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Resonant mode interactions in Rayleigh-Be´nard convection
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In systems with midplane reflection symmetry the dominant spatial resonance is the 1:3 resonance. Numeri-
cal continuation is used to study this and other 1:2k11 resonances in two-dimensional convection between
no-slip perfectly conducting horizontal plates. Periodic boundary conditions are imposed in the horizontal.
These resonances influence the process of wave number selection at moderate Rayleigh numbers through the
generation of hybrid solutions, and thereby modify the Eckhaus picture of wave number selection. Unlike the
better known mixed modes the hybrid solutions have the same symmetry as a pair of primary rolls. Both hybrid
and symmetry-breaking mixed modes are computed and their linear stability properties with respect to pertur-
bations preserving different spatial periods are determined. A complete description of the effects of midplane
reflection on wave number selection emerges. Only steady solutions are considered and the Prandtl number is
fixed ats510. @S1063-651X~98!05709-2#

PACS number~s!: 47.20.Ky, 05.45.1b
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I. INTRODUCTION

The generation of mean flows by Reynolds stresses
problem of fundamental importance in fluid dynamics. A
though of primary importance in the theory of turbulence a
turbulent convection, closely related issues arise in conn
tion with ordered structures such as are present in convec
at moderate Rayleigh numbers. Many studies of convec
employ the analytically convenient stress-free boundary c
ditions at top and bottom. The resulting system is then
variant under Galilean boosts, i.e., the boundaries do
select a preferred rest frame. As a result convection rolls
neutrally stable with respect to such boosts, and the solut
are only defined up to an arbitrary constant horizontal vel
ity. For spatially periodic patterns this arbitrariness is of
consequence. However, spatially inhomogeneous patt
can drive horizontal mean flows, and do so arbitrarily clo
to onset of the primary convective instability. With no-sl
boundary conditions at top and bottom the system is
longer Galilean invariant and the excitation of mean flo
becomes harder. Such flows are now the result of secon
symmetry-breaking instabilities@1#. Typically these arise as
a result of a coherent tilt of the convection cells; such a
generates a nonzero Reynolds stress, which in turn drive
associated mean flow. This mechanism is well known a
has been explored in several different contexts@2,3#. It is
particularly important when the cells arenarrow @4,5#. In the
studies mentioned above the cell width is imposed arbitra
and is smaller than that predicted on the basis of linear
bility theory of the conduction state. The question theref
arises whether there are mechanisms responsible for ge
ating mean flows that operate for cells of the naturally p
ferred scales. To this end we investigate secondary bran
arising from the interaction of two distincthorizontalmodes.
We find that, depending on their symmetries, some of th
are accompanied by large-scale mean flows, while oth
are not. This mechanism for mean flow generation
distinct from the coherent tilt alluded to above, which com
PRE 581063-651X/98/58~3!/3145~12!/$15.00
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about from the excitation of the secondvertical mode of the
system.

With this motivation in mind we focus on two
dimensional Rayleigh-Be´nard convection with periodic
boundary conditions in the horizontal, choosing a large s
tial period compared to the period of the primary roll patte
Since we impose identical boundary conditions at the top
bottom, the resulting system has an additional midplane
flection symmetry. The usual perception is that this symm
try is irrelevant in two dimensions. We show here that
laterally unbounded systems this is not in fact so. This
because of the role played by spatial resonances. The
quirement that the amplitude equations commute with
midplane reflection symmetry changes the structure of
1:2 resonance and gives the 1:3 resonance unexpe
prominence. This is sodespitethe fact that the 1:2 resonanc
occurs at lower Rayleigh numbers, and is a consequenc
the fact in the 1:2 resonance the midplane reflection sym
try pushes the resonant terms to fifth order@6,7# thereby
destroying much of the dramatic behavior present in the
neric case@8#. In particular, pure modes with wave numbe
n51,2 now bifurcate from the conduction state. In contra
the 1:3 resonance is unaffected by the midplane reflec
and the resonant terms enter at third order. As a consequ
then51 mode becomes ahybrid state and the effects of thi
resonance much more dramatic. This is because then51
and n53 states have the same symmetry properties and
interact much more strongly than the correspondingn51
and n52 states in the 1:2 interaction. In this paper we e
amine the role played by the 1:3 resonance and show th
and other odd:odd resonances play a major role in stabiliz
different types of solutions. For the study we employ sy
metric no-slip boundary conditions at the top and bottom
do not impose any restrictions on the parity of the solutio
in the vertical. We identify two types of steady solution
those with the same symmetry as the primary rolls~hereafter
referred to ashybrid solutions! and those that break this sym
metry ~hereafter referred to asmixedsolutions!. The former
3145 © 1998 The American Physical Society
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involve a contribution from two odd modes which vari
gradually with the bifurcation parameter, and may arise i
primary bifurcation. The latter are only produced in secon
ary bifurcations but may be accompanied by mean flo
Although none of the nonzero-mean-flow solutions are sta
at the low to moderate Rayleigh numbers considered, we
that they play a critical role in the stabilization of variou
solution branches that are unstable near onset, and as a
obtain a fairly complete understanding of the multiplicity
coexisting solutions near onset. We do not consider here
large Rayleigh numbers studied by Pratet al. @5# at which
oscillations set in.

The present paper sheds considerable light on the pro
of wave number selection far from onset. Close to onset
process is described by the Ginzburg-Landau equation.
resulting Eckhaus picture of wave number selection is ba
on the sideband instability of plane wave solutions of t
equation within their domain of existence. The Busse ‘‘b
loon’’ summarizes the extension of calculations of this ty
to larger amplitude rolls and hence to larger values of
Rayleigh number Ra. However, all such calculations
based on the stability properties of a single roll state w
wave number near the critical wave numberkc . Conse-
quently spatial resonances are absent from the anal
Moreover, the possibility that the roll state becomes unsta
to instabilities generating mean flows is also not conside
In this paper we find that both of these complications
come important as the Rayleigh number is increased,
that both modify the stability properties of the basic roll sta
in new ways. The paper can be thought of as a generaliza
of the work of Mizushima and Fujimura@9# ~hereafter re-
ferred to as MF! on the 1:3 resonance with no-slip bounda
conditions. These authors were the first to observe, usin
coupled amplitude equation description, that the resona
modified the type and multiplicity of solutions present abo
threshold, and concluded that the Eckhaus picture of w
number selection was oversimplified. However, the MF
proach suffers from the limited validity of the amplitud
equations employed. In addition these equations were c
structed only for modes of like parity in the vertical. In th
present paper we avoid both limitations by eschewing
amplitude equation approach entirely and resorting to
merical continuation techniques to follow solution branch
from threshold towards higher Rayleigh numbers. Th
techniques enable us to trace the stability changes either
increasing Ra or with increasing spatial period and to id
tify the secondary states produced in the resulting bifur
tions. We compute such secondary states and classify t
according to their symmetry properties and associated m
flows. The outcome is a fully nonlinear picture of wave nu
ber selection in systems with midplane reflection symme
This picture resembles that put forward for the Eckhaus
stability in Ref. @10# but includes additional destabilizin
mechanisms absent from the Ginzburg-Landau descripti

The paper is organized as follows. In Sec. II we derive
equations and describe the method used to determine
the primary roll states in the fully nonlinear regime and th
stability properties. The results for Prandtl numbers510 are
presented in Sec. III. In Sec. IV we provide a theoreti
explanation of some of our results. The paper concludes w
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a discussion in Sec. V. The essential group-theoretic con
erations are summarized in two Appendixes.

II. THE EQUATIONS AND THEIR ANALYSIS

We consider two-dimensional Boussinesq thermal c
vection in a periodic horizontal layer and include the pos
bility of generating a nontrivial mean flow. Consequent
we split the solenoidal velocity fieldv(x,z,t) into its mean
and fluctuating components,

v5U~z,t !1v8~x,z,t !,

where U5(U,0), v85(2]zx8,]xx8) and v85x850, with
the overline indicating an average over the horizontal peri
The temperatureT(x,z,t) is written as

T5 1
2 2z1u~x,z,t !.

Equations forU, x8, andu are obtained from the horizonta
average of the Navier-Stokes equations, the deviation of
vorticity equation from its horizontal average, and the h
equation. In nondimensional form, we obtain

~] t2s]zz
2 !U1]zvx8vz850, ~1a!

~] t1U]x2s¹2!v81Ra s]xu1]zz
2 U]xx8

1
]~x8,v8!

]~x,z!
2

]~x8,v8!

]~x,z!
50, ~1b!

~] t1U]x2¹2!u2]xx81
]~x8,u!

]~x,z!
50, ~1c!

wherev852¹2x8, lengths and time have been expressed
units of the layer depth and thermal diffusion time in t
vertical, respectively, and Ra ands are the Rayleigh and
Prandtl numbers. The boundary conditions are taken to
periodic inx with periodL and no-slip, perfectly conducting
in z:

U5x85]zx85u50 at z56 1
2 . ~1d!

The equations are thus defined on the domain (x,z)P@0,L#

3[ 2 1
2 , 1

2 ]. The resulting problem is solved numerically u
ing a spectral Galerkin-Fourier technique inx and colloca-
tion Chebyshev inz @11#.

Equations~1! are equivariant under the two reflections,

R0 : ~x,z!→~2x,z!, ~U,x8,u!→~2U,2x8,u!,
~2a!

k: ~x,z!→~x,2z!, ~U,x8,u!→~U,2x8,2u!,
~2b!

and translations through a distancel ,

Tl : ~x,z!→~x1 l ,z!, ~U,x8,u!→~U,x8,u!. ~2c!

The reflection~2a! is with respect to an arbitrarily chose
origin in x; reflectionsRl 0

with respect to a planex5 l 0, say,

are obtained by conjugation:Rl 0
5Tl 0

R0T2 l 0
. These symme-

tries generate the symmetry groupG5O(2)3Z2. The con-
duction stateU5x85u50 is invariant under this group
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The primary instability of this state is to a nontrivial roll sta
(0,x8,u) that breaks the translation symmetryTl but is in-
variant under a reflectionRl 0

for an appropriatel 0 and the

shift-reflect operationTa/2k, where a[L/n is the pattern
wavelength~see Appendix A!. Each of these symmetries is
generalized reflection in the sense that its square is the i
tity. It follows that the symmetry group of such a roll state
G[Z23Z25D2, a subgroup ofO(2)3Z2 @5#. In contrast
an individual roll is invariant only under a 180° rotation. F
a pattern with a node atx50 this symmetry isP5Ra/4k and
is sometimes referred to as apoint symmetry. This symmetry
acts on the fields as follows:

P: ~x,z!→S a

2
2x,2zD , ~U,x8,u!→~2U,x8,2u!.

~2d!

Note thatP5R0Ta/2k ~sinceTl 0
R0Tl 0

5R0) and soPPG.

In the following we shall use the symbolR to refer to the
reflectionRl 0

for suitable l0.

Note that the symmetryR of the primary flow implies that
no mean flow is present:U(z)[0. This is not necessarily s
for the states produced in secondary bifurcations from
primary rolls, as discussed below. These bifurcations ty
cally break the symmetryG of the roll state and we summa
rize in Appendix A the various possible ways this can ha
pen.

Numerically, the presence ofD2 symmetry implies that a
roll state of wavelengtha can be written in the form

x~x,z!5 (
k51

K

(
m50

M

xkmf m~2z!sin~kax!,

u~x,z!5 (
k50

K

(
m50

M

Tkmgm~2z!cos~kax!,

relative to a suitable origin. Herek1m is odd,a52p/a and
the f m(2z), gm(2z) are suitable combinations of Chebysh
polynomials satisfying the boundary conditions. If the spa
period L is fixed atL5a the above expansion describes
single pair of rolls bifurcating from the conduction state a
given critical Rayleigh number; this Rayleigh number is t
same for two pairs of rolls bifurcating in a container of twi
the length,L52a, etc. As a consequence, one can obtain
neutral stability curve forn pairs of rolls from that for a
single pair of rolls in a domain of widthL simply by replac-
ing L with nL ~see Fig. 1!. Thusn5L/a measures the num
ber of roll pairs in a given spatial period; it is also the wa
number of the state. We say that a~spatial! resonance occur
when two different multiroll solutions bifurcate simulta
neously from the conduction state. This situation cor
sponds to the intersection of different neutral stability curv
in Fig. 1. In the following we refer to the intersection of tw
such curves with wave numbersn1 ,n2 as ann1 :n2 reso-
nance. Note that the first such intersections that are enc
tered always involveadjacentwave numbers (un12n2u51).
However, despite the fact that the 1:2k11, k51,2, . . . ,
resonances are shielded~see Fig. 1!, they are responsible fo
a number of states found in the fully nonlinear regime,
described in Sec. III.
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In order to study the stability of a multiroll solution, say
periodic solution withn pairs of rolls each of lengtha, we
must consider all perturbations with periodna. The basic
solution has perioda and hence the associated linear ope
tor also has perioda. From Floquet theory we know that th
set of perturbations can be split up as@12#

$wm~x,z!eidmaxelmt%m50, . . . ,n21 , ~3a!

where

wm~x,z!5wm~x1a,z!, ~3b!

anddm5m/nP@0,1).
The cased050 corresponds to the study of the stability

a single pair of rolls~the n51 case! since the perturbations
all have the same perioda as the rolls. In this case, as show
in @5#, the perturbations split further into four invariant su
groups. Two of these generate solutions with nonzero m
flow U(z), one with the symmetryP and the other with
symmetryTa/2k ~see Appendix A!. It follows from Eqs.~2!
that in the former case the associated mean flow has an
tisymmetric profile while in the latter the profile is symme
ric. The remaining two perturbation types produce solutio
that are invariant underR andG, respectively, and hence d
not generate mean flows.

In the casedÞ0 the basic perioda is now broken and a
new pattern with a larger period emerges. If the linear ope
tor describing the stability problem is real, the eigenfunctio
for the problem withdm can be obtained by conjugatin
those withdn2m ; moreoverlm5l̄n2m . In this case it suf-
fices to consider perturbations withdmP(0,1/2#,

dm51/n, . . . ,1/2.

In the present problem, the invariance of the primary r
solution under the reflection symmetryR imposes the stron-
ger requirementlm5ln2m , with the corresponding eigen
functions related byR.

These instabilities produce secondary branches of s
tions with smaller symmetry. Since these solutions may
associated with mean flows we now write

FIG. 1. Marginal stability curves for several multiroll solutions
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U~z!5 (
m50

M

Umgm~2z!,

x~x,z!5 (
k52K

K

(
m50

M

xkmf m~2z!eikax,

u~x,z!5 (
k52K

K

(
m50

M

Tkmgm~2z!eikax,

where nowa52p/L. The stability of these solutions is ca
culated as for theD2-symmetric rolls except that now th
perturbations for thed050 case no longer split into fou
subgroups.

Since all solutions of interest in this paper are steady
solve Eqs.~1! using a Newton-Raphson iterative schem
with K<12,M<24. This resolution suffices for the mode
values of the Rayleigh number considered. The stab
properties of the resulting solutions are determined by s
ing the linear stability problem for the perturbations~3!.

III. RESULTS

This section is divided into two parts. In the first w
show, for fixed Rayleigh number, the effect of the 1:2k11
resonances on the generation of steady solutions that
the same symmetries as the primary convection rolls. In
second part, we choose two values of the spatial period c
to L* 53.647~for which the 1:3 resonance takes place!, and
consider the influence ofother resonances as the Rayleig
number is increased. All results are obtained for Pran
numbers510.

A. Transitions at constant Rayleigh number

Primary roll solutions consisting of a single pair of rol
(n51) have been calculated at Rayleigh number Ra53000
and their stability analyzed. One expects that such solut
do not exist if the imposed spatial periodL is either too small
or too large, for a fixed value of Ra. This expectation
borne out in Fig. 2, which shows the amplitude of the

solutions@as measured bye[ 1
2 vx

2(x5 L
4 ,z5 1

4 )# as a func-
tion of the spatial periodL; dashed lines represent unstab
solutions and solid lines stable ones. However, the fig

FIG. 2. Amplitudee[(1/2)vx
2(L/4,1/4) of steadyn51 solu-

tions as a function of the spatial periodL for s510, Ra53000.
Solid ~broken! lines denote stable~unstable! solutions. Only
G-symmetric solutions are shown.
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also reveals that the situation is more complex. The fig
reveals the presence of two peaks, the higher peak consi
of two families of solutions denoted byA1 andA2 and sepa-
rated by a turning point~saddle-node bifurcation!. The lower
peak corresponds to a family of solutions denoted byB; A2
and B are always unstable. For some periodsL all threen
51 solutions coexist. TheA2 and B branches bifurcate to
gether from a branch ofn53 multiroll solution~not shown!
as discussed further below.

For this value of the Rayleigh number our results ag
with those obtained by MF. However, at larger Raylei
numbers they begin to differ. For example, at Ra56000, the
bifurcation diagram for then51 steady solutions looks like
threepeaks~see Fig. 3!. The highest peak corresponds to t
family of solutionsA1 with A2 again separated by a saddl
node bifurcation. The next peak corresponds to solutions
beledB1 and B2, while the smallest peak corresponds to
new family of solutions, labeledC. SolutionsA2 , B, andC
are always unstable; this time it is the branchesA2 and B1
that meet on ann53 branch, whileB2 and C meet on an
n55 branch, neither of which is shown. The nature of the
bifurcations can be gleaned from the bifurcation diagra
shown in Fig. 4. Figure 4~a! shows the first Fourier coeffi

cient x1(z5 1
4 ) for both n51 andn53 solutions as a func-

tion of the spatial periodL near the bifurcation point, indi-
cated by a diamond in Fig. 3. The figure reveals the prese
of a transcritical bifurcation from then53 state that gives
rise to the two familiesA2 and B1 of n51 states. Then
53 state has two unstable eigenvalues, each of double m
tiplicity prior to the transcritical bifurcation (L,2.965). This
is a consequence of the fact that the primary instability to
n53 state is preceded by loss of stability ton52 and n
51 states; the unstable eigenvalues of the conduction s
are inherited by then53 branch. At the transcritical bifur-
cation (L52.965) one of these pairs moves to the left half
the complex plane so that forL.2.965 then53 branch has
only one unstable eigenvalue of double multiplicity. In co
trast theA2 andB1 branches each have three unstable eig
values near the bifurcation, withB1 acquiring a fourth un-
stable eigenvalue beyond the saddle-node bifurcat
Bifurcations of this type have been found in two-dimension
thermosolutal convection@13#. In contrast, the bifurcation
that is responsible for the familiesB2 and C of n51 solu-
tions that bifurcate from ann55 state at the point marke

FIG. 3. Amplitudee[(1/2)vx
2(L/4,1/4) of steadyn51 solu-

tions as a function of the spatial periodL for s510, Ra56000.
Solid ~broken! lines denote stable~unstable! solutions. Only
G-symmetric solutions are shown.
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with a circle in Fig. 3 is quite different, and bothB2 andC
bifurcate in thesamedirection@Fig. 4~b!#. Both bifurcations
are discussed in Sec. IV.

In Fig. 5 we show, for Ra56000, the streamlines corre
sponding to the differentn51 solutions that coexist atL
53.8, L55, andL56. All of these solutions share the sym
metries of a single pair of rolls~i.e., the symmetryG) and all
are unstable except forA1 (L53.8). The streamlines of th
large amplitude statesA1 , B1, and L56 look similar and
have the structure formed in the primary instability. Inde
we can consider the envelope of the three peaks as a s
family of solutions that has been interrupted by the 1:3 a
1:5 resonances. It is these resonances that are responsib
the hybrid structure of the statesA2 , B1 , and B2 , C, re-
spectively. This conclusion is supported by Fig. 6, whi
shows the critical Rayleigh number as a function of the s
tial periodL; the points wheren53 andn55 multiroll so-
lutions bifurcate fromn51 solutions are indicated by dia
monds and open circles, respectively. The diamonds fall o

FIG. 4. ~a! The transcritical bifurcation for Ra56000 from n
53 multirolls ton51 solutions, shown in terms of the first Fourie

coefficient,x1(z5
1
4 ), as a function ofL. ~b! The bifurcation for

Ra56000 fromn55 multirolls to n51 solutions, shown in terms

of the modulus of the first Fourier coefficient,ux1(z5
1
4 )u, as a

function of L. All solutions are unstable.
d
gle
d
for

-

a

curve that appears to emerge from the pointP1,3 where the
1:3 resonance is located, while the circles fall on a curve t
appears to emerge from the locationP1,5 of the 1:5 reso-
nance. Despite the differences between the different set
streamlines in Fig. 5all of the solutions shown are properl
thought of ashybrid solutions. This is because in the pre
ence of other modes (n.1) there isno puren51 mode~see
Appendix B!. In particular, while theA1 state shown in Fig.
5 looks like a pure mode it does in fact contain a sm
contribution from then53 state; this is simply a conse
quence of the fact that this is a nonlinear state. This con
bution gradually increases as one traverses theA1 branch,
and becomes visible to the naked eye somewhere nea
turning point. Thus there is no sharp distinction between
branchesA1 andA2 and no bifurcation is associated with th
transformation of the streamlines ofA1 into those ofA2.

This transformation continues alongA2, which at its end
looks like a puren53 state. Indeed, the resulting bifurcatio
can be detected as ad51/3 instability of then53 state.
Clearly, this type of gradual transition is only possible b
tween states of like symmetry, and it is this property th
makes the odd:odd resonances special. A similar statem
applies to the bifurcation toB2 andC from then55 state. It
should be noticed that these bifurcations donot result in the

FIG. 5. Streamlines of the different steadyn51 solutions atL
53.8, L55, andL56 whens510, Ra56000. All of these solu-
tions areG symmetric.

FIG. 6. The marginal stability curves forn51, n52, n53,
and n55 modes~solid lines!. Diamonds and open circles deno
the points wheren53 andn55 solutions bifurcate to families o
hybrid solutions; full circles denote the points where then53 state
acquires stability.
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FIG. 7. Amplitudee[(1/2)vx
2(L/4n,1/4) of different steady multiroll solutions for~a! Ra53000 and~b! Ra56000 as a function of the

spatial periodL for s510. Solid~broken! lines denote stable~unstable! solutions.
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acquisition of stability by then53 andn55 branches. As
shown in Fig. 7 these branches, liken52 andn54, start out
being unstable. This is because for both Ra53000 and Ra
56000 the first instability is to then51 state. As shown
below, then53 states acquire stability with increasing R
only as a result of shedding a branch ofR-symmetric states
The full circles in Fig. 6 indicate the location of this secon
ary bifurcation and suggest that this bifurcation is ultimat
the consequence of the 2:3 resonance: the full circles all
on a curve that appears to emerge from the pointP2,3 where
this 2:3 resonance takes place. This resonance thus ap
to be responsible for the stability of then53 multiroll solu-
tions. Figure 7 summarizes the stability regions for the fi
few multiroll states as a function of the spatial periodL for
these two values of Ra.

It will have been noticed that there is a secondary bif
cation on theA1 branch~see Figs. 2 and 3! at which this
branch loses stability. As discussed below, this instability
associated with a bifurcation to aP-invariant state, and
hence with the generation of a state that is accompanie
an antisymmetric mean flow. Bifurcations of this type a
absent from the Eckhaus description valid close to thresh

B. Transitions at constant spatial period

In this section we describe the corresponding results
L53 andL53.8 and increasing Rayleigh number; these v
ues of L bracket the 1:3 resonance, which occurs
(L* ,Ra* ).(3.647,2574). The results are summarized
Fig. 8. These figures show all the nonlinear solutions
have computed together with their symmetries. The prim
multiroll branches bifurcate from the conduction state in
sequence of bifurcations indicated in Fig. 1. ForL53, the
successive primary bifurcations are ton52, n51, n
53, . . . , while for L53.8 the corresponding sequence isn
52, n53, n51, . . . . The resulting Nusselt numbers ar
shown in Fig. 8 as a function of the Rayleigh number. A
steady solutions obtained withL53 and L53.8 are in-
cluded. Solid lines represent stableG-symmetric solutions;
these solutions are stable with respect toall perturbations
that fit in a domain of sizeL(5na). The dashed lines indi
cate solutions of this type that are unstable, while the do
indicate unstable solutions that are not invariant under
groupG.

For L53, then51 solutions that bifurcate from the con
duction state at Ra52082 belong to the familyA1 and are
unstable at onset; they acquire stability at Ra52207 and re-
main stable thereafter@Fig. 8~a!#. In contrast forL53.8 the
n51 solution that appears in a primary bifurcation is of ty
-
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B1. This branch bifurcates from the conduction state at
52711 and is unstable throughout. However, the othen
51 solutions are still present although they do not appea
a primary bifurcation. Instead the familiesA1 andA2 appear
simultaneously atfinite amplitude in a saddle-node bifurca
tion at Ra53175 @Fig. 8~b!#. Initially both are unstable bu
theA1 branch does acquire stability with increasing Raylei
number. The streamlines of these threen51 solutions
A1 ,A2 ,B are displayed in Fig. 5 for Ra56000. We surmise

FIG. 8. Nusselt numbers of the steady solutions for~a! L53 and
~b! L53.8 as a function of the Rayleigh number fors510. Solid
~broken! lines indicate stable~unstable! G-symmetric solutions;
dotted lines indicate unstable solutions with smaller symmetry.
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that the stable rolls computed in@14# are of typeA1 since the
other n51 states that coexist with this solution are all u
stable. TheA1 solutions were found earlier by Pratet al. @5#
in their study of mean flow generation in two-dimension
convection with spatial periodL5a.

When L53 andL53.8 and the Rayleigh number is re
duced then51 solutions belonging to familyA1 lose stabil-
ity ~see Figs. 2 and 3!. This instability is caused by a pertu
bation with d50, and gives rise to aP-symmetric state
accompanied by a mean flow with an antisymmetric pro
~denoted byUA in Fig. 8!. The instability of then53 multi-
roll solutions is caused by ad51/3 perturbation that gives
rise to a solution that breaks the basic periodL/3 but pre-
serves the reflection symmetry~denoted byR in Fig. 8!. Both
bifurcations are subcritical. ForL53, then51 solutions of
type A1 are unstable for 2082<Ra<2207, while then53
solutions are unstable for 3784<Ra<8693. In contrast, for
L53.8 then51 solutions of typeA1 are unstable for 3175
<Ra<4057 while then53 solutions are unstable for 241
<Ra<3825 ~see Fig. 8!. The streamlines corresponding
the bifurcated solutionsUA and R are shown in Fig. 9: the
UA solution for L53 is shown at Ra52300 while theR
solution that bifurcates from then53 state whenL53.8 is
shown at Ra54300.

Besides the bifurcations that stabilize then51 solutions
of type A1, we have also investigated the subsequent bi
cations as the Rayleigh number is reduced. Figure 8 sh
that for both values ofL considered a new stead
R-symmetric solution bifurcates subcritically between t
first appearance of the solution and the point where it ga
stability. Figure 10 shows the streamlines of this solut
whenL53 and Ra52300. In Table I we present the critica
Rayleigh numbers for the secondary bifurcations giving r
to both types of solutions; forL53 these occur at almost th
same Rayleigh numbers, while forL53.8 they are substan
tially farther apart. The former value is very close to the 1
resonance at (L,Ra)5(2.92,2055) and this allows us to iden
tify the UA andR solutions with themean flowandtransition
solutions identified in Refs.@6,7#. In contrast, whenL53
and Ra is reduced, then53 solutions undergo a transcritica
bifurcation resulting in two branches of unstable solutio
(A2 and B1) as already discussed@see Figs. 4~a! and 8~a!#.
This bifurcation point falls on the line connecting the di
monds in Fig. 6.

FIG. 9. Streamlines of~a! a steadyP-symmetric solution with
an antisymmetric mean flow profileUA that bifurcates from ann
51 solution of typeA1 whenL53 and~b! a steadyR-symmetric
solution that bifurcates from ann53 solution whenL53.8.
l
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We conclude the description of all the bifurcations th
take place for the parameter values of Fig. 8 by consider
another subcritical bifurcation that appears from then51
solutions of typeA2. This solution isG invariant and under-
goes ad50 instability that produces anR-invariant tertiary
solution branch. These solutions are not accompanied b
mean flow. In Fig. 10 we show the streamlines for a solut
of this type; hereL53 and Ra59000. A similar instability
occurs whenL53.8 despite the different origin of theA2
branch.

IV. THEORETICAL INTERPRETATION

A. The transcritical bifurcation

A number of the numerical results described above can
understood quite simply. The following discussion omits t
complications arising from reflections inz50 and conse-
quently does not capture all the transitions identified in
preceding section. However, despite this shortcoming it d
shed light on much of the observed behavior.

Consider first the secondary bifurcation from then53
state to then51 states described in Fig. 4~a!. Then53 state
is invariant under translations byL/3; such translations may
be viewed as rotations by 2p/3. In addition this state is re
flection invariant~cf. @15#!. Consequently then53 state has
the symmetryD3 of rotations and reflections of an equila
eral triangle. The observed steady state bifurcation from
state breaks this symmetry and can therefore be describe
terms of an order parameter that measures the contribu
from the symmetry breakingn51 state. Equivariance with
respect to the symmetryD3 demands that this order param
eter satisfy the equation

ẇ52lw1aw̄21buwu2w1•••. ~4!

This equation is equivariant with respect to the operationw

→we2ip/3; equivariance with respect tow→w̄ requires that

FIG. 10. Streamlines of two steadyR-solutions, one bifurcating
from ann51 solution of typeA1 and the other bifurcating from an
n51 solution of typeA2, both forL53.

TABLE I. The critical Rayleigh number for secondary bifurca
tions from then51 branchA1.

UA R

L53 2206.96 2206.90
L53.8 4057 3545
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the coefficients be real. These operations generate the g
D3 and represent rotation by 120° and reflection, resp
tively. The parameterl is the bifurcation parameter and co
responds to the departure of the Rayleigh number from
critical value at the bifurcation. Its sign was chosen to ag
with the numerical results: the puren53 state@correspond-
ing to w50 in Eq.~4!# has two unstable eigenvalues, each
double multiplicity to the left of the bifurcation and only on
unstable eigenvalue~of double multiplicity! to the right.
Consequently, itgains a pair of stable eigenvalues with in
creasing Rayleigh number, as described by the lineariza
of Eq. ~4! about then53 statew50.

Writing w5reiu we obtain the two real equations

ṙ52lr1ar2 cos 3u1br3, u̇52ar sin 3u.

The nontrivial fixed points are thus given byu5p/3,2p/3
modulo 2p/3. We find two nontrivial solution branche
emerging from the bifurcation, given by

l57ar1br2, ~5!

corresponding tou5p/3,u52p/3, respectively. Each solu
tion has two eigenvalues,

s57ar12br2, s563ar,

wherer satisfies Eq.~5!. Three observations follow imme
diately: there are two nontrivial branches that emerge fr
the bifurcation point, the bifurcation is transcritical, and t
nontrivial solutions are unstable on either side of the bif
cation. In fact, regardless of the sign ofa each branch has
one stable and one unstable eigenvalue, and these eige
ues are exchanged across the bifurcation. Moreover, on
the nontrivial solutions turns around with increasing amp
tude. This occurs at a saddle-node bifurcation where a fur
change in stability takes place. If we choose the signs ofa,b
in accord with the numerical simulations,a,0,b.0, we find
that it is theu52p/3 branch that undergoes the saddle-no
bifurcation: at small amplitude, as measured by Rew, the
branch has eigenvalues (2,1) while beyond the saddle
node bifurcation the eigenvalues are (1,1). In contrast the
branch u5p/3 increases monotonically with increasingl
and its stability remains (1,2) throughout. The resulting
bifurcation diagram is identical to Fig. 4~a! and the stability
assignments are identical to those computed from the pa
differential equations. In particular we have checked
change in the sign of the eigenvalues of the nontrivial so
tions across the bifurcation atl50. Thus we can with con-
fidence identify theu5p/3 branch with theA2 state and the
u52p/3 state with theB1 state. In fact the only difference
between the above description and the numerics lies in
presence of anadditionalunstable eigenvalue of double mu
tiplicity on the n53 branch due to the prior loss of stabilit
to the n52 state@see Fig. 8~a!#. The midplane reflection
symmetry also introduces complications. In fact we find t
the (1,2) eigenvalues ofA2 and the (2,1) eigenvalues of
B1 lie in the G- and Ta/2k-invariant subspaces, while eac
solution also has a positive eigenvalue in theR- and
P-invariant subspaces. These additional unstable eigenva
become equal along either branch as the bifurcation p
l50 is approached. Thus numerically the stateA2 has three
up
c-

ts
e

f

n

-

val-
of

-
er

e

ial
e
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e

t

es
nt

unstable eigenvalues while the stateB1 has three unstable
eigenvalues between the bifurcation and the saddle-node
four unstable eigenvalues beyond it. The eigenvalue in
R-invariant subspace is responsible for the subsequent b
cation fromA2 to the state labeledR in Fig. 8~a!.

The secondary bifurcation from then55 state to the
n51 states seen in Fig. 3 can be analyzed in a similar w
The n55 state is invariant under translations byL/5; such
translations may be viewed as rotations by 2p/5. Because of
the reflection symmetry of then55 state this state has th
symmetryD5. The observed steady state bifurcation fro
this state breaks this symmetry and can therefore be
scribed in terms of an order parameter that measures
contribution from the symmetry-breakingn51 state. We ob-
tain

ẇ52lw1aw̄41buwu2w1•••, ~6!

where the coefficientsa andb are again real. We choose th
sign of the bifurcation parameterl to agree with the numeri-
cal results: the puren55 state@corresponding tow50 in
Eq. ~6!# has four unstable eigenvalues, each of double m
tiplicity, to the left of the bifurcation and three unstable e
genvalues~of double multiplicity! to the right. Consequently
it gainsa pair of stable eigenvalues with increasing Rayle
number, as described by the linearization of Eq.~6! about the
n55 statew50. In the partial differential equations this is
d51/5 ~equivalentlyd54/5) instability.

As before, Eq.~6! can be written as two real equations

ṙ52lr1ar4 cos 5u1br3, u̇52ar3 sin 5u.

The nontrivial fixed points are thus given byu5p/5,2p/5
modulo 2p/5, and we find twopairs of nontrivial solution
branches emerging from the bifurcation. These are given

l57ar31br2,

and correspond tou5p/5,4p/5 andu52p/5,3p/5, respec-
tively. In a bifurcation diagram showing Rew as a function
of l each pair of solutions describes a pitchfork bifurcatio
both of which bifurcate in thesamedirection. We chooseb
.0 and identify the larger amplitude branch~eigenvalues
1,2) with the B2 branch and the smaller amplitude bran
~eigenvalues1,1) with theC branch. Figure 4~b! indicates
that the coefficienta is in fact small. A more detailed inves
tigation of the partial differential equations reveals that t
instability takes place in theTa/2k-invariant subspace; in ad
dition there are two distinct positive eigenvalues in each
the G-, R-, andP-invariant subspaces for both branches
that B2 has 7 unstable eigenvalues, whileC has 8~see Sec.
III !.

B. The 1:3 spatial resonance

We now turn attention to Fig. 8~b! and in particular to the
appearance of the disconnected branch ofn51 states and
show that this type of behavior is a natural consequence
the 1:3 spatial resonance. As shown in Appendix B the
resonance is described by the amplitude equations

v̇5~m1d!v1auvu2v1buwu2v1cwv̄2, ~7a!
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ẇ5mw1duvu2w1euwu2w1 f v3, ~7b!

cf. @9,16#. Herev,w are the~complex! amplitudes ofn51
and n53 modes, respectively,m is the bifurcation param-
eter, andd represents an unfolding parameter that splits ap
the multiple bifurcation. These equations have rich dyna
cal behavior partially described in@9#. In the following we
focus on the behavior that corresponds to that seen in
partial differential equations.

Equations ~7! have the solution (v,w)5(0,w) corre-
sponding to a puren53 state. This state obeys the equati

ẇ5mw1euwu2w

and bifurcates supercritically atm50 providede,0. Its sta-
bility properties are specified by four eigenvalues one
which is zero because of translation invariance. The rem
ing three are 2euwu2 andm1d1buwu2 ~twice!. The former is
stable for a supercritical branch; the latter vanishes at a
ondary steady state instability to a mixed state consisting
the n53 mode with an admixture of ann51 mode. We
have seen above that such a bifurcation istranscritical @Fig.
8~a!#.

In the following we shall emphasize thehybrid modes.
These are steady state solutions of Eqs.~7! with vwÞ0. We
write v5reiu,w5reif,c5f23u, obtaining

ṙ 5~m1d!r 1ar31br2r 1cr2r cosc, ~8a!

ṙ5mr1dr2r1er31 f r 3 cosc, ~8b!

ċ52
r

r
~ f r 213cr2!sin c. ~8c!

It follows that there are two families of hybrid modes give
by c50,p. In the following we refer to these asH0,p , re-
spectively. Note that both areP symmetric.

These states obey

m1d1ar21br26crr50, ~9a!

mr1dr2r1er36 f r 350. ~9b!

As a result the amplitude ratioz[r/r satisfies the single
cubic equation

~m1d! f 1@~m1d!d2ma#z2mcz21@~m1d!e2mb#z3

50.

Consequently, there are at most three solution branche
any given value ofm with z.0(,0) corresponding to
H0,p . The bifurcation from the conduction state (0,0) to t
hybrid mode thus takes place atm52d (z50) and is su-
percritical if a,0.

The stability of this branch is readily computed: bo
steady-state bifurcations corresponding to saddle-node b
cations or the termination of then51 branch on then53
are present; Hopf bifurcations are also possible. Rather
providing a detailed discussion of these equations we d
onstrate below that the equations do describe the trans
from Fig. 8~a! to Fig. 8~b! asL is increased. Our choice o
rt
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coefficients was guided by the coefficient values compu
by MF for s5`. These have been interpolated to obta
values corresponding toL53.647: a521.5205, b5
210.033, c520.82498, d529.0393, e5211.8845,f 5
20.2421. Since our calculations are carried out substanti
far from the mode interaction point corresponding tom5d
50 we do not expect these values to reproduce our res
In Fig. 11 we show the results obtained usinga5
24.5205, e525.8845, and retaining the MF values for th
remaining coefficients. The figures reveal bifurcation d
grams in excellent qualitative agreement with those of Fig
In particular, ford.0 ~i.e.,L,L1,3) we find the transcritical
bifurcation from then53 state, while ford,0 (L.L1,3)
we recover the disconnectedn51 branch seen in Fig. 8~b!.

FIG. 11. Bifurcation diagrams«5r21r 2 vs m obtained from
the amplitude Eq.~7! for ~a! d.0, ~b! d,0. ~a! shows the tran-
scritical bifurcation from then53 state~inset shows a detail! while
~b! shows the disconnectedn51 branch. These figures should b
compared with Figs. 8~a! and 8~b!, respectively. For the coefficient
see text.



n
g
h

ch
in
e

ca
th
an
ta
er

is
en
o

lip
fie
be
la
a

ts
i

e
ie
he
se
s
a

an
e

r
a

ar
u
n
i

y
il

d
ec

io
(
n
c
ra
n

on

a-
ts
ler
nce.
er,

of
:2
w

d
as a

brid

th

be

ch

role
een
the
eso-
se-
the
-
tter
and
the

rac-
this
r

ow.
s of
p
go a
g

ith
all

stan-
y
mi-

ay-
ow-
ve

aria
sup-

3154 PRE 58JOANA PRAT, ISABEL MERCADER, AND EDGAR KNOBLOCH
The amplitude equations also allow us to determine the
ture of the transition between these two diagrams. Settind
50 we find that Eqs.~7! reduce to four straight lines throug
m50. One of these is then53 branch, which is always
present. The other three lines all correspond ton51 states.
We find that asudu→0 the secondary bifurcations approa
zero amplitude. Asd passes through zero and the order
which the primary bifurcations take place changes the s
ondaryn51 branches present ford.0 detach from then
53 branch producing a disconnected pair ofn51 branches
for d,0. We conclude that the amplitude equations are
pable of reproducing much of the structure revealed in
our numerical study, although they miss several import
secondary instabilities that play an important role in the s
bilization of the finite amplitude solution branches at mod
ate distance from the mode interaction point~cf. Fig. 8!.

V. CONCLUSIONS

In this paper we have examined in detail both the ex
tence and stability properties of different time-independ
solutions of the partial differential equations describing tw
dimensional Rayleigh-Be´nard convection with periodic
boundary conditions in the horizontal and identical no-s
boundary conditions at top and bottom. The paper identi
a number of complications that arise in the wave num
selection process as a result of the presence of midp
reflection symmetry. These appear already at moderate R
leigh numbers. To appreciate the significance of our resul
is helpful to compare our Fig. 8 with an Eckhaus analysis
which this symmetry is absent, summarized in Fig. 2 of R
@10#. Although the two sets of figures have broad similarit
they differ substantially in detail. In the Eckhaus picture t
second mode to go unstable acquires the stability at a
ondary pitchfork; in our problem two bifurcations are nece
sary, one to anR-symmetric state and the second to
P-symmetric state accompanied by a mean flow with an
tisymmetric profile. The mode acquires stability only aft
the second of these, as found already in Refs.@6,7#. Such a
state is absent from the Eckhaus description. In both figu
the third unstable mode requires two bifurcations before
quiring stability. However, in the Eckhaus case both
simple pitchforks to reflection-symmetric states while in o
Fig. 8~a! the first of these is transcritical and the reflectio
symmetric state appears only in a tertiary bifurcation. It
tempting to surmise that our Fig. 8~a! would collapse into
Fig. 2~b! of Ref. @10# if the midplane reflection symmetr
characteristic of the present problem were absent. Sim
statements can be made about our Fig. 8~b!. Here the domi-
nant new effect is the fact that theA1 branch is disconnecte
from the trivial solution. We have seen that this is an eff
of the 1:3 resonance and conclude that then51 states stud-
ied by Boltonet al. @14# and Pratet al. @5# do not necessarily
bifurcate from the conduction state: when the spatial per
L exceeds that corresponding to the 1:3 resonanceL*
53.647) such solutions appear in turning point bifurcatio
as the Rayleigh number is increased. In this respect our
culations extend earlier work by Mizushima and Fujimu
@9# on the 1:3 resonance and related work by Moore a
Weiss on doubly diffusive convection@13#. The former em-
ploy amplitude equations valid near particular codimensi
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two points for their study of the Rayleigh-Be´nard problem
with no-slip boundary conditions. Although the range of v
lidity of this approach is limited we find that the resul
remain qualitatively correct for Rayleigh numbers smal
than that for the next important resonance, the 1:5 resona
The latter work is closer in spirit to that of the present pap
but differs from it in that the primary instability is typically
subcritical. We have focused on the stability properties
secondary solutions arising from resonances of type 1k
11 with k51 andk52. These resonances give rise to ne
n51 hybrid solutions involving both one and 2k11 pairs of
rolls. These solutions branch with increasing spatial perioL
from the conduction state and have the same symmetries
single pair of rolls. For spatial periodsL smaller than that
corresponding to a 1:3 resonance we found that the hy
solutions terminate on the puren53 (k51) state via a tran-
scritical bifurcation. In contrast in the 1:5 interaction bo
hybrid modes emerge from then55 (k52) state in the
same direction. Additional interactions of the formn
21:n,n.2, were also considered. These were found to
responsible for subcritical bifurcations from a puren state
and gave rise to a state with only reflection symmetry. Su
a bifurcation also occurs in the Eckhaus analysis@10#.

Throughout the paper we emphasized the important
played by the midplane reflection symmetry. We have s
that this symmetry is responsible for the importance of
1:3 resonance. This is so despite the fact that the 1:2 r
nance occurs at lower Rayleigh numbers and is a con
quence of the fact that the leading order resonant term in
1:2 interaction is ofhigherorder than that in the 1:3 interac
tion. This in turn is a consequence of the fact that in the la
case the two interacting modes have similar symmetries
hence interact strongly; in contrast in the 1:2 resonance
two pure modes have different symmetries and the inte
tion between them must proceed via mixed modes, and
is so for anyk:k11 interaction in systems with Neumann o
periodic boundary conditions@17#. At second order such
modes generate modes with wave numbers 1 and 2k11 of
which the former represents a large scale recirculating fl
Such flows are therefore associated with all mixed state
this type @18#. With stress-free boundary conditions at to
and bottom these mixed modes may subsequently under
parity-breaking bifurcation to drifting states called travelin
waves@7#, although we have not found such solutions w
no-slip boundary conditions. Note that for sufficiently sm
Prandtl numbers traveling~and modulated traveling! waves
are present in the 1:3 resonance as well@9#. Such time-
dependent states are absent fors510. For this Prandtl num-
ber stable time-dependent states are present only at sub
tially larger Rayleigh numbers@5#. These states are typicall
chaotic but have a nonzero time-averaged mean flow re
niscent of that present in the experiments@1#. In contrast, the
states with nonzero mean flow present at the moderate R
leigh numbers studied here are all steady but unstable. H
ever, despite this fact they play an important role in the wa
number selection process.
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APPENDIX A: CONVECTION ROLLS
AND THEIR SYMMETRIES

In this appendix we briefly summarize some grou
theoretic predictions about the symmetries of convect
rolls and the types of secondary bifurcations that are allow
by these symmetries. These predictions can be made wit
an explicit representation of the roll state.

As pointed out in Sec. II the symmetry of the equatio
and boundary conditions is the groupO(2)3Z2. The trivial
~conduction! solution is invariant under this group. Consid
first the primary bifurcation from this state. This bifurcatio
is a steady-state bifurcation and hence is described by a c
plex amplitudeAPC, such that near onset@15#

x~x,z,t !5Re A~ t !einxf ~z!1•••.

Here f (z) is the vertical eigenfunction, assumed to be ev
in z50. This solution describes the roll state, i.e.,n pairs of
rolls. By choosing the spatial period to be 2p/n instead of
2p we can setn51 and focus on the symmetries of a sing
pair of rolls. This is the smallest possible period and rep
sents one wavelength of the pattern. Sincex is a pseudo-
scalar under reflections the groupO(2)3Z2 acts onC as
follows:

translationsTl : A→Aeil ,

reflections in x50 R0 : A→2Ā,
reflections in z50 k: A→2A.

~A1!

By choosing the originx50 appropriately we can takeA to
be pure imaginary, say,A5 iA0. This solution is clearly in-
variant underR0; thus the roll state is symmetric with respe
to reflections in a vertical plane through a node. Moreov
both k and Tp act by 2I and commute so thatTpk is a
second symmetry. It is now easy to check that these are
only independent symmetries ofiA0. Since this solution is
specified by a single real variable, viz.,A0, the equivariant
branching lemma@19# guarantees the existence of a prima
solution branch with the symmetryD2, generated byR0 and
Tpk. Note thatTp is a translation by half a wavelength, an
that U[0 for this solution. The latter conclusion follow
from the requirement thatU(z)52U(z), which in turn fol-
lows from the symmetryR0.

Consider now the operationP5Tp/2R0T2p/2k. This is a
reflection inz50 followed by a reflection inx5p/2, instead
of a reflection inx50 ~see Sec. II!. One can easily check
that iA0 is invariant underP so thatP is another symmetry
of the primary roll state. Note thatP5Tp/2R0Tp/2T2pk
5R0Tpk so thatP is not anewsymmetry. As shown in Sec
II, P is also a symmetry of anindividual roll; this symmetry
is often called apoint symmetry. As a consequence of ‘‘hid
den’’ symmetry@20# the above considerations also apply to
roll solution computed with Neumann boundary conditio
at x50 andx5p.

TheD2 symmetry of the roll state can be broken in one
three ways. This is because the groupD2 has three nontrivial
-

-
n
d
ut

s

m-

n

-

r,

he

f

subgroups^Tpk&, ^R0&, and ^R0Tpk&. All of these are
simple reflections. As a consequence the perturbations o
roll state split into four classes, those that preserve the s
metryG5D2 and those that preserve the shift-reflect,R and
P symmetries, respectively, as discussed in Refs.@5,21#.
This is so for both steady-state instabilities and Hopf bif
cations. Note that to reach these conclusions it is not ne
sary to write down explicit expressions either for the r
state or for the perturbations. In particular these conclusi
apply to fully nonlinear roll states.

APPENDIX B: AMPLITUDE EQUATIONS
FOR SPATIAL RESONANCES

In this appendix we summarize some well-known b
nonetheless important properties of 1:n spatial resonances
In all cases we assume that (Ra2Ra1,n)/Ra1,n!1, (L
2L1,n)/L1,n!1 and write the stream functionx in the form

x~x,z,t !5Re~ iveikx1 iweinkx! f ~z!1•••.

Here f (z) is the vertical eigenfunction~assumed to be eve
in z50) andv andw denote the complex amplitudes of th
two modes. Since the system hasO(2) symmetry these am
plitudes must satisfy equations equivariant with respec
the following two operations,

~v,w!→~veikl ,weinkl!, ~v,w!→~ v̄,w̄!,

corresponding, respectively, to translationsx→x1 l and re-
flections x→2x. As in Appendix A we can setk51 by
choosing the basic period appropriately. The most gen
equations satisfying this requirement take the form

v̇5pv1qwv̄n21, ẇ5rw1svn,

wherep, . . . ,s arereal invariant functions, i.e., functions o
the three elementary invariantsuvu2, uwu2, and Rev̄nw. To
third order in the amplitudes we therefore have@16#

v̇5~m1d!v1auvu2v1buwu2v1cwv̄n21,

ẇ5mw1duvu2w1euwu2w1 f vn.

Herem is the bifurcation parameter andd represents an un
folding parameter that splits apart the multiple bifurcation.
the following we focus in the casesn52 ~1:2 resonance! and
n53 ~1:3 resonance!. In both cases there is a puren solution
of the form (v,w)5(0,w) but no corresponding solution
(v,w)5(v,0). The dynamics of then52 equations are ana
lyzed in detail in@8# while then53 case is studied in@9#.

In the present problem the symmetry groupG is O(2)
3Z2 and notO(2). The midplane reflectionkPZ2 takes
(v,w) into (2v,2w) wheneverf (z) is even; otherwise it
has no effect. This is because the stream functionx is a
pseudoscalar under reflections. Sincef (z) is even for the
modes of interest here the extra reflection cannot be omit
This requires a change in the amplitude equations descri
the 1:2 resonance, which now read@7#
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v̇5~m1d!v1auvu2v1buwu2v1cw2v̄3,

ẇ5mw1duvu2w1euwu2w1 f v4w̄.

In these equations we have retained only the lowest o
resonant terms; three other nonresonant fifth order term
each equation have been omitted. Observe that the midp
reflection symmetry has had a dramatic effect on the st
ture of these equations. Puren51 solutions (v,0) now exist.
Moreover, pairs ofmixed modes of the form (v,w), vw
Þ0, and symmetriesP andR bifurcate simultaneously from
the pure modes, and are responsible for the stabilizatio
both pure modes at larger amplitudes@7#. As shown by Dan-
gelmayr @16# these properties are common to all so-cal
weak spatial resonances. Thus the presence of the midp
reflection symmetry is responsible for changing a strong s
tial resonance into a weak one.

The situation is quite different whenn53. The corre-
sponding equations already commute with the midplane
flection and thus require no modification. The lowest ord
resonant terms are cubic. The resulting equations have a
n53 solution (0,w) but no solution of the form (v,0). In-
stead there is a hybrid solution (v,w), vwÞ0, that bifur-
i.
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cates from the trivial state. This solution has the same s
metry as then53 solution and hence interacts with
strongly in the nonlinear regime; no intermediate branche
mixed parity are necessary. For this reason the 1:3 reson
is the dominant resonance for problems with midplane
flection symmetry.

The derivation of the mode interaction equations giv
above is valid only in the neighborhood of an appropria
codimension-two point (Ra1,n ,L1,n), namely, the intersection
points of the neutral stability curves shown in Fig. 1. In th
derivation the two unfolding parameters~calledm and d in
Sec. IV C! enter in the linear terms only. Under appropria
nondegeneracy conditions the nonlinear coefficients can
calculatedat the multiple bifurcation point~i.e., at m5d
50) and hence areindependentof both the Rayleigh numbe
and the spatial period. The resulting equations are form
valid when (Ra2Ra1,n)/Ra1,n!1, (L2L1,n)/L1,n!1. If
these conditions are not satisfied the amplitude equat
cannot be truncated and the results may be affected by o
modes not included. For this reason the full partial differe
tial equations must be used to explore the effects of spa
resonances away from the codimension-two points, as in
present paper.
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