulated rotating wave bifurcate simultaneously. A center
manifold/normal form analysis is also performed, which is in very good agreement with both the linear and
nonlinear computations. By a detailed exploration of the nonlinear flow, we have unraveled the complex
dynamics generated by the mode competition, which is organized by the codimension-3 tangent double Hopf
bifurcation.
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I. INTRODUCTION

Systems in cylindrical geometries with internal shear la
ers have been widely studied from a number of perspecti
One of the motivations for these studies is that the instab
ties of the shear layers in these laboratory flows mimic g
physical hydrodynamical behavior, such as planetary Ros
waves@1–4#. A feature that is ubiquitous in these systems
the competition between azimuthal modes with wave nu
bers m and m11. A number of theoretical studies hav
qualitatively accounted for this mode competition in terms
the dynamics associated with double Hopf bifurcatio
@5–7#.

A simple cylindrical system that produces an intern
shear layer consists of flow in a cylinder, rotating with ang
lar velocity V, that is driven by the differential rotation o
the top lid with angular velocityV t . The simplicity of this
geometry allows for detailed laboratory experiments and
merical simulations. The basic axisymmetric state and
instability to three-dimensional modes, as well as a variety
secondary instabilities leading to multiple states, hystere
and chaotic dynamics have been studied in Refs.@8–10#. In
particular, over extensive regions of parameter space,
rotating waves of azimuthal wave numbersm54 and m
55 coexist and display a wealth of bifurcations/interactio
that were explored in detail for a fixed height-to-radius ra
L5H/R50.5 and a fixed angular velocityV.

Depending on the values ofL and the ratio of angula
frequenciesS52V/V t , the first bifurcation as the Reynold
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number Re5VR2/n (n is the kinematic viscosity! is in-
creased can be to a rotating wave with azimuthal wave n
ber m54 or m55. Curves of double Hopf bifurcations
where both rotating waves bifurcates simultaneously,
also be obtained. The feature we have found is that fo
specific point in the three-parameter space (L,S,Re), a col-
lision of two double Hopf points takes place, producing
degenerate double Hopf bifurcation that has not been
ported previously in the literature. The analysis of this n
codimension-3 bifurcation, which organizes the mode co
petition in the particular fluid problem under consideratio
is the object of the present study.

The paper is organized as follows. The flow geome
symmetry, governing parameters, and equations are
sented in Sec. II. In Sec. III, the normal form of the ne
bifurcation is analyzed, stressing the similarities and diff
ences with the nondegenerate codimension-2 double H
bifurcation. The numerical methods used for the linear s
bility analysis and nonlinear three-dimensional Navie
Stokes solver, used to locate the degenerate double H
bifurcation and explore the associated nonlinear dynam
are presented in Secs. IV A and IV B. The technical details
the normal form analysis are presented in Sec. IV C. T
numerical results are presented and compared with the
dictions from the center manifold/normal form theory in Se
IV. Further, the structure of the rotating waves and how
tangent double Hopf bifurcation organizes their competit
is provided in that section. Conclusions and discussion
presented in Sec. V.

II. FLOW GEOMETRY, SYMMETRY, GOVERNING
PARAMETERS, AND EQUATIONS

The flow geometry is shown schematically in Fig. 1.
consists of a cylinder of radiusR and heightH, closed at the
©2003 The American Physical Society10-1



s-

a

rn

es

ith

n

la
lo
th
o

tio
a
n
s
s
re
dy
m

h
rig

ke
W
y

-

nd
om
ter
in
all

ion

nd
y of

kes

s
e

in
de
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bottom, rotating at rateV.0, and containing an incompres
ible fluid of kinematic viscosityn. The flow is driven by a
contact top lid that rotates in the inertial frame of reference
rate V t . We useR as the length scale and 1/V as the time
scale. There are three nondimensional parameters gove
this system,

Re5VR2/n,

L5H/R,

S52V t /V.

The domain in nondimensional cylindrical coordinat
(r ,u,z) is

D5$0<r ,1,0<u,2p,0,z,L%.

Here, we consider the retrograde driving situation w
V t,0, so thatS is positive. In this situation, for smallS
there is radial inflow in the boundary layer on the differe
tially rotating upper lid. For sufficiently largeS, this layer
separates before reaching the axis and an internal shear
forms. The shear layer separates fluid with azimuthal ve
ity of the same sense as the base of the cylinder from
with the sense of the counter-rotating top. There is als
strong meridional jetlike flow along the shear layer.

The governing equations, Navier-Stokes and conserva
of mass, together with the boundary conditions, no-slip on
solid walls and regularity on the cylinder axis, are invaria
with respect to rotations about the axis. The system posse
the symmetry group SO(2). Thebasic state for this system i
a steady axisymmetric swirling flow with nontrivial structu
in r andz, the radial and axial coordinates. A detailed stu
of the axisymmetric basic state and its stability in an axisy
metric subspace were presented in Refs.@9,10#. A typical
axisymmetric basic state is shown in the inset of Fig. 1. T
shear layer in this example separates near the upper
corner and reattaches at about mid-depth on the axis.

The equations governing the flow are the Navier-Sto
equations together with initial and boundary conditions.
denote the velocity vector and pressure, respectively, bu

FIG. 1. Schematic representation of the flow geometry. The
set illustrates typical streamlines of a steady axisymmetric flow
termined by numerical simulation.
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5(u,v,w)T andp. The Navier-Stokes equations in velocity
pressure formulation written in cylindrical coordinates are

] tu1ar52] rp1
1

ReS Du2
1

r 2
u2

2

r 2
]uv D ,

] tv1au52]up1
1

ReS Dv2
1

r 2
v1

2

r 2
]uuD , ~1!

] tw1az52]zp1
1

Re
Dw,

1

r
] r~ru !1

1

r
]uv1]zw50, ~2!

where

D5] r
21

1

r
] r1

1

r 2
]u

21]z
2

is the Laplace operator in cylindrical coordinates and

ar5u] ru1
v
r

]uu1w]zu2
v2

r
,

au5u] rv1
v
r

]uv1w]zv2
uv
r

,

az5u] rw1
v
r

]uw1w]zw. ~3!

The equations are completed with admissible initial a
boundary conditions. Computations are started either fr
an initial state of rest, or a solution at one point in parame
space is used as the initial condition for a nearby point
parameter space. The boundary conditions are no-slip on
solid walls and the essential pole conditions on the rotat
axis ~see Ref.@11# for details!.

At low Reynolds number, the basic state is steady a
axisymmetric, and can be easily computed using a variet
different methods@9–13#. The linear stability of this basic
state can be analyzed by linearizing the Navier-Sto
equations. Substitution of$u,v,w,p%5$uB ,vB ,wB ,pB%
1$up ,vp ,wp ,pp% in Eq. ~1!, where subscriptsB denote the
basic state andp the perturbations, and linearization give
the same equations~1! for the perturbations, except that th
nonlinear terms are now

ar5uB] ru1u] ruB1
vB

r
]uu1wB]zu1w]zuB2

2vvB

r
,

au5uB] rv1u] rvB1
vB

r
]uv1wB]zv1w]zvB2

uBv1uvB

r
,

az5uB] rw1u] rwB1
vB

r
]uw1]z~wBw!. ~4!

-
-
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TANGENT DOUBLE HOPF BIFURCATION IN A . . . PHYSICAL REVIEW E68, 016310 ~2003!
The numerical methods used to determine the linear stab
of the basic state to general three-dimensional perturbat
and to study the nonlinear dynamics are briefly describe
Secs. IV A and IV B.

III. BACKGROUND ON DOUBLE HOPF BIFURCATIONS

For some low-codimension bifurcations, dynamical s
tems theory provides a center manifold reduction of the h
dimensional system~e.g., Ref.@14#! and anormal form, a
low-dimensional, low-order polynomial system that captu
the dynamics of the full nonlinear system in the neighb
hood of the bifurcation~e.g., Ref.@15#!. The normal form
contains a number of parameters that unfold the bifurcat
the number of parameters being the codimension of the
furcation considered. Arbitrary perturbations of the norm
form are usually accounted for by these unfolding para
eters~see Ref.@16# for details and examples!. In this case,
arbitrary perturbations result in a topologically equivale
system preserving all the dynamics of the normal form; t
is the case for the well-known local codimension-1 bifurc
tions @17#. However, when the codimension of the system
2 or greater, persistence of the normal form is not alw
guaranteed. One may still perform a normal form analysis
the original system, truncate at some finite~low! order and
extract some of the characteristic dynamics of the origi
system. However, this formal application of the theory
sults in aformal normal formwith, in general, some dynami
cal features that do not persist upon perturbation. The do
Hopf bifurcation is a typical example where the dynamics
the formal normal form do not always persist.

The infinite-dimensional phase space of our problem
certain regions of parameter space, admits a fo
dimensional center manifold parametrized by a pair of a
plitudesr 1,2 and anglesf1,2. The normal form is given by
@17#

ṙ 15r 1@ f 1~a1,2!1p11r 1
21p12r 2

21s1r 2
4#,

ṙ 25r 2@ f 2~a1,2!1p21r 1
21p22r 2

21s2r 1
4#,

ḟ15v1 ,

ḟ25v2 ,

where the two pairs of complex conjugate eigenvalues
6 iv1,2 at the bifurcation pointa1,250; f 1,2 are functions of
the parameters of the system,a1,2. The v1,2, pi j , and si
depend on the parametersa1,2 and satisfy certain nonreso
nant and nondegeneracy conditions in the neighborhoo
the bifurcation:

m1v1Þm2v2 , ~5!

pi j Þ0, ~6!

wherem1 , m2 are the azimuthal wave numbers of the tw
bifurcated rotating waves@18#. If the functions f 1,2 satisfy
the additional nondegeneracy condition
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detS ] f 1,2

]a1,2
D U

a50

Þ0, ~7!

the two Hopf bifurcation curves given byf 1,250 intersect
transversally, and introducing the new independent par
etersm1,25 f 1,2, we arrive at the normal form for the nonde
generate double Hopf bifurcation analyzed in detail in R
@17#:

ṙ 15r 1~m11p11r 1
21p12r 2

21s1r 2
4!,

ṙ 25r 2~m21p21r 1
21p22r 2

21s2r 1
4!,

ḟ15v1 ,

ḟ25v2 . ~8!

The normal form~8!, in the nondegenerate case, admits
multitude of distinct dynamical behavior, depending on t
values ofpi j andsi . These are divided into so-calledsimple
(p11p22.0) and difficult (p11p22,0) cases. In the simple
cases, the topology of the bifurcation diagram is independ
of the si terms. Even in the simple case, several differe
bifurcation diagrams exist. A comprehensive description
all the simple and difficult scenarios is given in Ref.@17#. In
our problem, away from the tangent double Hopf point
parameter space, the nondegenerate double Hopf bifurca
are of simple type~type I, simple, in the classification of Re
@17#!. This behavior is typically encountered when the Ho
bifurcations are supercritical from the stable basic state@18–
20#. Figure 2 shows the bifurcation diagram in a neighb
hood of a nondegenerate double Hopf bifurcation point
parameter space, corresponding to our problem. The pa
eter space is divided into six regions, delimited by bifurc
tion curves. The number of solutions and their stability a
different in each region. Figure 3 shows typical phase p

FIG. 2. Bifurcation diagram for a simple type I double Ho
bifurcation. The curvesH1 andH2 ~coinciding with the axesm1 and
m2, respectively! are the two Hopf bifurcation curves at which th
limit cycles, P1 and P2, bifurcate supercritically from the basi
stateP0. The curvesN1 and N2 are Neimark-Sacker bifurcation
curves at which the quasiperiodic mixed-modeP3 bifurcates. Phase
portraits in each of the six regions indicated are shown in Fig.
0-3
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traits in these six different regions.P1 and P2 are rotating
waves emerging from the basic state when the Hopf cur
H1 andH2 are crossed. There is a region~4 in Fig. 2! where
both rotating waves coexist and are stable. In this region
unstable two-torus solution~a modulated rotating wave! ex-
ists, and its presence allowsP1 andP2 to be simultaneously
stable.

We have located a point in parameter space where the
Hopf bifurcation curves are tangent. In this case, the non
generacy condition~7! is not satisfied, and the double Hop
bifurcation is degenerate. The linear parts off 1 and f 2 are
proportional to each other, and they differ at second or
By an appropriate redefinition of the parameters, we
write

f 15am2 , f 25m22m1
2 ; ~9!

where a is the proportionality constant between the line
parts of f 1,2. In the parameter spacem1,2, the two Hopf
bifurcation curves are the straight linem250 and the pa-
rabolam25m1

2. But the tangency is not a generic conditio
and introduction of additional parameters~or perturbations!
will break the tangency. In order to unfold this degenerac
third parameter must be introduced; the tangent double H
~TdH! bifurcation is a codimension-3 bifurcation. The thr
parameters are related to the three physical governing pa
eters Re,L, andS. The final form of the functionsf 1,2 is

f 15am2 , f 25m22m1
22m3 . ~10!

The normal form~8!, in the nondegenerate case, admit
multitude of distinct dynamical behavior, depending on t
values ofpi j andsi . In the TdH degenerate case, the situ
tion is more complex. Of all the possible cases, we anal
here the one that corresponds to our particular problem
mentioned before, the bifurcation is of simple type, and
normal form, after appropriate changes of variables~which
are exactly the same as in the nondegenerate double
bifurcation, and are described in detail in Ref.@17#! can be
written as

FIG. 3. Phase portraits corresponding to the different region
the double Hopf and tangent double Hopf bifurcations conside
here. Solid~open! circles are stable~unstable! states.
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j̇15j1~am22j12hj2!,

j̇25j2~m22m1
22m32dj12j2!, ~11!

wherea, h, andd are nonzero constants, satisfying the co
ditionsh.a.1/d.0; see Eq.~C1!. The detailed analysis o
the fixed point solutions of this system is given in Sec. IV
Here we present a summary of the most important featu

Figure 4 shows the bifurcation diagram in a neighborho
of the tangent double Hopf bifurcation. Figure 4~a! corre-
sponds tom3,0, where the two Hopf curvesH1 and H2
intersect transversally at two different points, two nondeg
erate double Hopf points that exhibit the six regions d
played in Fig. 2. The new feature here is that the t
Neimark-Sacker curvesN1 merge into a single curve tha
starts and ends at the two double Hopf points. Figure 4~b!
corresponds tom350, where the two Hopf curvesH1 and
H2 become tangent at the codimension-3 tangent dou
Hopf point. When the two double Hopf points in Fig. 4~a!
merge, regions 5 and 6, the Neimark-Sacker curveN1 disap-
pears. We are left with three bifurcation curves,H1 , H2, and
N2, simultaneously tangent at the degenerate tangent do

of
d

FIG. 4. Bifurcation diagrams form3 as indicated.
0-4
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TANGENT DOUBLE HOPF BIFURCATION IN A . . . PHYSICAL REVIEW E68, 016310 ~2003!
Hopf point. Form3.0, these three bifurcation curves sep
rate, as shown in Fig. 4~c!. The important feature here is tha
when we have an ordinary Hopf curveH1 with a secondary
Hopf curve H2 closeby, we will always find a subseque
Neimark-Sacker curveN2, even though there is no interse
tion betweenH1 and H2. Beyond curveN2, the two limit
cycles~rotating waves in our case! coexist and are simulta
neously stable. This is precisely the situation observed
perimentally and numerically in Ref.@8#, in the parameter
space regionL50.5, Re51000, andSP@0.4,0.8#.

IV. RESULTS

A. Linear stability

The results of an extensive parametric study in (L, S, Re)
space are summarized in Fig. 5. The stability to perturbati
with azimuthal wave numbersmP@0,13# has been examine
over an extensive range in parameter space, and the
modesm54 and m55 have been found to be the mo
dangerous. The figure shows the projection of the Hopf
furcation manifolds@two-dimensional surfaces in (L, S, Re)
space# for the onset of RW4 and RW5 onto (S, Re) space for
three values ofL50.55, 0.56, and 0.57. These serve to
dicate that at the point (L'0.56, Re'349.5,S'1.0), the
two Hopf bifurcation manifolds become tangent. The beh
ior in the neighborhood of this codimension-3~TdH! point is
consistent with generic TdH normal form theory involvin
supercritical Hopf bifurcations~see details in Sec. IV C an
compare Figs. 5 and 15!. In the following section, we ex-
plore the nonlinear dynamics in the neighborhood of the T
using the fully nonlinear three-dimensional Navier-Stok
solver, which amongst other details, shows that the ass
ated Hopf bifurcations to RW4 and RW5 are supercritical.

B. Nonlinear computations

The Hopf bifurcation curves have also been compu
using the three-dimensional Navier-Stokes solver. We be
with computations in the axisymmetric subspace in orde
obtain the steady axisymmetric base state. This base
with an added nonaxisymmetric perturbation is used as
initial condition in the three-dimensional computations. T
eigenvalues corresponding to the different azimuthal mo
are determined from the observed linear growth/decay of
perturbations. Figure 6 shows the real partl of the eigenval-
ues for azimuthal modesm54 and 5. As the linear growth is
very small near the bifurcation point, we have obtained
bifurcation curve~corresponding tol50) by linear interpo-
lation. Nevertheless, the dependence ofl on Re is given
very accurately by straight lines~as can be seen from Fig. 6!,
and the error due to the linear interpolation is negligible.

The critical Re for the Hopf bifurcations to RW4 and RW5
over a range ofS andL in the neighborhood of the tangen
double Hopf have now been determined by two independ
numerical approaches, linear stability analysis and nonlin
computations. These results are summarized in Table I;
difference in the estimate of the critical Re is about 0.3
This good agreement provides confidence in both metho
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In these Hopf bifurcations, rotating waves with azimuth
wave numbersm54 and m55, RW4 and RW5, emerge.
These new solutions may be stable or unstable. Restric
the nonlinear computations to convenient invariant s
spaces, they can be computed with the time evolution co
For example, computing RW4 in the subspaceC4 containing
only Fourier modes that are multiples of 4, we can comp
a RW4 that is unstable to perturbations with azimuthal wa
numbers different from 0,4,8, . . . , because these perturba
tions do not belong toC4. The dominant nonaxisymmetri
modes arem54 and 5, which are relatively primes, therefo
mode 5 is not present inC4, and mode 4 is not present inC5,

FIG. 5. Hopf bifurcation curves, determined by linear stabil
analysis, for the onset of RW4 ~solid line! and RW5 ~dashed line! in
(S, Re) space forL as indicated. Double Hopf points~dH! and the
tangent double Hopf point~TdH! are labeled.
0-5
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so both states can be computed by time evolution in
corresponding subspace, regardless of their stability.

The Neimark-Sacker bifurcations of the rotating wav
RW4 and RW5 can be computed in the same way that t
Hopf bifurcations were computed. We use the compu
RW4 and RW5 as initial conditions, adding a generic nonax
symmetric perturbation. The observed linear growth/deca
the perturbations allows the computation of the most dan
ous Floquet exponent~the equivalent of an eigenvalue for
limit cycle solution, see, e.g., Ref.@21#!. Figure 7 shows the
real part of the most dangerous Floquet exponent,g ~note
that for Neimark-Sacker bifurcations, the Floquet expone
are complex conjugate pairs!, for each of the rotating wave

FIG. 6. Hopf bifurcations from the basic state, determined fr
nonlinear computations;l is the real part of complex conjugat
Hopf eigenvalues. The curvesl50 for m54 andm55 correspond
to the curvesH1 and H2, respectively, in Fig. 4, and also to th
solid and dashed curves in Fig. 5
01631
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RW4 and RW5. The bifurcation curve~for g50) has been
obtained by quadratic interpolation to all the computed da
because in this case the dependence of the growth rateg on
Re is not linear~for Hopf bifurcations,l, the growth rate, is
linear with Re near the bifurcation!.

Figure 8 shows the Hopf and Neimark-Sacker bifurcat
curves obtained, along with the different solutions comput
Solid curves correspond to the Hopf bifurcation from t
basic state to RW4, dashed curves to the Hopf bifurcatio
from the basic state to RW5, and dotted curves are th
Neimark-Sacker bifurcation curves. Different symbols rep
sent the different types of solutions obtained. The agreem
with the normal form theory developed in Sec. III is com
plete ~compare Figs. 4 and 8!.

C. Structure of the bifurcated solutions

The caseS50 corresponds to solid-body rotation. AsS is
increased, the counter-rotation of the top lid produces
countermeridional flow near the axis and the top lid. Th
counterflow results in the separation of the top-lid bound
layer and the development of a shear layer into the inte
that separates the two counter-rotating meridional flo
These two regions also have azimuthal flows with oppo
senses; the shear in the layer is primarily in the azimut
direction. The shear layer also has a jetlike profile in t
meridional direction. It is the instability of this shear laye
via supercritical Hopf bifurcations, to azimuthal modes w
wave numbers 4 and 5 that leads to the bifurcated rota
waves RW4 and RW5 ~see Ref.@8# for details!.

As S→1, the top-lid boundary layer separation point a
proaches the corner (r 51, z5L). It is in this parameter
regime that the mode competition between RW4 and RW5
leads to the tangent double Hopf dynamics. Figure 9 sho
contours of streamlines and azimuthal velocity as well
velocity vectors projected onto a meridional plane for tw
basic states with (Re5370, S50.9) and (Re5335, S
51.1), both atL50.56. At these two points, the basic sta
is on the verge of becoming unstable, and they straddle
tangent double Hopf point.

TABLE I. Comparison between the linear and nonlinear cod
The critical Re numbers for the transitions between the base s
and the rotating waves RW4 and RW5 are shown forL and S as
indicated.

m54 m55
L S Linear Nonlinear Linear Nonlinear

0.9 377.67 376.69 376.29 375.34
0.55 1.0 355.88 354.94 352.94 352.34

1.1 341.50 340.41 339.97 339.36

0.9 370.89 369.96 372.90 371.95
0.56 1.0 349.46 348.56 349.62 348.97

1.1 335.66 334.61 336.73 336.13

0.9 364.92 363.89 369.86 368.92
0.57 1.0 343.60 342.76 346.62 346.97

1.1 330.39 329.29 333.90 333.26
0-6
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TANGENT DOUBLE HOPF BIFURCATION IN A . . . PHYSICAL REVIEW E68, 016310 ~2003!
The precession frequencies of RW4 and RW5 are shown
in Fig. 10 for L50.55, 0.56, 0.57,S50.9, 1.0, 1.1, and
ReP(320,420). Over this entire range, the precession
quency is about 1/3 of the rotating frequency of the cylind
and the waves rotate prograde with the cylinder. For giveS
there is little variation in the frequencies with Re orL, but it
decreases substantially with increasingS. As the top counter-
rotates faster with increasingS, the precession of the wave
slows down.

For a double Hopf bifurcation with SO(2) symmetry
be resonant, the ratio of wave numbers must equal the r
of precession frequencies~see Ref.@18#!. From Fig. 10, we
have that at the tangent double Hopf bifurcation point,
precession frequency ratio isv4 /v5'0.93—clearly not 4/5,

FIG. 7. Neimark-Sacker bifurcations from the limit cycles RW4

and RW5 ; g is the real part of the complex conjugate Floqu
exponents. The curvesg50 for m54 andm55 correspond to the
curvesN1 andN2, respectively, in Fig. 4.
01631
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and so our tangent double Hopf bifurcation satisfies Eq.~5!
and is not resonant.

We now examine the bifurcated rotating wave states a
point in parameter space near the tangent double Hopf b
cation where both RW4 and RW5 coexist and are stable. Thi
point is (Re5365, S51.0, L50.55) and is located in region
4 as indicated in Fig. 4~a!; the corresponding schemat
phase portrait is number 4 in Fig. 3. The rotating waves
three-dimensional spatial structures that are invariant in t
and the whole structure precesses at a constant rate.
have Cm symmetry, i.e., they are invariant to discrete a
muthal rotations of 2p/m. Further, rotations in space ar
equivalent to time evolution. The kinetic energy density

t
FIG. 8. Computed bifurcation diagrams forL50.55, 0.56, 0.57.

Computed solutions: basic state,m; RW4 stable,h; RW4 unstable
1; RW5 stables; RW5 unstable,3. Fitted bifurcation curves:
basic state→RW4, solid; basic state→RW5, dashed; Neimark-
Sacker curves, dotted.
0-7
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the mth azimuthal modeEm(r ,z) is used to identify the
physical mechanism leading to the instability of the ba
state, where

Em~r ,z!5
1

2E0

2p

um•um* rdu.

Figure 11 shows contours ofEm(r ,z) for ~a! m54 and ~b!
m55, corresponding to RW4 and RW5, respectively, to-
gether with the velocity of the basic state projected ont

FIG. 9. Basic states at~1! (Re5370, S50.9, L50.56) and~2!
(Re5335, S51.1, L50.56); showing~a! streamlines and~b! con-
tours of the azimuthal velocityv and arrows of the (u,w) velocity
components. These contours are shown in a meridional p
(r ,z)P@0,1#3@0,L#, whose orientation is as in Fig. 1.

FIG. 10. Precession frequencies of the RW4 and RW5 rotating
waves, for the solutions shown in Fig. 8. Solid and open circ
correspond to RW4 and RW5 states, respectively.
01631
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a

meridional plane.Em(r ,z) is localized about the separate
shear layer and has a maximum near the point of separa

Since the nonlinear three-dimensional solutions are ex
ined near their bifurcation from the basic state, subtract
their axisymmetric component leaves essentially the eig
mode~we refer to this as the perturbation field!. In Fig. 12,
the perturbation velocity for RW4 and RW5 is plotted on
horizontal planes atz5(0.156i 20.031)L for i P@1,6#,
showing contours of the perturbation axial velocity,wp , and
projections of the perturbation velocity vectors, (up ,wp),
onto the planes. The maxima in the perturbation velocit
are located about the shear layer, as was indicated by
contours ofEm(r ,z), and it is now clear that these eigen
modes consist of spiral vortical structures of alternating si
Vertical sections of these spirals are presented in Fig.
where the perturbation velocity is plotted in three meridion
planes separated by angles 2p/3m, m54, and m55 for
RW4 and RW5, respectively, covering one azimuthal wav
length for each.

The structures of the complete nonlinear solutions are
dicated in Fig. 14. The isosurfaces of the vertical veloc
serve to illustrate that, although the three-dimensional per
bation is largest about the separation shear layer near
differentially rotating top, as discussed above. The axisy
metric basic state also has its largest vertical velocity in t
region, and so the complete nonlinear state remains ne
axisymmetric here. At lower vertical levels, the balance b
tween the axisymmetric component and the thr
dimensional perturbation is such that the three-dimensio
structure becomes more evident. By middepth (z50.5L),
the full solution shows the development of funnel-like stru
tures consisting ofm vortices rotating with sense opposite
the background rotation~see Ref.@8# for more details!.

ne

s

FIG. 11. Contours ofEm(r ,z) and projections of the basic stat
velocity vectors onto a meridional plane, (r ,z)P@0,1#3@0,L#, for
~a! RW4 (m54) and ~b! RW5 (m55) at (Re5365, S51.0, L
50.55).
0-8
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V. CONCLUSIONS

The competition between rotating wave states with a
muthal wave numbersm54 andm55, bifurcating from an

FIG. 12. Contours of the axial velocity perturbationwp and
arrows of the velocity perturbation (up ,wp) for ~a! RW4 and ~b!
RW5 at (Re5365, S51.0, L50.55). The six frames show hori
zontal sections (r ,u)P@0,1#3@0,2p#, equispaced in the vertica
direction withz5(0.156i 20.031)L, i 51, . . . ,6.
01631
i-

axisymmetric basic state in a rotating cylinder, that is driv
by the differential rotation of its upper lid, has been exa
ined. The bifurcation from the basic state is due to the a
muthal instability of the shear layer that is produced by
separation of the boundary layer on the counter-rotating
The system is governed by three parameters, and the com
tition between the two modes of instability is organized by
codimension-3 tangent double Hopf bifurcation. Applyin
the center manifold theorem, we have derived a normal fo
for this class of codimension-3 bifurcations, and have a
lyzed the scenario corresponding to the mode competi
manifested in our flow problem.

As with the generic double Hopf bifurcation, there a
many different scenarios depending on the normal form
efficients which in turn are problem dependent. Competitio
between azimuthal modes with wave numbersm and m11
are ubiquitous in flows in cylindrical geometries with inte
nal shear layers. It would be an interesting exercise to
plore the dynamics associated with other scenarios of
new tangent double Hopf bifurcation and see if these acco
for observed dynamics in some of these other systems.
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APPENDIX A: LINEAR STABILITY ANALYSIS OF THE
BASIC STATE

The three-dimensional stability problem is solved usi
the global Galerkin method. Details on this numerical a
proach can be found in Refs.@22,23#. The solution of Eqs.

FIG. 13. Contours of the perturbation azimuthal velocityvp and
projections of the perturbation velocity onto three equispaced
ridional planes, (r ,z)P@0,1#3@0,L#, covering one azimutha
wavelength (u as indicated! for ~a! RW4 and ~b! RW5 at (Re
5365, S51.0, L50.55).
0-9
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~1!, ~2!, and~4! is expanded in a Fourier series as

$u,v,w,p%5 (
m52`

1`

$um ,vm ,wm ,pm%eimu, ~A1!

where the Fourier coefficients$um ,vm ,wm ,pm% are func-
tions of (r ,z,t) and their equations are obtained by substi
tion of Eq.~A1! into Eqs.~1!, ~2!, and~4!. The axisymmetric
Fourier modem50 corresponds to both the axisymmetr
basic state and the axisymmetric perturbation. The disco
nuity where the differentially rotating lid meets the cylind
sidewall at (r 51, z5L) is treated similarly to the case o
rotating lid–cylinder flow studied in Refs.@13,23#. The axi-
symmetric part of the circumferential velocity is represen
as

FIG. 14. ~1! Isosurfaces of the vertical velocityw at 80% of the
maximum downwards value, and contours atz50.5L of ~2! the
axial velocity,~3! the azimuthal velocity, and~4! the axial vorticity,
for ~a! RW4 and ~b! RW5 at (Re5365, S51.0, L50.55). Solid
lines correspond to positive values except in~2!.
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v0~r ,z,t !5r S 11V0~r ,z!1(
i 51

Nr

(
j 51

Nz

a i j ~ t !f i j ~r ,z!D ,

where unity corresponds to the background rotation of
whole system andV0(r ,z) is the correction satisfying all the
boundary conditions. After the functionV0(r ,z) is found,
the boundary conditions for the Galerkin basis functionsf i j
are zero at all no-slip boundaries, and so can be constru
as described in Ref.@22#. The functionV0(r ,z) is the solu-
tion to

DV050,

with boundary conditions

V0~r ,0!5V0~1,z!50, V0~r ,L!5212S.

It is approximated as

V0~r ,z!5(
i 51

Mr

(
j 51

Mz

V i j j i j ~r ,z!,

where the basis functionsj i j satisfy the zero boundary con
ditions atz50 andr 51. The boundary condition atz5L is
satisfied approximately by introducingMr Chebyshev collo-
cation points at this boundary. The Laplace equation
V0(r ,z) is introduced to smooth possible wiggles near t
discontinuity point. It is solved numerically by projection o
its residual on (Mr21)Mz functionsj i j . Note that the func-
tion V0(r ,z) depends on the governing parametersL andS,
but does not depend on Re. Thus, for variations in Re o
as is done in the stability analysis, it need only be calcula
once for each value ofL andS.

Resolution tests show that, as in the rotating dis
cylinder flow @13#, a sufficiently smooth solutionV0(r ,z)
can be obtained withMr5100 andMz530 ~the largeMr is
needed to resolve the discontinuity inV0 at r 51, z5L).
With this truncation number the deviation ofv0 from the
value2S at 100 uniformly distributed points at the bounda
z5L is less than 1023S.

The convergence study for the critical Reynolds num
and the critical oscillation frequency shows that atL50.5
andS50.5, the use ofNr5Nz520 basis functions for all the
unknown functions provides three to four converged sign
cant figures for the critical values. Convergence to with
five significant figures is obtained withNr5Nz530. This is
illustrated in Table II, which shows the convergence for Fo
rier azimuthal modesm54 andm55, which are the most
critical for L50.5 andS50.5. Note that the convergence o
the critical parameters means convergence of both the st
axisymmetric flow and the three-dimensional perturbati
This rapid convergence is a consequence of the relativ
low critical Re, which is usually below 1000 for the range
(L,S) considered. In the rotating disk–cylinder flow cas
Rec.2000 requires larger truncation numbersNr and Nz .
The calculations reported here usedNr5Nz520.
0-10
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APPENDIX B: THREE-DIMENSIONAL NAVIER-STOKES
SOLVER

In order to obtain the bifurcated states and study th
dynamics, the full nonlinear time-dependent Navier-Sto
equations~1! and ~2! using the nonlinear terms~3! must be
solved.

Note that in addition to the nonlinear coupling, the velo
ity components (u,v) are also coupled by the linear oper
tors. Following Ref.@24#, we introduce a new set of comple
functions,

u15u1 iv, u25u2 iv,

where

u5
1

2
~u11u2!, v5

1

2i
~u12u2!.

The Navier-Stokes equations~1! and~2! can then be written
using (u1 ,u2 ,w,p) as

] tu11a152S ] r1
i

r
]uD p1

1

ReS D2
1

r 2
1

2i

r 2
]uD u1 ,

] tu21a252S ] r2
i

r
]uD p1

1

ReS D2
1

r 2
2

2i

r 2
]uD u2 ,

] tw1az52]zp1
1

Re
Dw,

S ] r1
1

r D ~u11u2!2
i

r
]u~u12u2!12]zw50,

where we have denoted

a65ar6 iau .

We use a stiffly stable semi-implicit, i.e., the linear term
are treated implicitly while the nonlinear terms are explic
second-order projection scheme@11,25#. For the space vari-
ables, we use a Legendre-Fourier approximation. More

TABLE II. Convergence of Rec and vc for L50.5 and S
50.5.

m54 m55
Nr5Nz Rec vc Rec vc

10 749.26 20.26768 761.40 20.29215
12 743.96 20.26959 746.95 20.29708
14 744.35 20.27062 744.24 20.29950
16 744.49 20.27072 743.39 20.30033
18 744.40 20.27058 743.04 20.30045
20 744.35 20.27047 742.95 20.30043
22 744.34 20.27041 742.93 20.30040
24 744.34 20.27039 742.93 20.30038
26 744.34 20.27038 742.94 20.30038
40 744.34 20.27038 742.94 20.30038
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cisely, the azimuthal direction is discretized using a Four
expansion withk11 modes corresponding to azimuth
wave numbersm50,1,2, . . . ,k/2, while the axial and verti-
cal directions are discretized with Legendre expansions. W
this discretization, a Poisson-like equation for each of
velocity components and the pressure is solved at each
step. The spectral convergence of the code has been e
sively tested for this flow in Ref.@8#. All the results pre-
sented here have 32 Legendre modes inr andz and 40 Fou-
rier modes inu, and the time step isdt50.05.

APPENDIX C: ANALYSIS OF THE TANGENT DOUBLE
HOPF BIFURCATION

In this appendix, we analyze the fixed points of the n
mal form ~11!, and their stability. The normal form coord
natesj1 , j2 are the squares of the radial coordinatesr 1 , r 2
in Eq. ~8!, and therefore are always greater than or equa
zero. As the normal form coordinates include two angl
f1 , f2 with trivial evolution ~8!, a fixed point at the origin
of the (j1 ,j2) plane is a true fixed point, while fixed point
on the axis are periodic solutions and fixed points off the a
are quasiperiodic solutions~two tori!. A simple calculation
shows that the normal form~11! has four fixed points:

P0 :~0,0!, P1 :~am2,0!, P2 :~0,m22m1
22m3!,

P3 :F h2a

dh21 S m22
h

h2a
~m1

21m3! D
2

da21

dh21 S m21
1

da21
~m1

21m3! D G .
As mentioned before,P0 is a fixed point,P1 and P2 are
periodic solutions, andP3 is a two torus.

P05(0,0) exists for all values of the parametersm i . In
order to analyze their stability, let us consider the Jacob
matrix of the system~11! at P0,

JP0
5S am2 0

0 m22m1
22m3

D .

P0 is stable if and only ifam2,0 and m2,m1
21m3. We

have two bifurcation curves,H1 :m250 and H2 :m25m1
2

1m3. At these bifurcation curves,P1 and P2 are born in
Hopf bifurcations; notice thatP1 and P2 exist only for
am2>0, m2>m1

21m3 because of the positivity of the radia
coordinatesj1 , j2. We will assumea.0 in order to haveP0
stable form2 sufficiently negative, as we want to recover th
behavior ofP0 in the fluid problem we are considering.

Figure 15 shows the two Hopf curves for~a! m3,0, ~b!
m350, and~c! m3.0. P0 is stable in region~1!; in region
~2! P1 exists but notP2; in region~6! P2 exists, but notP1.
In the remaining regions, bothP1 and P2 exist. For m3
,0, H1 andH2 intersect at double Hopf bifurcation points
with coordinatesm156A2m3, m250. The two double
Hopf points coalesce form350 at the tangent double Hop
point at the origin, and cease to exist form3.0.
0-11
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P15(am2,0) exists only above theH1 curve; its stability
is given by the eigenvalues of the Jacobian matrix atP1,

JP1
5S 2am2 ahm2

0 m22m1
22m32dam2

D .

The eigenvalues arel152am2,0 and l15m22m1
22m3

2dam2 ; P1 is stable if and only if (12da)m2,m1
21m3.

Therefore we obtain another bifurcation curve,N1 :m25
2(m1

21m3)/(da21); it is a Neimark-Sacker bifurcation
where the periodic solutionP1 bifurcates to a two-torusP3.
For consistency with the numerical results of the fluid pro
lem considered, we will assumeda.1. The parabolaN1 is
directed downwards, and intersectsH1 and H2 at the two
double Hopf bifurcation points, as can be seen in Fig. 4~a!.
For m3>0, N1 does not play any role, because it is entire

FIG. 15. Hopf bifurcation curves form as indicated.
01631
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contained in region~1!, whereP1 does not exist.P1 is stable
above theN1 bifurcation curve, and unstable below.

P25(0,m22m1
22m3) exists only above theH2 curve; its

stability is given by the eigenvalues of the Jacobian matrix
P2,

JP2
5S ~a2h!m21h~m1

21m3! 0

d~m1
21m32m2! m1

21m32m2
D .

The eigenvalues arel15(a2h)m21h(m1
21m3) and l2

5m1
21m32m2,0; P2 is stable if and only if (a2h)m2

1h(m1
21m3),0. Therefore we obtain another bifurcatio

curve,N2 :m25(m1
21m3)h/(h2a); it is a Neimark-Sacker

bifurcation, where the periodic solutionP2 bifurcates to a
two-torusP3. For consistency with the problem considere
we will assumeh.a; and as we have already assumeda
.0, we also haveh.0. The parabolaN2 is directed up-
wards, and intersectsH1 and H2 at the two double Hopf
bifurcation points form3,0, as can be seen in Fig. 4~a!. For
m350 the three curvesH1 , H2, andN2 become tangent a
the origin@see Fig. 4~b!# and form3.0 they do not intersec
any longer@see Fig. 4~c!#. P2 is stable above theN2 bifur-
cation curve, and unstable below.

In order to analyze the stability of the two-torus solutio
P3, we introduce two auxiliary combinations of the param
etersm i ,

g15m22
1

da21
~m1

21m3!, g25m22
h

h2a
~m1

21m3!.

The N1 and N2 bifurcation curves obtained previously a
given byg150 andg250, respectively. WritingP3 and the
Jacobian matrix atP3 in terms ofg1 , g2 we obtain

P3 :
1

dh21
@~h2a!g2 , ~da21!g1#,

JP3
5

1

dh21 S 2~h2a!g2 2h~h2a!g2

2d~da21!g1 2~da21!g1
D .

The eigenvaluesl1 , l2 are the solutions of the quadrat
equation

l21S h2a

dh21
g21

da21

dh21
g1Dl2

~h2a!~da21!

dh21
g1g250,

and satisfy

l11l252
h2a

dh21
g22

da21

dh21
g1,0,

l1l252
~h2a!~da21!

dh21
g1g2 .

Therefore, sgn(l1l2)52sgn(dh21). If dh21.0, one of
the l i is positive, andP3 is unstable; ifdh21,0, bothl i
are negative, andP3 is stable. As in the problem considere
0-12
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here, the two-torusP3 is never observed close to the tange
double Hopf bifurcation, and so we conclude thatdh21
.0. P3 only exists above both curvesN1, andN2, and it is
unstable. The complete bifurcation diagram includingH1 ,
H2 , N1, andN2 is shown in Fig. 4. Phase portraits includin
the interconnections and stability of the solutionsPi in the
six different regions that appear in Fig. 4 are shown in Fig

During the preceding discussion, we have obtained s
,

uid

n,

h

01631
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eral inequalities between the constantsa, h, d appearing in
the normal form~11!. They area.0, da.1, h.a, and
dh21.0. They can be summarized as

h.a.
1

d
.0, ~C1!

and, in particular, the three constants are positive.
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