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Critical threshold in pipe flow transition

BY FERNANDO MELLIBOVSKY AND ALVARO MESEGUER*

Department of Applied Physics, Universitat Politècnica de Catalunya,
08034 Barcelona, Spain

This study provides a numerical characterization of the basin of attraction of the laminar
Hagen–Poiseuille flow by measuring the minimal amplitude of a perturbation required to
trigger transition. For pressure-driven pipe flow, the analysis presented here covers
autonomous and impulsive scenarios where either the flow is perturbed with an initial
disturbance with a well-defined norm or perturbed by means of local impulsive forcing
that mimics injections through the pipe wall. In both the cases, the exploration is carried
out for a wide range of Reynolds numbers by means of a computational method that
numerically resolves the transitional dynamics. For RewOð104Þ, the present work
provides critical amplitudes that decay as ReK3/2 and ReK1 for the autonomous and
impulsive scenarios, respectively. For ReZ2875, accurate threshold amplitudes are
found for constant mass-flux pipe by means of a shooting method that provides critical
trajectories that never relaminarize or trigger transition. These transient states are used
as initial guesses in a damped Newton–Krylov method formulated to find periodic
travelling wave solutions that either travel downstream or exhibit a helicoidal advection.

Keywords: pipe flow; critical threshold; transition to turbulence;
Newton–Krylov methods; travelling waves
On
the

*A
1. Introduction

Since the original study of Reynolds (1883), subcritical transition in pipe flow has
been an object of analysis by mathematicians, physicists and engineers. Flows in
experimental pipes become naturally turbulent for moderately high flow rates,
despite the linear stability of the basic flow (Priymak & Miyazaki 1998;
Meseguer & Trefethen 2003). As usual the stability of the flow is governed by the
Reynolds number, defined as ReZ2 �Ua=n, where �U is the cross-sectional mean
axial speed, a is the pipe radius and n is the kinematic viscosity of the fluid. There
is a long list of experimental, theoretical and numerical studies regarding the
stability properties of this flow. We refer the reader to recently published reviews
(Kerswell 2005; Eckhardt et al. 2007) and references therein.

Since the Hagen–Poiseuille flow is linearly stable, transition in pipes must
be explained in terms of other mechanisms. The initial stage of transition has
been mainly ascribed to the linear non-modal transient growth that small
Phil. Trans. R. Soc. A (2009) 367, 545–560
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perturbations experience in shear flows (Schmid & Henningson 1994a,b;
Mellibovsky & Meseguer 2006). Such a transition mechanism is fast and
explosive, as reported in many experimental results (Hof et al. 2003; Peixinho &
Mullin 2006, 2007). However, linear mechanisms by themselves cannot explain
how turbulence sets in. The final stage of transition has been proved to be
dominated by the so-called self-sustained process (SSP), consisting of streamwise
vortices generating streaks that are eventually destabilized by streamwise-
dependent waves capable of regenerating the original vortices via nonlinear
selection rules (Waleffe 1997). The use of suitable homotopy transformations in
the Navier–Stokes equations emulating the SSP mechanism has been crucial in
determining new finite amplitude solutions in shear flows (Waleffe 2003). Several
families of unstable travelling waves have been recently identified numerically
either using the underlying SSP mechanism (Wedin & Kerswell 2004) or
mimicking the key elements of the Nagata–Busse–Clever states (Nagata 1990) in
plane Couette flow (Faisst & Eckhardt 2003). Whereas these travelling waves
have been shown to play a relevant role in organizing turbulent dynamics (Hof
et al. 2004), their involvement in the transition process has not been clarified.

During the last decade, one of the main goals in pipe flow stability research has
been to provide a characterization of the basin of attraction of the basic laminar
flow. We must think of it as a subset in an infinite dimensional space that
contains the basic flow, driving towards this solution any initial perturbation
contained in this subset. A still unsolved question is the dependence of the
critical amplitude Ac or size of the boundary of that basin of attraction with the
Reynolds number. Provided that the minimum amplitude required to trigger
transition decreases when Re is increased, it is plausible to assume that its
asymptotic behaviour scales with Re according to

AcwReg; ð1:1Þ
with g necessarily negative. Asymptotic exponents for plane channel flows have
been recently provided within the framework of some particular transition
scenarios (Chapman 2002). For pipe flow, recent renormalizations (Trefethen
et al. 2000) have been suggested in order to cast different experimental results in
terms of a single definition of the amplitude appearing in (1.1), providing lower
and upper bounds for the value of this critical exponent that presumably lies
within the interval g2[K9/5,K6/5]. Recent experiments that have been carried
out in Hof et al. (2003), henceforth referred as Hof, Juel and Mullin (HJM),
clearly provided a critical exponent gZK1, whereas the first numerical
estimation of the threshold exponent problem (1.1) in pipe flow advanced a
distinct value of gZK3/2 (Meseguer 2003).

The apparent simplicity of expression (1.1) hides many aspects that require an
accurate description. First, a mathematical definition of the amplitude A
appearing in (1.1) must be provided. Second, depending on the way the fluid is
advected downstream (either by a pressure-driven mechanism or at a constant
mass-flux rate using a piston) the perturbations may evolve quite differently and
particularly for moderate flow rates. Third, the perturbation may develop from
an initial disturbance added to the basic flow, the fluid system evolving in an
autonomous fashion, or it may develop from an impulsive time-dependent source
such as fluid injections from the pipe wall. Fourth, when studying the time
evolution of a perturbation in an open flow, advection is crucial, since potential
Phil. Trans. R. Soc. A (2009)
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turbulent transients are advected downstream and leave the domain, making it
impossible to classify the dynamics for long times. Fifth and last, expression (1.1)
is meaningful only for high values of Re.

Even recent experimental results seem to point to a transitory nature of
turbulence (Hof et al. 2006), the notion of a threshold separating initial
conditions that trigger transition, however short-lived, from others that
uneventfully decay still applies (Nusse & Yorke 1989), leading to the question
of what a solution wandering about criticality would look like. These so-called
critical trajectories have recently been shown to approach a chaotic saddle: the
edge state (Schneider & Eckhardt 2006; Eckhardt et al. 2007). The edge state
resides in the non-empty boundary separating the laminar and turbulent basin of
attraction, i.e. the critical threshold, and therefore seems to govern transition.
2. Formulation

We consider the motion of an incompressible viscous fluid of kinematic viscosity
n and density r driven through a circular pipe of radius a and length L by means
of a uniform axial pressure gradient p0. As usual, the problem is rendered
dimensionless using the pipe radius and the maximum Hagen–Poiseuille flow
speed at the centre line, UclZKp0a

2=4rn, as length and velocity units, respecti-
vely. In cylindrical non-dimensional coordinates (r, q, z), the Hagen–Poiseuille flow
reads ubZubr̂Cvbq̂CwbẑZð1Kr2ÞẑZð0; 0; 1Kr2Þ. Accordingly, the compu-
tational domain considered is ðr; q; zÞ2DZ ½0; 1�! ½0; 2p�!½0;L�, with LZL/a,
i.e. the aspect ratio of the pipe, in radii units. Under the presence of disturbances,
the flow in the pipe v is usually expressed as ubCu, where u(r, q, z, t) is a
time-dependent solenoidal disturbance satisfying radial homogeneous
boundary conditions, u(1, q, z, t)Z0 and axial–azimuthal periodicity

uðr ; qC2p; z; tÞZuðr ; q; zCL; tÞZuðr; q; z; tÞ: ð2:1Þ
Formal substitution of the flow vZubCu in the Navier–Stokes equations leads to a
nonlinear partial differential equation for u and the pressure perturbation q

vtu ZKVqC
1

Re
DuKðub$VÞuKðu$VÞubKðu$VÞu; ð2:2Þ

with

V$uZ 0 ð2:3Þ
and ReZaUcl=n. A highly accurate solenoidal spectral method has been used to
discretize (2.2), where the spectral approximation identically satisfies (2.3). As usual
in numerical simulation of open flows, periodic boundary conditions are imposed at
the ends of the pipe so the Navier–Stokes solver is based on Fourier expansions in
(q, z) andChebyshev polynomials in r, combinedwith a fourth-order linearly implicit
time-marching scheme (Meseguer & Mellibovsky 2007).

The normalized energy of a perturbation u is measured by means of the
volume integral or hermitic product

3ðuÞZ 1

2Eb

ð
D

u†$u dD; with Eb Z
1

2

ð
D

u†
b$ub dDZ

pL

6
; ð2:4Þ
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so that the amplitude of the perturbation is defined as the square root of its
normalized energy

AðuÞZ
ffiffiffiffiffiffiffiffiffi
3ðuÞ

p
: ð2:5Þ

To better understand how the energy is distributed, it is very convenient to
express the flow in the pipe v as a sum of the basic flow ub plus the Fourier
components of the perturbation field u

vðr ; q; z; tÞZubðrÞCu00ðr ; tÞC
X
ns0

einqu0nðr ; tÞ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{u2Dðr ; q; tÞ

C
X
ns0

X
n

exp i nqC
2p

L
lz

� �� �
ulnðr ; tÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{u3Dðr ; q; z; tÞ

; ð2:6Þ

where u00 contains the azimuthal–axial-averaged perturbation velocity profile,
u2D represents the non-axisymmetric streamwise component of the velocity
field and u3D represents the remaining streamwise-dependent components. Using
(2.4) on the decomposed velocity field, the energies corresponding to the
bulk flow, to the streamwise component and to the three-dimensional
perturbation can be computed independently as 31DZ3ðu00Þ, 32DZ3ðu2DÞ and
33DZ3ðu3DÞ, respectively.
3. Critical threshold and exponents for high Re

In this section, critical exponents resulting from two different numerical
explorations are provided. In the first case, the disturbances come from an
initial array of streamwise vortices that trigger inflectional profiles that are
unstable with respect to streamwise-dependent waves. In the second case, the
flow is perturbed by means of a localized impulsive forcing that mimics recent
experimental studies (Hof et al. 2003).

(a ) Autonomous scenario

Former numerical explorations confirm that an efficient way to trigger
instability in pipe flow is by adding streamwise vortical perturbations to the
basic flow (Zikanov 1996; Meseguer 2003). In particular, streamwise vortices
with azimuthal wavenumber nvZ1 are very efficient in generating optimal
transient growth (Schmid & Henningson 1994b; Meseguer & Trefethen 2003).
This energy growth leads to the generation of streaks (inflectional profiles with
strong variations of streamwise flow speed) eventually destabilized by
streamwise-dependent modes of selected axial periodicity (Zikanov 1996). Two
and three pairs of vortices experience lower transient growth, but may provide
streaks with higher capability of destabilizing three-dimensional waves. The
initial disturbance u0Zuðr ; q; z; 0Þ used in the exploration of the critical
threshold consists of a suitable superposition of nvZ1, 2, 3-pairs of two-
dimensional streamwise vortices (henceforth, N1, N2 and N3 disturbances,
respectively), u2D

0 , with random three-dimensional noise added on top
Phil. Trans. R. Soc. A (2009)
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Figure 1. Contours of (a) hwiz , (b) h33Diz and (c) h33Diq, for the N3 disturbance evolution with
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u0 ZC2DeinvqvnvðrÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{u2D

0

CC3Durandðr ; q; zÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{u3D

0

Cc:c:; ð3:1Þ

where c.c. stands for complex conjugated terms. The radial structure of u2D
0 takes

the simplest solenoidal form capable of generating streaks

vnv
ðrÞZKinvr

sK1ð1Kr2Þ2r̂C d

dr
½rsð1Kr2Þ2�q̂; ð3:2Þ

where sZ1 (2) for nv odd (even), whereas u3D
0 contains a random perturbation

(u rand) velocity field. The complex constants C2D and C3D in (3.1), which
modulate the initial amplitude of the two components of the perturbation, are
chosen so that the initial energy of the streamwise vortices, 3ðu2D

0 Þ, and of the

three-dimensional modes, 3ðu3D
0 Þ, take the desired values 32D0 and 33D0 ,

respectively, satisfying 33D0 /32D0 .
In order to illustrate the effects of the perturbations described above, figure 1

shows three snapshots of the streak breakdown process for the vortical disturbance
N3. In figure 1a, z -averaged cross-sectional contours of the axial speed component
of the flow vZðu; v;wÞ are represented within the range 0%hwizðr ; q; tÞ%1
in order to visualize the streaks formation and destabilization. Figure 1b,c
correspond to energy density contours of the velocity component u3Dðr; q; z; tÞ
appearing in (2.6). More specifically, figure 1b contains z -averaged cross-sectional

LZ20 and ReZ5012 (Mellibovsky & Meseguer 2006).
Phil. Trans. R. Soc. A (2009)
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contours, while figure 1c shows q-averaged contours on a transversal section
ðr; zÞ2 ½0; 1�!½0;L�. The aforementioned energy density averages are given by

h33Dizðr; q; tÞZ
1

2L

ðL
0
ku3Dðr; q; z; tÞk2 dz ð3:3Þ

and

h33Diqðr; z; tÞZ
1

4p

ð2p
0

ku3Dðr; q; z; tÞk2 dq; ð3:4Þ

and their contours are drawn in arbitrary units. In addition, the axial coordinate of
the longitudinal sections has been conveniently scaled to aid representation. These
series of contours reveal the modal structure of the three-dimensional waves as well
as their location and destabilization effects over the streaks. The three-dimensional
perturbation organizes itself and grows exponentially in the vicinity of the saddle
lines of the streaks-modulated axial velocity profiles, as can be seen in the
snapshots at tZ100. Once the three-dimensional perturbation has reached a
sufficient energy level, nonlinear interaction with the streaks starts (200%t%220),
destabilizing the laminar profile and leading to turbulence.

In order to establish criteria to decide whether the perturbations (3.1) lead to
turbulence or not, it is crucial to run up to a time horizon at which the streaks
have fully developed and the three-dimensional perturbations have had enough
time to grow. This time has been found to be at least TZ1000 advective time
units for the lowest 32D at the highest Re explored. After this period, either the
streak breakdown or the irreversible onset of viscous decay had taken place.
In the present study, a simulation run is considered turbulent if

33DðTÞR10333D0 and Oð32DðTÞÞwOð33DðTÞÞ; ð3:5Þ

otherwise laminar. Condition (3.5) is based on the fact that three-dimensionality
is a clear signature of turbulent dynamics and therefore it is required for the
streamwise-dependent modes to be still active, and much stronger than initially,
at the end of the run.

The critical amplitude threshold exploration covers a wide range of Reynolds
numbers, within the interval Re2[2500,12 600], with a highly resolved spectral
grid of Mr !Nq!LzZ33!33!33 and with LZ20. Results are shown in
figure 2. As expected, the critical amplitude Ac is a decreasing function of the
Reynolds number. In fact, Ac exhibits a vertical threshold evidenced by the
behaviour of the slope that becomes very pronounced at low Re (allegedly
converging to a vertical asymptote at Recr(2000). As soon as Re is increased,
the numerical results shown in figure 2 clearly reveal a critical amplitude that
decreases according to AcwReK1:4 for N1, AcwReK1:0 for N2 and AcwReK1:1 for
N3 (dashed straight lines in figure 2), at least within the studied range. Finally,
an enhanced exploration with N1 vortical perturbations but only exciting
optimally destabilized three-dimensional modes (Zikanov 1996) produced a
further optimized critical threshold that scaled as AcwReK3=2. No remarkable
differences were found when increasing the spectral resolution or the aspect ratio L
(Mellibovsky & Meseguer 2006).
Phil. Trans. R. Soc. A (2009)
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Figure 3. (a) Six-jet injection device used in Hof et al. (2003) experiments. Fluid is injected from six
azimuthally equispaced slits around a perimeter of the pipe at a fixed streamwise location.
(b) Acceleration field vtu at tZ0 and zZ0, resulting from the forcing f in (3.7) (from Mellibovsky &
Meseguer 2007).
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Figure 2. Threshold amplitudes for N1-, N2- and N3-type perturbations (Mellibovsky & Meseguer
2006). Grey squares, nZ1; white squares, nZ2; black squares, nZ3.
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(b ) Impulsive scenario

Very recent experiments that have been carried out in HJM (Hof et al. 2003)
explored transition phenomena of pipe flow subjected to finite amplitude
impulsive perturbations for a wide range of axial speeds of the flow. The
experiments reported in HJM were carried out in a long aspect ratio pipe, with a
piston that kept the mass-flux constant during every run and where the
disturbances were generated by impulsively injecting fluid into the main flow
through six slits azimuthally equispaced on a perimeter around the pipe located
at a fixed axial position far downstream from the pipe inlet, so that the base flow
was sufficiently developed. Figure 3a is a schematic plot of the injection device
used in HJM, where the injected fluid jet penetrates into the basic flow with an
angle 4Zp/3 with respect to the radial coordinate, in a plane normal to the pipe
axis. The injection is activated following a step-like time-dependent function,
active for a prescribed injection duration (Hof et al. 2003). The experiments
clearly concluded that the minimum amplitude of a perturbation required to
Phil. Trans. R. Soc. A (2009)
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trigger transition scaled as ReK1. The experimental procedure of perturbing the
basic flow would correspond to the category of an impulsive perturbative
scenario. The main goal of this section is to gain some insight on the internal
mechanisms responsible for transition by reproducing numerically the experi-
ments of HJM.

We study the perturbative effects generated by introducing in (2.2) an
impulsive volume forcing term, f, that acts locally in time and space as an
accelerator of the fluid, reproducing the effects of an injection. The equation of
the perturbation now reads

vtu ZKVqCf C
1

Re
DuKðub$VÞuKðu$VÞubKðu$VÞu; ð3:6Þ

where the forcing field has the following structure:

f ðr ; q; z; tÞZ fa f tðtÞf sðr ; q; zÞ; ð3:7Þ

with fa a constant amplitude factor and ftðtÞZQðtÞKQðtKDtinjÞ, i.e. a Heaviside
double-step function that activates the injection within the lapse t 2 ½0;Dtinj�.
Finally, fs provides the spatial structure of the six-jet injection whose explicit
mathematical expression can be found in Mellibovsky & Meseguer (2007).
Figure 3b shows the acceleration field inflicted by the modelled forcing upon the
stationary basic flow.

The injection amplitude A defined in HJM is given by the ratio between
the total massflow injected through the Ninj slits and the pipe mass flow
upon injection

AZNinj

Finj

Fpipe

: ð3:8Þ

Assuming that the injected jets can be described by the axisymmetric jet theory
(Schlichting 1968), we can obtain an equivalent expression of the amplitude
defined in terms of the asymptotic maximum speed of the jet u measured at a
distance g from the slit and the cross-sectional area of the slit Sinj

AZNinj

32

3
g�S �

inj

� �1=2 u�

Re

� �1=2

; ð3:9Þ

with g�Zg=a, S �
injZSinj=pa

2 and u�Zu=Ucl (Mellibovsky & Meseguer 2007).
To the authors’ knowledge, equation (3.9) provides the first quantitative
approximation to a law relating an injection property that is mensurable in
under-resolved computations and the experimental amplitude.

In HJM, it was observed that the critical amplitude was not altered for
injection durations of DtinjTDt0Z24 advective time units, where Dt0 will be

considered later as a reference time interval for amplitude renormalization
purposes. This phenomenon is reproduced by our numerical simulations.
Figure 4a shows the flow speed ug(t) measured at the point of maximum forcing
norm for different critical runs carried out for DtinjZ2, 3, 4, 5, 8 and 16 time
units. On each of these curves, the forcing was stopped at the indicated instants
of time (grey circles), eventually leading to transition for longer times (not
shown). Figure 4a also shows the behaviour of the flow speed for the same runs,
but with permanent forcing (dashed curves). It can be observed that there is a
clear stagnation of ug to a constant value u� in some cases, it being easy to obtain
Phil. Trans. R. Soc. A (2009)
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a sharp asymptotic value u� to be used afterwards in relation (3.9) to identify its
corresponding amplitude A. A consistent comparison between numerics and
experiments is carried out by defining the normalized amplitude of a Dtinj-lapse
perturbation as

AðDtinjÞZ
AðDtinjÞ
AðDt0Þ

: ð3:10Þ

Therefore, the experimental and numerical threshold amplitudes are normalized
independently with respect to their corresponding reference saturation values for
Dt0Z24, thus rendering the critical amplitudes independent of the injection
geometrical features appearing in (3.9). Figure 4b shows the normalized
threshold amplitudes Aexp and Anum for different injection lapses.

The critical amplitude threshold has been systematically tracked for Reynolds
numbers in the range Re2[2512,14 125] and the injection duration held fixed to
DtinjZ20 in all the explorations. The computations were carried out using a
Mr!Nq!LzZ33!65!65 spectral grid within a pipe of LZ40 radius.

In what follows, geometrical discrepancies between experiments and the
actually modelled injection are removed by normalizing the amplitudes
according to

AðReÞZ AðReÞ
AðRe0Þ

; ð3:11Þ

where Re is the Reynolds number of the basic flow before being perturbed and
Re0Z14 000. The critical amplitude threshold results are shown in figure 5. The
amplitude A, normalized according to (3.11), has been plotted as a function of Re
for both experiments (grey squares) and computations (white circles), along with
a dashed line indicating a slope of gZK1. It is remarkable how experiments and
computations exhibit very similar behaviour at high Re, which seems to show
that the numerical model properly captures the transition mechanisms observed
Phil. Trans. R. Soc. A (2009)
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Figure 5. Experimental (grey squares) and computational (white circles) critical amplitude
thresholds. The high resolution (doubled count of axial mesh points) critical threshold check runs
at high Re have also been represented (black dots). All sets of values have been normalized
independently with respect to their extrapolated critical amplitudes at ReZ14 000 (Mellibovsky &
Meseguer 2007).

F. Mellibovsky and A. Meseguer554

 on March 17, 2014rsta.royalsocietypublishing.orgDownloaded from 
in the laboratory. Doubled axial-resolution check runs at high Re have also been
plotted (black dots), with no significant change in the critical threshold slope,
which reassures us that the resolution chosen for the bulk of the computations is
sufficient. At the low Re-range, however, while experiments exhibit the same
characteristic asymptotic behaviour from Re values as low as 2000, the
computations fail to do so. In fact, the numerical simulations seem to find a
vertical stability threshold for Rew2500, at least for the type of perturbations
used. This discrepancy can be mainly ascribed to the constant mass flow and
pressure-driven differing natures of the pipes. In our pressure-driven compu-
tational pipe, the actual mass flow has a tendency to drop dramatically as soon
as the perturbation grows and reorganizes the flow, particularly because of
the short length of the domain where intermittency phenomena may fill a high
portion of it. Conversely, in the constant mass flow experiments of HJM, some
energy may be restituted into the flow through the action of the constant speed
piston as soon as any perturbation slightly alters the mass flow. The discrepancy,
however, is mitigated by an increase in the Reynolds number, for which sub-
critical perturbations do not alter the mass flow considerably (Mellibovsky &
Meseguer 2007).
4. Critical threshold for moderate Re

For moderate flow speeds, the asymptotic characterization of the basin of
attraction of the basic flow is no longer valid, particularly near the range of
values of the double threshold that presumably lies at Rew1800. Triggering
transition in that region is possible, although the critical amplitude required
may have a very complex dependency with Re. It is now generally accepted that
for ReO1800 the Hagen–Poiseuille flow coexists with a complex turbulent state.
Phil. Trans. R. Soc. A (2009)
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As in previous sections, transition may be triggered by scaling up the amplitude
of the initial perturbation. However, accurate refinements over this initial
amplitude may lead to long transient orbits that neither trigger turbulence nor
relaminarize. This refinement procedure allows the orbit to transiently approach
and land on the stable manifold of a complex invariant set or edge state
constituted by a surging amount of bifurcating complex solutions as Re is
increased, leading to metastable chaotic dynamics (Nusse & Yorke 1989;
Schneider & Eckhardt 2006; Skufca et al. 2006; Eckhardt et al. 2007). These
so-called edge states are unstable and reside in the non-empty boundary
separating the laminar and turbulent basins of attraction, and thus constitute a
sort of chaotic saddle embedded within the critical transition threshold.

The solenoidal spectral approximation of the perturbation field u appearing
in (3.6) is

uðr; q; z; tÞZ
XL
lZKL

XN
nZKN

XM
mZ0

alnmðtÞexpðiðk0lzCnqÞÞvlnmðrÞ; ð4:1Þ

with k0Z2p=L. Henceforth, the forcing term appearing in (3.6) is fZ fcmẑ, so
that the fluid is now driven at a constant mass flow. As usual, the weak
formulation of equation (3.6) leads to a dynamical system for the amplitudes
alnm(t) of the form

A _a ZBaCNðaÞCF; ð4:2Þ

where the operators A and B are the resulting spectral projection of the linear
time and space operators appearing in (3.6), N is the projection corresponding to
the nonlinear advective term and F is the projection of the forcing (Meseguer &
Mellibovsky 2007).

Unstable finite amplitude solutions of (4.2) cannot be approached by time
integration and require suitable techniques to be computed. In this work, we
search for exact solutions travelling in the axial direction with unknown
streamwise speed c. In this case, the coefficients of the spectral expansion have
the form

alnmðtÞZ âlnme
Kilk 0ct: ð4:3Þ

Formal substitution of the expansion (4.3) in (4.2), the solenoidal spectral
scheme, leads to a time-independent system of nonlinear equations for each
axial–azimuthal (l, n) mode,

Flnðâ; cÞZ ilk0cAlnâln CBlnâln CNlnðâÞCFln Z 0; ð4:4Þ

with

Fln Z 0; ðl; nÞsð0; 0Þ: ð4:5Þ

The operators Aln, Bln and Nln are the closure of A, B and N over the (l , n)
axial–azimuthal Fourier subspace, respectively. The system (4.4) is solved by
means of a Newton–Krylov method (Meseguer et al. 2007).
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Figure 6. Edge trajectories for LZ10 and ReZ2875. (a) Time evolution of the driving axial
pressure gradient for one (N1, black), two (N2, dark grey) and three (N3, light grey) pairs of
streamwise vortices. (b) Time evolution of the residual kFðâ; cÞk of (4.4) along the three
edge trajectories.
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(a ) Approaching the stable manifold of the edge

The first stage of the approach to the edge of chaos is accomplished by
perturbing the basic flow with disturbances of the form N1,2,3 described in
previous sections. Starting from different initial perturbations, and through
accurate refinements on their initial amplitudes, trajectories on the edge between
turbulence and laminarity have been analysed at ReZ2875 on a LZ10 domain
with Mr !Nq!LzZ25!33!33. For instance, the time evolution of the driving
axial pressure gradient (Vp)z , which enforces a constant mass-flux through the
pipe, has been represented in figure 6a. It is clear from the plot that the three
edge trajectories N1, N2 and N3 follow very similar erratic behaviours with
occasional smooth approaching low-friction states followed by sudden outbursts
towards more disordered states. In order to detect sporadic approaches of the
edge trajectory to travelling wave solutions, an estimation of the phase speed
corresponding to the lZ1 mode of the state vector alnm over the edge is computed
and the norm of kFðaðtÞ; cÞk in the nonlinear system (4.4) is evaluated as a
function of time. This norm should exhibit a minimum whenever the edge
trajectory is in the neighbourhood of a travelling wave solution. This
phenomenon is clearly seen in figure 6b, where this norm has been plotted for
the three runs. For instance, for tZ1500, the N3 trajectory shows a clear
minimum of kFk.
(b ) Underlying solutions

Some of the aforementioned residual drops correspond to approaches to a
coherent state dominated by two high-speed streaks in the near-wall region,
enclosing a low-speed streak located slightly off-centre, as shown in figure 7a.
Together with the streaks, there coexists a strong pair of vortices thrusting low-
speed fluid from the near-wall region towards the centre of the pipe, and at the
same time feeding the low-speed streak with higher velocity fluid from the
surrounding high-speed streaks. These low residual states were systematically
used as initial conditions in the Newton–Krylov solver, consistently providing
convergence to the same travelling wave solution shown in figure 7b, save for its
Phil. Trans. R. Soc. A (2009)
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Figure 7. Cross sections of axial velocity perturbation contours within the range wminZK0:44 �U
(white) and wmaxZ0:44 �U (black) at ReZ2875. (a) Transient coherent state of the N1 trajectory at
tZ1530. (b) Converged S&R travelling wave.
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Figure 8. (a) Bifurcation diagram of the travelling wave underlying the critical trajectory (LZ10):
S&R (bold); S&R-RS (dashed). (b) Cross section of the S&R-RS travelling wave: axial velocity
perturbation contours within the range wminZK0:386 �U (white) and wmaxZ0:386 �U (black).
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axial–azimuthal degeneracy. This solution has a speed cZ1:555 �U , posseses a
shift and reflect (S&R) symmetry, and has recently been found by volume forcing
homotopy (Pringle & Kerswell 2007). A Reynolds continuation of this travelling
wave reveals that it originates at a symmetry-breaking pitchfork bifurcation
from a reflection symmetric (RS) branch of waves. The continuation curve is
shown in figure 8a, together with a snapshot of cross-sectional axial velocity
contours of the symmetric travelling wave at ReZ2875.

The Newton solver has been adapted for rotating travelling waves, as in
Duguet et al. (2008). Feeding the same initial guesses from the critical
trajectories to the Newton solver produced, in most of the cases, the same
S&R travelling wave already described and shown in figure 7b. In at least one
case (N2 critical trajectory, tZ890), however, convergence was obtained onto a
rotating travelling wave that bore very close resemblance to the non-rotating one
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/
http://rsta.royalsocietypublishing.org/


(a) (b)

Figure 9. (a) Rotating and (b) non-rotating travelling waves: z -averaged axial velocity
perturbation contours within the range wminZK0:42 �U (white) and wmaxZ0:42 �U (black).
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in all respects (topology, energy contents and axial phase speed cZ1:517 �U),
but for the S&R symmetry breaking, with a very slight rotation rate of
ctZK4:67!10K4 �U=a rad. z -averaged axial velocity contours of the non-rotating
and the rotating travelling waves are shown in figure 9. The non-rotating
travelling wave appears symmetric upon z -averaging due to its S&R symmetry,
while the rotating travelling wave is clearly non-symmetric. Their topological
resemblance becomes evident when inspecting the velocity fields. Overall, the results
presented in this section are in very good agreement with simultaneous work by
Duguet et al. (2008), where travelling and also rotating waves were computed with
similar methods.
5. Conclusions

In this work, we have provided a numerical exploration of the boundary of the
basin of attraction of the Hagen–Poiseuille flow for high and moderate Reynolds
numbers. For high Reynolds numbers, two different scenarios of transition have
been addressed. For the autonomous scenario, the critical exponents were found
to lie within the interval g2[K1.5,K1.0], strongly depending on the topological
structure of the initial vortical perturbation. For the impulsive forcing, very good
agreement was found with the experiments, providing the same exponent gZ
K1. For moderate Reynolds numbers, the asymptotic scaling is not applicable
and the exploration has been focused on approaching the critical threshold with a
shooting method that allows us to visit the stable manifold of the edge state.
Monitoring the edge trajectories, low drag transient coherent states have been
identified and eventually converged to travelling and rotating–travelling waves
making use of a Newton–Krylov method. Because these travelling waves are
embedded within the chaotic saddle lying on the critical threshold, their
relevance to transition seems beyond all doubts.
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