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Oscillatory Binary Fluid Convection in Large Aspect-Ratio Containers
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Direct numerical simulations of chevrons, blinking states, and repeated transients in binary fluid mix-
tures with a negative separation ratio heated from below are described. The calculations are performed
in two-dimensional containers for experimental parameter values and boundary conditions. Quantitative
agreement with the experiments of Kolodner [Phys. Rev. E 47, 1038 (1993)] is obtained, and the origin
of the blinking and repeated transient states is elucidated.

DOI: 10.1103/PhysRevLett.86.2309 PACS numbers: 47.20.Bp, 47.20.Ky, 47.27.Te
Thermal convection in a binary fluid mixture heated
from below provides an ideal system for the study of pat-
tern formation and the transition to complex spatiotempo-
ral dynamics [1]. In mixtures with a negative separation
ratio the heavier component migrates towards the hotter
boundary reducing the overall buoyancy, and convection
may set in via growing oscillations. Near onset these oscil-
lations evolve into a rich variety of time-dependent states,
including extended or localized pulselike traveling wave
states in annular geometry, and the so-called “chevron”
and “blinking” states observed in rectangular containers of
moderately large aspect ratio [2]. The “chevrons” (or coun-
terpropagating waves) consist of a pair of equal amplitude
waves propagating outwards from the cell center; when the
amplitudes of these waves oscillate about the equal am-
plitude state the pattern is dominated alternately by left-
and right-traveling waves and is then called a “blinking”
state. Both states owe their existence to the presence of
sidewalls, and can be understood on the basis of both bi-
furcation theory [3] and Ginzburg-Landau theory [4]. Of
particular interest in the present paper are the “repeated
transients” observed by Kolodner [5] in water-ethanol mix-
tures. These states consist of chevrons that grow expo-
nentially from small amplitude without change of shape
until they reach a critical amplitude at which they become
unstable and collapse back to small amplitude. The ex-
periments reveal that the dynamics of these states depend
sensitively on both the aspect ratio of the system and on
the Rayleigh number. At present there is no theoretical
understanding of these observations.

To elucidate the origin of the repeated transients we
have integrated numerically [6] the governing Boussinesq
equations [1] in two-dimensional containers �0 # x # G,
20.5 # z # 0.5� with no-slip, no-mass-flux boundary
conditions [7]. The boundaries at the top and bottom are
perfectly thermally conducting and the sidewalls insulat-
ing. We present the results as a function of the aspect
ratio G of the container and of e � �R 2 Rc��Rc, where
R is the Rayleigh number and Rc its critical value for the
onset of the primary instability [8], for fixed values of
0031-9007�01�86(11)�2309(4)$15.00
the remaining parameters (separation ratio S � 20.021,
Prandtl number s � 6.97, Lewis number t � 0.0077)
specifying the experimental mixture [5]. We find that, de-
pending on G, the first state that begins to grow has either
odd or even parity under left-right reflection, and has the
form of a chevron, as predicted by linear theory for this
system [8]. The computations indicate that this bifurcation
is subcritical, as expected on the basis of weakly nonlinear
theory for standing waves in an unbounded layer [9]. In
this Letter we characterize the saturated states that result
and their parameter dependence.

Figure 1(a) summarizes the linear stability results, with
the solid (broken) lines indicating the onset of even (odd)
chevrons; Fig. 1(b) shows the corresponding linear fre-
quencies in units of t21

d , where td is the thermal diffu-
sion time in the vertical. At G � 16.8 the parity of the
primary mode changes, resulting in a frequency jump.
Figure 2 illustrates the sensitive dependence of the equi-
librated state on the aspect ratio when e � 1024 above
threshold, and the long integration times required to get
reliable results. The figure shows the evolution of the mid-
plane vertical velocity yz�x � 0.13G, z � 0, t� obtained
by integration of the partial differential equations over
2000td after an initial transient has (almost) died out, at
each of the locations indicated in Fig. 1(a). The high
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FIG. 1. (a) The critical Rayleigh number Rc and (b) the
corresponding frequency vc for S � 20.021, s � 6.97,
t � 0.0077 as a function of the aspect ratio G. Solid (broken)
lines indicate even (odd) parity chevrons. The solid dots
correspond to the solutions shown in Fig. 2.
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FIG. 2. An overview of the aspect ratio dependence of the
equilibrated states near onset, in terms of the vertical velocity
yz�x � 0.13G, z � 0, t� for comparison with Fig. 2 of [5]. The
numbers at the right give 104e and correspond to the locations
indicated in Fig. 1(a).

frequency uniform amplitude states correspond to nonlin-
ear time-periodic chevron states such as the one shown in
Fig. 3. The figure shows that while the temperature de-
parture from the conduction profile remains sinusoidal at
this value of e this is not so for the concentration depar-
ture. As explained by Barten et al. [10] this is a conse-
quence of the small value of t. Note in particular that
regions of high and low concentration departure are sep-
arated by open contours, in contrast to the temperature
field. The temporary straightening of these meandering
concentration contours in the cell center every half pe-
riod accompanies the splitting of the central concentra-

(a) Temperature (b) Concentration

FIG. 3. Periodic even-parity chevron for G � 16.25,
R � 1775.5 (e � 24.5 3 1024) in terms of the contours of
(a) the temperature and (b) the concentration of the denser
component relative to their conduction profiles, with time
increasing upwards in intervals of 0.2td . For these parameter
values Rc � 1776.30, vc � 2.819.
2310
tion roll into two. These properties of the concentration
field are absent from the Ginzburg-Landau description of
this system.

Although the chevron states are the first to appear
(cf. Fig. 2) they are almost always unstable and develop
into states with more complex time dependence. Symmet-
ric periodic blinking states are invariant under evolution
through half a period followed by a reflection in the center
of the container, and are easily diagnosed by the 180±

phase shift between the vertical velocity at two points
on opposite sides of the container (Fig. 4). Figure 2
shows that these states are most easily visible near the
mode crossing point G � 16.8, where the odd and even
chevrons compete already at small amplitude. At other
values of G symmetric periodic blinking states may still be
present but in more restricted ranges of e. Figure 5 shows
an asymmetric blinking state that develops gradually from
a symmetric blinking state at R � 1776 with increasing
e (Fig. 6). In this state the oscillations at the left and
right differ but remain periodic with the same period, i.e.,
the phase difference between the two sides is constant
although it now differs substantially from 180±. With
further increase in e this state becomes chaotic (Fig. 6),
much as observed in related experiments [2] and expected
theoretically [11,12]. These states are to be distinguished
from the repeated transients, seen in Fig. 2 at G � 16, 17
and smaller e, and discussed next.

For our parameter values the chevrons bifurcate subcrit-
ically at e � 0 and acquire stability at finite amplitude
at a saddle-node bifurcation that occurs at eSN , 0; for
e , eSN all perturbations decay (Fig. 6). Our calculations
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FIG. 4. Periodic blinking state for G � 16.0 and R � 1779
(e � 8.3 3 1024). For these parameter values Rc � 1777.528,
vc � 2.854. Figures (a) and (b) show the temperature field
at two instants (indicated by vertical arrows), while (c) and
(d) show yz�x � 0.13G, z � 0, t� and yz�x � 0.87G, z � 0, t�.
The fact that (c) and (d) are identical except for a 180± phase
shift is indicative of a symmetric blinking state. The blinking
period is approximately 0.4 horizontal thermal diffusion times.
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FIG. 5. An asymmetric blinking state for G � 16.25, R �
1778 (e � 9.6 3 1024), showing (a) yz�x � 0.13G, z � 0, t�
and (b) yz�x � 0.87G, z � 0, t�. The pattern blinks during its
growth phase before undergoing collapse.

reveal two distinct ways of generating symmetric blinking
states, both of which are consistent with the prediction
that these states are fundamentally due to a secondary
Hopf bifurcation from the chevron state [13] introduced
by the sidewalls [3,11]. For G � 16.25 this bifurcation
occurs at eHopf satisfying eSN , eHopf , 0 and is super-
critical (Fig. 6). Consequently, there is a narrow range of
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FIG. 6. Time series yz�x � 0.13G, z � 0, t� for G � 16.25
and different values of the Rayleigh number R. Stable chevrons
are present for R � 1775.5 (e � 24.5 3 1024), but give way
to periodic blinking states when R � 1776 (e � 21.7 3 1024)
with no detectable hysteresis.
e, eSN , e , eHopf, with stable chevrons, before blink-
ing sets in. The blinking frequency is quite small because
the chevron amplitude at which the Hopf bifurcation takes
place is small, while its amplitude is small because the
bifurcation is supercritical. As G decreases the Hopf bi-
furcation moves past the saddle node onto the unstable part
of the chevron branch below the saddle node, eliminating
the stable chevrons. This is the case for G � 16.0 (Fig. 7).
Our results for R � 1777.2 are suggestive of a quasiperi-
odic state with three independent frequencies such as might
be expected from a tertiary bifurcation that stabilizes the
symmetric blinking state (see below). Such tertiary bifur-
cations are an inevitable consequence of the passage of
the Hopf bifurcation to blinking states through the sad-
dle-node bifurcation [14]; our calculations are consistent
with the conjecture that these two bifurcations coincide for
G between 16.0 and 16.25. The period associated with the
third frequency is about 1000td . Such low frequencies are
characteristic of this mechanism. Figure 7 suggests that
the repeated transients observed by Kolodner evolve from
this three-frequency state as e increases. We have found
such states only in the vicinity of G � 16.0 and G � 17.0,
i.e., for aspect ratios differing by �1, as expected theo-
retically [3] and observed in the experiments [5]. In this
case symmetric blinking states are observed only after a
(slightly hysteretic) transition from the three-frequency re-
peated transients that take place between R � 1778.5 and
R � 1779 (Fig. 7). These blinking states therefore set
in with finite amplitude, resulting in a longer blinking
period (Fig. 4), typically 100td (� 2.5 h, using the esti-
mate td � 84.3 sec [5]). This period is comparable to the
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FIG. 7. Time series yz�x � 0.13G, z � 0, t� for G � 16.0 and
different values of the Rayleigh number R. The first finite
amplitude state is a three-frequency state at R � 1777.2 (e �
21.8 3 1024). This state gives way gradually and without de-
tectable hysteresis to repeated transient states near e � 0 and
then to blinking states when R � 1779 (e � 8.3 3 1024). The
state at R � 1782 (e � 2.5 3 1023) appears to have period-two
modulation.
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observed period. With further increase in e this state ap-
pears to undergo period doubling as suggested by the time
series for R � 1782 in Fig. 7 (cf. [11,12]).

Our calculations lead to the following interpretation of
the repeated transients, described here as e decreases from
a symmetric blinking state at some e . 0. The blinking
state first undergoes a Hopf bifurcation that introduces a
third independent frequency into the dynamics. In the sim-
plest case this bifurcation is supercritical, i.e., the three-
frequency state bifurcates towards smaller e. The
new frequency is finite but decreases with e as the three-
frequency state approaches simultaneously the unstable
large amplitude chevron state (hereafter A) and either the
unstable conduction state (if e . 0) or the small ampli-
tude chevrons (if e , 0). The character of the repeated
transient is determined by the leading eigenvalues of the
small amplitude state visited, hereafter B. These are
l . 0 for perturbations in the chevron fixed point sub-
space and the least stable eigenvalue, 2a 1 ib, a . 0,
in the perpendicular direction. A trajectory escaping from
B therefore describes an exponentially growing chevron
state. When this state reaches the vicinity of A it becomes
unstable to symmetry-breaking oscillations which take it
back near B. This is the collapse phase of the repeated
transient state. The frequency of the decaying oscillations
observed in the time series is given by b. Since a de-
creases with e when e , 0, the collapse becomes slower
and slower, as seen in Fig. 7, but is still finite when the
three-frequency states disappear in a global bifurcation at
e� , 0 and the system makes a hysteretic transition to the
conduction state. The fact that a decreases with e makes
it likely that the Shil’nikov condition l�a . 1 holds at
e�, resulting in chaotic repeated transients prior to their
disappearance [12]. This possibility apparently does not
occur in Fig. 7 but may occur in the experiments. Note
that since l ~ jej only periodic repeated transients will
occur if the global bifurcation occurs too close to e � 0.

Symmetric blinking states are easiest to find near mode
crossing points (G � 16.8). However, the location of these
points depends quite sensitively on the system parameters
and in particular on the additional dissipation due to the ne-
glected no-slip walls in the third direction. Consequently,
differences between the experimental results and our cal-
culations may be primarily due to differences in the loca-
tion of these points. Indeed, Kolodner finds that blinking
states persist down to small amplitudes for G � 16.63 and
G � 17.63 when the width Gy � 3.0, and for G � 16.25
and G � 17.25 when Gy � 4.9. A detailed description of
our results and their theoretical interpretation will be given
elsewhere [15].
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