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Dynamics of Three-Tori in a Periodically Forced Navier-Stokes Flow
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Three-tori solutions of the Navier-Stokes equations and their dynamics are elucidated by use of a global
Poincaré map. The flow is contained in a finite annular gap between two concentric cylinders, driven by
the steady rotation and axial harmonic oscillations of the inner cylinder. The three-tori solutions undergo
global bifurcations, including a new gluing bifurcation, associated with homoclinic and heteroclinic
connections to unstable solutions (two-tori). These unstable two-tori act as organizing centers for the
three-tori dynamics. A discrete space-time symmetry influences the dynamics.

PACS numbers: 47.11.+ j, 47.20.Ft, 47.20.Lz
Most natural systems contain more than two frequen-
cies and the behavior of systems with three frequencies
is still not well understood; it is not even known whether
there are universal three-frequency behaviors [1]. New-
house et al.’s theorem [2] raised the question as to whether
three-tori solutions would be observable in physical sys-
tems. Subsequent analysis [3] suggests that three-tori so-
lutions could be expected in typical nonlinear dynamical
systems. Experimental evidence of three-tori have been re-
ported in laser experiments, Rayleigh-Bénard convection,
semiconductors, and electric circuits [4]. Also, examples
of three-tori from low-dimensional systems of equations
have been reported [5]. To date, known examples of three-
tori in Navier-Stokes type systems have been reported for
studies where the equations have been discretized spec-
trally and only a small number of modes were retained
[6]. While the truncated systems were derived from the
Navier-Stokes equations, their solutions are not solutions
of Navier-Stokes as the nonlinear terms transfer energy to
modes not included in the truncated systems.

The results presented here are of three-tori solu-
tions from a fully resolved numerical computation of the
Navier-Stokes equations with no-slip boundary conditions,
restricted to an axisymmetric subspace, and as such, the
obtained three-tori solutions are solutions to the full
Navier-Stokes equations. The system in question is the
flow between two coaxial cylinders of finite extent with
stationary top and bottom end walls. The outer cylinder is
also stationary, while the inner cylinder rotates at constant
angular velocity Vi and oscillates in the axial direction
with velocity W sinVft. Its radius is ri , the radius of
the outer stationary cylinder is ro , and their length is L;
the annular gap between the cylinders is d � ro 2 ri .
These parameters are combined to give the following
nondimensional governing parameters: the radius ratio
e � ri�ro , the length to gap ratio L � L�d, the Couette
flow Reynolds number Ri � driVi�n, the axial Reynolds
number Ra � dW�n, and the nondimensional forcing
frequency vf � d2Vf�n, where n is the kinematic
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viscosity of the fluid. The basic flow is time periodic with
period Tf � 2p�vf and synchronous with the forcing,
and it is independent of the azimuthal coordinate.

The incompressible Navier-Stokes equations governing
this problem are invariant to two symmetry groups. One
corresponds to rotations around the common axis of the
cylinders, SO(2). The other, Z2, is generated by the dis-
crete symmetry S, involving time and the axial coordinate;
it is a reflection about the midplane orthogonal to the axis
with a simultaneous time translation of a half-forcing pe-
riod, satisfying S2 � I. The complete symmetry group of
this problem is SO�2� 3 Z2 [7]. In this study we solve the
system in an axisymmetric subspace invariant to SO(2).
Linear stability analyses in the limit L ! ` have shown
that over an extensive range of parameter space, the pri-
mary bifurcation is to an axisymmetric state, periodic in
the axial direction and synchronous with the forcing, and
only in small windows of parameter space have nonaxi-
symmetric flows been observed [8]. Therefore the only
nontrivial symmetry of the axisymmetric system consid-
ered is S. This symmetry has many consequences for the
dynamics and bifurcations that the system can experience;
in particular, it inhibits period doubling bifurcations [9].

Compelling theoretical and experimental evidence on
the importance of end wall effects in the unforced Taylor-
Couette flow is provided by [10], even for very large aspect
ratio systems. Instead of having a continuum of possible
axial wave numbers as in the L ! ` case, with L finite
there is only a discrete spectrum, and the transition to flows
with axial variations originates in the end wall layers and
exists for all finite Reynolds numbers Ri. A preliminary
numerical study of the flow with end walls was made in
[7]. The boundary conditions where the end walls meet the
moving inner cylinder are discontinuous, and an accurate
numerical treatment that mimics the experimental condi-
tions has been used to deal with this discontinuity [11].
The nonlinear effects induced by the finite aspect ratio and
the presence of end walls were investigated with an effi-
cient and accurate spectral-projection method for solving
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the fully nonlinear axisymmetric Navier-Stokes equations
[7,11]. Two scenarios were considered: varying, respec-
tively, the forcing amplitude Ra and the Couette flow
Reynolds number Ri while keeping other parameters fixed.
In the former case, with Ri � 200, the nonlinear response
of the system was synchronous with the forcing frequency,
and as Ra was reduced the flow underwent a smooth tran-
sition from a state whose axial variations are confined to
the end wall regions to a state with Taylor cells through-
out the entire annulus. As Ra was further reduced, addi-
tional solution branches, all synchronous with the forcing,
were encountered. When Ra was fixed and Ri increased,
a Naimark-Sacker bifurcation [12] led to flow on a two-
torus. Such a bifurcation is peculiar to the finite aspect
ratio situation, with the unsteady coupling between the end
wall vortices and the jets emanating from the boundary
layer on the inner cylinder.

In this Letter, the axisymmetric Navier-Stokes equa-
tions have been solved with the spectral scheme described
in [7], using 80 axial and 64 radial modes, and a time
step dt � Tf�200. We only consider variations in Ri,
keeping all other parameters fixed (L � 10, e � 0.905,
Ra � 80, vf � 30). We have located a range (Ri [
�280.89, 281.26�) where stable three-tori solutions exist.
The identification of such solutions has been significantly
helped due to the imposed periodic forcing, which im-
plies the existence of a global Poincaré map, P , for the
system (i.e., strobing at the forcing frequency vf ). The
power spectral density (PSD) of the time series of G, the
vertical angular momentum at a convenient Gauss-Lobato
point in the annulus, Q�r � ri 1 0.573, z � 0.969�, has
a main peak at the forcing frequency, vf � 30, a sec-
ond frequency at vs � 5.2, and their linear combinations
since these are incommensurate. The frequency vs has
been found to be associated with the coupling between the
end wall vortices and the sidewall jets [7]. The PSD also
possesses a very low frequency vVLF which is 3 orders of
magnitude smaller than vs. Because of the large spectral
gaps between these three incommensurate frequencies we
have been able to unambiguously characterize these solu-
tions as three-tori.

Over the range of Ri where three-tori solutions exist,
vs � 5.2 6 3%. In contrast, TVLF � 2p�vVLF experi-
ences dramatic changes over this range, as shown in Fig. 1.
This figure indicates that there are two Ri values where
TVLF becomes unbounded. For ease of discussion, we now
represent three-tori as limit cycles and two-tori as fixed
points. This analogy works since the two suppressed fre-
quencies, vf and vs, are almost constant (in fact, vf is
constant), over the range of Ri of interest, and they do not
play an essential role in the dynamics near the bifurcation
points. Infinite-period bifurcations are usually associated
with homoclinic or heteroclinic behavior. The two most
typical are the following: (i) A limit cycle collides with
a hyperbolic fixed point resulting in a homoclinic connec-
tion and then vanishes, and (ii) a saddle node occurs on
FIG. 1. Variation of TVLF � 2p�vVLF with Ri. Symbols are
computed values, and solid lines are log fits.

the limit cycle. These two scenarios are distinguished by
the asymptotic behavior of the period of the limit cycle
as the bifurcation point is approached. In case (i) the pe-
riod close to the bifurcation point would have the form
TVLF � c ln�1�jRi 2 Ricritj� 1 d [13], while in case (ii)
TVLF � c�

p
jRi 2 Ricritj 1 d [12]. Our computed TVLF

fits the logarithmic form very well, whereas it does not ad-
just to the square root form. The fitted logarithmic curves
are the solid lines in Fig. 1, and the symbols are the com-
puted periods. The fits are uniformly good over the whole
range of existence of the three-tori, strongly suggesting
that the homoclinic/heteroclinic behavior dominates the
dynamics over the whole interval. The expression for the
logarithmic profile in the first section is given by

TVLF � l21
het ln

1
jRi 2 Rihetj

1 l21
hom ln

1
jRi 2 Rihomj

1 c .

The logarithmic fits give the critical Ri for the two infinite-
period bifurcations, Rihet � 280.887 36 and Rihom �
281.008 84. The factors l are the eigenvalues correspond-
ing to the unstable direction of the hyperbolic fixed
points (in our case, these are unstable two-tori) [13]. The
values obtained are lhet � 2.43 3 1023 and lhom �
5.81 3 1023.

Figure 2(a) shows the projection of the Poincaré map P
into the plane �U, G� (radial velocity and vertical angular
momentum at the Gauss-Lobato point Q) at Ri � 280.89,
the closest Ri value to Rihet computed. This clearly indi-
cates that the solution trajectory spends a long time close
to not one, but two unstable two-tori, appearing as cycles
in the Poincaré map P . This is due to the S symmetry
of the system. The three-torus is S invariant, whereas the
unstable two-tori to which it connects heteroclinically at
Rihet are not S symmetric, but are related to each other
via the S symmetry. The three-torus collides with the two
unstable two-tori simultaneously due to the S symmetry.
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FIG. 2. Projection of the iterates of the Poincaré map onto the
�U, G�Q plane for Ri as indicated.

The infinite-period bifurcation at Ri � Rihom is more
complicated as three-tori exist on both sides of the bifur-
cation. Approaching Rihom from below, the three-torus is
S symmetric and approaches an unstable two-torus which
is also S symmetric. This is seen in the projection of the
Poincaré map for Ri � 281.008, which is very close to
974
Rihom. Figure 2(b) shows the presence of two distinct fast
homoclinic excursions. At the bifurcation point, Rihom,
there exist two homoclinic loops that are related by the S
symmetry. This is illustrated schematically in Fig. 3.

For Ri . Rihom, but close to the bifurcation, the behav-
ior is qualitatively different. Figure 2(c) shows at Ri �
281.009 the existence of a three-torus close to an unstable
two-torus with a single homoclinic excursion. We also
note from Fig. 1 that for Ri . Rihom, the period TVLF is
significantly reduced from that when Ri , Rihom. Beyond
Rihom, the double homoclinic loop splits into two three-tori
as shown in the schematic Fig. 3. The solution in Fig. 2(c)
corresponds to one of these three-tori, which is no longer
S symmetric. We have explicitly computed the S-related
partners for Ri . Rihom by applying the symmetry S to a
trajectory on the first obtained three-torus; a trajectory on
a different three-torus results. These two distinct three-tori
are S-symmetrically related. We have not been able to con-
tinue the three-tori solution branches beyond Ri � 281.26;
the system evolves to another one corresponding to a two-
torus branch that has previously been described [7].

The range of Ri where three-tori exist consists of two
branches; for Rihet , Ri , Rihom there is a single S sym-
metric three-torus and for Ri . Rihom a pair of nonsym-
metric, but symmetrically related, three-tori. The first
branch starts in a heteroclinic bifurcation schematically

FIG. 3. Schematic of the bifurcation sequence for the three-tori
solutions. In this schematic, two-tori are represented as fixed
points and three-tori as cycles. The labels (a), (b), and (c)
correspond to the three parts of Fig. 2.
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shown in Fig. 3, and is related to the second branch via
a homoclinic bifurcation at Ri � Rihom. In this homo-
clinic bifurcation an S-symmetric three-torus splits in two
S-related three-tori. Analogous gluing bifurcations of limit
cycles in systems with Z2 symmetry have been analyzed
in [14], and in [15] for systems with more complex (D4)
symmetries. We have found for the first time a gluing bi-
furcation of three-tori in a real fluid system.

As noted in [7], the two-tori correspond physically to
the interaction of jets emanating from the sidewall with
the end wall layers. This interaction leads to the vs fre-
quency. The schematic saddles in Fig. 3 are unstable two-
tori solutions of this type. These unstable states play a
key role in the dynamics, acting as organizing centers [16].
The three-tori solutions reported here correspond to slow
drifts between these distinct unstable two-tori states. Sim-
ilar very low frequency states have also been observed
experimentally [17] in an unforced Taylor-Couette flow
with aspect ratio of order 10, as is the aspect ratio in our
computations. Since their system was unforced, the VLF
states manifested themselves as two-tori. Two-torus VLF
states following the breaking of a Z2 symmetry have also
been obtained numerically in a rotating cylindrical system
where a sidewall jet interacts with Ekman layers on the end
walls [18].

In summary, we have observed and analyzed interesting
nonchaotic dynamics of three-tori in a real fluid system,
obtained by numerically solving the Navier-Stokes equa-
tions in an axisymmetric subspace. The organizing centers
of the dynamics are unstable two-tori states that correspond
to different modes of interaction between the end wall lay-
ers and the outgoing wall jets. The example shown in
this Letter exhibits a gluing bifurcation of three-tori and
points to some general considerations: (i) unstable two-
tori play a key role as organizing centers of the dynam-
ics, (ii) the bifurcation diagrams are strongly affected by
the presence of symmetries, and (iii) close analogies ex-
ist between the three-tori bifurcations we have found and
well-known bifurcations of fixed points and limit cycles
that have been found both numerically and experimentally
[15,17].
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