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The flow in a rapidly rotating cylinder forced to precess through a nutation angle α

is investigated numerically, keeping all parameters constant except α, and tuned to a
triadic resonance at α = 1◦. When increasing α, the flow undergoes a sequence of well-
characterized bifurcations associated with triadic resonance, involving heteroclinic and
homoclinic cycles, for α up to about 4◦. For larger α, we identify two chaotic regimes.
In the first regime, with α between about 4◦ and 27◦, the bulk flow retains remnants of
the helical structures associated with the triadic resonance, but there are strong nonlinear
interactions between the various azimuthal Fourier components of the flow. For the larger
α regime, large detuning effects lead to the triadic resonance dynamics being completely
swamped by boundary layer eruptions. The azimuthal mean flow at large angles results in a
large mean deviation from solid-body rotation and the flow is characterized by strong shear
at the boundary layers with temporally chaotic eruptions.
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I. INTRODUCTION

Precessing flows consist of a fluid-filled body rotating about an axis with rotation vector ω0

that is itself rotating (precessing) about another rotation vector ωp, where the angle between the
two rotation vectors is α. Examples of precessionally forced flows are plentiful in astrophysics and
geophysics [1,2], as well as in spinning spacecrafts with liquid fuels [3,4]. Furthermore, earth-based
rotating flow experiments can be impacted by precessional forcing if their length scale is sufficiently
large and their rotation axis is not aligned with the earth’s rotation axis [5]. Since weak precessional
forcing can sustain turbulence (or at least spatiotemporally complex flows with desirable mixing
properties), precession opens up a number of possible applications in chemical engineering [6,7].

Weakly precessing flows tend to be dominated by triadic resonances; these have been observed
experimentally [8–11], analyzed theoretically [12–14], and simulated numerically [15,16]. For the
most part, these investigations in cylindrical geometries have used small nutation angles α in order to
be in the weak precessional forcing regime. Alternatively, α = 90◦ with very small precession rates
also leads to the weak precession regime where triadic resonances have also been observed experi-
mentally [17]. However, those experiments with α = 90◦ did not detect triadic resonances when the
precession rate was too fast. Experimentally, as α is increased above about 4◦, the system is observed
to suffer a catastrophic transition to small-scale apparently disorganized flow, usually reported as be-
ing turbulent [8–11]. This regime, as well as the transition to it, has not been accessible using existing
theories and flow visualization experiments have been inadequate for examining the flow dynamics.
More quantitative experimental measurements suffer from not being able to resolve the disparate
spatial and temporal scales that are dynamically important. Despite over a century of study, the
saturation amplitude of instabilities, the conditions for the apparition of intermittent cycles, the type
of turbulence and its associated spectra, and the clarification of the bifurcation sequences leading to
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FIG. 1. Schematic of the precessing cylinder, with the axis fixed in a table rotating with angular speed �p .
The cylinder rotates about its axis relative to the table with angular speed �0. The eye of an observer standing
on the rotating table indicates the perspective used for rendering 3D plots of the flow, with the two rotation
vectors in the line of view.

turbulence are all still open questions [2,18]. However, with recent advances in numerical simulations
of the full governing equations, insight into some of these intriguing problems has become accessible.

II. GOVERNING EQUATIONS AND NUMERICAL TECHNIQUE

The problem under consideration consists of a cylinder of height H and radius R filled with an
incompressible fluid of kinematic viscosity ν and rotating about its axis with angular velocity �0. The
cylinder is mounted at the center of a horizontal table that rotates with angular velocity �p around the
vertical axis, as shown in Fig. 1. The cylinder axis is tilted an angle α relative to the vertical and is at
rest relative to the table, therefore the cylinder axis precesses with angular velocity �p with respect to
the laboratory inertial reference frame. All variables are nondimensionalized using the cylinder radius
R as the length scale and the viscous time R2/ν as the time scale, as in Ref. [16]. The nondimensional
governing parameters are the cylinder rotation ω0 = �0R

2/ν, precession rate ωp = �pR2/ν, aspect
ratio � = H/R, and nutation angle α. It is convenient to also introduce the Poincaré number
Po = ωp/ω0, which provides a viscosity-independent measure of the precessional forcing.

The governing equations are written using cylindrical coordinates (r,θ,z), fixed in the (rotating)
table frame of reference, with the z direction aligned with the cylinder axis and the origin O at the
center of the cylinder

∂tv + (v · ∇)v = −∇p − 2ωp × v + 	v, ∇ · v = 0. (1)

Note that the theoretical study of inertial waves is usually conducted in a frame of reference that
is rotating with the background rotation. In the case of a precessing cylinder flow, this frame is
the one in which the cylinder is stationary, i.e., the cylinder frame of reference. This introduces a
three-dimensional time-periodic body force, whereas in the table frame of reference the body force
is steady (but also three dimensional) [16]. In the cylinder frame the velocity boundary conditions
are zero, whereas in the table frame ω0 appears in the boundary conditions for the velocity, which
correspond to solid-body rotation: v|∂D = (0,rω0,0). The solid-body rotation is a large component
of the velocity field, which makes it difficult to visualize deviations from it. Therefore, we have used
the deviation field u with respect to the solid-body rotation component in order to visualize and
study the properties of the solutions: v = vSB + u. In cylindrical coordinates, vSB = (0,rω0,0) and
the deviation velocity field is u = (u,v,w).

The L2 norms of the azimuthal Fourier components of a given solution are

Em = 1

2

∫ z=�/2

z=−�/2

∫ r=1

r=0
um · u∗

mr dr dz, (2)
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where um is the mth azimuthal Fourier components of the deviation velocity field and u∗
m is its

complex conjugate. The solid-body rotation of the cylinder in the table reference system is given by
uSB = rω0θ̂ and the corresponding kinetic energy is ESB. It is convenient to introduce the modal
kinetic energies of the deviation relative to the solid-body rotation kinetic energy, and as they can
be time dependent, its maximum value over an appropriate large time interval is used:

em = max
t

Em(t)/ESB, ESB = 1
8�ω2

0. (3)

These provide a convenient way to characterize the different states obtained. Other useful variables
are the vorticity field ∇ × u = (ξ,η,ζ ) and the helicity H = u · (∇ × u), both defined in terms of
u, the deviation of the velocity field with respect to solid-body rotation, in the table reference frame.

The governing equations have been solved using a second-order time-splitting method, with space
discretized via a Galerkin-Fourier expansion in θ and Chebyshev collocation in r and z. The spectral
solver is based on that described in Ref. [19] and we have added in the inertial body force. This
code, with slight variations, has already been used in a variety of fluid problems [16,20–23]. For the
solutions presented in this study, we have used nr = nz = 64 Chebyshev modes in the radial and
axial directions and nθ = 130 azimuthal Fourier modes. The number of Chebyshev spectral modes
used provides a good resolution of the boundary layers forming at the cylinder walls; the solutions
have at least four orders of magnitude of decay in the modal spectral energies.

The cylindrical container is invariant under the action of rotations Rφ about the cylinder axis and
the reflection Kz about the cylinder midplane z = 0. However, the body force is equivariant only
under the combined action of Rπ and Kz, i.e., the action of the inversion I = KzRπ , which is the
only spatial symmetry of the system. As the governing equations (1) do not depend explicitly on
time, they are equivariant under time translations Tτ . Therefore, the precessing cylinder system in
the rotating table frame of reference is equivariant under the group Z2 × RT , where I and Tτ are the
corresponding generators. As a result, the base state is steady and invariant under inversion. The
action of the inversion symmetry I on the position vector is I r = −r and on the cylindrical
coordinates it is (r,θ,z) �→ (r,θ + π,−z). Its action on the velocity and vorticity components and
the helicity is

A(I)(u,v,w)(r,θ,z,t) = (u,v,−w)(r,θ + π,−z,t), (4a)

A(I)(ξ,η,ζ )(r,θ,z,t) = (−ξ,−η,ζ )(r,θ + π,−z,t), (4b)

A(I)H(r,θ,z,t) = −H(r,θ + π,−z,t). (4c)

The change of sign in the helicity is due to the fact that the helicity is a pseudoscalar since it is the
dot product of a polar and an axial vector [24].

It is also convenient to introduce a symmetry parameter

S = ‖u − A(I)u‖2, (5)

where ‖ · ‖2 is a discrete L2 norm defined in Ref. [16]. It is zero for I-invariant solutions and
positive for nonsymmetric solutions. For time-dependent solutions, the symmetry parameter is
also time dependent and we will use its maximum value over an appropriate large time interval
SM = maxt S(t) in order to characterize the lack of symmetry of the solutions.

III. BACKGROUND

Many theoretical studies on inertial waves consider a cylinder rotating about its axis with angular
velocity Re ẑ, subjected to infinitesimal perturbations. The linearized inviscid equations in the
cylinder reference frame admit wavelike solutions (Kelvin modes) of temporal frequency σ if
σ < 2 Re. The group velocity of these waves propagates along a direction that makes an angle β

with the cylinder midplane, given by the dispersion relation 2 cos β = σ/Re [25]. The Kelvin modes
are characterized by three integers (k,m,n), where m is the azimuthal wave number and k and n

are related to the number of zeros in the radial and axial directions, respectively. In the rotating
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and precessing cylinder considered here, σk,m,n/ω0 depends on �, α, and the Poincaré number Po;
the details can be found in Refs. [16,23]. The Kelvin modes do not satisfy the no-slip boundary
conditions, zero velocity at the walls, but only the weaker condition of zero normal velocity. The
zero viscosity limit is singular and any physical solution resembling Kelvin modes must include
boundary layers in order to adjust the velocity to the physical boundary conditions [16,26].

The Kelvin modes are damped by viscosity and their physical realization with finite viscosity
requires an external forcing to sustain them. In precessing flows, the forcing is provided by the
Coriolis body force. In the rotating and precessing cylinder (Fig. 1), the total angular velocity of the
cylinder is given by

ωC = ωp + ω0 = ω⊥ + Re ẑ. (6)

In the table reference frame this is a constant vector. Its axial component (in the direction of the
cylinder axis ẑ) is Re = ω0 + ωp cos α and provides the solid-body rotation of the cylinder around
its axis. The orthogonal component ω⊥, of modulus |ωp| sin α, is constant in the table reference
frame and rotates around the cylinder axis with angular velocity ω0 in the cylinder reference frame.
This orthogonal component provides the forcing that may sustain inertial waves. We define the
forcing amplitude as

Af = |ω⊥|/ω0 = |Po| sin α. (7)

Dividing by ω0 makes the amplitude independent of viscosity and it is the appropriate definition
in the inviscid limit. Although the amplitude of the forcing is independent of the sign of Po, the
resulting flow is not.

The precessional forcing is able to excite inertial waves as long as ω0 � 2 Re. The body force
−2ωp × v depends explicitly on the azimuthal coordinate θ , ωp = ωp(sin α sin θ r̂ + sin α cos θ θ̂ +
cos α ẑ), due to the nonzero nutation angle α, and therefore has azimuthal wave number m = 1. The
body force is independent of z. Therefore, it excites the (k,m,n) = (1,1,1) mode and the base flow
of the viscous nonlinear system (1) resembles the (1,1,1) Kelvin mode, as long as the forcing
frequency ω0 coincides with σ1,1,1. This gives a relationship between �, α, and Po, i.e., for a fixed
geometry � and α, we must use a specific value of the Poincaré number Pores in order to excite the
(1,1,1) Kelvin mode. Of course, if one uses a forcing frequency σk,1,n, then a (k,1,n) Kelvin mode
(with k and n not necessarily equal to 1) will be resonantly excited and this has been demonstrated
experimentally [8,12]. All of this is according to linear inviscid theory. In practice, due to viscous
and nonlinear effects and the presence of boundary layers, there is a range of values of Po for which
the base flow of the precessing rotating cylinder resembles the (1,1,1) Kelvin mode. The response
function, which is a delta function δ(Po − Pores) for the linear inviscid problem, becomes a finite
resonance peak when viscosity is present. The width of the peak depends on viscosity, i.e., the
Reynolds number Re, and the height of the peak depends on the amplitude of the forcing Af .

It is also possible to find resonances between different Kelvin modes. As shown in Refs. [11,13],
triadic resonances between the (1,1,1) Kelvin mode and two additional modes (k1,m1,n1)
and (k2,m2,n2) are possible when |n2 ± n1| = 1, |m2 ± m1| = 1, and |σk2,m2,n2 ± σk1,m1,n1 | = ω0.
Therefore, by fine-tuning the aspect ratio � and the Poincaré number Po (for a given nutation
angle α) it is possible to obtain a variety of triadic resonances. For example, the 1:5:6 resonance
between the Kelvin modes (1,1,1), (1,6,2), and (1,−5,1), for a nutation angle α0 = 1◦, takes place
for � = 1.62 and Po = −0.1525. There has been extensive theoretical, experimental, and numerical
work on this particular resonance [11,13,15,16] and we continue exploring it in the present paper. In
particular, in Ref. [16] the forcing was increased by varying ω0 and ωp while keeping α, �, and Po
constant, so the flow was always very close to the 1:5:6 triadic resonance. A complex transitional
process through a variety of increasingly complex flows was obtained.

IV. RESULTS

Since the forcing amplitude is given by Af = |Po| sin α, one can obtain the same forcing
amplitude for different α by adjusting Po. Based on this fact and limited nonlinear viscous numerical
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simulations, it has been suggested that α does not seem to play an important role in the dynamics
of precessing flows [27,28]. This is in sharp contrast to the experimental observations mentioned
above [8–11] and motivates our exploring the flow in a precessing cylinder varying the nutation angle
α. As mentioned in the previous section, we will focus on the 1:5:6 triadic resonance regime, keeping
H/R = 1.62, ω0 = 4000, and Po = −0.1525 fixed, and consider variations in α ∈ (0.1◦,47◦). In
this way, the forcing is increased and the system remains close to the triadic resonance 1:5:6 while
α is not too large. Such an approach is often used experimentally [8,10]. The effects of α on the
dynamics are ascertained, while still being able to compare with previous studies. For large enough
α, there will be detuning effects and these are also explored. Numerically, we start with a very
small α = 0.1◦ to obtain the base state, starting from solid-body rotation as the initial condition.
Then simulations with small increments in α are conducted with the solution at the smaller α as
the initial condition. When a qualitative change in behavior is observed, the same type of parameter
continuation to lower values of α is implemented to check for multiplicity of states and hysteresis.

The conditions that must be satisfied in order to have a resonant (1,1,1) Kelvin mode, and to also
have the 1:5:6 triadic resonance, are that the ratios

σ1,1,1

ω0
= σ1,−5,1

ω0
+ σ1,6,2

ω0
= 1 + Po cos α

1 + Po cos α0
= 1 + δ (8)

be equal to one, i.e., that the detuning parameter δ = 0. Fixing � = 1.62, ω0 = 4000, and ωp = −610
(corresponding to Po = −0.1525), the exact resonance conditions are obtained only for α = α0 = 1◦.
Keeping �, ω0, and ωp fixed and varying α, three different regimes have been identified from the
Navier-Stokes simulations, described in the following subsections.

A. Weakly nonlinear resonant regime α � 4◦

When the nutation angle is small α � 1◦, only the forced (1,1,1) Kelvin mode is sufficiently
excited by the Coriolis forcing and the flow in the table frame of reference corresponds to the steady
basic state (BS), consisting primarily of flow up one side of the cylinder and down the other. It is
illustrated in Figs. 2(a) and 2(b), which show isosurfaces of the axial velocity w and the helicity
H at α = 1.146◦ (0.02 rad), respectively. The flow is completely dominated by the overturning
flow, as shown by the axial velocity isosurface, and the boundary layers are very smooth and
almost axisymmetric, as shown in the helicity isosurfaces. Only the positive w isosurface is shown,
corresponding to the upward moving flow. The downward flow is the I reflection of the upward flow,
as the BS is I symmetric, located in the other half of the cylinder, and it is not shown for clarity. In
the view shown, the axis of the cylinder ω0 and the axis of the table ωp are both in the meridional
plane orthogonal to the page, as shown schematically in Fig. 1. Figure 2(c) shows contours of axial
velocity w in a plane at midheight z = 0, showing the upward and downward components of the
overturning flow. Figure 2(d) shows the helicity of this solution on a cylindrical surface, θ ∈ [0,2π ]
and z ∈ [−0.5�,0.5�] at r = 0.97, essentially at midthickness of the sidewall boundary layer. Here
the helicity is positive in the bottom half of the cylinder and negative in the top half and modulated
away from being axisymmetric by the m = 1 influence of the Coriolis force. The helicity of the BS
is essentially confined to the boundary layers of the top and bottom end walls and the sidewall.

The base state BS loses stability when α is increased beyond α ≈ 1.26◦, in a supercritical Hopf
bifurcation induced by the 1:5:6 resonance. This results in a limit cycle (LC), which is time periodic
in the table frame of reference. This is the same I-symmetric LC solution branch that is obtained
by fixing α = 1◦, � = 1.62, and Po = −0.15253 and increasing ω0 � 4777 (see Figs. 3 and 10 in
Ref. [16]).

The LC solution for α = 1.432◦ (0.025 rad) is shown in Fig. 3. Figures 3(a) and 3(b) show
isosurfaces of the axial velocity and the helicity. Compared with the BS in Fig. 2, the overturning
flow in the LC has small distortions compared with the BS, but the main change is in the helicity.
The boundary layers are more complex and the bulk flow is dominated by helicity columns that are
the manifestation of the resonant m = 5 and 6 modes. Figure 3(c) shows contours of axial velocity
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FIG. 2. The BS at α = 1.146◦: isosurfaces of (a) w and (b) H at levels w = 40 and H = ±1.5 × 105 and
contours of (c) axial velocity w at midheight z = 0 and (d) helicity H in (θ,z) at r = 0.97.

w and the presence of five or six perturbations inside the overturning flow are apparent. As was
shown in Ref. [16], the contours of axial vorticity ζ and helicity H at midheight, shown in Figs. 3(d)
and 3(e), highlight the structure of the m = 5 and 6 modes that appear at the Hopf bifurcation.
Figure 3(f) shows contours of H at r = 0.6, where the m = 5 and 6 modes are most intense. These
modes consist of columnar vortices with a well-defined helicity, which emerge from the strong top
and bottom end-wall boundary layers. Figure 3(g) shows contours of H at r = 0.97, essentially in
the middle of the sidewall boundary layer. Here the helicity is positive in the bottom half of the
cylinder and negative in the top half, as was the case for the BS, but with perturbations induced by
the 1:5:6 triadic resonance, with a distinct m = 5 oscillation at the midplane [see Fig. 3(e)]. The
LC solutions are I symmetric, as illustrated in the r-constant contours, and quantified by SM = 0.
The Supplemental Material [29] corresponding to Fig. 3(b) illustrates the spatiotemporal helical
structure of the LC.

By increasing the nutation angle up to α = 4◦, a variety of complex flows are obtained as the LC
becomes unstable. Figure 4 shows how the energies em of the Fourier components of the velocity
field vary with α. Note that for the BS and LC, the modal energies Em are time independent (for
the BS because it is a steady state and for the LC its Fourier components are like rotating waves
whose structure are time independent but drift azimuthally, so their energies are time independent).
However, for the states that result from the instability of the LC, their energies are time dependent
and their maxima em [defined in Eq. (3)] are plotted in Fig. 4. A good measure of the strength of
the overturning flow is given by e1, and e0 measures the m = 0 azimuthal mean flow departure
from solid-body rotation and is a good proxy measure of the flow nonlinearity [16]. Figure 4 shows
that the relevant components of the flow are the m = 1, 5, and 6 Fourier modes corresponding to
the 1:5:6 triadic resonance, along with the m = 0 component. The remaining modal energies are
at least one order of magnitude smaller than e5 or e6 and therefore the dynamics are dominated by
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FIG. 3. The LC at α = 1.432◦: isosurfaces of (a) axial velocity w and (b) helicity H at levels w = 50
and H = ±2 × 105 (see [29]) and contours of (c) axial velocity w, (d) axial vorticity ζ , and (e) helicity H at
midheight z = 0; there are 20 equispaced contours between the minimum and maximum values in the section.
Also shown are helicity contours in (θ,z) at (f) r = 0.6 and (g) r = 0.97; there are 20 contours equispaced in
the interval H ∈ [−5 × 105,5 × 105].

the triadic resonance mechanism. Approaching α = 4◦, the remaining Fourier components start to
grow, particularly the leading harmonics of the m = 1 overturning flow. As a result of nonlinear
interactions, the triadic resonance modes m = 5 and 6 become increasingly modified, but are still
clearly dominant over the harmonics of the forced m = 1 flow. We call this α regime the weakly
nonlinear resonant regime.

The complex flows, whose em are shown in Fig. 4, consist of states with either two or three
incommensurate temporal frequencies, as well as a state that intermittently alternates between being
quasiperiodic and temporally chaotic. Moreover, some of these states preserve I symmetry while
others break it. Specifically, the LC loses stability subcritically at α ≈ 1.862◦, and for slightly larger
α the flow evolves to a quasiperiodic I-symmetric state (QPs), which is basically a slow modulation
of the LC (see [16] for details). The QPs solution branch can be traced to lower α and it loses stability
at α ≈ 1.748◦, forming a hysteretic loop with the LC for α ∈ (1.748◦,1.862◦).
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FIG. 4. Variation of em with α for the states dominated by the triadic-resonance-induced dynamics. Energies
em with m > 6 are plotted in gray. The symbols correspond to the different states obtained in this α range,
described in the text.

The QPs solutions lose stability for α � 1.942◦. The resulting flow is a very slow modulation
of QPs, the new frequency being an order of magnitude smaller than the frequencies associated
with QPs. This new very-low-frequency state (VLFs) is also I symmetric and its spatiotemporal
characteristics show it to be a slow drift in phase space between the BS, LC, and QPs (see [16] for
details). The VLFs undergoes a supercritical symmetry-breaking bifurcation at α ≈ 2.82◦, leading
to the VLFa. For α values near the bifurcation, the degree of symmetry breaking, as measured
by SM, is relatively small (see Fig. 5) and the overall spatiotemporal features of the VLFa are
very similar to those of the VLFs. With increasing α the VLFa becomes more asymmetric and
when SM ≈ 3.5 the quasiperiodic VLFa becomes irregular, consisting of alternating episodes of
chaotic and quasiperiodic temporal behavior. These intermittent chaotic states (IC) are found for
α ∈ (3.610◦,3.753◦) and for larger α the VLFa state is recovered and has SM reducing slowly with
increasing α, as shown in Fig. 5. These various states have also been obtained by fixing α = 1◦
while increasing ω0, [16], but the order in which they appear with increased forcing is different.

The results discussed so far for increasing α are consistent with the single-point LDV
measurements of [30], which reported a single peak at the forcing frequency (plus harmonics)

2.5 3.0 3.5 4.0
α (deg)

0

1

2

3

4

5

SM

VLFs
VLFa
IC

FIG. 5. Variation of the symmetry parameter SM with α for the states dominated by the triadic-resonance-
induced dynamics.
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FIG. 6. Variations of em with α. The two vertical lines at α = 4◦ and 27◦ demarcate three regimes of
differing dynamics.

corresponding to the m = 1 Kelvin mode for α ∈ (1◦,2.5◦), and for α ∈ (2.5◦,3.5◦) the temporal
spectra included a very-low-frequency component. For α ∈ (3.5◦,5◦), a subharmonic component
emerged (very likely related to the I-symmetry-breaking process). Those experimentally observed
temporal characteristics were reported to be consistent with the earlier flow visualizations of [8].

B. Strongly nonlinear resonant regime 4◦ � α � 27◦

Increasing α � 4◦ results in an abrupt transition to a sustained temporally chaotic state (SC1),
consistent with the observations of [8]. This abrupt transition between the VLFa and SC1 has a
small region of hysteresis α ∈ (4.097◦,4.125◦). Figure 6 shows the variations in energies em with
the nutation angle over the range α ∈ [0.05◦,47◦]. The figure is plotted with a logarithmic scale
for α in order to better view the details for small α. There are three clearly distinct regimes. For
α � 4◦, the dynamics were analyzed in the previous section and are dominated by the 1:5:6 triadic
resonance. In the second regime α ∈ (4◦,27◦), the azimuthal Fourier components from m = 2 to 6
have comparable energies em, indicating that the 1:5:6 resonance is still at play, but that nonlinear
interactions between these Fourier components and the m = 0 and 1 components are important.
This regime is referred to as the strongly nonlinear resonant regime. In the third regime α � 27◦,
the triadic resonance no longer plays a significant role and will be described in Sec. IV C.

Figure 7 shows a typical SC1 solution corresponding to α = 8.6◦ (0.15 rad). The m = 1
overturning flow is twisted in the positive azimuthal direction with respect to the BS and LC
laminar states, but remains mostly vertical [see Figs. 7(a) and 7(c)]. The bulk flow still has helicity
columns associated with the triadic resonance modes, clearly illustrated in the axial vorticity and
helicity contours in the figure. However, these columns are no longer evenly distributed azimuthally.
They span the whole height of the cylinder for a short time before breaking up into smaller pieces,
followed by the formation of new columns, all in a spatiotemporally complex fashion [see the
Supplemental Material [29] associated with Fig. 7(b)]. The structure of the sidewall boundary layer
is still similar to the structure in the weakly nonlinear resonant regime, with positive helicity in the
bottom half of the cylinder boundary layer and negative helicity in the top half, but the oscillations
in the helicity at the midplane are more irregular.

C. Chaotic nonresonant regime α � 27◦

When α � 27◦, there is an abrupt change in the flow dynamics. Figure 6 shows that the energies
of the Fourier components of the flow essentially become harmonics of the m = 1 overturning
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FIG. 7. The SC1 at α = 8.6◦: isosurfaces of (a) axial velocity and (b) helicity at levels w = 100 and
H = ±2 × 106 (see [29]) and contours of (c) axial velocity, (d) axial vorticity, and (e) helicity at midheight
z = 0; there are 20 contours equispaced between the minimum and maximum values in the section. Also shown
are helicity contours in (θ,z) at (f) r = 0.6 and (g) r = 0.97; there are 20 contours equispaced in the interval
H ∈ [−4 × 106,4 × 106].

flow, which is now spatiotemporally complicated. Note in particular that the energies of m = 5 and
6, which for α � 27◦ were dominated by the triadic-resonance-excited Kelvin modes (1,6,2) and
(1,−5,1), are now merely associated with the fifth and sixth harmonics of m = 1 and are significantly
smaller. This abrupt change is also present in the degree of asymmetry of the flow, as quantified by
SM. Figure 8 shows how in the mid-α regime, SM for the SC1 increases essentially monotonically
with α, whereas in the high-α regime (α � 27◦), SM makes a sudden jump, reaches a maximum at
α ≈ 32◦ that is about twice as big as the largest SM value for SC1, and then drops back to about the
SC1 level. The flow in the high-α regime SC2 is also spatiotemporally complicated, but of a very
different nature compared to the SC1.

Figure 9 shows various aspects of the SC2 at α = 32◦ (0.56 rad), where the SC2 is most
asymmetric. One change in the SC2 compared to all the other states obtained in the two lower α

regimes is that the flow is strongly skewed. This is particularly evident in the sidewall boundary layer
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FIG. 8. Variations of SM with α. The two vertical lines at α = 4◦ and 27◦ demarcate three regimes of
differing dynamics. Included are the variation of the amplitude of the forcing Af and the detuning parameter δ

with α (right vertical axis).

structure, where in the other states the top half had negative helicity and the bottom half had positive
helicity, while the SC2 has an oblique plane separating the positive and negative H boundary layers,
oriented at roughly 45◦. Another difference is that the interior flow is devoid of helical structures;
the H columns that were associated with the triadic resonance modes and predominant in the LC,
QPs, VLFs, VLFa, and SC1 are completely absent. In the SC2, the H structures in the interior
are instead associated with shear layers separating from the side and end-wall boundary layers.
These are more readily seen in the meridional plots shown in Fig. 10. The two meridional planes
used in the figure correspond to the orientation of the overturning flow. The θ = 70◦ plane roughly
separates the upward flow from the downward flow and the θ = −20◦ plane is orthogonal to the
θ = 70◦ plane. The variables plotted are w, ζ , and H, as in the earlier plots, along with the enstrophy
E = 1

2 |∇ × u|2. All plots show, at this instant, strong separations at the top boundary layer and a
shear layer extending between the top and sidewall layers. The eruptions from the boundary layer
observed in Fig. 10 (first row) are located at the top and left sidewall and are almost absent at the
bottom and right sidewall. This strong asymmetry results in a large value of SM. Of course, the
eruptions illustrated in Fig. 10 are an event at a given instant; these events change in an irregular
way with time, appearing in different boundary layers erratically. There are no hints of the columnar
structures associated with the m = 5 and 6 Kelvin modes.

The SC2 flow at the largest α considered in this study, α = 47◦, is shown in Figs. 11 and 12. The
overall flow structure has not changed. It is still predominantly an m = 1 overturning flow with a
twisted sidewall boundary layer structure that has an oblique orientation and the interior only has
intermittent structures associated with boundary layer separations. However, there is a substantial
decrease in the flow asymmetry as illustrated in Fig. 8. This is due to the boundary layer eruptions
being more prevalent than they were for α < 40◦ and being more symmetrically distributed among
the boundary layers. The overturning flow becomes oblique, following the oblique plane separating
the positive and negative H parts of the sidewall boundary layer [see Fig. 12(a) at θ = −20◦],
and the eruptions from the boundary layer take place mainly around the corners where the overturning
flow is strongest [see Fig. 12(c)]. The spatiotemporal structure of this state is illustrated in the
Supplemental Material [29] associated with Fig. 11(b).

V. DISCUSSION AND CONCLUSION

The main goal of the present study is the understanding of the influence of the nutation angle α

on the precessing cylinder flow and the sudden transitions to turbulence observed in experiments.
Keeping � = 1.62, ω0 = 4000, and ωp = −610 fixed and varying α from 0.5◦ to 47◦, three different
dynamic regimes have been identified from the Navier–Stokes simulations.

The main differences in these three regimes are illustrated in terms of the symmetry parameter SM

in Fig. 8, which also includes the variation of the forcing amplitude Af and the detuning parameter

023602-11



JUAN M. LOPEZ AND FRANCISCO MARQUES

FIG. 9. The SC2 at α = 32◦: isosurfaces of (a) axial velocity and (b) helicity at levels w = 100 and
H = ±1.2 × 107 and contours of (c) axial velocity, (d) axial vorticity, and (e) helicity at midheight z = 0;
20 contours equispaced between the minimum and maximum values in the section for w and ζ . Also shown
are helicity contours in (θ,z) at (f) r = 0.6 and (g) r = 0.97; there are 20 contours equispaced in the interval
H ∈ [−6 × 107,6 × 107] for (e)–(g).

δ with α, and in Fig. 6 in terms of the energies of the relevant Fourier components of the flow. Note
that e0 and e1 represent features that are present in all three regimes, the deviation from solid-body
rotation and the overturning flow, and we will focus on en for n � 2 in order to better emphasize the
differences.

In the low-α regime (α � 4◦), detuning effects are negligible, the precessional forcing is weak,
and the dynamics are dominated by the triadic resonance. The m = 5 and 6 Fourier components
of the flow have much larger energies than the other components with m > 1, as predicted by the
weakly nonlinear theory [13]. However, additional bifurcations leading to quasiperiodic and weakly
chaotic solutions occur for small increases in α. The inversion symmetry of the flow is broken at the
bifurcation to the VLFa, although the bifurcated solutions retain this I symmetry when averaged
in time [16]. The boundary layers are very similar to the boundary layers of the steady base state
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FIG. 10. The SC2 at α = 32◦ in orthogonal meridional planes; the plane θ = 70◦ separates approximately
the up and down parts of the overturning flow. There are 20 contours equispaced between the minimum and
maximum values in the section for (a) w, (b) ζ , and (c) H. (d) For the enstrophy, there are 15 contours
quadratically spaced in E ∈ (0,8 × 109).

solution and the bulk of the flow is dominated by columnar vortices due to the triadic resonance
mechanism.

In the mid-α regime (4◦ � α � 27◦), the detuning effects are still weak, the forcing is stronger,
and the dynamics are spatiotemporally complex due to nonlinear interactions between the triadic
resonance driven flow components and the nonlinear harmonics of the m = 1 overturning flow. As
shown in Fig. 6, the energies ei , i ∈ [2,6], have very similar levels. This is a clear indication of the
strong interaction between the triadic resonance mechanism and the nonlinear effects. The symmetry
parameter SM increases steadily with α in this regime. The boundary layers are still similar to the
boundary layers of the base state solution, but with larger deformations, and the columnar vortices
in the bulk of the flow are still present, but they are no longer uniformly distributed azimuthally and
undergo breakup and reformation in a spatiotemporally complex fashion.

Figure 13 shows time series, over one-fifth of a viscous time, of the symmetry parameter SM for
flows in each of the three α regimes. Figure 13(a) corresponds to the VLFa in the low-α regime
at α = 3.5◦. This state periodically approaches an unstable symmetric state (at the minima of SM),
moves away from it, and returns. The flow is periodic with three frequencies: the very-low frequency
that is clearly apparent in the figure, a small modulation with much larger frequency that is barely
appreciable in the figure, and an azimuthal drift frequency that disappears in SM because SM is a
global measure and a rotation of the flow pattern does not modify SM [16]. The other three states, in
the mid- and high-α regimes, are clearly erratic in time and we have called them sustained chaotic
solutions SC1 and SC2, respectively.

In the large-α regime (α � 27◦), the detuning is no longer negligible and the amplitude of the
forcing is larger than in lower-α regimes. Over a narrow interval in α, centered at α = 27◦, the flow
undergoes dramatic changes, as illustrated in Fig. 6. The energies of the Fourier modes m = 2–6,
which were of comparable strength in the mid-α regime, change abruptly: All the energies em

now decrease with increasing m, spread over more than a decade in energy levels. The Fourier
components of the flow essentially become harmonics of the m = 1 overturning flow and the triadic
resonance mechanism does not play any significant role. There is also an abrupt increase in the flow
asymmetry: SM almost doubles and remains very high up to α � 40◦. This is due to asymmetric
eruptions from the boundary layers, which occur erratically with time and location in the various
boundary layers. The sidewall boundary layer structure is also completely different from that in the
lower-α regimes, with an oblique plane separating the positive and negative helicity parts of the
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FIG. 11. The SC2 at α = 47◦: isosurfaces of (a) axial velocity and (b) helicity at levels w = 100 and
H = ±2 × 107 (see [29]) and contours of (c) axial velocity, (d) axial vorticity, and (e) helicity at midheight
z = 0; there are 20 contours equispaced between the minimum and maximum values in the section for w and
ζ . Also shown are helicity contours in (θ,z) at (f) r = 0.6 and (g) r = 0.97; there are 20 contours equispaced
in the interval H ∈ [−6 × 107,6 × 107] for (e)–(g).

boundary layer. The flow in the interior of the cylinder is devoid of helical columns and the only
structures that are apparent are related to the boundary layer eruptions forming short-lived internal
shear layers that are predominantly located near the boundary layers. Increasing the nutation angle
above 40◦ results in a decrease in the asymmetry of the flow. This is due to the boundary layer
eruptions being more symmetrically distributed. The eruptions from the boundary layer take place
mainly around the corners where the overturning flow is strongest. The interior of the cylinder does
not exhibit any large-scale structure.

The numerical simulations presented in this study show that the flow undergoes dramatic changes
as the nutation angle α is increased while the remaining parameters are held fixed. The fixed
parameters represent the geometry �, the cylinder and table angular velocities, and the fluid viscosity
(ω0 and ωp). Of course, increasing α results in an increase in the amplitude of the forcing Af [because
the component of the rotation orthogonal to the cylinder axis (7) increases] and also produces a

023602-14



NONLINEAR AND DETUNING EFFECTS OF THE . . .

FIG. 12. The SC2 at α = 47◦ in orthogonal meridional planes; the plane θ = 70◦ separates approximately
the up and down parts of the overturning flow. There are 20 contours equispaced between the minimum and
maximum values in the section for (a) w, (b) ζ , and (c) H. (d) For the enstrophy, there are 15 contours
quadratically spaced in E ∈ (0,8 × 109).

detuning away from the strict triadic resonance condition (8). There are various characteristics of
the resulting flows that are directly associated with α: The distortion of the sidewall boundary layer,
with an oblique plane separating its positive and negative helical parts, and the subsequent distortion

1

2

3

4

SM(a)

3

5

7

9

SM(b)

14

16

18

20

SM(c)

0 0.05 0.1 0.15 0.2
t

4

6

8

10

SM(d)

V
LF

a,
α=

3.
50

SC
1,

α=
8.

60
SC

2,
α=

32
0

SC
2,

α=
47

0

FIG. 13. Time series of SM for the states indicated.

023602-15



JUAN M. LOPEZ AND FRANCISCO MARQUES

of the overturning flow are clearly associated with the flow trying to accommodate to a total angular
velocity that is widely misaligned with the cylinder axis for large α. In this high-α regime, e0 is as
much as 0.25, i.e., E0 ≈ 0.25ESB. There is a massive disruption to the solid-body rotation associated
with the cylinder rotation around its axis, on which the linear inviscid theory of Kelvin modes is
based: the Kelvin eigenmodes from an infinitesimal perturbation to solid-body rotation around the
cylinder axis. So, in this sense it is not surprising that Kelvin mode triadic resonance effects are not
present in this high-α regime.
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