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Blue Sky Catastrophe in Double-Diffusive Convection
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A global bifurcation of the blue sky catastrophe type has been found in a small Prandtl number
binary mixture contained in a laterally heated cavity. The system has been studied numerically
applying the tools of bifurcation theory. The catastrophe corresponds to the destruction of an orbit
which, for a large range of Rayleigh numbers, is the only stable solution. This orbit is born in a global
saddle-loop bifurcation and becomes chaotic in a period-doubling cascade just before its disappearance

at the blue sky catastrophe.
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Bifurcation theory has long been a very helpful tool in
the analysis of complex dynamics of nonlinear systems
[1,2]. Whereas different devised scenarios have been
found in theoretical models with a few variables, there
is a growing interest both in relating real systems with
those kinds of models (e.g., projecting their dynamics to
some relevant degrees of freedom [3]) and in directly
analyzing the behavior of these systems in terms of
dynamical systems theory (by studying them either ex-
perimentally or by realistic models). In this context a
great deal of work has been devoted to convection in
fluids. Qualitative changes in the dynamics of fluxes
maintained out of equilibrium by imposed thermal gra-
dients have provided examples of most of the known
bifurcations, and have become a main subject in the
area of nonlinear dynamics.

In this Letter we will show the occurrence of a blue sky
catastrophe (BSC) in double-diffusive convection. The
BSC is a codimension-1 bifurcation that consists in the
destruction of a stable periodic orbit as its length and
period tend to infinity, while the cycle remains bounded
and located at a finite distance from all the equilibrium
solutions [1,4]. This destruction is caused by the collision
with a nonhyperbolic cycle that appears at the bifurcation
point. While approaching the bifurcation the orbit in-
creasingly coils in the zone where the new cycle will
appear, which originates the divergence in both period
and length. In that point the original cycle becomes an
orbit homoclinic to the new cycle. This type of bifurca-
tion is relatively exotic, but can easily be found in slow-
fast (i.e., singularly perturbed) systems with at least two
fast variables [5].

We are interested in double-diffusive fluxes that occur
when convection is driven by simultaneous thermal and
concentration gradients in a binary mixture [6]. Double-
diffusive convection in cavities with imposed vertical
gradients exhibits very rich dynamics, and has been used
as a system to study pattern formation [7] and transition
to chaos [8]. The case of horizontal gradients, which
arises naturally in applications such as crystal growth
[9] or oceanography [6], has received less attention. In
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this work we numerically study this latter configuration
for a small Prandtl number binary mixture. We consider
the case when thermal and solutal buoyancy forces ex-
actly compensate each other, which allows the existence
of a quiescent (conductive) state [10—13]. We have found
that in this system there exists a large range of Rayleigh
numbers in which the only stable solution is an orbit that
features a low-frequency spiking behavior. This orbit
appears associated to a global bifurcation and loses
stability when a period-doubling cascade takes place
originating a chaotic attractor. However, the most remark-
able feature of this chaotic attractor is its sudden disap-
pearance in a BSC of the chaotic type. As far as we know
this is the first example of such bifurcation in an extended
system.

We have considered a binary mixture in a 2D rectan-
gular cavity of aspect ratio I' = d/h = 2, where d is the
length and 4 is the height of the cavity. A difference of
temperature AT is maintained between both vertical
boundaries. Dimensionless equations in Boussinesq ap-
proximation explicitly read

ou+ (u-Vyu=-VP+ oVu
+ oRa[(1 + S)(—0.5 + x/T')
+ 0+ SCla, 1)

9,0+ (u-V)o=—v,/T + V30, 2)
9,C+ (u-V)C=—v, /T —7V36 - C), 3)

V-u=0, 4

where u = (v,, v.) is the velocity field in (x, z) coordi-
nates, P is the pressure over the density, 6 denotes the
departure of the temperature from a linear horizontal
profile. C is the scaled deviation of the concentration of
the heavier component relative to the linear horizontal
profile which equilibrates that of the temperature in the
expression of the mass flux. Lengths and times are scaled
with h and t, = h?/k, respectively, with k being the
thermal diffusivity. The dimensionless parameters are
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the Prandtl number o = v/k, the Rayleigh number Ra =
agh®AT/vk, and the Lewis number 7 = D/, where v
denotes the kinematic viscosity, g the gravity level, « the
thermal expansion coefficient, and D is the mass diffu-
sivity. The separation ratio S = Cy(1 — Co)gST will be
taken S = —1. Here, S7 is the Soret coefficient, Cy is the
concentration of the heavier component in the homoge-
neous mixture, and B is the mass expansion coefficient
(B > 0 for the heavier component).

The boundaries are taken to be no-slip and with no
mass flux. Lateral walls are maintained at constant tem-
peratures and at the horizontal plates a linear profile of
temperature between the two prescribed temperatures is
imposed. Thus, boundary conditions are written as

u=60=n-V(C—-6)=0, ato. (5)
Notice that these boundary conditions prevent one from
absorbing the Soret terms into the equations as in
Refs. [10—13]. On the other hand, this system is Z, equi-
variant. Equations (1)—(4), together with boundary con-
ditions (5), are invariant under a transformation 7, a
central symmetry around the point (I'/2, 1/2), ie., 7 :
(vpv,60,C) = (-v,, —v, —0,-C), (x,z)— T —x,
1 — z). Hence any solution of these equations either is 7
invariant (from now on we will call it symmetric) or its
image under 7 is also a solution (constituting a pair of
asymmetric solutions). This has important consequences
on the nature of its possible bifurcations [1].

‘We have obtained time-dependent solutions of Eqgs. (1)—
(4) and boundary conditions (5) by using a second order
time-splitting algorithm, proposed in Ref. [14], and a
pseudospectral Chebyshev method for the space discreti-
zation. Furthermore, we have calculated (both stable and
unstable) steady solutions and analyzed their stability by
adapting a pseudospectral first-order time-stepping for-
mulation, as described in Refs. [15,16,17]. The values of
the parameters have been o = 0.00715 and 7 = 0.03,
close to that characteristic of molten doped germanium
[18,19]. Spatial discretization has typically been between
60 X 30 and 90 X 60 mesh grid points.

The scenario provided by the analysis of the steady
solutions is shown in the bifurcations diagram of Fig. 1. In
this figure the Nusselt number, defined as the quotient of
heat flux through the hot wall with that of the correspond-
ing conductive solution, is represented for the steady
states as a function of the Rayleigh number (Ra). For
the sake of clarity only one asymmetric solution of each
pair has been shown. For small Ra the conductive solution
(allowed here by the choice S = —1) is stable, but loses
stability, maintaining the symmetry, through a transcriti-
cal bifurcation at Ra = 541.9. The supercritical branch of
the bifurcating solution is stable only up to a pitchfork
bifurcation at Ra = 542.4, following a scenario similar to
that described in Ref. [12]. The interesting behavior in
this system originates from the subcritical branch. This
branch gains stability via a saddle-node bifurcation at
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FIG. 1. Nusselt number of steady solutions versus Ra, and its

corresponding bifurcations. Continuous lines: stable states.
Dashed lines: unstable states.

Ra =99 (SN;), and loses it again at Ra =245 in a
Pitchfork bifurcation (P) where a couple of stable asym-
metric branches appear. In Fig. 2 we represent the con-
centration for symmetric (left) and asymmetric (right)
steady states. We can see that concentration is roughly
homogeneous inside rolls, displacing concentration gra-
dients to the lateral boundaries.

The asymmetrical steady state is stable until Ra =
1209, where it loses stability at a saddle-node bifurcation
(SN). The full branch of asymmetrical steady states is
depicted in Fig. 1, where we can see that it changes again
the direction at a turning point at Ra = 865.6, but without
gaining stability. Increasing the Rayleigh number Hopf
bifurcations of the symmetric and asymmetric branches
take place at H; (Ra = 2137) and H, (Ra = 2218), re-
spectively. The branch of symmetric periodic orbits ema-
nating from H; will play an essential role in the
subsequent evolution of the system.

In the range from Ra = 1209 until Ra = 2253 we have
found no stable solution connected with the above
branches by local bifurcations. Integrating the evolution
equations we have obtained a branch of asymmetric peri-
odic solutions that dominates the dynamics of the system
in this range of parameters. In Fig. 3 we represent time
series and phase space plots of the orbits of this branch for
two different values of the Rayleigh number. The oscil-
lations first appear in the form of spikes of very large

Ra=1252 Ra=888

O

FIG. 2. Concentration levels of the steady solutions of the
symmetric branch (Ra = 1252) and the nonsymmetric branch
(Ra = 888).
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FIG. 3. Velocity components of a representative point. Top:
Asymmetric orbit at Ra = 1183.68. (a) time series, with the
value of the saddle stationary solution marked. (b) orbit in the
phase space. Bottom: Attractor at Ra = 2255. (c) time series.
(d) attractor in the phase space with the stable symmetric orbit.
The unstable stationary symmetric solution is also shown.

period [see Fig. 3(a)], according to the proximity to a
global saddle-loop (SL) bifurcation that occurs at Ra =
1183.67 (SL) where the orbit connects with the unstable
branch of SN, (see Fig. 1). The character of this global
bifurcation can be inferred from the logarithmic diver-
gence of the period when the Rayleigh number decreases
toward SL. We have fitted that period to

1
T~ — :{ 1()§g(I{El - 1211314) + A. ((3)

We can see the fit in Fig. 4 (left). The resulting value
Agic = 0.079 results in being quite close to the unstable
eigenvalue A = 0.074 of the saddle stationary point, as
obtained by the stability calculation. Near that global
bifurcation the time evolution of the velocity of a repre-
sentative point is shown in Fig. 3(a). The value for the
saddle asymmetric state is also represented. We can see
how the solution spends a long time near it. The spike
corresponds to a rapid and large excursion by the phase
space, as seen in Fig. 3(b), during which the roll alter-
nately switches between a confined and a more centered
position (analogous to the patterns shown in Fig. 2).
Increasing Ra, at Ra = 2137 the orbit starts to curl,
showing ripples in the time dependence, reflecting the
frequency of the unstable symmetric orbit that appears in
H,. In fact, we have been able to calculate this unstable
branch by temporal evolution forcing the symmetry of
the system, and its frequency coincides with that of the
windings of the attractor on all the branch. If we increase
further Ra, the asymmetric orbit follows a period-
doubling cascade, becoming chaotic. This is revealed in
the phase of the winding of the trajectory, as can be seen
in Fig. 5 where a detail of the orbit during the cascade is
shown. This cascade seems to move to slightly higher Ra
values as spatial resolution is increased, but we have not
been able to obtain the precise values due to the extremely
large duration of the orbits in this regime. In Fig. 3(c) and
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FIG. 4. Left: logarithmic fit of the periods for the SL con-
nection. Right: Square-root fit of the periods for the BSC.

3(d) the attractor thus generated is represented at Ra =
2255. For this value of Ra the symmetric orbit has already
become stable at a Pitchfork bifurcation (P,, at Ra =
2253), and both coexist. Very shortly afterwards, the
whole attractor disappears at Ra = 2257.5.

This destruction of the attractor exhibits characteris-
tics that permit one to identify it as the chaotic counter-
part of the scenario for BSC bifurcation described in
Refs. [1,20]. Indeed in all the process the attractor re-
mains bounded and at a finite distance of any steady
solution, as required [1]. The average length and time
between spikes (which are reproducible with variations
smaller than 1 over 1000) diverges as the windings start to
accumulate, which occurs at a specific location in the
attractor. That indicates that the solution is colliding there
with a new cycle that appears at the bifurcation point, and
to which it becomes homoclinic. Furthermore this diver-
gence, shown in Fig. 4 (right), is very well fitted by a
square-root law:

T~ A +B 7

N v ?

This law of divergence particularly corresponds to that
scenario, since it demonstrates that the new cycle to
which the attractor is connecting is the saddle node of
two orbits (SNO, ). In principle there are several possibili-
ties for the topology of the attractor [4]. In our case the

FIG. 5. Period-doubling cascade (zoom of the tip of the
attractor). (a) period 1 (Ra = 2220). (b) period 2 (Ra =
2232). (c) period 4 (Ra = 2235). (d) chaotic solution (Ra =
2240).
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FIG. 6. Diagram of the conjectured unstable asymmetric
orbit (thick line) and its connections to other branches.

successive windings are braided by the tip of the attractor
into an almost one dimensional tube or filament (Fig. 5).
This filament reintroduces the orbit into the vicinity of
the saddle-node orbit, and it starts winding again accu-
mulating curls near it. Therefore, in the limit, the attractor
has the topology of a French horn. This feature is also
shared with Ref. [20].

After the BSC, one would expect the system to reach
the stable member of the pair of asymmetric solutions
born at SNO;. On the contrary, simulations show that the
system evolves through an extremely long transient, dur-
ing which the trajectory accumulates curls near the saddle
node before being rejected to the symmetric orbit that
became stable at Pgg. That could mean either that the
stability range of the asymmetric orbit is very small
(which would require a much finer exploration in Ra to
find it, a formidable task in this slow regime), or that its
basin of attraction is very reduced (and the nearby sym-
metric orbit attracted all the calculated orbits).

We propose that the SNO; is located in the branch of
unstable asymmetric orbits created at the pitchfork bifur-
cation where the new orbit becomes stable (P,). This
hypothetical scenario is shown in Fig. 6, and is the
simplest one in which the attractor presents at the BSC
a homoclinic connection to a branch coming from known
solutions. This conjecture requires the unstable asymmet-
ric branch to gain stability in a first saddle-node bifurca-
tion SNO, and to lose it again at the SNOy, as can be seen
in Fig. 6. The coincidence of the frequency value of the
symmetric orbit at Pgg, wgg = 7.01, to that of the wind-
ings of the attractor, w = 7.01, is consistent with such a
connection. A small distance between SNO; and SNO,
would explain the reduced stability domain of the asym-
metrical solution. Finally, the presence of the additional
saddle-node orbit SNO, in the proximity would slow
down the dynamics for Ra slightly above, making the
transient to the symmetric solution very long, as it is
actually observed.

One could devise more complex scenarios for the oc-
currence of this BSC. For example, the attractor could be
destroyed on a boundary crisis associated to global con-
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nections of the unstable orbits coming from the period-
doubling bifurcations.

Finally, it is worth remarking than the BSC displayed
by this system is robust against small changes in the value
of the separation ratio S. In particular, we have obtained a
similar BSC in simulations performed with § = —0.99.
That means that the additional symmetry introduced in
the system by the special value S = —1 is not an essential
ingredient of the phenomena described here.
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