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Simulations of Localized States of Stationary Convection in *He-*He Mixtures
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Simulations of convection in He-*He mixtures with a negative separation ratio in two-dimensional
containers with realistic boundary conditions and moderately large aspect ratio reveal, at supercritical
Rayleigh numbers, the existence of ““‘convectons,” i.e., localized states of stationary convection, separated
by regions of no convection. The origin and properties of these states are described.

DOI: 10.1103/PhysRevLett.95.244501

Binary fluid mixtures with a negative separation ratio
exhibit a wide variety of behavior when heated from below.
Of particular interest are traveling wave states with com-
plex time-dependence present very close to the onset of the
initial instability [1-3], some spatially extended [4] and
others localized [5]. Experiments on water-ethanol mix-
tures in annular containers have also revealed the presence
of dispersive chaos [6,7], as well as localized states of
steady convection apparently stabilized by incident travel-
ing waves [7,8]. In this Letter we report on a novel state,
resembling the latter state, but comprising of one (or more)
localized states consisting of steady convection rolls sepa-
rated by regions of no motion: regions in which flow,
whether in the form of weak convection or spatially grow-
ing traveling waves, is entirely absent, despite spatially
uniform heating from below. In the following we refer to
these states as convectons [9].

Binary mixtures are characterized by cross diffusion
quantified by the separation ratio S. When § < 0 the heav-
ier component (of concentration C) migrates up the tem-
perature gradient. Thus in a layer heated from below the
destabilizing temperature gradient competes with a stabi-
lizing concentration gradient that develops in response to
the heating. If this effect is strong enough convection sets
in as growing oscillations once the Rayleigh number R
exceeds a critical value R_; this instability is typically
subcritical and develops into a variety of traveling wave
states depending on parameters and initial conditions.
Once € = (R — R.)/R, = T2, where I' > 1 is the con-
tainer aspect ratio, the waves may become spatially local-
ized [10] indicating a transition to behavior characteristic
of extended systems [11]. Within this regime we have
found spatially localized steady convection. In the follow-
ing we describe the origin of this state and its properties.

Our calculations are performed for parameters charac-
teristic of *He-*He mixtures [1,12,13] with no-slip bound-
ary conditions at the top and bottom, and on the sidewalls if
present. The temperature is imposed at top (T = T;) and
bottom (7" = T;) and the mass flux vanishes on all walls.
The system is then described by the equations [14]
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Here u = (u, w) is the velocity field in (x, z) coordinates, P
is the pressure, and 6 denotes the departure of the tempera-
ture from its conduction profile, in units of the imposed
temperature difference AT = T, — Ty > 0. The variable 7
is defined such that its gradient represents the dimension-
less convective mass flux. Thus n = § — X, where C =
1 — z + X is the concentration of the heavier component in
units of the concentration difference that develops across
the layer as a result of cross diffusion. The system is
specified by four dimensionless parameters: the Rayleigh
number R providing a dimensionless measure of the im-
posed temperature difference AT, the separation ratio S
that measures the resulting concentration contribution to
the buoyancy force due to cross diffusion, and the Prandtl
and Lewis numbers o, 7, in addition to the aspect ratio I'.
The boundary conditionsareu = § = n, =0onz =0, 1,
with either periodic boundary conditions in the horizontal
with period ', oru =60, =7, =0onx=0,T.

In Fig. 1 we show two coexisting convectons computed
with periodic boundary conditions when R = 2800, I' =
20. Figure 1(a) shows an odd parity convecton, while
Fig. 1(b) is of even parity; both are time independent and
numerically stable. Each state is described in terms of the
contours of the temperature fluctuation 6(x, z) and of the
associated concentration C(x, z). In addition, the lowest
panel shows the concentration at z = 1/2. Both states
consist of steady rolls, separated by two fronts from a
convection-free region. Since concentration gradients are
expelled from regions of closed streamlines the rolls are
well mixed, with large concentration gradients along the
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FIG. 1. (a) Odd and (b) even parity convectons at R = 2800
(e = 0.1681) in a *He-*He mixture with § = —0.5, o = 0.6,
7=0.03 and spatial period I' = 20, in terms of contours of
constant 6, C and midplane concentration C(x, z = 1/2).

top and bottom boundaries. The resulting steplike profile in
C(x, z = 1/2) [Fig. 1(a)] is typical of this type of expulsion
process [15], with dips in C(x, z = 1/2) associated with
downflow, and bumps with upflow. The inhomogeneity in
the roll amplitude at the boundary of the convecton am-
plifies this effect and produces larger concentration anoma-
lies at its edges; these anomalies in turn ‘“‘trap’ the con-
vecton, much as discussed by Riecke in the context of self-
trapping of wave packets [16]. We may think of these
anomalies as the location of the bounding fronts. In con-
trast, the temperature boundary layers are substantially
weaker, as expected in a system with 7 < 1, and do not
contribute to self-trapping. Note that despite the fact that it
is not left-right symmetric the odd convecton is in fact
stationary. This is a consequence of the fact that it is
symmetric [17] under the reflection p = p_p,, where
pe(x,2) — (=x,2), (u,w, 0,2) = (—u,w, 6,2) with re-
spect to a suitable origin, and p.:(x,z) = (x, 1 — 2),
(u, w, 8,2) — (u, —w, —6, —2,). Evidently, if the fixed
temperature boundary condition at the top (or the bottom)
were changed into a Newton’s law of cooling the odd parity
convecton would drift at a constant speed, while the even
one would remain at rest.

Figure 2(a) shows the evolution of a small amplitude
initial perturbation into a convecton in the form of a space-
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FIG. 2. (a) The formation of an odd parity convecton when
R = 2800, " = 30 starting from small amplitude initial condi-
tions, in the form of a space-time plot of 6(x, z = 1/2, t) with
time increasing upward. (b) The destruction of this state when R
is decreased from R = 2800 to R = 2700. Both fronts recede at
the same rate preserving the parity of the state.

time plot when R = 2800, I' = 30 with time increasing
upwards in units of the thermal diffusion time in the
vertical. The waves grow as the initial perturbation dis-
perses, leaving behind a void. This void “pushes” the
remaining rolls into an incipient convecton and compresses
the rolls within it. In the stationary state the convecton
consists of stationary rolls of uniform amplitude, except for
two ‘““front”-like structures at either end that separate it
from the void. Figure 3 shows the final state.

As R increases we find that the number of rolls within
the convecton gradually increases. The transitions leading
to the addition of a roll are hysteretic. However, once R
reaches R = 2900 the behavior changes dramatically, with
the void region now filled with traveling waves (Fig. 4).
These propagate outward from the void center, growing in
amplitude as they travel, and are responsible for the irregu-
lar oscillations of the interface between the convecton and
void; these are in turn responsible for the fluctuations in the
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FIG. 3. An odd parity convecton formed in the process shown
in Fig. 2(a); the convecton contains a larger number of rolls than
the one shown in Fig. 1(a).
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FIG. 4. Confined convectonlike state maintained by traveling
waves in the void region when R = 2900, I' = 30, and ¢ = 500.
The third panel shows the fluctuations in the Nusselt number
arising from fluctuations in the number of rolls in the structure.

number of rolls in the convecton, as seen in the dimen-
sionless convective heat flux Nu(z) — 1, where Nu is the
Nusselt number (Fig. 4).

In contrast, when R is decreased the number of rolls
within the convecton gradually decreases. Figure 5 shows
the associated decrease in the Nusselt number when R is
reduced from R = 2800 to (a) R = 2750 and (b) R = 2700.
In Fig. 5(a) the convecton simply becomes more compact
while in Fig. 5(b) each of the barely visible oscillations in
Nu(#) corresponds to the expulsion of a pair of rolls. If R is
sufficiently small that a convecton consisting of two rolls is
unstable this process leads to the destruction of the con-
vecton [Fig. 2(b)]. Figure 5(b) shows that in this case the
roll amplitude falls to a small value before a new convecton
regrows as in Fig. 2(a). The convectons created in this
nucleation process may have different numbers of rolls
[Fig. 5(b)].

Localized steady states consisting of a finite number of
roll-like structures generally occur as a consequence of
spatial locking of the fronts bounding the state and the
periodic structure within the state [18]. In this picture the
localized states are associated with homoclinic connec-
tions to the homogeneous state. For bistable variational
systems with reflection symmetry in one spatial dimension
the process generating such states is well understood [19]:
the states exist in a finite parameter interval spanning the
Maxwell point, and are described by a pair of intertwined
curves of homoclinics (one for odd states, the other for
even states) that oscillate back and forth as they approach a
spatially periodic roll state; with each turn the localized
state acquires a pair of additional “‘rolls.” Thus there is a
parameter interval with an infinite number of coexisting
localized states of both parities; these appear in a sequence
of saddle-node bifurcations involving stable and unstable
solutions. States of this type have been seen in the Swift-
Hohenberg equation with both quadratic and cubic terms
[20]. Moreover, when the bifurcation parameter € is re-
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FIG. 5. The evolution of the odd parity convecton in Fig. 3
when R is decreased from R = 2800 to (a) R = 2750,
(b) R = 2700, for I' = 30. The top panels show the state at
the final instant; the lower panels show the evolution of the
Nusselt number, for comparison with Fig. 2(b).

duced below the lowest value at which a stationary front is
present the uniform state invades the structured state in
“jumps” of one wavelength of the structure. Each of the
resulting states can in principle be restabilized by increas-
ing € again. This picture extends to nonvariational systems,
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FIG. 6. A multiplicity of stable convectons in a bounded con-
tainer of aspect ratio I' = 10. The corresponding value of R is
indicated at the left of each panel.

R=3050

R=3000

2800

R=

R=2800

244501-3



PRL 95, 244501 (2005)

PHYSICAL REVIEW LETTERS

week ending
9 DECEMBER 2005

)
N

- i

3
2600 2800 3000 3200 3400
Rayleigh number

Nusselt number
&
N
\

\

FIG. 7. A bifurcation diagram for convectons in a bounded
container of aspect ratio I' = 10. The panels on the right show
the structure of the convecton in terms of 6 at the two ends of the
branch. The upper convecton is stable between the turning point
and R = 2800; the lower is unstable.

like binary fluid convection, as well [21], and indeed the
space-time plots in Fig. 2 resemble those computed in [21].

The above theory, however, applies only when the ho-
mogeneous and periodic states are both stable. We believe
that the existence of convectons when R > R, is a conse-
quence of two additional physical mechanisms. The ex-
pulsion of concentration gradients increases locally the
value of € by depressing R, while in the void regions the
concentration difference between the bottom and top is
unchanged. In these regions € > 0 but no instability occurs
because the convectons serve as absorbing boundaries.
These raise the instability threshold sufficiently to stabilize
the conduction state in the void: 0 < € < €'Y, For ex-
ample, the void associated with the convecton in Fig. 3 is
of length 'V = 10; the critical Rayleigh number for the
void with no-flux no-slip lateral boundary conditions is
then RY*Y =~ 2643 and this number can be increased by
reducing the effective reflection coefficient at the lateral
boundaries [22]. We believe therefore that the void regions
correspond to a locally absolutely stable conduction state;
once R > R' the void fills with traveling waves (Fig. 4),
much as observed in water-ethanol mixtures [8]. It is
possible, however, that in experiments the voids may fill
with waves even when € < €'Y [7,23]; such waves would
have to be noise sustained [7,23] and would differ consid-
erably from the waves in Fig. 4 [24].

Since the convectons are steady states of the system it
comes as no surprise that they are also found in finite
domains (Fig. 6), provided I' is taken sufficiently large.
In Fig. 7 we show the result of following a branch of such
convectons as a function of R; the turn in the branch may
be related to the oscillations in the branch of homoclinics
predicted by the theory [19,21].

With recent improvements in visualization at cryogenic
temperatures [25] the convecton states found here should
be observable in experiments. Similar states are expected
in water-ethanol mixtures as well.
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