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Tangent double Hopf bifurcation in a differentially rotating cylinder flow
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A tangent double Hopf bifurcation has been found in a rotating cylinder flow driven by the counter-rotation
of the top endwall. The codimension-3 tangent double Hopf point has been located using linear stability
analysis. The nonlinear analysis of the multiple solutions in a neighborhood of this bifurcation point is per-
formed by numerical solutions of the three-dimensional Navier-Stokes equations. At the tangent double Hopf
point, two rotating waves and an unstable modulated rotating wave bifurcate simultaneously. A center
manifold/normal form analysis is also performed, which is in very good agreement with both the linear and
nonlinear computations. By a detailed exploration of the nonlinear flow, we have unraveled the complex
dynamics generated by the mode competition, which is organized by the codimension-3 tangent double Hopf

bifurcation.
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. INTRODUCTION number Re=QR?/v (v is the kinematic viscosilyis in-

creased can be to a rotating wave with azimuthal wave num-

Systems in cylindrical geometries with internal shear lay-ber m=4 or m=5. Curves of double Hopf bifurcations,
ers have been widely studied from a number of perspectivegvhere both rotating waves bifurcates simultaneously, can
One of the motivations for these studies is that the instabilialso be obtained. The feature we have found is that for a
ties of the shear layers in these laboratory flows mimic geospecific point in the three-parameter spade Re), a col-
physical hydrodynamical behavior, such as planetary Rossbision of two double Hopf points takes place, producing a
waves[1-4]. A feature that is ubiquitous in these systems isdegenerate double Hopf bifurcation that has not been re-
the competition between azimuthal modes with wave numbported previously in the literature. The analysis of this new
bersm and m+1. A number of theoretical studies have codimension-3 bifurcation, which organizes the mode com-
qualitatively accounted for this mode competition in terms ofPetition in the particular fluid problem under consideration,
the dynamics associated with double Hopf bifurcations'S the object of the present study.
[5-7]. The paper is organlzed as follows. The floyv geometry,

A simple cylindrical system that produces an internalSymmetry, governing parameters, and equations are pre-
shear layer consists of flow in a cylinder, rotating with angu-Sented in Sec. II. In Sec. lIl, the normal form of the new
lar velocity ), that is driven by the differential rotation of bPifurcation is analyzed, stressing the similarities and differ-
the top lid with angular velocity),. The simplicity of this ~ €nces with the nondegenerate codimension-2 double Hopf
geometry allows for detailed laboratory experiments and nuPifurcation. The numerical methods used for the linear sta-
merical simulations. The basic axisymmetric state and itility analysis and nonlinear three-dimensional Navier-
instability to three-dimensional modes, as well as a variety oftokes solver, used to locate the degenerate double Hopf
secondary instabilities leading to multiple states, hysteresid)ifurcation and explore the associated nonlinear dynamics,
and chaotic dynamics have been studied in R@s10. In  a@re presented in Secs. IVAand IV B. The technical details of
particular, over extensive regions of parameter space, twH€ normal form analysis are presented in Sec. IVC. The
rotating waves of azimuthal wave numbers=4 and m numerical results are presented and compared with the pre-
=5 coexist and display a wealth of bifurcations/interactionsdictions from the center manifold/normal form theory in Sec.

that were explored in detail for a fixed height-to-radius ratio!V: Further, the structure of the rotating waves and how the
A=H/R=0.5 and a fixed angular veloci. tangent double Hopf bifurcation organizes their competition

Depending on the values of and the ratio of angular is provided in that section. Conclusions and discussion are
frequenciesS= — /€, , the first bifurcation as the Reynolds Presented in Sec. V.

Il. FLOW GEOMETRY, SYMMETRY, GOVERNING

PARAMETERS, AND EQUATIONS
*Electronic address: marques@fa.upc.es Q

"Electronic address: gelfgat@eng.tau.ac.il The flow geometry is shown schematically in Fig. 1. It
*Electronic address: lopez@math.asu.edu consists of a cylinder of radiuR and heightH, closed at the

1063-651X/2003/6@)/01631@13)/$20.00 68 016310-1 ©2003 The American Physical Society



MARQUES, GELFGAT, AND LOPEZ PHYSICAL REVIEW E58, 016310 (2003

e 9 =(u,v,w)" andp. The Navier-Stokes equations in velocity-
pressure formulation written in cylindrical coordinates are

1 2
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FIG. 1. Schematic representation of the flow geometry. The in-
set illustrates typical streamlines of a steady axisymmetric flow de- Fﬁr(ru) ot W= 0, 2
termined by numerical simulation.

where

bottom, rotating at rat€) >0, and containing an incompress-
ible fluid of kinematic viscosityv. The flow is driven by a
contact top lid that rotates in the inertial frame of reference at A=+ St — I+ %
rate (). We useR as the length scale and(1/as the time r

scale. There are three nondimensional parameters governing . N .
iS'the Laplace operator in cylindrical coordinates and

this system,
2
v 1%
Re=QR?/v, 8 =Udut —JutWou——,
A=H/R,
=ud +vr9 +woao t
S:—Qt/Q ag—u U r oU WZU r y
The domain in nondimensional cylindrical coordinates v
(r,0,2) is 8= UG W+ W+ WIW. ©)
D={0=r<1,0<60<2m,0<z<A}. The equations are completed with admissible initial and

) . o _boundary conditions. Computations are started either from
Here, we consider the retrograde driving situation withap intial state of rest, or a solution at one point in parameter
<0, so thatS is positive. In this situation, for sma  gspace is used as the initial condition for a nearby point in
there is radial inflow in the boundary layer on the differen-parameter space. The boundary conditions are no-slip on all
tially rotating upper lid. For sufficiently larg&, this layer  sojig walls and the essential pole conditions on the rotation
separates before reaching the axis and an internal shear laygfis (see Ref[11] for detalils.
forms. The shear layer separates fluid with azimuthal veloc- At jow Reynolds number, the basic state is steady and
ity of the same sense as the base of the cylinder from thadyjsymmetric, and can be easily computed using a variety of
with the sense of the counter-rotating top. There is also ifferent methodg9—13. The linear stability of this basic
strong meridional jetlike flow along the shear layer. _state can be analyzed by linearizing the Navier-Stokes
The governing equations, Navier-Stokes and conservatioggyations. Substitution of{u,v,w,p}={ug,vg ,Wg,Pg}
of mass, together with the boundary conditions, no-slip on alu{u ,Up,Wp,Po} in Eq. (1), where subscript8 denote the
solid walls and regularity on the cylinder axis, are invariantyasic state ang the perturbations, and linearization gives

with respect to rotations about the axis. The system possessgg, same equationd) for the perturbations, except that the
the symmetry group S@). Thebasic state for this system is nonlinear terms are now

a steady axisymmetric swirling flow with nontrivial structure

in r andz, the radial and axial coordinates. A detailed study Ug 2vvg

of the axisymmetric basic state and its stability in an axisym- &= UgdyU+Ud;Ug+ —= 34U+ Wgd U+ Wd,Ug— ——,

metric subspace were presented in R¢8&10]. A typical

axisymmetric basic state is shown in the inset of Fig. 1. The v

shear layer in this example separates near the upper right,=ugd,v +ud,vg+ —Bﬁgv+WBﬂzv+wasz—

corner and reattaches at about mid-depth on the axis. r r
The equations governing the flow are the Navier-Stokes

equations together with initial and boundary conditions. We

denote the velocity vector and pressure, respectivelyu by

Ugv +Uvg

v
a,=Ugd,W+ud,wg+ TBﬂ(,er d,(WgW). 4
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The numerical methods used to determine the linear stability
of the basic state to general three-dimensional perturbations H 2 N
and to study the nonlinear dynamics are briefly described in

Secs. IVA and |V B.
@) N,

Ill. BACKGROUND ON DOUBLE HOPF BIFURCATIONS

For some low-codimension bifurcations, dynamical sys-
tems theory provides a center manifold reduction of the high H @ H
dimensional systenfe.g., Ref.[14]) and anormal form a 1 )
low-dimensional, low-order polynomial system that captures

the dynamics of the full nonlinear system in the neighbor- L
hood of the bifurcatione.g., Ref.[15]). The normal form @ H2 @
contains a number of parameters that unfold the bifurcation;

the number of parameters being the codimension of the bi- . . . .

furcation considered. Arbitrary perturbations of the normal, . FIG. 2. Bifurcation diagram for_a _s|_mp|e_type | double Hopf
f " : ted for by th foldi bifurcation. The curvebl,; andH, (coinciding with the axeg, and
orm are usually accoun e. or by these unio !ng param—’uzy respectively are the two Hopf bifurcation curves at which the
eters(see Ref[16] for details and exampléesin this case,

. . ’ " ’ limit cycles, P, and P,, bifurcate supercritically from the basic
arbitrary perturbations result in a topologically equivalentgiaiep ~The curvesN; and N, are Neimark-Sacker bifurcation

system preserving all the dynamics of the normal form; thisyrves at which the quasiperiodic mixed-md@gbifurcates. Phase
is the case for the well-known local codimension-1 bifurca-portraits in each of the six regions indicated are shown in Fig. 3.

tions[17]. However, when the codimension of the system is
2 or greater, persistence of the normal form is not always f L,
guaranteed. One may still perform a normal form analysis on d ( : )
the original system, truncate at some finjlew) order and

extract some of the characteristic dynamics of the original ) ) ) )
system. However, this formal application of the theory re-the two Hopf bifurcation curves given bi ,=0 intersect
sults in aformal normal formwith, in general, some dynami- transversally, and mtr_oducmg the new independent param-
cal features that do not persist upon perturbation. The doubl@t€rsu12="f1,, we arrive at the normal form for the nonde-
Hopf bifurcation is a typical example where the dynamics ofdenerate double Hopf bifurcation analyzed in detail in Ref.

#0, (7)
a=0

&alyz

the formal normal form do not always persist. 17):
The infinite-dimensional phase space of our problem, in : ) 5 4
certain regions of parameter space, admits a four- r1=ry(pua+pufi+prs+sirs),
dimensional center manifold parametrized by a pair of am-
plitudesr, , and anglesp, ,. The normal form is given by Fo=ro( ot Porl 24 o 3+ 5,1 1),
[17]
; 2 2 4 d’lz w1,
ri=raffi(ay ) +puari+pirz+siryl,
. =w,. 8
ro=ro[fa(ay )+ Parl f+pad5+soril, G ®
. The normal form(8), in the nondegenerate case, admits a
$1= w1, multitude of distinct dynamical behavior, depending on the
values ofp;; ands;. These are divided into so-calleimple
b= w5, (p11P22>0) anddifficult (py1p2,<0) cases. In the simple

cases, the topology of the bifurcation diagram is independent
where the two pairs of complex conjugate eigenvalues aref the s; terms. Even in the simple case, several different
*iw, , at the bifurcation pointry ,=0; f, , are functions of  bifurcation diagrams exist. A comprehensive description of
the parameters of the system;,. The w;,, p;j, ands;  all the simple and difficult scenarios is given in Ref7]. In
depend on the parametess , and satisfy certain nonreso- our problem, away from the tangent double Hopf point in
nant and nondegeneracy conditions in the neighborhood dgfarameter space, the nondegenerate double Hopf bifurcations

the bifurcation: are of simple typétype |, simple, in the classification of Ref.
[17]). This behavior is typically encountered when the Hopf
My # Myw,, (5)  bifurcations are supercritical from the stable basic Jth8e-
20]. Figure 2 shows the bifurcation diagram in a neighbor-
pij#0, (6) hood of a nondegenerate double Hopf bifurcation point in

parameter space, corresponding to our problem. The param-
wherem;, m, are the azimuthal wave numbers of the two eter space is divided into six regions, delimited by bifurca-
bifurcated rotating wavegl18]. If the functionsf, , satisfy  tion curves. The number of solutions and their stability are
the additional nondegeneracy condition different in each region. Figure 3 shows typical phase por-
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FIG. 3. Phase portraits corresponding to the different regions of
the double Hopf and tangent double Hopf bifurcations considered H,
here. Solid(open circles are stabléunstabl¢ states. (®) u3 =0

traits in these six different region®, and P, are rotating
waves emerging from the basic state when the Hopf curves H,
H, andH, are crossed. There is a regi@hin Fig. 2 where
both rotating waves coexist and are stable. In this region an
unstable two-torus solutiofa modulated rotating wayeex-
ists, and its presence allows andP, to be simultaneously
stable.

We have located a point in parameter space where the two

i
|
Hopf bifurcation curves are tangent. In this case, the nonde- A i
generacy conditiori7) is not satisfied, and the double Hopf © >0 i
bifurcation is degenerate. The linear partsfgfand f, are ) K3 !
|

N, Ay

proportional to each other, and they differ at second order. H @

By an appropriate redefinition of the parameters, we can ' "

write @ 1
fi=aums, fo=py—ui; 9

FIG. 4. Bifurcation diagrams fop.; as indicated.
where a is the proportionality constant between the linear

parts of f,,. In the parameter space,,, the two Hopf E1=&(apy— 61— néy),
bifurcation curves are the straight line,=0 and the pa- '
rabolau,= 3. But the tangency is not a generic condition, Ey=E(pp— pul— ug— 86— &), (12)

and introduction of additional parametgi@ perturbations

will break the tangency. In order to unfold this degeneracy, avherea, », andd are nonzero constants, satisfying the con-
third parameter must be introduced; the tangent double Hoplitions »>a>1/6>0; see Eq(C1). The detailed analysis of
(TdH) bifurcation is a codimension-3 bifurcation. The three the fixed point solutions of this system is given in Sec. IV C.
parameters are related to the three physical governing pararhlere we present a summary of the most important features.

eters Re,A, andS The final form of the function$, , is Figure 4 shows the bifurcation diagram in a neighborhood
of the tangent double Hopf bifurcation. Figuréay corre-
fi=amy, fo=pmr—ui—pus. (100  sponds touz<0, where the two Hopf curvebl; andH,

intersect transversally at two different points, two nondegen-

The normal form(8), in the nondegenerate case, admits aerate double Hopf points that exhibit the six regions dis-
multitude of distinct dynamical behavior, depending on theplayed in Fig. 2. The new feature here is that the two
values ofp;; ands;. In the TdH degenerate case, the situa-Neimark-Sacker curvedl, merge into a single curve that
tion is more complex. Of all the possible cases, we analyzeétarts and ends at the two double Hopf points. Figut® 4
here the one that corresponds to our particular problem. Asorresponds tquz=0, where the two Hopf curvell; and
mentioned before, the bifurcation is of simple type, and theH, become tangent at the codimension-3 tangent double
normal form, after appropriate changes of variakllwgich ~ Hopf point. When the two double Hopf points in Fig(a#
are exactly the same as in the nondegenerate double Hopferge, regions 5 and 6, the Neimark-Sacker ciNyelisap-
bifurcation, and are described in detail in REE7]) can be  pears. We are left with three bifurcation curvel,, H,, and
written as N,, simultaneously tangent at the degenerate tangent double
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Hopf point. Foru3;>0, these three bifurcation curves sepa- 400
rate, as shown in Fig.(d). The important feature here is that

when we have an ordinary Hopf curt, with a secondary

Hopf curve H, closeby, we will always find a subsequent

Neimark-Sacker curvél,, even though there is no intersec- Re
tion betweenH,; andH,. Beyond curveN,, the two limit 360 |

cycles(rotating waves in our cageoexist and are simulta- (@) A = 0.55
neously stable. This is precisely the situation observed ex- -

perimentally and numerically in Ref8], in the parameter 340 |
space regiom\ =0.5, Re=1000, andSe[0.4,0.§.

320 L . .
0.8 0.9 1 L1 12

IV. RESULTS S
A. Linear stability 400
The results of an extensive parametric studyAn § Re)
space are summarized in Fig. 5. The stability to perturbations 390 |
with azimuthal wave numbera e[ 0,13] has been examined
over an extensive range in parameter space, and the twc Re
modesm=4 and m=5 have been found to be the most 360 }

dangerous. The figure shows the projection of the Hopf bi- (3) A = 0.56
furcation manifoldgtwo-dimensional surfaces in\(, S, Re) -
spacé for the onset of RWand RW, onto (S, Re) space for 340 ¢
three values ofA =0.55, 0.56, and 0.57. These serve to in-

dicate that at the pointA~0.56, Re=349.5,S~1.0), the

two Hopf bifurcation manifolds become tangent. The behav- 3203 05
ior in the neighborhood of this codimensionBdH) point is ) )
consistent with generic TdH normal form theory involving

supercritical Hopf bifurcationgsee details in Sec. IV C and 400
compare Figs. 5 and 15In the following section, we ex-

plore the nonlinear dynamics in the neighborhood of the TdH

L1 12

[

using the fully nonlinear three-dimensional Navier-Stokes 380 1
solver, which amongst other details, shows that the associ- Re
ated Hopf bifurcations to Ryand RW, are supercritical. 360 |
B. Nonlinear computations (c) A =057

The Hopf bifurcation curves have also been computed 340 1
using the three-dimensional Navier-Stokes solver. We begin
with computations in the axisymmetric subspace in order to 320 . . ,
obtain the steady axisymmetric base state. This base stat 0.8 0.9 1 L1 1.2
with an added nonaxisymmetric perturbation is used as the S

injtial condition in the three-dimensipnal Computations. The FIG. 5. Hopf bifurcation curves, determined by linear stability
elgenvalue_s corresponding to the d_lfferent azimuthal modegnalysiS' for the onset of Ry(solid line) and RW, (dashed lingin
are determined from the observed linear growth/decay of thes Re) space fon as indicated. Double Hopf pointsiH) and the
perturbations. Figure 6 shows the real paxf the eigenval-  tangent double Hopf poirtTdH) are labeled.
ues for azimuthal modes=4 and 5. As the linear growth is
very small near the bifurcation point, we have obtained the In these Hopf bifurcations, rotating waves with azimuthal
bifurcation curve(corresponding ta.=0) by linear interpo- wave numberamn=4 and m=5, RW, and RW, emerge.
lation. Nevertheless, the dependencehobn Re is given These new solutions may be stable or unstable. Restricting
very accurately by straight lindas can be seen from Fig),6 the nonlinear computations to convenient invariant sub-
and the error due to the linear interpolation is negligible. spaces, they can be computed with the time evolution code.
The critical Re for the Hopf bifurcations to RVéand RW For example, computing R\ the subspac€, containing
over a range oS andA in the neighborhood of the tangent only Fourier modes that are multiples of 4, we can compute
double Hopf have now been determined by two independera RW, that is unstable to perturbations with azimuthal wave
numerical approaches, linear stability analysis and nonlineanumbers different from 0,4,8. ., because these perturba-
computations. These results are summarized in Table I; thigons do not belong t&€C,. The dominant nonaxisymmetric
difference in the estimate of the critical Re is about 0.3%.modes aren=4 and 5, which are relatively primes, therefore
This good agreement provides confidence in both methodsmode 5 is not present i@,, and mode 4 is not present@,
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0.05 T v T T TABLE |. Comparison between the linear and nonlinear codes.
The critical Re numbers for the transitions between the base state
/ and the rotating waves R\\and RW, are shown forA and S as

0.025 | ! e 1 indicated.

// / / m=4 m=5
Ao /’,” / A S Linear Nonlinear Linear Nonlinear
(a) A=0.55 ; ‘ g

‘ 09 37767 37669 37629 37534
-0.025 k118 s=1.0 i ] 055 1.0 355.88 354.94 352.94 352.34
s=11 5209 4=0.82 11 34150 34041 33997  339.36

005 T 360 380 400 420 09 37089  369.96 37290  371.95
Re 056 1.0 34946 34856  349.62 34897

11 33566 33461 33673  336.13

— m=4 09 36492 36389  369.86  368.92

0.025 | == m= , ] 057 1.0 34360 34276 346,62  346.97

11 330.39 329.29 333.90 333.26

B) A = 0.56 0 / / RW, and RW,. The bifurcation curvegfor y=0) has been
(8) A=0. ) / / obtained by quadratic interpolation to all the computed data,
/ because in this case the dependence of the growthyrate

-0.025 } s=1.0 ‘/l 520.9 ] Re is not linearfor Hopf bifurcations\, the growth rate, is
linear with Re near the bifurcation
320 340 360 380 400 Figure 8 shows the Hopf and Neimark-Sacker bifurcation
Re curves obtained, along with the different solutions computed.

Solid curves correspond to the Hopf bifurcation from the

0.05 basic state to RW dashed curves to the Hopf bifurcation
from the basic state to RYV and dotted curves are the
Neimark-Sacker bifurcation curves. Different symbols repre-
sent the different types of solutions obtained. The agreement
0.00

with the normal form theory developed in Sec. Il is com-
plete (compare Figs. 4 and)8

(¢) A=0.57 A
C. Structure of the bifurcated solutions

005 1 The caseS=0 corresponds to solid-body rotation. 8ss
/ ; increased, the counter-rotation of the top lid produces a
310 330 350 370 countermeridional fl_ow near the axis and the tpp lid. This
Re counterflow results in the separation of the top-lid boundary

_ _ . _ layer and the development of a shear layer into the interior
F_IG. 6. Hopf blfu_rcatlops from the basic state, determlngd fromthat separates the two counter-rotating meridional flows.
nonlmgar computationsh is the real p_art of COTpIeX conjugate tpase two regions also have azimuthal flows with opposite
Hopf eigenvalues. The curvas=0 .formf4 gndm—s correspond senses; the shear in the layer is primarily in the azimuthal
to the curvesH, and H,, respectively, in Fig. 4, and also to the di . The sh | Iso has a ietlike profile in the
solid and dashed curves in Fig. 5 Ire?tl.on' .e S .ear ayer a. > & JELIKE profiie |
meridional direction. It is the instability of this shear layer,
so both states can be computed by time evolution in theia supercritical Hopf bifurcations, to azimuthal modes with
corresponding subspace, regardless of their stability. wave numbers 4 and 5 that leads to the bifurcated rotating
The Neimark-Sacker bifurcations of the rotating waveswaves RW and RW, (see Ref[8] for details.
RW, and RW, can be computed in the same way that the As S—1, the top-lid boundary layer separation point ap-
Hopf bifurcations were computed. We use the computegroaches the corner €1, z=A). It is in this parameter
RW, and RW, as initial conditions, adding a generic nonaxi- regime that the mode competition between R&hd RW,
symmetric perturbation. The observed linear growth/decay ofeads to the tangent double Hopf dynamics. Figure 9 shows
the perturbations allows the computation of the most dangecontours of streamlines and azimuthal velocity as well as
ous Floquet exponerfthe equivalent of an eigenvalue for a velocity vectors projected onto a meridional plane for two
limit cycle solution, see, e.g., Rg21]). Figure 7 shows the basic states with (Re370, S=0.9) and (Re335, S
real part of the most dangerous Floquet expongnfnote  =1.1), both atA =0.56. At these two points, the basic state
that for Neimark-Sacker bifurcations, the Floquet exponentss on the verge of becoming unstable, and they straddle the
are complex conjugate pajrdor each of the rotating waves tangent double Hopf point.
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r . - : - 420 T
0.005 \ \ ) . « FP
' Nk o RW,
0 \ 1 s 400 | N\ + RW,"
\L \ v © RW:
0005 | s=1.18 5§=0.82 380 }
¥ 5=0.9 Re
(@) A=0.55 001} (a) A=0.55 360 ¢
s=1.0
~0.015 + s=11 — m=4 340 | 1
e---e m=5 A
-0.02 . - - L 320 . . .
320 340 360 380 400 420 0.8 0.9 7 11 1.2
Re S
. m'=5 400
0 - + ":
Lo B 3801
v '\\ '\,\ ‘\‘ Re
y 360 t
(b)) A=056 -0.0I | Y (b) A =0.56
5=0.9 340 |
s=1.1 Y 5=1.0
-0.02 . . . 320 . . 1
320 340 350 380 400 0.8 0.9 7 1.1 1.2
e s
0.02 400
. e m=5
0.01 } ' . 380
4 '»,‘ \ Re
0.00 — % 360
() A=057 \ () A =057
~0.01 | : '
s=1.1 5=0.9 0 1
s=1.0
-0.02 . : .
320 340 360 380 400 320
Re

FIG. 7. Neimark-Sacker bifurcations from the limit cycles RW

exponents. The curveg=0 for m=4 andm=5 correspond to the
curvesN; andN,, respectively, in Fig. 4.

The precession frequencies of RWnd RW, are shown

FIG. 8. Computed bifurcation diagrams far=0.55, 0.56, 0.57

0.8 0.9

11

1.2
and RW; vy is the real part of the complex conjugate Floguet Computed solutions: basic staik; RW, stable,dJ; RW, unstable

+; RW; stableO; RWs unstable,X. Fitted bifurcation curves:

Sacker curves, dotted.

basic state—~RW,, solid; basic state—~RW;, dashed; Neimark-

Re e (320,420). Over this entire range, the precession freand is not resonant.

guency is about 1/3 of the rotating frequency of the cylinder,

in Fig. 10 for A=0.55, 0.56, 0.575=0.9, 1.0, 1.1, and and so our tangent double Hopf bifurcation satisfies (&Y.

there is little variation in the frequencies with Re/or but it

decreases substantially with increasid\s the top counter-

slows down.

of precession frequencig¢see Ref[18]). From Fig. 10, we

We now examine the bifurcated rotating wave states at a

point is (Re=365,S=1.0, A=0.55) and is located in region

and the waves rotate prograde with the cylinder. For giSen point in parameter space near the tangent double Hopf bifur-

cation where both RWand RW, coexist and are stable. This
rotates faster with increasirfy the precession of the waves 4 as indicated in Fig. @); the corresponding schematic

phase portrait is number 4 in Fig. 3. The rotating waves are

For a double Hopf bifurcation with SO(2) symmetry to three-dimensional spatial structures that are invariant in time

precession frequency ratio s, / ws~0.93—clearly not 4/5,

be resonant, the ratio of wave numbers must equal the ratiand the whole structure precesses at a constant rate. They

have C,, symmetry, i.e., they are invariant to discrete azi-

have that at the tangent double Hopf bifurcation point, themuthal rotations of z/m. Further, rotations in space are

016310-7
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(o) (®)

@

@

FIG. 9. Basic states &fl) (Re=370, S=0.9, A=0.56) and(2)
(Re=335,S=1.1, A=0.56); showinga) streamlines an¢b) con-
tours of the azimuthal velocity and arrows of they,w) velocity

components. These contours are shown in a meridional plane

(r,z) e[0,1]X[0,A], whose orientation is as in Fig. 1.

the mth azimuthal modef,(r,z) is used to identify the
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FIG. 11. Contours of,(r,z) and projections of the basic state

physical mechanism leading to the instability of the basicV€locity vectors onto a meridional plane, %) e[0,1]x[0,A], for

state, where

1 r2= N
En(r,z)= Efo Um-unrdaé.

Figure 11 shows contours &,(r,z) for (&) m=4 and(b)
m=5, corresponding to RWand RW, respectively, to-
gether with the velocity of the basic state projected onto

0.4
” A=0.57 oo
—
03 F ’\.\0 E
‘*3-;2’8'0 s=1.0 5=0.9 — m_4 4
s=1.1 o—o m=5
0.2 t t t }
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00\0 ——g
03 — _ 4
B e Yy 5=0.9 ]
s=1.1
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O—o
°\o_o\° o ~—e 4
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Re

FIG. 10. Precession frequencies of the R#hd RW rotating

a

(& RW, (m=4) and(b) RW5 (m=5) at (Re=365, S=1.0, A
=0.55).

meridional plane&(r,z) is localized about the separated
shear layer and has a maximum near the point of separation.

Since the nonlinear three-dimensional solutions are exam-
ined near their bifurcation from the basic state, subtracting
their axisymmetric component leaves essentially the eigen-
mode (we refer to this as the perturbation figldn Fig. 12,
the perturbation velocity for RWand RW is plotted on
horizontal planes atz=(0.156 —0.031)A for ie[1,6],
showing contours of the perturbation axial velocity,, and
projections of the perturbation velocity vectorsy,(w,),
onto the planes. The maxima in the perturbation velocities
are located about the shear layer, as was indicated by the
contours of&(r,z), and it is now clear that these eigen-
modes consist of spiral vortical structures of alternating sign.
Vertical sections of these spirals are presented in Fig. 13,
where the perturbation velocity is plotted in three meridional
planes separated by anglesr/dm, m=4, andm=5 for
RW, and RW, respectively, covering one azimuthal wave-
length for each.

The structures of the complete nonlinear solutions are in-
dicated in Fig. 14. The isosurfaces of the vertical velocity
serve to illustrate that, although the three-dimensional pertur-
bation is largest about the separation shear layer near the
differentially rotating top, as discussed above. The axisym-
metric basic state also has its largest vertical velocity in this
region, and so the complete nonlinear state remains nearly
axisymmetric here. At lower vertical levels, the balance be-
tween the axisymmetric component and the three-
dimensional perturbation is such that the three-dimensional
structure becomes more evident. By middeptis 0.5A),
the full solution shows the development of funnel-like struc-

waves, for the solutions shown in Fig. 8. Solid and open circlesures consisting o vortices rotating with sense opposite to

correspond to RWand RW, states, respectively.

the background rotatiofsee Ref[8] for more details
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FIG. 13. Contours of the perturbation azimuthal veloeityand
projections of the perturbation velocity onto three equispaced me-
ridional planes, ,z) €[0,1]X[0,A], covering one azimuthal
wavelength @ as indicated for (a) RW, and (b) RW;s at (Re
=365,S5=1.0, A=0.55).

axisymmetric basic state in a rotating cylinder, that is driven
by the differential rotation of its upper lid, has been exam-
ined. The bifurcation from the basic state is due to the azi-
muthal instability of the shear layer that is produced by the
separation of the boundary layer on the counter-rotating top.
The system is governed by three parameters, and the compe-
tition between the two modes of instability is organized by a
codimension-3 tangent double Hopf bifurcation. Applying
the center manifold theorem, we have derived a normal form
for this class of codimension-3 bifurcations, and have ana-
lyzed the scenario corresponding to the mode competition
manifested in our flow problem.

As with the generic double Hopf bifurcation, there are
many different scenarios depending on the normal form co-
efficients which in turn are problem dependent. Competitions
between azimuthal modes with wave numbersandm+ 1
are ubiquitous in flows in cylindrical geometries with inter-
nal shear layers. It would be an interesting exercise to ex-
plore the dynamics associated with other scenarios of this
new tangent double Hopf bifurcation and see if these account
for observed dynamics in some of these other systems.
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BASIC STATE

V. CONCLUSIONS . . - . .
The three-dimensional stability problem is solved using

The competition between rotating wave states with azithe global Galerkin method. Details on this numerical ap-
muthal wave numbemi=4 andm=5, bifurcating from an proach can be found in Reff22,23. The solution of Egs.
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Nr NZ
(a) RWy (b) RWs vo(r,z,t)=r 1+Qo(r,z)+2,1 le aij(H) ¢ij(r,2) |,

where unity corresponds to the background rotation of the
whole system an€l(r,z) is the correction satisfying all the
boundary conditions. After the functiof(r,z) is found,

the boundary conditions for the Galerkin basis functigns

are zero at all no-slip boundaries, and so can be constructed
as described in Ref22]. The functionQ(r,z) is the solu-

tion to

AQ,=0,

with boundary conditions

Qo(r,00=04(1,2)=0, Qy(r,A)=—1-S.

It is approximated as
MI’ MZ
QO(r’Z):iZl ;1 Qj;&(r,2),

where the basis functiong; satisfy the zero boundary con-
ditions atz=0 andr=1. The boundary condition at= A is
satisfied approximately by introducing, Chebyshev collo-
cation points at this boundary. The Laplace equation for
Qo(r,z) is introduced to smooth possible wiggles near the
discontinuity point. It is solved numerically by projection of
its residual on 1, —1)M, functions¢;; . Note that the func-
tion Q¢(r,z) depends on the governing parametérandS
but does not depend on Re. Thus, for variations in Re only,
as is done in the stability analysis, it need only be calculated
once for each value ok andS

Resolution tests show that, as in the rotating disk—

FIG. 14. (1) Isosurfaces of the vertical velocity at 80% of the cylinder flow [13], a sufficiently smooth solutio)y(r,z)
maximum downwards value, and contourszat0.5A of (2) the  3n be obtained witM, = 100 andM,= 30 (the largeM, is
axial velocity,(3) the azimuthal velocity, ant#) the axial vorticity, needed to resolve the discontinuity @ atr=1, z=A).
for (8 RW, and (b) RWs at (Re=365, S=1.0, A=0.55). Solid  \wjth this truncation number the deviation of, from the
lines correspond to positive values exceptan value— S at 100 uniformly distributed points at the boundary
z=A is less than 10°S.

(4)

(1), (2), and(4) is expanded in a Fourier series as The convergence study for the critical Reynolds number
and the critical oscillation frequency shows thatAat 0.5
re andS=0.5, the use oN,=N,= 20 basis functions for all the

{uo,w,p}= X {Un,om.Wm,Pm}€™,  (Al)  unknown functions provides three to four converged signifi-
m=-= cant figures for the critical values. Convergence to within
five significant figures is obtained witd, =N,=30. This is
where the Fourier coefficientSu,,,vm,Wm,pPmt are func- illustrated in Table Il, which shows the convergence for Fou-
tions of (r,z,t) and their equations are obtained by substitu-rier azimuthal modesn=4 andm=5, which are the most
tion of Eq.(Al) into Egs.(1), (2), and(4). The axisymmetric  critical for A=0.5 andS=0.5. Note that the convergence of
Fourier modem=0 corresponds to both the axisymmetric the critical parameters means convergence of both the steady
basic state and the axisymmetric perturbation. The discontiaxisymmetric flow and the three-dimensional perturbation.
nuity where the differentially rotating lid meets the cylinder This rapid convergence is a consequence of the relatively
sidewall at ¢=1, z=A) is treated similarly to the case of low critical Re, which is usually below 1000 for the range in
rotating lid—cylinder flow studied in Ref$13,23. The axi- (A,S) considered. In the rotating disk—cylinder flow case,
symmetric part of the circumferential velocity is representedRe.>2000 requires larger truncation numbeds and N, .
as The calculations reported here udgg=N,=20.
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TABLE Il. Convergence of Reand w, for A=0.5 and S
=0.5.

m=4 m=>5
N, =N, Re; We Re; We
10 749.26 —0.26768 761.40 —0.29215
12 743.96 —0.26959 746.95 —0.29708
14 744.35 —0.27062 744.24  —0.29950
16 744.49 —0.27072 743.39 —0.30033
18 744.40 —0.27058 743.04  —0.30045
20 744.35 —0.27047 74295 —0.30043
22 744.34 —0.27041 742.93 —0.30040
24 744.34 —0.27039 742.93 —0.30038
26 744.34 —0.27038 742.94  —0.30038
40 744.34 —0.27038 742.94  —0.30038

APPENDIX B: THREE-DIMENSIONAL NAVIER-STOKES
SOLVER

PHYSICAL REVIEW E58, 016310 (2003

cisely, the azimuthal direction is discretized using a Fourier
expansion withk+1 modes corresponding to azimuthal
wave numbersn=0,1,2 ... k/2, while the axial and verti-

cal directions are discretized with Legendre expansions. With
this discretization, a Poisson-like equation for each of the
velocity components and the pressure is solved at each time
step. The spectral convergence of the code has been exten-
sively tested for this flow in Ref[8]. All the results pre-
sented here have 32 Legendre modes @amdz and 40 Fou-

rier modes ind, and the time step igt=0.05.

APPENDIX C: ANALYSIS OF THE TANGENT DOUBLE
HOPF BIFURCATION

In this appendix, we analyze the fixed points of the nor-
mal form (11), and their stability. The normal form coordi-
natesé,, &, are the squares of the radial coordinatesr,
in Eq. (8), and therefore are always greater than or equal to
zero. As the normal form coordinates include two angles,
¢4, ¢, with trivial evolution (8), a fixed point at the origin

In order to obtain the bifurcated states and study theif the (§1,£>) plane is a true fixed point, while fixed points
dynamics, the full nonlinear time-dependent Navier-Stoke$n the axis are periodic solutions and fixed points off the axis

equations(1) and (2) using the nonlinear term@) must be
solved.

Note that in addition to the nonlinear coupling, the veloc-
ity components ({,v) are also coupled by the linear opera-
tors. Following Ref[24], we introduce a new set of complex

functions,
u,=u+iv, u_=u—iv,

where

1
uzz(u++u_), v= E(u+—u_).

The Navier-Stokes equatiori$) and(2) can then be written
using (U, ,u_,w,p) as

[ 1 1 2i
&tU++a+:_ 0"|—+Fag p+R_e A_r_2+r_280 U+,

[ 1 1 2i
du_+a_=-— &r—rﬁ,, p+R—e A—r—z—rzﬁ,, u_,

1
oW+ a,=—d,p+ R—eAw,

i
(uy+u_)— Fao(u+—u,)+2(92w=0,

1
at <

where we have denoted

a.=a,xia,.

are quasiperiodic solutiongwo tori). A simple calculation
shows that the normal forrfil1) has four fixed points:

Po:(0,0,

Pi:(apz,0), Pui(0uo—pi—pus),

n—a
on—1

Pj:

n 2
- (u2+
M2 n_a(ul Ms))

sa—1
on—1

1 2
pot s (matpa) ||

As mentioned beforeP, is a fixed point,P; and P, are
periodic solutions, ané5 is a two torus.

Po=(0,0) exists for all values of the parameteus. In
order to analyze their stability, let us consider the Jacobian
matrix of the systenil11) at Py,

aMZ 0
JPO: O

2
M2 1™ M3

P, is stable if and only ifau,<0 and u,<u3+ us. We
have two bifurcation curvesH;:u,=0 and H2:,u2=,U€
+ u3. At these bifurcation curves?; and P, are born in
Hopf bifurcations; notice thaP,; and P, exist only for
au,=0, Mz>,ui+ 13 because of the positivity of the radial
coordinates, &. We will assume>0 in order to havé®
stable foru, sufficiently negative, as we want to recover the
behavior ofPy in the fluid problem we are considering.
Figure 15 shows the two Hopf curves f@ u3<0, (b)
#3=0, and(c) u3>0. Py is stable in regior(1); in region
(2) P4 exists but noP,; in region(6) P, exists, but noP;.
In the remaining regions, botRP; and P, exist. For us;

We use a stiffly stable semi-implicit, i.e., the linear terms<0, H; andH, intersect at double Hopf bifurcation points,
are treated implicitly while the nonlinear terms are explicit, with coordinatesu;=*—u3, u,=0. The two double

second-order projection scherfiel,25. For the space vari-

Hopf points coalesce fop;=0 at the tangent double Hopf

ables, we use a Legendre-Fourier approximation. More prepoint at the origin, and cease to exist fog>0.
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contained in regiornl), whereP; does not existP; is stable
M, above theN, bifurcation curve, and unstable below.
P2:(O,,u2—,u'f—,u3) exists only above thél, curve; its
Hz stability is given by the eigenvalues of the Jacobian matrix at
P2,

(a) u3 <0 @ L < (@a= ) pot n(pi+ pa) 0
P,

2 2 .
(it p3— p2) M1t g po

H, \@y n, The eigenvalues ard;=(a— 7)u,+ n(ui+us) and A,

@ 12 @ =ud+ uz— u,<0; P, is stable if and only if &— 7)u,

+ 9(u3+ u3)<0. Therefore we obtain another bifurcation
H,
i@

curve,Ny: o= (u3+ us) 7/(n—a); it is a Neimark-Sacker
M, bifurcation, where the periodic solutioR, bifurcates to a
two-torusP5. For consistency with the problem considered,
we will assumen>a; and as we have already assuneed
>0, we also havep>0. The parabolaN, is directed up-

H
2
wards, and intersectsl; and H, at the two double Hopf
bifurcation points forw;<<0, as can be seen in Fig(a4. For
@ u3=0 the three curvesl,, H,, andN, become tangent at
the origin[see Fig. 4b)] and foru;>0 they do not intersect
© "

any longer[see Fig. 4c)]. P, is stable above th#l, bifur-
cation curve, and unstable below.

In order to analyze the stability of the two-torus solution
P53, we introduce two auxiliary combinations of the param-
etersu;,

————

Iy
_ 1 2 _ n 2
g1= Mo~ —5a_l(ﬂl+us), gz—Mz__n_a(Mﬁ‘Ms)-

|
|
|
|
|
|
|
i
t
|
|
|

2 The N; and N, bifurcation curves obtained previously are
(¢) pu3 >0 given byg;=0 andg,=0, respectively. Writing?; and the
Jacobian matrix aP5 in terms ofg,, g, we obtain

H, @

|

!

; 1

i - —_ —

; H, P3-577_1[(7) a)g,, (da—1)g,],

@

1 —(n—a)g2  —n(n—a)g;

FIG. 15. Hopf bifurcation curves for as indicated. JP3: Sn—1\—d8(sa—1)g; —(sa—1)gy)

The eigenvalues.;, A, are the solutions of the quadratic
P,=(au,,0) exists only above thel; curve; its stability equation
is given by the eigenvalues of the Jacobian matrife gt

n—a da—1 ) (p—a)(sa—1)
N+ + - =0,
L —au, anu, 57]_192 57’_191 S—1 9192
P1 0 o= ps— 3= Sap,)” and satisfy
The eigenvalues ark;=—au,<0 and\;=u,— ui— u3 n—a Sa—1
— Sau,; Py is stable if and only if (1 6a) u,<ui+ us. N+ Ay=— 577_192— 577_191<0.

Therefore we obtain another bifurcation curvMg,:u,=

—(u2+ pug)/(6a—1); it is a Neimark-Sacker bifurcation

where the periodic solutioR; bifurcates to a two-toru®s. N (n—a)(sa—-1)
For consistency with the numerical results of the fluid prob- 12— Sn—1

lem considered, we will assum#a>1. The parabold; is

directed downwards, and intersedts andH, at the two  Therefore, sgn{;\,)= —sgn(@»—1). If 65—1>0, one of
double Hopf bifurcation points, as can be seen in Fig).4 the\; is positive, andP; is unstable; if67—1<0, both\;
For u3=0, N; does not play any role, because it is entirely are negative, an®; is stable. As in the problem considered

J102.
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here, the two-toru®; is never observed close to the tangenteral inequalities between the constaatsy, 6 appearing in

double Hopf bifurcation, and so we conclude th&—1  the normal form(11). They area>0, da>1, n>a, and

>0. P; only exists above both curvéé;, andN,, and itis dzn—1>0. They can be summarized as

unstable. The complete bifurcation diagram includifg,

H,, N4, andN, is shown in Fig. 4. Phase portraits including

the interconnections and stability of the solutidsin the

six different regions that appear in Fig. 4 are shown in Fig. 3.
During the preceding discussion, we have obtained sevand, in particular, the three constants are positive.

1
7,>a>3>0, (C1)
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