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Thermal and inertial modes of convection in a rapidly rotating annulus

David Pino, Isabel Mercader, and Marta Net
Departament de Fı´sica Aplicada, Mo`dul B4, Campus Nord, Universitat Polite`cnica de Catalunya, 08034 Barcelona, Spain

~Received 4 August 1999!

The nature of the primary instabilities that arise in a fluid contained in a fast rotating cylindrical annulus with
slightly inclined plane top and bottom boundaries, radial gravity, and internal heating is numerically analyzed.
It is shown that for moderate and high Prandtl numbers, the onset of convection is described by a competition
of azimuthal thermal modes with different radial structure, which dominate in different regions of the param-
eter space. By the combined effect of the inclined ends and rotation, there are modes that are attached to the
heated wall and slanted to the prograde direction of rotation, and others which are straight and fill the
convective layer. Nevertheless, for very small Prandtl numbers the velocity field of the dominant modes
corresponds essentially to the inertial solution of the Poincare´ equation, and the temperature perturbation is
forced by this velocity field. In addition, a detailed exploration of the critical Rayleigh numbers and precession
frequencies of the convective modes versus the radius ratio and the Coriolis parameter, for different Prandtl
numbers, is presented.

PACS number~s!: 47.27.Te, 47.20.2k, 47.32.2y
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I. INTRODUCTION

In many geophysical and astrophysical fluid systems,
global circulation is dominated by the existence of high
tation rates, moderate temperature gradients and, of cour
spherical geometry. The main difficulty in dealing with th
problem is the curvature of the layer, since it implies tackli
fully three-dimensional computations. For this reason, o
in the last decade have significant advances been achiev
this subject.

The first attempts to find the asymptotic dependence
the non-axisymmetric onset of thermal convection in se
gravitating spheres were of@1,2#. In the first paper, the au
thor looked for a normal mode solution of the equatio
concentrated in a layer close to some cylindrical surface w
a symmetric axial velocity about the equatorial plane. A
cording to the same method, in@2# it was shown that the
most unstable mode had to be antisymmetric, and the cri
Rayleigh number was first corrected. In addition, the aut
calculated the critical Rayleigh number by assuming that
Boussinesq fluid under very fast rotating conditions, the m
tion had to be dominated by the rotation, and conseque
the Taylor-Proudman theorem was almost fulfilled in a
geometry. Consequently the thermal convection in the sph
was treated as if it were the two-dimensional perturbation
a basic axisymmetric state~thermal wind! of a suitable fast
rotating annulus with inclined lids, which cut the sphere
the latitude that minimized the Rayleigh number, i.e. at ab
63°. This perturbation method gave rise to critical valu
different than the general asymptotic theory of@1,2# but de-
scribed the power dependence correctly. Furtherm
weakly nonlinear calculations of@3# hinted that the critical
Rayleigh numbers given by both theories underestimate
real value.

The results were compared with laboratory investigatio
of the onset of free thermal convection in fast rotating sph
cal shells and cylindrical annuli@4–6#, among others. In both
geometries, and in the range of parameters explored, the
tern of convection is columnar. The straight columns
PRE 611063-651X/2000/61~2!/1507~11!/$15.00
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aligned with the axis of rotation and maintain the tw
dimensionality, except at their ends, forced by the geome
and/or the boundary conditions. In the experiments, the c
vection is induced by a radially external heating, and
centrifugal force emulates the gravity field. The small re
gravity at first causes the formation of the axisymmet
state, which loses stability by breaking its rotation symme
The Spacelab experiment@7# avoided this state, and als
confirmed that the theory of@2# at least gives the correc
dynamic description of the convective mode. In the spa
the gravity was supplied by an electrostatic radial field. A
this experimental evidence led to the acceptance of the ro
ing annulus with radial gravity and inclined lids as the sim
plest model that retains the main general features of ther
convection in rotating systems.

The 3D numerical computations of@8,9# have also re-
cently revealed some important discrepancies between
own and @1,2# results. The estimation of the asymptot
power-law for the onset of convection at large Taylor nu
bers bears out the power dependence, but clearly states
the analytical coefficients give rise to critical Rayleigh num
bers and precession frequencies of the waves which are
der and over, respectively, those given by the numer
ones. In addition, for small Prandt numbers the structure
the marginal modes is not a tall column. If the fluid has
very small Prandtl number, it selects at onset an iner
mode attached to the outer wall, i.e., the pattern of conv
tion will be a short equatorially trapped vortex influenced
the existence of the curved outer boundary. Otherwise,
moderate small Prandtl numbers, the thermal columnar ro
by effect of the curvature and of the rotation, can spiral fro
the 63° latitude to the equatorial region, also departing fr
the annular constraint.

The disagreements at moderate small Prandtl num
were explained by the revised asymptotic theory of therm
convection in rapidly rotating systems of@10#. In this paper
the author used a unified formulation for self-gravitati
geophysical and centrifugal-force-driven laboratory syste
in the limit of weak inclination of the outer boundaries rel
1507 ©2000 The American Physical Society
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1508 PRE 61DAVID PINO, ISABEL MERCADER, AND MARTA NET
tive to the equatorial plane. He demonstrated that the s
rated formulations are identical at leading order, but at n
order differ in a term that depends on the Prandtl numb
The formulation leaves aside the outer trapped modes,
consequently agrees very well with@8# results. However the
asymptotic limit starts to fail for Prantdl numbers less th
0.1.

The model of the cylindrical annulus with opposite
sloping top and bottom boundaries, and heated from the
side, has been extensively used by Busse and co-worker
understanding some dynamical features observed in the
mospheres of Jupiter and Saturn, such as the band stru
of the major planets, and in general the dynamic of fast
tating systems. They use the small gap approximation,
by a perturbation method find a quasi-geostrophic solu
bifurcating from the purely radial conduction state that exi
if the ends of annulus are only slightly inclined. In this pap
we make use of a similar model, but retain the curvature
the side walls breaking the mid plane symmetry introduc
by the previous approximation. Because of this symme
breaking we are able to find spirally marginal modes of th
mal convection in annular geometry.

The rest of the paper is organized as follows. In Sec. II
introduce the formulation of the mathematical problem a
the numerical method used to solve it. In Sec. III we anal
the dissipationless problem and, wherever possible, the m
ginal convection modes are identified with the dominant d
fusive modes found in Secs. III A, III B, and III C for Prand
numbers 0.7, 7, and 0.025, respectively. Finally, the pa
closes with a discussion about our own and related res
and a summary of the results obtained in this paper.

II. MATHEMATICAL MODEL
AND NUMERICAL METHOD

We consider an annulus which is rotating about its axis
symmetry with angular velocityV. The gap width isd[r 0
2r i , wherer i andr 0 are the inner and outer radii, andL(r )
is the height of the layer, which is supposed to decre
outwards with an anglew, which is constant with respect t
the horizontal plane. The geometric parameters of the p
lem are the radius ratioh[r i /r 0, the aspect ratiob[L0 /d,
whereL0 is the mean height, andg5tanw. The inner and
outer side walls are maintained at constant temperatureTi
and T0, respectively, withTi.T0, and thermally insulating
boundary conditions at the top and bottom ends are ado

g] rT6]zT50, ~2.1!

with the plus sign being valid for the top end. The grav
vectorg(r ) is taken radially inwards. For the velocity field
no-slip lateral bounding surfaces

u5v5w50 on r 5r i , r 0 , ~2.2!

and because we are trying to find az-independent solution
stress-free ones on the slanted top and bottom ends are
posed,

~gD̃6]z!v50, ~2.3a!

~2a]z6] r !w1~a] r6]z!u50, ~2.3b!
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gu6w50 on z50, L~r !, ~2.3c!

wherea52g/(12g2), D̃5] r21/r and u5(u,v,w) refers
to the velocity field in cylindrical (r ,u,z) coordinates. As in
the preceding case, the plus sign is valid for the top bou
In fact, as we will see later, experimental and numerical
sults prove that this solution also exists in the core of
fluid with the realistic no-slip conditions. If so, according
@2#, s sinw@E1/4 and the weak vertical circulation generate
in the Ekman layers and confined near them can be
glected. In the inequality,E is the Ekman number ands the
Prandtl number defined below.

If g!1, and irrespective of the kinematic boundary co
ditions atz50, L0, there exists a basicz-independent con-
duction state

Tc~r !5DT

ln
r

r i

ln h
1Ti u50,

with DT5Ti2T0. The stability of this state will be de
scribed nondimensionalizing the Boussinesq Navier-Stok
mass conservation and energy equations by means of the
width, the temperature difference between the side bou
aries and the thermal diffusion timed2/k, wherek repre-
sents the thermal diffusivity. These equations, written in
rotating frame of reference, are

s21~] t1u•“ !u52“p1¹2u1RaQêr22s21V3u,
~2.4a!

“•u50, ~2.4b!

~] t1u•“ !Q5¹2Q2
r 21

ln h
u•êr , ~2.4c!

whereQ refers to the deviation of the temperature with r
spect to the conduction profile,Tc(r ). êr is the unit vector in
the radial direction, and Ra ands are respectively the Ray
leigh and Prandtl numbers defined by

Ra[
aDTged

3

kn
, s[

n

k
.

ge5^ug(r )2V3(V3r )u& is the effective gravity across th
convective layer, which is also assumed to be radially
wards and constant.a is the coefficient of thermal expansio
andn the kinematic viscosity.

In order to eliminate the pressure by using the inco
pressibility condition, and taking into account the periodic
of the annulus in the azimuthal direction, we assume tha

u5 f êu1“3~gêu1cêz!1“3“3~fêz!. ~2.5!

The potentialsf andg are related with the azimuthal averag
of the radial derivatives of the full potentialsc andf. Ac-
cording to @11,12# the linearized Eqs.~2.4! have been re-
placed by others written in terms of the velocity potential

~s21] t2¹̃2! f 52s21V]zg, ~2.6a!
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~s21] t2¹̃2!¹̃2g52Ra]zQ̄22s21V]zf , ~2.6b!

~] t2¹2!Q̄5
1

r ln h
]zg ~2.6c!

and

~s21] t2¹2!¹h
2c5

Ra

r
]uQ12s21V]z¹h

2f, ~2.7a!

~s21] t2¹2!¹2¹h
2f5Ra]zD1Q22s21V]z¹h

2c,
~2.7b!

~] t2¹2!Q52
1

r ln h S ] rz
2 f1

1

r
]uc D , ~2.7c!

where

¹h
25

1

r
] r~r ] r !1

1

r 2
]uu

2 ,

¹̃25
1

r
] r~r ] r !2

1

r 2
1]zz

2 ,

D15
1

r
] r~r !,

Q̄ being the zero azimuthal mode.
This system has been separated into two parts. The

one~2.6! corresponds to the axisymmetric case, and it sho
that a (u,z) independent velocity and temperature fields
not feasible.

It is known ~see@13,14#! that with boundary conditions
~2.3!, provided thatw50 and the rotation rates are hig
enough, the onset of convection is everywherez-independent
and w50, i.e., convection sets in as a thermal Taylor c
umn. With no-slip top and bottom boundaries, viscous
fects are only important in very thin Ekman boundary lay
@15#, and the flow remains nearly geostrophic. Furthermo
we have already seen that the experimental results@4,6#
showed that, with slightly inclined top and bottom ends,g
!1, the basic pattern of convection can be a columnar
muthal wave. Thus, we look for a primary quasi-geostrop
solution of Eq.~2.6!. For this purpose, as in@16#, we split the
functions into

c~r ,u,z,t !5c0~r ,u,t !1c̃~r ,u,z,t !, ~2.8a!

f~r ,u,z,t !5f̃~r ,u,z,t !, ~2.8b!

Q~r ,u,z,t !5Q0~r ,u,t !1Q̃~r ,u,z,t !, ~2.8c!

wherec̃,f̃ andQ̃ are orderg.
Then, at leading order,~2.2! and ~2.3! boundary condi-

tions can be written as

c05] rc05¹h
2f̃5Q050 on r 5r i , r 0 , ~2.9a!
rst
s

e

-
-
s
,

i-
c

] rz
2 c05

1

r
]uz

2 c05g
1

r
]uc07¹h

2f̃5]zQ050 on z50, b.

~2.9b!

The first, second, and fourth conditions of Eq.~2.9b! are
identically satisfied and only the third one will be relevan
As is shown in@17#, equivalence between~2.4! and ~2.7!
formulations requires an additional boundary condition at
lateral boundaries, which at leading order is also identica
satisfied,] rz

2 ¹h
2c050, and a gauge condition,f̃50, which,

like the third of ~2.9a!, only appears at higher order. In th
case, these conditions are not needed because Eq.~2.7b! does
not even appear for thez-independent flow, and the problem
can be formulated in terms of a stream function.

By substituting Eq.~2.8! into Eq.~2.7!, retaining the lead-
ing order terms in the limit of high rotation rates andg!1,
and averaging overz by using the third boundary conditio
of Eq. ~2.9b!, the equations are reduced to

~s21] t2¹2!¹h
2c05

Ra

r
]uQ01t

1

r
]uc0 , ~2.10a!

~] t2¹2!Q052
1

r 2 ln h
]uc0 , ~2.10b!

where we have defined the Coriolis parameter

t[
4Vng

b
,

andVn being the rotation rate in viscous units.
The boundary conditions are now

c05] rc05Q050 on r 5r i , r 0 . ~2.11!

These equations are solved numerically by expanding
eigenfunction (c0 ,Q0) in the form

c0~x,u,t !5est(
m,n

amnhm~x!einu, ~2.12a!

FIG. 1. Marginal stability curves of the dissipationless proble
for s50.7, t55000,n516, h50.5. The value ofl indicates the
degree of the dominant radial polynomial.
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FIG. 2. ~a! The critical Rayleigh number, and~b! the corresponding precession frequency as a function of the Coriolis parameter,t, for
s50.7, h50.5. ~c!, ~d! are enlargements of the same figure showing the region where the interchange of the two families of do
modes takes place. The value ofn indicates the azimuthal wave number.
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Q0~x,u,t !5est(
l ,n

g lnpl~x!einu, ~2.12b!

where Re(s) is the growth rate and Im(s) the precession
frequency of the wave, prograde if Im(s),0 and retrograde
if Im( s).0. The radial coordinate isx52r 2d, with d
5(11h)/(12h), and the integers (m,n) and (l ,n) indicate
the structure of the functions in the radial and azimut
direction respectively, i.e.,hm(x) and pl(x) are linear com-
binations of Tchebyshev polynomials,Tk(x), defined on the
interval @21,1#, which verify the boundary conditions. Th
radial base of the temperature will be

pl~x!52T0~x!1Tl~x! if l>2 even,

pl~x!52T1~x!1Tl~x! if l .2 odd,

and that of the stream function
l

hm~x!5S m2

4
21DT0~x!2

m2

4
T2~x!1Tm~x!

if m>4 even,

hm~x!5 1
8 ~m229!T1~x!2 1

8 ~m221!T3~x!1Tm~x!

if m.4 odd.

III. RESULTS

The linear stability problem is solved for experiment
Prandtl numberss50.025, 0.7, and 7, and a detailed expl
ration of these cases is made. All the results are prese
with the precession frequencies plotted in viscous units.

In order to identify the physical nature of the solutio
that may be present at the onset of convection, Fig. 1 sh
the marginal stability curves of the dissipationless probl
for a fluid of s50.7, t55000,h50.5, n516 ~the variation
of these parameters only gives quantitative changes in
figure!. The solutions that are over the curve labeled withl
52 correspond to basic solutions dominated by the low
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PRE 61 1511THERMAL AND INERTIAL MODES OF CONVECTION IN . . .
order polynomials,hm(x) and pl(x) of the expansions
~2.12!, while the small inner ones belong to solutions dom
nated by the higher order polynomialsl 53,4, . . . ,etc. Our
waves always travel counterclockwise because of the s
of the boundaries we have chosen.

The upper branch of each curve corresponds to wa
whose precession frequency tends to zero when the ra
temperature gradient decreases, indicating that they are
vective. On the other hand, the frequency of the waves o
the lower branches increases when the buoyancy force
creases, until the frequency of the Rossby waves,vR , at
Ra50, is reached. Therefore they are inertial waves. T
first waves are slow near this point because the buoya
force almost balances the ageostrophic part of the Cor
force, and they remain attached near the outer wall. For
second, the main balance is between the ageostrophic f
and the quick inertial oscillations, the buoyancy force pla
ing a secondary role. For Rayleigh numbers correspondin
frequencies nearvR/2, the three terms of the dissipationle
equation obtained from~2.10a! are of the same order. If th
Rayleigh number is increased, the marginal waves bec
unstable, and viscosity is needed to dissipate the energy
nished by heating.

Furthermore, we have compared the precession
quency,v, of the preferred modes of convection found in t
dissipative stability analysis@see Fig. 2~b!, Fig. 6~b!, and
Fig. 10~b!# with the frequency,vR , of the Rossby waves o
the Poincare´ equation. Table I contains both frequencies
the dominantn mode that exists att55000, h50.5 and
everys explored. Notice that Fig. 1 only gives informatio
about thes50.7 case, because it is plotted forn516. The
vR values for the other Prandtl numbers have been obta
from the equivalent figures plotted for the dominant mod
n57 if s50.025, andn517 if s57. As predicted at this
high rotation rate the agreement is very good for small v
cous flows, indicating that in low Prandtl number fluids t
oscillating modes are mainly of inertial type. A similar resu
was found by@9# for a spherical shell. By means of a pertu
bation analysis in the limit of high rotation rates, the auth
showed that the onset of convection is to leading order

FIG. 3. Contour plots of the temperature perturbation cor
sponding to dominant modes of the same azimuthal wave num
n513 for the parametersh50.5, s50.7,~upper half! t53000 and
~lower half! t56000.
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inviscid inertial wave and that the thermal field plays a p
sive part. At next order it is enough to maintain the wa
against viscous dissipation, i.e., the dynamics is induce
onset by the Coriolis term. Ifs50.7, the frequency of the
oscillations is close tovR/2. Finally, for higher Prandtl num-
ber fluids, the diffusion term becomes of the order of t
ageostrophic and buoyancy terms. ThenvR andv are very

-
er

FIG. 4. ~a! Marginal stability curves of the first threen516
azimuthal modes with different radial structure for the parame
h50.5, s50.7. The solid, dashed and dotted lines correspond
modes withl 52, l 53, andl 54 radial structure, respectively.~b!
Contour plots of the temperature perturbation in thec, d, e points
labeled in 4~a!. In the clockwise direction starting from the top
~first third! t51000, ~second third! t55800 and~third third! t
59000.

TABLE I. Comparison of the precession frequencies,v and
vR , of the preferred modes of convection for the dissipative a
dissipationless problems, respectively. All the frequencies are
pressed in viscous units. The parameters aret55000, h50.5.

s vR v n

0.025 2730 2678 7
0.7 2437 2241 16
7 2417 242 17
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FIG. 5. ~a! The critical Rayleigh number, and~b! the corresponding precession frequency as functions of the radius ratio,h, for s
50.7, t58000. ~c!, ~d! are enlargements of the same figure showing the region where the interchange of the two families of do
modes takes place. For clarity, only dominant modes have been plotted.
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different, and it is not possible to identify the domina
modes of the dissipation problem with those of the dissi
tionless one. We call the marginal waves that appear at o
for moderate and high Prandtl numbers thermal modes,
cause both rotation and temperature effects are neede
destabilize the conduction state.

A. Moderate Prandtl numbers

As an example of moderate Prandtl number, we h
takens50.7. Figure 2 displays the Coriolis parameter d
pendence of~a! the critical Rayleigh number, and~b! the
precession frequency for a radius ratioh50.5. The labelsn
indicate the azimuthal wave number, and the heavy line
the frequency curves represents the precession frequen
the dominant solutions at any rotation rate. This notation
followed throughout the paper.

The cusps in the Rayleigh number figure and the jum
between thin lines in the frequency figure are due to chan
of eachn mode to another of the same azimuthal wave nu
ber, i.e., there is a multiplicity of azimuthal modes gathe
in families that can dominate for a different range of para
-
et
e-
to

e
-

f
of

is

s
es
-

d
-

eters. In this case, the same family of azimuthaln modes
dominates sequentially, and as can be clearly seen in F
2~c! and 2~d!, which are enlargements of Figs. 2~a! and 2~b!
near t55500, there is a family crossing att55628 that
produces a backward jump of the dominant azimuthal w
number fromn517 ton513. In consequence, there are tw
solutions with the same wave numbern513,14,15,16,17,
one of each family, which dominate at different rotatio
rates. The structure of these modes is shown in Fig. 3, wh
the contour plots of the temperature perturbation forn513,
~upper half! t53000 and~lower half! t56000 are drawn.
The first one is analogous to the solutions found by@18# in
the limit of the small gap approximation with the sam
boundary conditions. In spite of the existence of the Corio
force, they nearly maintain the reflection symmetry in ver
cal planes that contain the axis of rotation, i.e., they are c
nected to the Taylor columns that exist with horizontal lid
g50 ~see@13,14#!. On the other hand, the second one is
very tilted structure to the prograde direction of the wave a
it has clearly broken this reflection symmetry. It can never
found in the small gap approximation, because with this
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PRE 61 1513THERMAL AND INERTIAL MODES OF CONVECTION IN . . .
proach, all the dominant eigenfunctions have a reflect
symmetry in the mid plane of the layer. This fact is in agre
ment with the finding that tilted modes are dominant
higher Coriolis parameters when the radius ratioh→1. For
example, if h50.7, the family crossing takes place fort
513367, but forh50.3 it occurs fort53353. Another im-
portant property of the second family of solutions is that
vortices remain attached to the heated boundary of the a
lus. To understand the nature of these dominant modes
present in Fig. 4~b! the contour plots of the temperature pe
turbation of the pointsc, d, and e of Fig. 4~a!. This figure
shows the Rayleigh number of the three firsts azimuthan
516 modes versus the Coriolis parameter. The solutions
beled asa andb at t51000 andt59000 look like those of
the upper and lower parts of Fig. 3, respectively. As can
seen in the contour plot of pointc, the secondn516 mode
corresponds to a solution dominated by thel 53 radial poly-
nomial, which becomes tilted by the effect of rotation~see
the contour plot of pointd), when the rotation rate is in
creased. Finally, at very fast rotation rates this double colu
nar pattern is destroyed~see lower part of Fig. 3! and con-

FIG. 6. ~a! The critical Rayleigh number, and~b! the corre-
sponding precession frequency as functions of the Coriolis par
eter,t, for s57, h50.5.
n
-
r

e
u-
e

a-

e

-

vection remains confined to the inner boundary. By contr
the contour plot of pointe shows that the rotation also affec
the highn solutions with basic radial structure correspondi
to l 52, but the effect is less spectacular because the ra
dependence does not change. In the range of parameter
plored, dominant modes with triple layer structurel 54 ~dot-
ted line! have not been found.

Figure 5 displays the radius ratio dependence of~a! the
critical Rayleigh number, and~b! the precession frequenc
for a Coriolis parametert58000. In these figures, the sep
ration between the central lines is due to the fact that o
dominant modes have been plotted. As in the preceding c
~c! and~d! are, respectively, the enlargements of~a! and~b!,
now around the pointh50.605, where a forward jump from
n521 to n527 is detected, so azimuthal modesn
522, 23, 24, 25, and 26 are never dominant. This value
been calculated up to an error of 0.02% and the gap of
muthal modes is always maintained. Fors50.7 and h
>0.15, the jumps exist for all the values oft explored, pro-
vided thatt>2300, i.e., the smaller thet is, the smaller the
h value for which the forward jump happens. It is importa
to point out that the preferred modes of convection forh
,0.605 are wall attached and slanted azimuthal modes
those of the lower part of Fig. 3, while ifh.0.605, the
preferred modes of convection are straight columns~see the
upper part of Fig. 3!. Nevertheless, now, depending on th
rotation rate, slanted modes can now come from modes w
the basic radial structurel 52, or from modes with basic
radial structurel 53 at t→0. For example, in Fig. 5 domi-
nantn54, . . . ,10modes come froml 52 modes whent is
decreased to low enough values, while dominantn
511, . . . ,21modes arel 53 modes at any value oft. So at
h50.35 there is also an interchange of solutions, which c
not be easily detected because the plots of the domin
eigenfunctions closely resemble each other. Moreover, at
very high value oft, there is no multiplicity of the modes
n54, . . . ,10 ofFig. 5, but they are continuously changin
from an l 52 slanted mode to thel 53 straight mode, which
has to exist forh values near one. In general, at a fixedt,
low n slanted modes arise from single changing mod
while high n slanted modes arel 53 solutions of the prob-

-

FIG. 7. Contour plots of the temperature perturbation for
parametersh50.5, s57, ~upper half! n514, t52000 and~lower
half! n520, t59000.
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lem. The results of@19# for a fluid of s51, t52800 agree
qualitatively well with those for the width gap describe
above. The authors used the small gap approximation w
stress-free side boundary conditions, and expressed the
vature of the end surfaces by means of a point depen
tangent of the angle of inclination of these surfacesg
5g0@11e f (x)#, where g0 is a small constant. Withe
50.75, by increasing the wave number, they also found
transformation of the radial structure of a fixed azimuth
mode. This is what they called the switch-over phenomen

B. High Prandtl numbers

All the results presented in this subsection correspon
fluids of s57, but we have checked up tos5100 that the
marginal stability curves plotted versus the Coriolis para
eter in Fig. 6~a!, and the corresponding frequencies in F
6~b!, are essentially the same for all the fluids included
this range of Prandtl numbers. In general, due to the diss
tion, the scale of convection is very small, even for an int
mediate width of the gap. Now the azimuthal modes do
nate, increasing successively fromn511 to n522. They
have a low precession frequency and always maintain

FIG. 8. ~a! The critical Rayleigh number and~b! the correspond-
ing precession frequency as functions of the radius ratio,h, for s
57, t58000.
th
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nt

e
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to
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samel 52 radial structure. Figure 7 shows the contour plo
of the dominant temperature perturbation fort52000 in the
upper half of the figure and fort59000 in the lower half.
Now, the differences between both halves are caused jus

FIG. 9. ~a! Marginal stability curves versush of the first three
n514 azimuthal modes with different radial structure for the p
rameterst58000,s57. In a clockwise direction starting from th
top, ~b! contains the contour plots of the temperature perturbatio
the points labeleda, b, andc in h50.4 of Fig. 9~a!, and~c! those
in the pointse, f , andd for h50.8.
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a continuous increase in the radial phase shift,w(x), and the
inner confinement of the amplitudeA(x) of the (l 52, n)
azimuthal wave

fn~x,t !5A~x!sin@nu1vt1w~x!#,

for the highest values oft. As a result, convection become
attached to the inner wall and its radial scale tends to
comparable to the azimuthal scale.

In contrast to the preceding case, Figs. 8~a! and 8~b!,
which display the critical Rayleigh number of the first dom
nantn modes and their corresponding frequencies versus
radius ratio, show that for narrow gaps the crossing betw
families of azimuthal modes only drops low enough to su
gest that for another Coriolis parameter the second azimu
mode could be selected at onset. Surprisingly, the con
plot of its eigenfunction makes it clear that it belongs to t
l 54 radial structure, i.e., it fills the layer forming a trip
column. In order to find out what happens with the miss
l 53 mode, the first threen514 modes are presented in Fi
9~a! as a function ofh. On this figure we have labeled, o
the left and right of the curves, the radial structure of ev
mode at the ends of the interval. The labels of the fig

FIG. 10. ~a! The critical Rayleigh number, and~b! the corre-
sponding precession frequency as functions of the Coriolis par
eter,t, for s50.025,h50.5.
e

he
n
-
al
ur

g

y
e

show that thel 54 mode maintains its radial structure alon
the dotted curve. It is preferred for 0.65,h,0.87, but then
it is superseded by the solid line of the, at first,l 52 mode,
which continuously changes to thel 53 mode, which in turn
exists for h→1. The cusp in this curve just indicates th
zone where the transition has clearly finished. On the ot
hand, thel 53 mode ath50.1 transforms into thel 52
mode ofh→1. Consequently, it seems very difficult for a
l 54 radial mode to become dominant at onset in the sm
gap approximation. These modes become distorted in
same way as then54, . . . ,10modes found fors50.7. In
order to see this, we present in Figs. 9~b! and 9~c! the con-
tour plots of the six solutions labeled on Fig. 9~a! at h
50.4 and ath50.8, respectively. On the left (h50.1), all
modes are initially almost straight becausen514 is high
enough, but the plots ofa ande, placed at the top show tha
when h is increased, the column attaches to the inner w
and tilts until the double column similar to that ofs50.7 is
formed. Next, in a clockwise directionb and f display the
opposite change. While the almost existent reflection sy
metry in vertical planes is absolutely broken, the inner c
umn starts to diminish. This situation favors the connect
of the two vortices and the formation of a single one. T

-
FIG. 11. ~a! The critical Rayleigh number, and~b! the corre-

sponding precession frequency as functions of the radius ratioh,
for s50.025,t58000.
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plots of modes labeledc and d show the aforementione
distortion of thel 54 radial mode.

As a final clarification, in the same case ass50.7, the
low n-modes become slanted at lower rotation rates than
higher ones. So, ath50.1 not all the modes are necessar
slanted, as in the case ofh→1, where this is imposed by th
mid plane symmetry of the layer.

C. Small Prandtl numbers

Figures 10 and 11 display the results obtained with
small Prandtl numbers50.025, for the same range of pa
rameters as those in Figs. 2 and 5. We have caref
checked for a wide range of parameters that all the mo
correspond to the inertial solutions of the two-dimensio
Poincare´ equation, and that at any rotation rate or radius ra
they are columns that almost maintain the reflection sym
try in vertical planes, in addition to having the simplesl
52 radial structure. As expected, Fig. 10~a! shows that the
azimuthal scale of convection is greater for small Pran
numbers than for moderate ones. This happens becaus
precession frequency of the waves is so fast that at h
rotation rates the frictional forces are not needed for bala
ing the ageostrophic term of the equation. Beyond their
ertial origin, we have not found any similarity between the
columnar modes and the equatorially trapped solutions fo
by @9,20# in rotating spherical shells with internal heatin
According to@21#, the latter are dominant whenT&1.7s24,
whereT is the Taylor number. So for anys number one can
find a rotation rate that gives rise to another form of conv
tion. The condition of three-dimensional convection r
stricted to low latitudes fails at not very high Taylor num
bers; the spiraling columnar mode then becomes domin
Consequently, the transition from inertial to thermal conv
tion is abrupt. However in annular rotating convection, fo
fixed small enough Prandtl number, the same inertial mod
preferred at any rotation rate. Furthermore, as far as we h
been able to ascertain, there is a continuous change from
convective mode to another. It seems unlikely that su

FIG. 12. Radial phase shift of the traveling wave,w(x), for
dominantn modes fort52000 andt510000. The other fixed pa
rameters areh50.5 ands57 solid line,s50.025 dotted line, and
s50.7 dashed line. The slope of the curves is related to the ra
inclination of the columns.
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strong discrepancies could only be due to the different h
ing, since the inertial wave exists independently of the te
perature gradient.

IV. DISCUSSION

We have seen that in a fast rotating annulus, such as
rotating spherical shell, the onset of convection depe
strongly on the Prandtl number. A physical distinction h
been made between the hydrodynamic instabilities domin
at small Prandtl numbers and the essentially thermal in
bilities dominant at moderate and highs values.

To summarize the effect of rotation on the domina
modes of convection, we have plotted in Fig. 12 the funct
w(x), defined in Sec. III B, versus the radial coordinate f
some dominant modes of the three Prandtl numbers
sented in this paper, at a low and a high Coriolis parame
The dotted lines ofs50.025 are almost constant, exce
near the side wall, and the slope of those correspondin
s57,0.7 for t52000 is so small that in any case the co
umns nearly maintain the reflection symmetry in vertic
planes. Fort510000, the slope of radial phase shift
dw(x)/dx>1, indicating that there is a continuous stra
from columnar to slanted modes with rotation. This last ca
fulfills the condition of spiraling columnar convection de
fined in @8#, but according to the asymptotic theory of the
mal convection in rapid systems of@10# and to the numerica
results of@8#, in spherical geometry, the smaller the Pran
number, the stronger the spiral effect. So the annular
proach for the study of convection in self-gravitating bod
makes sense if the onset of convection can be describe
onset by columnar not very strong spiral convection. If n
the morphology of the preferred modes and the subseq
dynamics would be completely different. Obviously, th
limit of validity depends on the rotation rate.

We have also compared the power laws of the criti
Rayleigh number and the precession frequency estim
from our numerical results with

Rac5C~s!t4/3 and vc5C~s!t2/3,

obtained in@19# for the small gap approximation. Withs
57,0.7,h50.5, we have found a power of 1.26 for Rac and
one of 0.69 forvc , which agree very well with the law
However, withs50.025, the results are 0.76 for Rac and
0.89 for vc , which differ greatly. We assume that this
because a Rossby wave is in fact a topographic wave, a
small variation in the geometry of the domain has a stro
influence on all its characteristics. Whereas a convective
is caused by a thermal instability, and if the boundary co
ditions allow the same type of bifurcation, roughly speakin
the geometry only produces minor changes in the coe
cients of the power laws and the deformation of the colum
So, the narrow gap approximation and the annular geom
must be used carefully with small Prandtl numbers.

From our own and other published results, we have e
mated that fors*O(1), themarginal modes of convection
are thermal weakly spiraled columns in spherical and ann
geometries. For this reason we have presented a detaile
scription of the radial and azimuthal dependence of the th
mal modes with the gap width and the Coriolis parameter

ial
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is worth pointing out that we have found dominantl 52,3
slantedx-modes in the linear regime, and some indicatio
that even thel 54 could be dominant for other paramete
With a fixed value of the radius ratio, the spirally modes a
preferred at very high rotation rates, while with a fixed ro
tion rate they are preferred for small radius ratios. Theref
the rotating effect on the large azimuthal scales of conv
tion is stronger.

The competition of azimuthal modes with a non ba
radial structure is an indication of the tendency of the fluid
split the convective zone into layers of distinct structure
o-

,

m

s
.
e
-
e
c-

the nonlinear regime. The linear stability analysis of the no
linear solutions and the time-dependent evolution of m
complex regimes should lead to a better understanding
convection in rotating systems.
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