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Abstract

Even though the transition to turbulence has been studied for over a century, its complete

comprehension still remains unclear even for the simplest flows and continues to be a daunting

challenge for the scientific community. Among these, there is the transition from the von

Kármán vortex street to turbulent wakes. The complexity of this problem poses a series of

difficulties that leaves little room for manoeuvre, so other ways to tackle this question have to

be sought. A reasonable option is the analysis of the instability phenomena that other flows

with the same symmetry group undergo. Despite being really different, an example of such

flow is the one generated in a cylindrical cavity subjected to an oscillatory shear.

The purpose of the present thesis has been to provide a deeper understanding of the mech-

anisms that are responsible for the transition in oscillatory cylindrical cavities. Besides the

potential implications of studying such systems for the transitions in wake flows, the system

under consideration might be useful for any investigation involving a periodic forcing. Accu-

rate spectral computations of the incompressible Navier-Stokes equations have been combined

with equivariant bifurcation and normal form theory in an attempt to achieve our goal from

different, yet complementary, perspectives.

The utilisation of these techniques has produced positive results in the field under con-

sideration. The linear stability analysis has resulted in three types of different bifurcations

expected by normal form theory and previous results. The evolution in time of these bifur-

cating modes yield the non-linear saturated states, which can be synchronous with the forcing

or acquire an additional frequency (quasiperiodic). Furthermore, the exploration of regions

where two synchronous modes become unstable at the same time, has provided a wide vari-

ety of novel states that are not necessarily synchronous. The description of these phenomena

via bifurcation theory and dynamical systems techniques is in accordance with the numerical

simulations, despite not having an absolute quantitative agreement between them.

The research focused on the study of viscoelastic fluids in periodically driven cylindrical

cavities is a natural extension of the main topic of this thesis. Although this part has to
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be considered in a preliminary stage, there are some evidences suggesting that the system

is always linearly stable and the only possibility to break the basic state is via a subcritical

finite-amplitude bifurcation. The transition recalls in a great deal the instabilities in Newtonian

plane Couette and pipe Poiseuille, thus resulting in a much more difficult instability scenario

that the one that was initially expected.
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Chapter 1

Introduction

From the fluid dynamics point of view, the flow engendered in a periodically driven cylindrical

cavity is a problem of fundamental interest whose study has not been deeply addressed yet,

though it may have some far-reaching implications. The oscillatory forcing induced in the

cylindrical cavity generates a two-dimensional axisymmetric flow that is invariant under a

group of symmetries composed by some purely spatial and spatio-temporal symmetries (i.e.

a spatial symetry composed with a temporal evolution). Computational fluids mechanics,

dynamical systems analysis and bifurcation theory are combined together in this document to

shed some light on the intricate issue of oscillatory cylindrical cavities.

Besides the per se appealing interest of the instability phenomena, the transition from the

two-dimensional flow to three-dimensional states is also crucial in unravelling the mechanisms

that destabilise systems that are invariant under the action of the same symetries. Such

systems include the classical example of the two-dimensional von Kármán vortex street in the

wake of a cylinder and a variety of periodically forced flows. Let us first introduce these flows

as a motivation for the present work.

1.1 The von Kármán vortex street

The von Kármán vortex street is a well-known pattern that arises in the wakes of high-speed

flows past objects, such as cylinders. Wakes are generated immediately behind a solid body

because of the motion of the surrounding fluid. In the cylinder setting, the geometry of

the object and the fluid properties allow us to define a sole dimensionless magnitude, the

Reynolds number Re. For relatively small velocities, the flow is perfectly laminar after the

cylinder. As the velocity increases, the streamlines become more distorted little by little and

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Two-dimensional wake of a circular cylinder (taken from Perry et al. (1982)).

Figure 1.2: Von Kármán vortex street created by the wake of the wind flowing around the

Alejandro Selkirk Island (taken from Landsat7).

this distortion eventually evolves into vortical structures. At some point, these structures

become a repeating pattern of vortices that are shed from the alternating sides of the object,

a cylinder in Figure 1.1, the von Kármán vortex street. This succession of swirling structures

develops not only in our human scale, but in a variety of imaginable scenarios. For instance,

in the atmospheric scale, it has been reported by the Landsat7 satellite how the flow of the

wind past an island is able to create a von Kármán vortex street around the Alejandro Selkirk

Island (Figure 1.2).

As a matter of fact, the shedding of vortices from the different sides of the cylinder in-

troduces a new characteristic time, the Strouhal period, T , which depends on the Reynolds

number. Due to this period, the von Kármán vortex street possesses some unique symmetries

that other wake structures do not. Figure 1.3 exhibits the streamwise flow of the von Kármán

vortex street at time t = t0 and after evolving half of the Strouhal period t = t0 + T/2. The

flow is clearly reflected respect to the y = 0 plane after advancing in time T/2. In addition
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Figure 1.3: Illustration of the spatio-temporal symmetry of a two-dimensional circular cylinder

wake for Re = 188.5 at times t0 and t0 + T/2, where t0 is arbitrary and T is the Strouhal

period (adapted from Blackburn et al. (2005)).

to this spatio-temporal symmetry, since the von Kármán vortex street does not possess any

velocity in z, the flow is also invariant to translations and reflections in the spanwise direction.

By means of increasing the velocity, this two-dimensional flow breaks into the spanwise

direction. Mode A is the first three-dimensional instability to emerge (Re ≈ 200) from the

cylinder wake, and preserves the spatio-temporal symmetry; in contrast, mode B breaks the

spatio-temporal symmetry and bifurcates at Re ≈ 270 from a state that is already unstable to

a mode A (Williamson, 1988, 1996). Thus, in the experiments, the unstable mode cannot be

selected because there is only one dimensionless controlling parameter, the Reynolds number.

The numerical computations of cylindrical wake flows impose a periodicity in the z direction,

so a non-dimensional wave number β is introduced straightforwardly. The Floquet analysis

performed in Barkley & Henderson (1996) demonstrated that the most unstable mode could

be selected tuning β for a fixed Re, thus infering the long-wave/short-wave character of mode

A/B. Further numerical studies showed the presence of a quasiperiodic three-dimensional

mode that can manifest either as standing waves or spanwise travelling waves (Blackburn &

Lopez, 2003a; Blackburn et al., 2005). Further studies, based on bifurcation theory (Barkley

et al., 2000) have corroborated the existance of all these unstable modes in the wake of a

circular cylinder. Consequently, coming back to the experiments, traces of mode B and the

quasiperiodic modes only appear as secondary bifurcations from the first bifurcation, mode A.
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Figure 1.4: Schematic of the periodically driven cavity showing the coordinate system and

instantaneous isosurfaces of the spanwise z-vorticity of a basic state (adapted from Blackburn

& Lopez, 2003b).

1.2 Periodically driven flows

Periodically driven flows, such as the one in a periodically driven cavity, are of great relevance

to attain further properties of the two-dimensional time-periodic wakes because they share

the same symmetry group. Figure 1.4 represents a schematic of the cavity exhibiting the

coordinate system and the instantaneous isosurfaces of the spanwise z-vorticity of a two-

dimensional basic state. This system possesses two characteristic lengths (H and ΓH) and

one periodic direction with wavelength ΛH. In addition, the wall located at x = 0 oscillates

periodically in the y direction, whereas the upper one is steady. One important motivation

to study periodically driven cavity flows stems from the fact that, with a fixed geometry,

the amplitude and frequency of the forcing provide two controlling parameters: the Reynolds

number Re and the Stokes number St. While wake flows are autonomous and open, the flow

engendered in a periodically driven cavity is non-autonomous and closed. Blackburn & Lopez

(2003b) showed through Floquet analysis and direct numerical simulations how the basic state

lost stability to three-dimensional modes, analogous to the synchronous A andB modes and the

quasiperiodic modes, depending on the amplitude and the frequency of the wall (Figure 1.5).

In constrast to wake instabilities, mode B preserves the spatio-temporal symmetry and has a
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Figure 1.5: Critical Reynolds number, Rec, as a function of the Stokes number, St, for the

transition from the basic state to the different three-dimensional states, B, QP and A, for the

periodically forced rectangular cavity flow (adapted from Blackburn & Lopez, 2003b; Leung

et al., 2005).

short-wave character, while mode A is the opposite: breaks the symmetry and is long-wave.

The QP mode can manifest as modulated standing or spanwise travelling waves, but the latter

solution is the only stable solution. The agreement between numerics and experiments is more

than remarkable (Vogel et al., 2003; Leung et al., 2005). Regrettably, the travelling nature of

the QP mode could not be captured in the experiments due to the finite nature of the spanwise

direction. Furthermore, the bifurcation theory is very useful to describe the instabilities and

adjusts pretty well to the observed phenomena (Marques et al., 2004) too.

The periodically driven cavity is very useful in the sense that all the unstable modes are

observable as first bifurcations. However, the periodicity imposed in the z direction prevents

the complete agreement between theory and experiments, as well as, the emergence of sec-

ondary bifurcations. This drawback can be solved by means of making this coordinate truly

periodic through homotopy, therefore converting the former cavity into an enclosed annulus.

Blackburn & Lopez (2011) found that the flow inside the annulus has the same three distinct

instabilities: the two synchronous modes (A and B) and the QP mode, which manifests as

modulated standing or travelling waves. The curvature of the system, characterised by the

radius ratio Ψ, is capable of determining which mode becomes unstable first. Unfortunately,

the Fourier numbers of the unstable modes are rather high and the obtaining of pure non-

linear states is only possible when running in the appropriate subspaces. Computations in the

non-linear regime very close to the onset of three-dimensional instabilities produce inexorably

mixed mode states with a really complicated structure, as can be observed from a first glimpse

at Figure 1.6. A travelling wave with k = 33 was computed in the proper subspace, and
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Figure 1.6: Evolution of the Fourier modal energies at Ψ = 4/3, Re = 1200, starting at t = 0

with a k = 33 travelling wave solution to which a small amount of Gaussian white noise was

added (adapted from Blackburn & Lopez, 2011).

then the subspace restrictions were removed at t = 0. The mode with k = 27 starts to grow

exponentially after the perturbations have organised. Upon initial non-linear saturation, there

is a competition of these modes that somehow seems regular, but eventually the behaviour

appears temporally chaotic.

Therefore, the annular cavity possesses all the symmetries, but the large wave numbers

of the instabilities do not allow the simulations to obtain pure mode saturated solutions.

Supposedly, the utilisation of a cylindrical cavity will get rid of the disadvantages of the

annulus because the bifurcating modes are likely to be much smaller. With this setting, the

first step ought to be the caracterisation of the base state, the exploration in search of the first

instabilities (synchronous modes A and B, and the QP mode) and the obtaining of saturated

states. Later on, the interaction and coexistence of solutions should be examined in case of

being possible. Our research group, as well as other internation groups, complement all the

results from the numerics with bifurcation theory. The comparison with experimental results

would be desirable, but as far as we know, there is no one at all conducting this class of

experiments. Nevertheless, Dr. Laura Casanellas and Prof. Jordi Ort́ın at the Non-Linear

Physics Laboratory of the Department of ECM, Barcelona University, have been carrying out

their investigation with viscoelastic fluids in large aspect ratio cylinders. As a consequence,
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in addition to the intrinsic interest of these fluids, commencing a new line of research with

viscoelastic fluids is worth doing for potential joint collaborations.

1.3 Outline of the thesis

This thesis is structured in the following manner. The mathematical formulation of the prob-

lem and the numerical methods are presented in Chapter 2. The numerical schemes are adapted

from the previous code described in Mercader et al. (2010) and the spectral convergence of the

code is corroborated nearly at the end of the chapter. Chapters 3 and 4 are devoted to numer-

ical computations of a Newtonian fluid in a cylindrical cavity whose lateral sidewall oscillates

periodically in time. The main results of Chapter 3 have been published in Panades et al.

(2011) and deal with the characterisation of the basic state and the first hydrodynamic insta-

bilities that the flow experiences. Chapter 4, presented in Panades et al. (2013), is a natural

continuation of the previous one and focuses the attention on the secondary bifurcations that

emerge from the intersection of first two bifurcation curves. Chapter 5 concentrates on some

preliminary results stemming from dynamical systems theory and normal form analysis in an

attempt to unfold the bifurcations of the former chapter. In fact, these techniques are also

employed in the bifurcation analysis of Chapter 3. Chapter 6 represents an introductory work

on the viscoelastic flow created by the oscillatory cylindrical cavity. In fact, this problem is far

beyond our expectations, thus being a mere stepping stone for future investigations. A general

overview of the main results, as well as the future perspectives, are provided in Chapter 7.

Finally, some complementary material can be found in the appendices. Appendix A includes

all the details about the formulation of the problems in cylindrical coordinates. Appendix B

contains the explicit derivations of the normal forms that appear in our problem.
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Chapter 2

Mathematical formulation and

numerical methods

In fluid dynamics, the incompressible Navier-Stokes equations govern the dynamics of Newto-

nian flows. These equations are obtained after assuming a linear relation between the shear

rate and the stress tensor in the conservation equation of the momentum, being the viscosity

the constant of proportionality between them (Batchelor, 1967). In order to solve efficiently

the Navier-Stokes equations, spectral methods have been widely employed (Fornberg, 1998;

Boyd, 2000; Trefethen, 2000). Spectral Galerkin and pseudospectral collocation methods are

some examples of these techniques. The latter is usually preferred because of its simplicity in

the formulation and implementation, and is chosen in the current problem.

The numerical simulation of Newtonian flows in cylindrical cavities has been tackled from

different perspectives. In all cases, the main issue lies in fulfilling numerically the divergence-

free condition of incompressible fluids. In order to attain this requirement, a first option

consists in writing the velocity field in terms of scalar potentials that satisfy the incompress-

ibility condition by construction. A clear advantage of this method is the absence of the

pressure in the formulation. Unfortunately, in enclosed geometries such as cylindrical cavities,

the result is a system of partial differential equations of higher order with coupled boundary

conditions, as can be observed in the linear stability analysis of the Rayleigh-Bénard convec-

tion (Marques et al., 1993). In order to decouple the boundary conditions in the convection

of a rotating cylinder, a different set of velocity potentials were employed (Goldstein et al.,

1998). Few years ago, Boronski & Tuckerman (2007) applied the influence matrix method to

dispose of the mentioned coupling and also lower the order of the system of equations in the

magnetohydrodynamic scenario.

9
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Another possible approach to satisfy the divergence-free condition is based on projection

methods formulated in terms of primitive variables. The main advantage of this technique

is the fact that there is only one sequence of decoupled elliptic equations for the velocity

and the pressure to be solved (Guermond et al., 2006). These methods have been effective

when solving the Navier-Stokes equations (Lopez et al., 2002), convection of binary mixtures

(Mercader et al., 2008) and thermal convection problems (Mercader et al., 2010). Our choice

is completely based on the latter reference but applied to the purely hydrodynamic case of an

enclosed cylinder driven by oscillations of the sidewall. Besides the advantages of this improved

projection scheme, which was firstly proposed by Hughes & Randriamampianina (1998), the

spatial discretisation of the code also copes with the characteristic problems of the cylindrical

geometries. In the radial and vertical direction Chebyshev-collocation is considered, while in

azimuth it is Fourier-Galerkin. Furthermore, the problems concerning to the clustering near

the axis are solved by means of considering radial expansions in the diameter. Last but not

least, the singularity at the origin is avoided with the help of ensuring that this point is not

a collocation point and by considering the proper radial parity of the Fourier components of

the variables.

In addition to the purely hydrodynamic flow, the simulation of non-Newtonian flows with

these numerical techniques is within the scope of this thesis. In a naive way, it can be stated

that non-Newtonian fluids are those that do not satisfy the linear relation expressed in the

first paragraph of this chapter. Some examples of non-Newtoninan fluids are biofluids, polymer

solutions, emulsions and all kind of mixtures (Larson, 1999). Truth is that these fluids represent

a daunting challenge that has been addressed quite recently in comparison with Newtonian

flows. To the extent of our knowledge, there are some experiments with non-Newtonian fluids

in a cylindrical cavity periodically forced in the axial direction (Torralba et al., 2005, 2007;

Casanellas & Ort́ın, 2012a). These experiments have been performed in a cylinder of height-

to-radius ratio of twenty with wormlike micellar solutions, one type of viscoelastic fluid. Even

though these micellar solutions are highly concentrated, the departing point must be as close

as possible to the Newtonian case in order to facilitate the comparison. Therefore, a dilute

viscoelastic solution is preferred and the simplest model is the so-called Oldroyd-B model

(Morozov & van Saarlos, 2007). The constitutive equations derived from this model consider

the polymers as two beads connected by a Hookean spring immersed in a solvent. The main

drawback of the Oldroyd-B model is the fact that allows the polymers to be extended infinitely.

In order to avoid this shortcoming, finitely extensible non-linear elastic hooks can be supposed,

thus resulting in the FENE-P model, or by including a non-linear saturation term, as is the

case for the Giesekus constitutive equation (Larson, 1999).
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Figure 2.1: Schematic of the apparatus. The base state is displayed, showing the roller (iso-

surfaces of axial velocity) formed due to the motion of the sidewall; it is the analogous of the

roller in figure 1.4 for the periodically forced cavity flow.

This chapter has the following structure. In Section §2.1 the governing equations, numerical

scheme and symmetries of the Newtonian flow are detailed. Section §2.2 is analogous to the

former but considering viscoelastic fluids instead. In Sections §2.3 and §2.4 some features of

the spectral convergence and the linear stability analysis are described. This chapter concludes

with Section §2.5 that discusses and synthesises the main characteristics of the methods.

2.1 Newtonian fluid

2.1.1 Governing equations

Consider a Newtonian fluid of dynamic viscosity η and density ρ, thus kinematic viscosity

ν = η/ρ, confined in a finite cylinder of radius R and height h, whose sidewall oscillates

harmonically in the axial direction, with period T and maximum axial velocity Vmax, while

the top and bottom lids remain at rest, as shown schematically in Figure 2.1. The system

is non-dimensionalised taking R as the length scale, and the viscous time τν = R2/ν as the

time scale, so the velocity and the pressure scale with ν/R and ρν2/R2. In the simulations the

radius and the viscous time are the units of lenght and time, that is to say R = 1 and τν = 1.
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In this problem, there are three non-dimensional parameters:

Aspect ratio Γ = h/R, (2.1)

Reynolds number Re = VmaxR/ν, (2.2)

Stokes number St = R2/νT. (2.3)

The aspect ratio defines the geometry of the problem, while Re and St are non-dimensional

measures of the amplitude and frequency of the forcing; the inverse of the Stokes number is

precisely the non-dimensional period of the oscillations, τ = 1/St. In this thesis, the aspect

ratio is fixed at Γ = 2. The non-dimensional Navier-Stokes equations governing the flow are( ∂
∂t

+ u · ∇
)
u = −∇p+∇2u, (2.4a)

∇ · u = 0, (2.4b)

where u = (u, v, w) is the velocity field in cylindrical coordinates (r, θ, z) ∈ [0, 1] × [0, 2π] ×
[−Γ/2, Γ/2], and p is the kinematic pressure. The vorticity associated with the velocity field

is ∇ × u = (ξ, η, ζ). No-slip velocity boundary conditions are used on all walls. Thus, the

velocity is zero on stationary top and bottom endwalls, and the z-component of velocity at

the sidewall oscillates periodically in time:

u(r, θ,±Γ/2, t) = (0, 0, 0), (2.5a)

u(1, θ, z, t) =
(
0, 0, Re sin(2πSt t)

)
. (2.5b)

Therefore, the amplitude of the vertical oscillation of the cylinder wall, ∆z, in terms of the

non-dimensional parameters of the problem is given by ∆z = Re/(2πSt), where its non-

dimensionalisation has been obtained using the radius R.

Since the flow is incompressible of constant density, the oscillating sidewall problem is

identical to having a stationary sidewall with the top and bottom endwalls oscillating together

in the axial direction. These idealised boundary conditions are discontinuous at the junctions

where the stationary lids meet the oscillating sidewall. In a physical experiment there are

small but finite gaps at these junctions where the axial velocity adjusts rapidly to zero. For a

proper use of spectral techniques, a regularisation of this discontinuity is implemented of the

form

w(1, θ, z, t) = Re sin(2πSt t)

[
1− exp

(
−Γ/2− z

ε

)][
1− exp

(
−Γ/2 + z

ε

)]
, (2.6)

where ε is a small parameter that mimics the small physical gaps (ε = 6× 10−3 has been used

as a fixed parameter). The use of ε 6= 0 regularises the otherwise discontinuous boundary

conditions; see Lopez & Shen (1998) for further details on the use of this technique in spectral

codes.
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2.1.2 Numerical scheme

The spectral collocation solver used here is based on the scheme described in Mercader et al.

(2010). This spectral solver has been tested and used in a wide variety of flows in enclosed

cylinders (Marques et al., 2007; Lopez et al., 2007, 2009; Lopez & Marques, 2009). A second-

order time-splitting method based on the work of Hughes & Randriamampianina (1998) is

utilised. The spatial discretisation considers Galerkin-Fourier expansions in the azimuthal

periodic direction and Chebyshev-collocation in the finite coordinates.

Temporal discretisation

Concerning the time discretisation, the governing equations have been solved using a second-

order time-spliting method based on a combination of Adams-Bashforth and backward differ-

entiation schemes (Karniadakis et al., 1991; Ascher et al., 1995; Hughes & Randriamampianina,

1998). This numerical scheme is semi-implicit and has been chosen because of its good stability

properties. The Navier-Stokes equations (2.4) are written as:

∇ · un+1 = 0, (2.7a)

3un+1 − 4un + un−1

2∆t
= −∇pn+1 − 2N (un) + N

(
un−1

)
+∇2un+1, (2.7b)

where N(u) = u · ∇u is the non-linear term of the velocity, ∆t the time step, and n the

iteration. Time steps of ∆t = 10−5 have been required to ensure numerical stability and

accuracy of the temporal scheme.

The projection scheme is adopted from Hughes & Randriamampianina (1998) and is divided

in three substeps. Following the prescriptions of Karniadakis et al. (1991), the first fraction

step consists in computing a predictor for the pressure, p̄n+1, obtained from the Navier-Stokes

and continuity equations:

∇2p̄n+1 = ∇ ·
[
−2N (un) + N

(
un−1

)]
, (2.8)

with the consistent Neumann boundary condition:

∂p̄n+1

∂n
= n ·

[
2L(un)− L(un−1)− 2N(un) + N(un−1)− 3un+1 − 4un + un−1

2∆t

]
, (2.9)

where the term un+1 are the known boundary conditions for the velocity given by (2.5), and

L(u) = ∇2u = ∇(∇ · u) − ∇ × (∇ × u) = −∇ × (∇ × u), corresponds to the diffusion

term, which has been decomposed in solenoidal and irrotational operators. Afterwards, the
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momentum equation including the preliminary pressure, for a predictor velocity field, u∗, is

solved: (
∇2 − 3

2∆t

)
u∗ = ∇p̄n+1 + 2N(un)−N(un−1)− 4un − un−1

2∆t
, (2.10)

employing the actual Dirichlet boundary conditions for the velocity (2.5). Since the linear

viscous term in cylindrical coordinates couples the velocity components, the utilisation of the

linear combinations (A.22) becomes necessary, hence introducing uα and uβ. After computing

these fictitious velocities, the physical components u and v are recovered using the transfor-

mation described by (A.23). In the final stage, the correction step is based on the evaluation

of:
3(un+1 − u∗)

2∆t
= −∇(pn+1 − p̄n+1), (2.11a)

∇ · un+1 = 0. (2.11b)

Considering φ = 2(pn+1 − p̄n+1)∆t/3, the system poses a Poisson equation for this variable:

∆φ = ∇ · u∗, (2.12)

with the consistent Neumann boundary conditions:

∂φ

∂n
= 0, (2.13)

and the update of the pressure and the velocity is immediate:

pn+1 = p̄n+1 +
3φ

2∆t
, (2.14a)

un+1 = u∗ −∇φ. (2.14b)

Spatial discretisation

The spatial discretisation is via a Galerkin-Fourier expansion in θ and a Chebyshev collocation

in x = 2r and z, of the form

(u,w, p)(r, θ, z) =

nr∑
l=0

nz∑
n=0

nθ/2−1∑
m=−nθ/2

alnmTl(x)Tn(z)eimθ =

nθ/2−1∑
m=−nθ/2

Fm(r, z)eimθ, (2.15)

for the radial velocity u, the axial velocity w and the pressure p, where Tl and Tn are Chebyshev

polynomials of degree less or equal than nr and nz, respectively. For Newtonian flows, the

results presented along this thesis have been computed with nr = 48, nz = 96 and nθ = 20, and

this resolution resolves all the spatial scales in the solutions presented. The Fourier components

Fm(r, z) are separated in their real and imaginary parts, thus fulfilling:

F0(r, z) = f0(r, z), (2.16a)
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F−nθ/2(r, z) = fnθ−1(r, z), (2.16b)

Fm(r, z) = f2m−1(r, z) + if2m(r, z), for m = 1, . . . , nθ/2− 1, (2.16c)

F−m(r, z) = Fm(r, z), (2.16d)

where the overbar means complex conjugate and f is a real-valued function. Equation (2.16c)

shows the separation in real (subscript 2m − 1) and imaginary (subscript 2m) parts, hence

providing a total of nθ independent real functions, in case of including the axisymmetric

component too.

The azimuthal velocity v has a slightly different expansion in Fourier

v(r, θ, z) = i

nθ/2−1∑
m=−nθ/2

Fm(r, z)eimθ, (2.17)

and as a consequence possesses another features:

F0(r, z) = if0(r, z), (2.18a)

F−nθ/2(r, z) = ifnθ−1(r, z), (2.18b)

Fm(r, z) = if2m−1(r, z)− f2m(r, z), for m = 1, . . . , nθ/2− 1, (2.18c)

F−m(r, z) = −Fm(r, z). (2.18d)

Because of the different expansions in real (2.15) or imaginary (2.17) series, an equation for

the m Fourier mode splits into a purely real and another imaginary equation with functions

f2m−1 and f2m, respectively. This choice clearly facilitates the implementation and solution

of the equations.

The change to cylindrical variables generates an apparent singularity at the axis r = 0

and the Fourier components have to take into account this issue. Therefore, some regular-

ity conditions should be considered at the origin for the Fourier coefficients (Lopez et al.,

2002). Different options are decribed in Boyd (2000), including our choice, the unshifted

Chebyshev polynomials of appropriate parity. Other authors have considered more restrictive

conditions of the radial Chebyshev interpolants in order the solution to satisfy analyticity

conditions in a neighbourhood of the origin (Priymak & Miyazaki, 1998). By means of forcing

the Fourier components to have the correct parity, the problem becomes well-posed. Fur-

thermore, this weak formulation has to be complemented with never chosing the origin as

a collocation point and avoiding clustering near this point. In cylindrical coordinates, any

scalar function fulfills f(r, θ+π, z) = f(−r, θ, z) because (r, θ+π, z) is equivalent to (−r, θ, z).
Unlike scalar functions, polar magnitudes possess the antisymmetric property, thus satisfying
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f(r, θ+π, z)r̂ = −f(−r, θ, z)r̂ and f(r, θ+π, z)θ̂ = −f(−r, θ, z)θ̂. Consequently, Fm(r, z) of w

and p, must have parity m, whilst those of u and v, have to possess the same parity as m+ 1

(Lopez et al., 2002; Mercader et al., 2010). Even though the pole conditions are not imposed

in the code explicitly, they are satisfied in a natural way because of the considerations made

with the parity of the Fourier coefficients (Mercader et al., 1991, 2010).

As it has been stated at the beginning of this subsection, the radial Chebyshev expansion

is performed in x = 2r ∈ [−1, 1], so the collocation points are distributed according to:

rl = cos

(
πl

2nr + 1

)
, for l = 0, . . . , nr, (2.19)

while in the axial direction, they follow the usual distribution:

zn =
Γ

2
cos

(
πn

nz

)
, for n = 0, . . . , nz; (2.20)

see Fornberg (1998) or Trefethen (2000). Thanks to this method, the coordinate r = 0 is

never a collocation point and the problem with the origin is solved. Moreover, the collocation

points are clustered near the lids and the sidewalls, where the dynamics are prone to be more

complex.

Since both spectral differentiation matrices for x = 2r and z are equivalent, a generic set

of collocation points qi with i = 0, . . . , nq, is introduced to avoid unnecessary repetitions. The

first-order differentiation matrix is given by

D(1)
ij =



(−1)i+j
ci

cj(qi − qj)
, i 6= j,

− qj
2(1− q2

j )
, 1 ≤ i = j ≤ nq − 1,

2n2
q + 1

6
, i = j = 0,

−
2n2

q + 1

6
, i = j = nq,

(2.21)
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while the second-order differentiation matrix is

D(2)
ij =



(−1)i+j
(q2
i + qiqj − 2)

cj(1− q2
i )(qi − qj)

, i 6= j, 1 ≤ i ≤ nq − 1, 0 ≤ j ≤ nq,

−
(n2
q − 1)(1− q2

i ) + 3

3(1− q2
i )

2
, 1 ≤ i = j ≤ nq − 1,

(−1)j
2[(2n2

q + 1)(1− qj)− 6]

3cj(1− qj)2
, i = 0, 1 ≤ j ≤ nq,

(−1)nq+j
2[(2n2

q + 1)(1 + qj)− 6]

3cj(1 + qj)2
, i = nq, 0 ≤ j ≤ nq − 1,

n4
q − 1

15
, i = j = 0, nq,

(2.22)

where ci = 1 for 1 ≤ i ≤ nq − 1, and c0 = cnq = 2 (Zhao & Yedlin, 1994; Boyd, 2000). Instead

of employing the differentiation matrices for x, the radial derivatives are computed via two

new matrices that take into consideration the parity of the functions to be differentiated

D(k) , even
ij = D(k)

i j +D(k)
i nx−j , (2.23a)

D(k) , odd
ij = D(k)

i j −D
(k)
i nx−j , (2.23b)

with i, j = 0, . . . , nr, and nx = 2nr + 1. Thus, the matrix with the even superscript must

be applied to odd Fourier coefficients of u and v, and even Fourier components of w and p.

The complementary is used for the odd superscript: even components for u and v, and odd

coefficients for w and p.

Due to the time splitting described in the former subsection, several Helmholtz and Poisson

equations for the different Fourier modes are posed and have to be solved. The differential

operators of the Poisson and Helmholtz equations for w, p and φ, expressed by

(
∂2
r +

1

r
∂r −

m2

r2
+ ∂2

z + a

)
f = h, (2.24)

and the decoupling combinations uα and uβ for u and v

(
∂2
r +

1

r
∂r −

(m± 1)2

r2
+ ∂2

z + a

)
f = h, (2.25)

are diagonalised in the radial and axial coordinates only once in a preprocessing stage, following

Zhao & Yedlin (1994).
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2.1.3 Symmetries

The governing equations and boundary conditions are invariant to the following spatial sym-

metries:

Kβ(u, v, w)(r, θ, z, t) = (u,−v, w)(r, 2β − θ, z, t), (2.26a)

Rα(u, v, w)(r, θ, z, t) = (u, v, w)(r, θ + α, z, t), (2.26b)

for any angle α and β. Kβ represents reflections about the meridional plane θ = β, whilst Rα

signifies rotations about the cylinder axis. Kβ and Rα generate the groups Z2 and SO(2), but

the two operators do not commute (KβRα = R−αKβ), so the symmetry group generated by

Kβ and Rα is O(2) and acts in the periodic azimuthal θ-direction. The horizontal reflection

on the mid-plane z = 0 acts on the velocity field as:

Kz(u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ,−z, t). (2.27)

Due to the harmonic oscillation of the sidewall, the boundary condition (2.46b) is not Kz

invariant. The system is invariant to the spatio-temporal symmetry consisting of a reflection

about the mid-plane z = 0 together with a half-period evolution in time:

H(u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ,−z, t+ τ/2). (2.28)

The transformation H generates a spatio-temporal ZST2 symmetry group that commutes with

O(2) and its square, H2, is the identity. Hence, the complete symmetry group of the problem

is O(2)× ZST2 . The action of the spatial symmetry Kβ and the spatio-temporal symmetry H

on the vorticity is different to the action on the velocity (while the action of the rotations Rα

is the same on the velocity and vorticity fields), and are given by:

Kβ(ξ, η, ζ)(r, θ, z, t) = (−ξ, η,−ζ)(r, 2β − θ, z, t), (2.29a)

H(ξ, η, ζ)(r, θ, z, t) = (−ξ,−η, ζ)(r, θ,−z, t+ τ/2). (2.29b)

Therefore, the individual symmetries (and the generated groups) are exactly the same as for the

periodically driven annular cavity (Blackburn & Lopez, 2011) and analogous to the periodically

driven rectangular cavity flows (Blackburn & Lopez, 2003b; Vogel et al., 2003) and the two-

dimensional time-periodic wake of symmetrical bluff bodies; such as cylinders (Williamson,

1996; Barkley et al., 2000; Blackburn & Lopez, 2003a; Blackburn et al., 2005), rings (Leweke

& Provansal, 1995) or flat plates (Lasheras & Meiburg, 1990). As occurrs in all these systems,

the solutions that bifurcate from the basic state, break some of these symmetries. Hence, it

would be convenient to have quantitative measures of the symmetries to know whether the

emerging solutions break or preserve them.
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In the symmetry O(2)×ZST2 corresponding to the problem considered, the spatial part of

the spatio-temporal symmetry commutes with the purely spatial symmetries, which simplifies

the analysis. Nevertheless, it should be noted that in other similarly periodically forced hy-

drodynamic systems, the spatial parts of the spatio-temporal symmetry do not commute, and

care needs to be exercised; see Lopez & Marques (2000); Marques & Lopez (2000); Avila et al.

(2007, 2008), and references therein.

Rα symmetry

Because of the basic flow is supposed to be axisymmetric, the kinetic energy associated with

each Fourier mode different from zero is considered of great relevance. Indeed, a non-zero

value of this magnitude means that the azimuthal rotation symmetries Rα are broken, and the

basic flow has bifurcated. Then, this modal kinetic energy is:

Em =
2

Γ

∫
D

um · um rdrdz, (2.30)

where the integration domain D is (r, z) ∈ [0, 1] × [−Γ/2, Γ/2] and the overbar applies the

complex conjugate on the velocity field. As the basic flow is axisymmetric, the radial and axial

vorticity components give a good measure of the three-dimensional nature of the bifurcated

state, as well as the azimuthal velocity. If it is necessary, note that this symmetry can be

artificially imposed by means of setting all the non-axisymmetric Fourier components of the

velocity equal to zero.

Kβ symmetry

In some cases, it is important to impose the preservation of the Kβ symmetry. The action

of this symmetry on the velocity field is ruled by equation (2.26a). Considering the different

expansions of the velocities given by equations (2.15) and (2.17), it is easy to verify that the

coefficients have to satisfy these conditions:

f0 = fnθ−1 = 0, for v, (2.31a)

f2m = 0, for u, v and w, (2.31b)

where m = 1, . . . , nθ/2− 1. This method has been used effectively in similar problems (Black-

burn & Lopez, 2003b, 2011). The solutions satisfying the previous equations are invariant

under reflections about the β = θ = 0 diametral plane.
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In other cases, when Kβ has been broken, the implementation of a symmetry check for the

reflection symmetry is necessary. Let us assume a variable g(r, θ, z, t) such that:

Kβg(r, θ, z, t) = g(r, 2β − θ, z, t), (2.32)

and expands in Fourier according to (2.15), with Fourier components Gm, for example the

axial velocity. Since g is real, G−m = Gm. Considering that g is Kβ-invariant:

Kβg(r, θ, z, t) = g(r, θ, z, t), (2.33)

and the Fourier components satisfy

e2imβGm = G−m = Gm ⇒ eimβGm = eimβGm ⇒ argGm = −mβ, (2.34)

where β can be time-dependent, but it is independent of (r, z). In order to define a symmetry

parameter, the phases of the azimuthal Fourier components Gm must be examined. Introduc-

ing Gm = |Gm|eiφm , the mean phase and the corresponding standard deviation can be easily

computed:

βm(t) =
2

Γ

∫
D
φm(r, z, t) rdrdz, σ2

βm(t) =
2

Γ

∫
D

(φm(r, z, t)− βm)2rdrdz, (2.35)

where D is (r, z) ∈ [0, 1]× [−Γ/2, Γ/2] again. The standard deviation σβm is a good measure

of the reflection symmetry of the different azimuthal Fourier modes. For a global measure of

this asymmetry, the correlation of the angles of the Fourier modes respect to the first one, has

to be checked, βm = mβ1. Therefore, the symmetry parameter SKβ is defined as

S2
Kβ

=

nθ/2−1∑
m=1

Wm

(
sin2(βm −mβ1) + σ2

βm

)
, Wm = ‖Gm‖∞/

nθ/2−1∑
k=1

‖Gk‖∞ , (2.36)

which is always positive, and zero precisely when the symmetry line of mode m coincides with

the symmetry line of mode one. Each mode has been weighted according to its contribution

to the full solution using the maximum norm ‖Gk‖∞ in the domain D.

H symmetry

Concerning to the spatio-temporal symmetry, it remains to give a good measure of H. One

option is to observe the flow half-period apart in symmetric planes with respect to z = 0. A

more rigurous estimation might be:

SH = ||w(r, θ, z, t) + w(r, θ,−z, t+ τ/2)||2, (2.37)
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that is zero for an H-symmetric solution, according to (2.28). In particular, SH = 0 means

that w is time-periodic and can be expanded in Fourier:

w(r, θ, z, t) =
∑
j

wj(r, θ, z)e
2πijt/τ . (2.38)

At the mid-plane z = 0 and considering (2.28), it is obtained that

w(r, θ, 0, t) = −w(r, θ, 0, t+ τ/2). (2.39)

This condition turns into

wj(r, θ, 0) = (−1)j+1wj(r, θ, 0), (2.40)

which means that the even temporal Fourier components of the axial velocity on the mid-plane

are zero, for an H-symmetric solution. As a consequence, the magnitude of the even temporal

Fourier components is a suitable measure of the H-symmetry breaking, a result useful in the

analysis of the solutions.

2.2 Viscoelastic fluid

2.2.1 Governing equations

Consider a viscoelastic fluid with density ρ under the same conditions as the Newtonian flow of

the previous section. The total kinematic (dynamic) viscosity of the solution ν (η) is the sum

of the solvent νs (ηs) and the polymeric contribution νp (ηp), thus ν = νs + νp (η = ηs + ηp).

Moreover, these polymers introduce an additional characteristic time: the average relaxation

time that the polymers need to return to equilibrium after being perturbed, λ. The length,

time, velocity, pressure and polymeric stress are scaled using R, R/Vmax, ρV 2
max and ηpVmax/R,

respectively. Besides the three dimensionless numbers appearing in (2.1)-(2.3), there are two

additional numbers to be considered here:

Viscosity ratio β = νs/ν, (2.41)

Weissenberg number We = λVmax/R. (2.42)

The viscosity ratio provides a deviation of the viscoelastic fluid respect to the Newtonian one.

For instance, in the case of a solvent with a small amount of polymers, β is close to one, because

νs > νp but of the same order. Nevertheless, in a highly concentrated solution, νp � νs, so

the viscosity ratio tends to zero. The Weissenberg number is the ratio of the relaxation time

of the polymers and the shear rate produced by the oscillatory sidewall. The dimensionless
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momentum equations for an incompressible viscoelastic fluid are

∇ · u = 0, (2.43a)

∂u

∂t
+ u · ∇u = −∇p+

β

Re
∇2u +

(1− β)

Re
∇ · T, (2.43b)

where u = (ur, uθ, uz) is the velocity field in cylindrical coordinates (r, θ, z) ∈ [0, 1]× [0, 2π]×
[−Γ/2, Γ/2], p is the hydrodynamic pressure, and T represents the polymeric stress.

The time evolution of the polymeric stress is provided by an additional constitutive equa-

tion that depends on the election of the viscoelastic model. The simplest model of viscoelastic

fluid considers the polymers as two beads connected by a linear Hookean spring, experiencing

hydrodynamic drag and stochastic Browninan forces, the so-called Oldroyd-B model. This

model is able to capture the main features of viscoelastic flows, but allows the polymers to be

infinitely extended (Morozov & van Saarlos, 2007). A more sophisticated approach that solves

this problem is the FENE-P model. Its constitutive equation represents an extension of the

Oldroyd-B equation and makes the springs non-linearly elastic with a finite maximum exten-

sion (Larson, 1999). Since this field is novel for us, we will keep ourselves in the Oldroyd-B

frame for the sake of simplicity. On the basis of this model, the polymer stress tensor is given

in terms of the so-called conformation tensor C via

T =
C− I
We

, (2.44)

where I is the identity. The conformation tensor is proportional to the ensemble-averaged

second moment of the polymer chain end-to-end distance. In other words, this tensor is related

with the macroscopic behaviour of the polymer chains and its trace provides the average square

polymer elongation. The conformation tensor is symmetric, positive-definite and, at rest, C =

I. From the first two properties, it can be infered that the determinant of this tensor must be

always positive. Indeed, measuring this determinant is essential in order to monitorise whether

the simulations are running correctly. The components of C are {Crr, Crθ, Crz, Cθθ, Cθz, Czz}
and its evolution equation is

∂C
∂t

+ u · ∇C− C · ∇u− (∇u)† · C = −C− I
We

+
[
κ∇2C

]
, (2.45)

where the dagger means transposition. In addition, the third and fourth terms make the time

derivative of C independent of the frame of reference; a detailed discussion about this matter

can be found in Bird et al. (1987). The term in brackets introduces an artificial diffusion for

C and has been included in order to gain stability when integrating the tensor (Sureshkumar

& Beris, 1995). The coefficient of diffusion κ must be chosen as low as possible in order to not

affect appreciably the dynamics of the flow, hence κRe � 1 and κWe � 1 (Thomas et al.,

2006, 2009).
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Conceptually, the velocity boundary conditions described in the previous section by (2.5)

are correct, but now they have to be changed because of the different non-dimensionalisation:

u(r, θ,±Γ/2, t) = (0, 0, 0), (2.46a)

u(1, θ, z, t) =
(
0, 0, sin(2πSt t)

)
. (2.46b)

As a matter of fact, when the artificial diffusive term is included in the constitutive equation,

some boundary conditions for C are necessary. This question is addressed extensively in

the forthcoming section. The inclusion of the diffusive term represents an artifact, as well

as the election of the boundary conditions. The most usual procedure is the integration

without the diffusive term and then these results are employed as Dirichlet boundary conditions

(Sureshkumar & Beris, 1995; Thomas et al., 2006). In an attempt to avoid strong gradients

near the wall that are difficult to integrate, another choice that might favour numerical stability

are Neumann boundary conditions on all tensor components. This second option possesses

also the advantage that the boundary conditions are continuous in the whole domain.

2.2.2 Numerical scheme

The momentum equations for an incompressible viscoelastic fluid (2.43) can be interpreted as

the incompressible Navier-Stokes equations (2.4) with an additional forcing term that comes

from the polymeric stresses. Hence, the same second-order time-splitting method of Mercader

et al. (2010) is used for the time evolution of the velocity field. However, the time integration

of the constitutive equations is much more difficult because of its highly hyperbolic nature. For

this reason, different temporal schemes are used in an attempt to avoid numerical instabilities

and subsequent blow-ups. The same spatial discretisation of the former section is used here:

Galerkin-Fourier expansions in the periodic azimuthal coordinate and Chebyshev-collocation in

the axial and radial directions. Nevertheless, the considerations about the Fourier expansions

have to be extended to the components of the conformation tensor.

Temporal discretisation

The momentum equations have been solved using a second-order time-spliting method based

on a combination of Adams-Bashforth and backward differentiation schemes (Mercader et al.,

2010), similarly to problems of convection:

∇ · un+1 = 0 (2.47a)
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3un+1 − 4un + un−1

2∆t
=−∇pn+1 − 2N (un) + N

(
un−1

)
+

(1− β)

Re
∇ · Tn+1+

+
β

Re
∇2un+1,

(2.47b)

where N(u) = u ·∇u is the usual advective term of the velocity. The procedure is analogous to

the one explained for a Newtonian flow. After updating the conformation tensor Cn+1, which

is detailed in the next paragraphs, the polymer stress is computed:

Tn+1 =
Cn+1 − I
We

. (2.48)

The updated polymer stress is introduced when the predictor for the pressure is solved:

∇2p̄n+1 = ∇ ·
[
−2N (un) + N

(
un−1

)
+

(1− β)

Re
∇ · Tn+1

]
, (2.49)

with the analogous Neumann boundary condition:

∂p̄n+1

∂n
= n ·

[
2L(un)− L(un−1)− 2N(un) + N(un−1) +

(1− β)

Re
∇ · Tn+1−

− 3un+1 +−4un + un−1

2∆t

]
,

(2.50)

where un+1 are the actual boundary conditions for the velocity, and L(u) = −∇ × (∇ × u).

By including the preliminary pressure, a predictor velocity, u∗ is achieved:(
∇2 − 3Re

2β∆t

)
u∗ =

Re

β

[
∇p̄n+1 + 2N(un)−N(un−1)− (1− β)

Re
∇ · Tn+1−

− 4un − un−1

2∆t

]
,

(2.51)

employing the real Dirichlet boundary conditions for the velocity. Due to the coupling intro-

duced by the linear viscous term, the combinations (A.22) and (A.23) are necessary again.

In the final stage, the corrector step is exactly the same as in the former section. Therefore,

equations from (2.11) to (2.14) describe the corrector process perfectly.

Coming back to the first fraction step, the update of the conformation tensor has to be ob-

tained firstly. The Oldroyd-B constitutive equations is discretised similarly to the momentum

equations:

3Cn+1 − 4Cn + Cn−1

2∆t
= −2N (un,Cn) + N

(
un−1,Cn−1

)
− Cn+1 − I

We
+

+
[
κ∇2Cn+1

]
,

(2.52)

where N(u,C) = u ·∇C−C ·∇u− (∇u)† ·C is the non-linear term of the Oldroyd-B equation.

The simplest option is the purely explicit update of the conformation tensor, which yields:

Cn+1 =
1(

3
2∆t + 1

We

) [−2N(un,Cn) + N(un−1,Cn−1) +
I
We

+
4Cn − Cn−1

2∆t

]
. (2.53)
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Equation (2.53) is referred as CO (Classical Oldroyd) temporal scheme.

An alternative that has been a common practice in the last years (Sureshkumar & Beris,

1995; Thomas et al., 2006) consists in considering equation (2.53) as an intermediate update

at time n+ 1/2

Cn+1/2 =
1(

3
2∆t + 1

We

) [−2N(un,Cn) + N(un−1,Cn−1) +
I
We

+
4Cn − Cn−1

2∆t

]
, (2.54)

and this is followed by solving implicitly the equation with the inclusion of the diffusive term:(
∇2 − 2

κ∆t

)
Cn+1 = −∇2Cn − 2

κ∆t
Cn+1/2. (2.55)

As it happens with the linear viscous term of the velocity, the laplacian of the conformation

tensor in cylindrical coordinates couples different components and the linear combinations de-

scribed by (A.24) are required. After solving the decoupled equations, the physical components

are recovered employing (A.25). Some boundary conditions are necessary for the tensor. The

most usual choice considered in the literature are Cn+1 = Cn+1/2 on the sidewalls. However,

there is no such thing as a regularity condition analogous to (2.6) for the conformation tensor

reported in the literature, because the problem of a viscoelastic fluid in a cylindrical cavity has

not been tackled including the artificial diffusion. As a consequence, no regularity conditions

are applied to this artificial Dirichlet boundary conditions. Another option that is analysed

in the present work are Neumann boundary conditions equal to zero for all the tensor compo-

nents, thus making the boundary conditions continuous and regular, plus strong gradients are

avoided near the cylinder boundaries. Therefore, depending on the boundary conditions, there

are two additional temporal schemes: DOD (Diffusive Oldroyd Dirichlet) and DON (Diffusive

Oldroyd Neumann)).

The last option does not consider the stress diffusion as an artifact, so it is included

straightforwardly from the beginning, such as is done in Chokshi & Kumaran (2009). In this

case, (2.52) can be integrated implicitly as it is done in Mercader et al. (2010) for the heat

equation:(
∇2 − 1

κ

(
1

We
+

3

2∆t

))
Cn+1 =

1

κ

[
2N(un,Cn)− N(un−1,Cn−1)− I

We
−

− 4Cn − Cn−1

2∆t

]
.

(2.56)

As in the previous paragraph, the same Dirichlet and Neumann boundary conditions are taken

into account. Thus, the following acronyms serve to synthesise the schemes: PDOD (Purely

Diffusive Oldroyd Dirichlet) and PDON (Purely Diffusive Oldroyd Neumann).

All the differential operators posed by the Poisson and Helmholtz equations along this

subsection of viscoelastic fluids, are diagonalised just once applying the method described in
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Zhao & Yedlin (1994), as occurred with Newtonian flows. Time steps of ∆t = 10−2 − 10−4

have been employed to study the numerical stability and accuracy of the different schemes.

Spatial discretisation

The spatial discretisation is analogous to the Newtonian case: Fourier in the periodic θ di-

rection and Chebyshev in the finite directions r and z. In the same direction as before, some

magnitudes expand in real series, following:

(ur, uz, p, Crr, Crz, Cθθ, Czz)(r, θ, z) =

nθ/2−1∑
m=−nθ/2

Fm(r, z)eimθ, (2.57)

whilst others in imaginary series:

(uθ, Crθ, Cθz)(r, θ, z) = i

nθ/2−1∑
m=−nθ/2

Fm(r, z)eimθ, (2.58)

thus possessing the same properties given by (2.16) and (2.18), respectively. Since viscoelastic

fluids tend to be more complex, a higher resolution is desirable, so nr = 96, nz = 192 and

nθ = 20 are considered when dealing with them.

Once again, some regularity conditions have to be considered at the origin. As has been

mentioned, by means of forcing the correct parity of the Fourier expansions, these regularity

conditions become imposed implicitly for the velocity field. The same goes for the tensor

components and after applying the same reasoning as Lopez et al. (2002), it is found that the

m-Fourier coefficients of Crr, Crθ, Cθθ and Czz posess parity m, meanwhile for Crz and Cθz the

parity is m+ 1.

The collocation points in the radial and axial directions are distributed according to (2.19)

and (2.20), so r = 0 is not a collocation point and the points tend to be clustered near the

lids and walls of the cylinder. The usual differentiation matrices are also used and the radial

derivatives (2.23) take into account the analogous prescriptions on the parity of the Fourier

components: the superscript even (odd) has to be employed on odd (even) Fourier components

of ur, uθ, Crz and Cθz, and even (odd) coefficients of uz, Crr, Crθ, Cθθ and Czz.

2.2.3 Modal elastic energy

Concerning to the symmetries, the velocity field of the viscoelastic flow posesses the same

spatial and spatio-temporal symmetries. In that section, the kinetic energy of the Fourier

components has been introduced. Besides measuring the break of the azimuthal rotation
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Figure 2.2: Chebyshev amplitudes of the square root of the kinetic energy for the radial

coefficients nr (circumferences) and axial coefficients nz (squares), and Fourier modes of the

square root of the kinetic energy nθ (diamonds), computed at (St,Re) = (15.5, 395).

symmetries, the modal kinetic energy is very useful to measure whether the flow has reached a

steady state. This magnitude is also useful for a viscoelastic flow, but another global magnitude

capable of taking into account the time scale of the polymers is desirable. In this sense, the

modal elastic potential energy is defined in Balci et al. (2011) as:

Um =
2

Γ

∫
D

trace (Tm) rdrdz, (2.59)

where the integration is over the whole cylinder, thus D is (r, z) ∈ [0, 1]× [−Γ/2, Γ/2]. Indeed,

since polymer dynamics tend to be slower than the flow establishment, when the elastic energy

of the axisymmetric mode reaches a steady state, means that the whole polymer solution is

steady.

2.3 Spectral convergence

All the imaginable numerical tests for this code have been performed in Mercader et al. (2010)

and this section is devoted to check the spectral accuracy of one of the most complex solutions

included in the present thesis. This solution is a special type of travelling waves, which posess

m = 1 and exist for (St,Re) = (15.5, 395), and are commented exhaustively in Chapter 4.

Figure 2.2 shows the Chebyshev amplitudes of the square root of the kinetic energy for the

radial coefficients nr (circumferences) and axial coefficients nz (squares), and Fourier modes of
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the square root of the kinetic energy nθ (diamonds). This figure clearly illustrates the existance

of the exponential decay typical from spectral methods for the Fourier coefficients, as well as

for the remaining two coefficients at small values of n. Nonetheless, the convergence in these

directions seems to become algebraic, rather than spectral. This issue might be caused by the

complexity of the solution and is not dramatic at all because its accuracy is still enough: the

ratio between the leading coefficients and the ones in the tail, q, is qr ≈ 1500 and qz ≈ 45396 for

the radial and axial coefficients, respectively. For viscoelastic flows, the spectral convergence

is crucial to know whether the simulations are going in the right direction and some examples

are discussed in Chapter 6.

2.4 Linear stability analysis

The linear stability of the basic state to general three-dimensional perturbations is determined

using global linear stability analysis via time evolution of the Navier-Stokes equations (Lopez,

Marques, Rubio & Avila, 2009; Do, Lopez & Marques, 2010). First, a periodic axisymmetric

basic state is computed at some point in the parameter space. By means of introducing

small random perturbations of amplitude δ into all azimuthal Fourier modes, the stability of

the basic flow is determined. For sufficiently small perturbations, the non-linear couplings

between Fourier modes are neglectable (below round-off numerical noise) and the growth rates

(real parts of the eigenvalues) and structure of the eigenfunctions corresponding to the fastest

growing perturbation at each Fourier mode emerge from time evolution. This is tantamount

to a matrix-free generalised power method in which the actions of the Jacobian matrices

for the perturbations are given by time integration of the Navier-Stokes equations with the

aforementioned initial conditions. This direct numerical technique is very efficient as the

exponential growth or decay of the perturbations is established in a relatively short amount

of time, and there is no need to evolve the disturbances until the non-linear saturation. This

technique has been used on a wide variety of fluid dynamics problems where the state whose

stability is under analysis is non-trivial (see Lopez & Marques, 2009; Lopez et al., 2009; Rubio

et al., 2010, for examples and some further details).

2.5 Discussion

A spectral-projection method formulated in terms of primitive variables is adopted to solve the

incompressible Navier-Stokes equations in a cylindrical cavity periodically forced in the axial

direction. The numerical formulation includes a second-order semi-implicit scheme for the time
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integration and a pseudospectral approach for the spatial coordinates: Chebyshev-collocation

in the finite axial and radial directions and Fourier-Galerkin in the periodic azimuthal di-

rection. The singularity at r = 0 is solved by avoiding clustering around the pole and not

considering this point a collocation point. In addition, some regularity conditions are im-

plicitly implemented via the proper parity of the Fourier coefficients. This code is efficient

and accurate when dealing with any incompressible flows in cylindrical enclosures and, in the

current hydrodynamic scneario, clearly provides spectral convergence.

The same formulation for the momentum equation of the different viscoelastic models is

assumed. Because of the numerical difficulties arising when updating the polymer contribution,

several numerical approaches are taken into account to obtain good results. Concerning the

spatial considerations, analogous parity conditions are employed in the viscoelastic case. The

efficiency of these codes has yet to be tested, as well as the spectral covergence as a function

of the different parameters. In fact, these polymers introduce an additional time scale related

with their relaxation towards equilibrium. In order to account for the possible effects of the

different time scales, the elastic energy has to be studied alongside the kinetic energy. Another

consideration that has to be kept in mind is the fact that the determinant of the conformation

tensor must be positive no matter what.

Because of the symmetries of the problem, the velocity field of the basic flow has to be

axisymmetric and time-periodic with the forcing. This basic state is obtained by temporal

evolution in all cases. By means of perturbing all the Fourier modes of this state, the stability

of the basic flow is analysed. Furthermore, after waiting enough time, eventually a bifurcated

state is obtained or the recovery of the basic state achieved.
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Chapter 3

Transitions to three-dimensional

flows for Newtonian fluids

The von Kármán vortex street is a classic problem in fluid dynamics (Guyon, Hulin, Petit &

Mitescu, 2001). This case and other bluff-body wakes are invariant in the spanwise direction

to both translations (SO(2) symmetry group) and reflections (Z2 symmetry group), the com-

bination generating the O(2) symmetry group. In addition to O(2), these two-dimensional

flows possess a spatio-temporal symmetry of Z2 type, as is the case for the wake of a circular

cylinder in the streamwise direction (Barkley, Tuckerman & Golubitsky, 2000; Blackburn &

Lopez, 2003a; Blackburn, Marques & Lopez, 2005). As a consequence, the complete symmetry

group of these flows is O(2)× ZST2 .

The transition from two-dimensional to three-dimensional flows in wake flows have been

extensively studied. The types of symmetry-breaking bifurcations are completely determined

by the symmetry group of the system, and not by the particulars of the physical mechanisms

responsible for the bifurcation, and have been analysed in detail in Marques et al. (2004). The

equivariant branching lemma (see, for example Golubitsky et al., 1988; Chossat & Lauterbach,

2000) formalises the notion that the symmetries of the system govern the types of possible

bifurcations that may occur, as well as the symmetry properties of the bifurcating solutions

themselves. The main results obtained for systems with O(2)×ZST2 spatio-temporal symmetry

determine that there are two types of bifurcations, one synchronous and the other resulting in

quasiperiodic flows. Both types come in two different flavors, depending on the symmetries of

the bifurcated solutions. There are two synchronous modes, A and B, that break or preserve

the space-time symmetry ZST2 , respectively. The quasiperiodic solutions have the form of

modulated travelling waves or modulated standing waves in the spanwise direction; they differ

31
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in their symmetry properties: the travelling waves preserve a space-time symmetry, while the

standing wave preserves a purely spatial reflection symmetry.

The analysis of symmetric bluff-body wakes (see a summary in Blackburn et al., 2005),

starting with circular cylinders, and followed by other symmetric bodies, the square cylin-

der and a flat plate, have been successful in observing the two kinds of synchronous modes.

Unfortunately, the quasiperiodic modes do not manifest themselves as primary bifurcations,

and can only be observed or computed as secondary or higher bifurcations, in the form of

mixed modes. The presence of a single control parameter leaves little room for manoeuvre

to find the quasiperiodic modes as primary bifurcations. A reasonable option is the study of

similar systems with more governing parameters, such as axisymmetric bluff-body wakes in

the flow past a ring (Leweke & Provansal, 1995; Sheard et al., 2004) or the wakes produced in

a square cylinder that has been rotated a certain angle (Blackburn & Sheard, 2010). Unluck-

ily, the spatio-temporal symmetry is not satisfied strictly and this asymmetry produce some

subharmonic modes that are not present in the exact symmetry case.

In order to better understand this transition, other fluid problems with the same symmetry

group and more than one parameter have been studied. Flows driven by a periodic motion of

one of the container walls resulted in systems with the same symmetry group. Such systems

include the periodically driven rectangular cavity of infinite spanwise (Lopez & Hirsa, 2001;

Vogel et al., 2003; Blackburn & Lopez, 2003b; Leung et al., 2005) and the driven annular

cavity (Blackburn & Lopez, 2011). In the rectangular cavity, the O(2) invariance is only an

idealisation of the corresponding experimental flow due to the finite extent of the spanwise

direction. Therefore, in the experiments, instead of finding the travelling waves predicted by

the theory, spanwise endwalls effects resulted in quasiperiodic states that are neither spanwise

symmetric nor spanwise travelling (Leung et al., 2005). Cylindrical geometries are very useful

in the sense that the azimuthal direction is physically periodic and have the O(2) symmetry

group exactly fulfilled. In the annular driven geometry with large radius ratios, the quasiperi-

odic modes possess very large azimuthal wave number and have not been found as non-linearly

saturated pure modes, but instead they are mixed with contributions from the synchronous A

mode, thus producing complicated solutions, as is observed in Blackburn & Lopez (2011).

The system under consideration, a finite circular cylinder with an axially oscillating side-

wall, solves all the mentioned problems and makes it worth studying. This chapter is structured

as follows. In Section §3.1 the base state of the system is computed, and its changes when

parameters are varied. Section §3.2 is devoted to the linear stability analysis of the basic

flow, and compared with similar flows. In Section §3.3 the three-dimensional structure and

symmetries of the different unstable modes found are analysed in detail. Finally, the main
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results are summarised and gathered in Section §3.4. The main findings of this chapter can

be found in Panades et al. (2011).

3.1 Basic states

The basic flow, having all the symmetries of the problem, is always axisymmetric and time-

periodic, synchronous with the forcing. The axial oscillations of the cylinder sidewall produce

periodic Stokes-type boundary layers on the oscillating wall. These layers separate from the

sidewall and move towards the cylinder axis after colliding with the endwalls to form rollers.

The term roller refers to large-scale rotating flow structures with primarily azimuthal vorticity,

η. These rollers are formed every half-period alternatively on each endwall. Since the basic

flow is axisymmetric, a streamfunction (ψ, such that u = −1/r ∂ψ/∂z and w = 1/r ∂ψ/∂r) is

defined and instantaneous contours of this magnitude are shown in the first row of Figure 3.1

for four increasing values of the forcing frequency St, and for amplitudes Re, very close to,

and above, the critical value at which the basic flow becomes unstable. These unstable basic

states are computed in the axisymmetric subspace. In all cases the figures represent meridional

planes (r, z) ∈ [0, 1]× [−Γ/2, Γ/2].

The magnitude and size of the rollers change substantially with St. For small forcing

frequencies, there is enough time for these rollers to dissipate during part of the forcing period,

and so in Figure 3.1(a) a single roller fills the whole domain during almost all the period,

whereas for large frequencies the rollers persist at both ends throughout the whole forcing

cycle, as can be observed in Figures 3.1(b)-(d). The Stokes number determines the size of the

rollers and their dissipation, and the Reynolds number measures the strength of their collision

with the lids and the recirculation of the fluid. The characteristics of the rollers are similar to

the ones described in previous works for the planar case (Blackburn & Lopez, 2003b) and for

an annular cavity (Blackburn & Lopez, 2011), but in the present analysis the curvature effects

are much more important, and the flow geometry is altered relavantly near the cylinder axis.

Instantaneous contours of the azimuthal vorticity are shown in the second and the third

rows of Figure 3.1. These contours are well suited to describe the boundary layers that form at

the sidewall and endwalls, and verify the spatio-temporal symmetry H. The sidewall boundary

layer is a Stokes-type boundary layer whose thickness is proportional to St−1/2 (Batchelor,

1967; Schlichting & Kestin, 1979; Marques & Lopez, 1997), so the boundary layer becomes

thinner for larger values of the forcing frequency St, and also becomes finer as the amplitude

of the forcing Re is increased. The sidewall boundary layer, dragged by the cylinder sidewall

motion, separates upon colliding with the endwalls, and from the corners where the sidewall
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Figure 3.1: Contours of streamfunction, ψ, and azimuthal vorticity, η, of the basic state at

four parameter values, for amplitudes Re very close to, and above, the corresponding critical

values: (a) (St,Re) = (10, 340), (b) (St,Re) = (32, 525), (c) (St,Re) = (50, 615) and (d)

(St,Re) = (100, 700). Solid (dashed) contours are positive (negative); light/dark (yellow/red)

colours correspond to negative/positive values. For each St, t0 has been selected where the

oblique jet at the bottom corner is most intense.
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Figure 3.2: Critical Reynolds number, Rec, as a function of the Stokes number, St, for the

transition from the basic state to the different three-dimensional states: B1, B2, MRW1 and

A2. The crosses correspond to the four basic states depicted in Figure 3.1.

and endwalls meet, the boundary layer enters the bulk of the fluid, forming axisymmetric

oblique jets that result in the formation of the rollers. This process is analogous to the

formation of a vortex roller near the junction of an impulsively started plate and a stationary

plate, where there is a jump in the velocity (Allen & Lopez, 2007). The jets are clearly seen

in the azimuthal vorticity contours: the jet centerline coincides with the azimuthal vorticity

zero contour, and on each side it is surrounded by regions with intense azimuthal vorticity of

opposite signs. Oscillating boundary layers also form on the endwalls with azimuthal vorticity

of opposite sign to that of the rollers, as a result of the jet dynamics just described, and because

the endwalls are at rest. Regarding the spatio-temporal symmetry, these states clearly preserve

H because the azimuthal vorticity is reflected respect to the z = 0 plane after advancing a

half-period.

3.2 Stability of the basic flow

By increasing the amplitude of the forcing Re beyond a critical value Rec(St), the basic state

undergoes a symmetry-breaking bifurcation yielding a new three-dimensional state. Depending

on St, the basic state may undergo either synchronous or Neimark-Sacker bifurcations. The

stability of the basic flow has been comprehensively explored for St ∈ [1, 150], revealing two

synchronous modes (A and B) that bifurcate from the axisymmetric state by breaking the

symmetries differently in each case. There is also a novel quasiperiodic mode that manifests as

modulated rotating waves MRW. Subscripts for each of these states are used here to indicate

their azimuthal wave number m.
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The bifurcation curves for the different modes in (St,Re)-space are shown in Figure 3.2

and are obtained using the method described in Section §2.4. At low St, mode B is the first to

become critical with increasing Re, while at high St mode A is the first. At intermediate values

St ∈ [40.573, 79.643], the quasiperiodic mode bifurcates first, in the form of modulated rotating

waves MRW. The synchronous mode A always has an azimuthal wave number m = 2 (A2), the

quasiperiodic mode has m = 1 (MRW1), and the synchronous mode B may have either m = 1

orm = 2 depending on St. The bifurcations to the four different states (B1, B2, MRW1 and A2)

when varying the forcing frequency St are separated by three codimension-two or bicritical

bifurcation points, Ci with i = 1, 2, 3, at which two of the states bifurcate simultaneously,

and their locations in the (St,Re)-space are C1 = (15.636, 394.57), C2 = (40.573, 596.12) and

C3 = (79.643, 764.51). The four base states shown in Figure 3.1 correspond to the four distinct

bifurcated states in Figure 3.2 marked with crosses. The synchronous modes for small St have

azimuthal wave number m = 1 (B1) and a single roller fills the domain most of the time,

whereas they have azimuthal wave number m = 2 (B2 and A2) for larger St > 15 and two

rollers persist throughout the whole forcing cycle. However, the quasiperiodic MRW1 has

azimuthal wave number m = 1 although it is dominant in a St region where the two rollers

persist.

A very similar scenario occurred in the periodically driven rectangular cavity problem, as

illustrated in Figure 1.5, showing the critical Re number as a function of St in the cavity flow

(adapted from Blackburn & Lopez, 2003b; Leung et al., 2005). Figures 3.2 and 1.5 are strikingly

similar, and they only differ in their scaling. The critical Re and St for the rectangular cavity

are about a factor of two larger than for the cylinder case, so that the marginal curve in the

cavity flow occurs at higher Re number, and the different modes are shifted to higher St. The

qualitative shape of the marginal curves are very similar in both cases, and the shift in (St,Re)

reflects the different geometries of the two problems. An important difference between the two

problems is that in the driven rectangular cavity the wave number of the bifurcated solution

varies continuously, while in the cylinder problem it is discrete (and in fact of very small wave

number, either m = 1 or m = 2). However, the qualitative trend is the same in both problems.

In the driven rectangular cavity, the wave number of mode B increases with St, while for QP

and A their wave numbers are almost independent of St (Leung et al., 2005). In the cylinder

problem, the azimuthal wave number of mode B also increases with St (varying from m = 1

to m = 2), while for MRW and A their azimuthal wave numbers do not change with St (m = 1

for MRW and m = 2 for A).

A detailed comparison with the annular cavity problem (Blackburn & Lopez, 2011) is not

possible for a number of reasons. That study focused on the modulated rotating waves at a
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single value of St = 100, and at that value of St the MRW were found to be unstable. The

non-linear flows were complicated, showing mixed characteristics between the synchronous

and quasiperiodic modes. Nevertheless, the different modes obtained in the present cylinder

problem were also present in the annular cavity problem. The radius ratio used in the annular

study was close to one, so that both inner and outer radii were much larger than the annular

gap. That choice of the radius ratio was made to compare with the rectangular cavity flow

problem, which corresponds to the radius-ratio-going-to-one limit. As a result, the azimuthal

wave numbers of the bifurcating states were very large (between m = 30 and m = 35 for the

dominant modes in the parameter regime considered). In contrast, in the cylinder problem

which corresponds to radius ratio equal to zero, the azimuthal wave numbers are very small

(m = 1 and m = 2). Furthermore, even though the two problems have the same symmetry

group, the flow domain in the cylinder is singly-connected whereas in the annulus it is doubly-

connected.

3.3 Three-dimensional structure and symmetries of the unsta-

ble modes

After perturbing the axisymmetric basic flow with Re > Rec(St), a new three-dimensional

periodic or quasiperiodic state is obtained, once the saturation is reached. This bifurcated state

depends strongly on the mode that drives the instability, and on the precise values of (St,Re).

When describing these bifurcated flows, the term braid, which is widely used in similar flows,

is employed to denote smaller-scale meridional structures with vorticity components ξ and ζ.

Braids are typically generated through the amplification of spanwise-orthogonal perturbations

of the rollers in rectangular cavities, and in cylindrical and annular geometries the amplification

of meridional perturbations of the rollers gives rise to these kind of structures.

In the following subsections the symmetries and features of the different bifurcated solutions

are described and illustrated with results computed at given values of St. Modes B1, B2 and

A2 are computed at St = 10, 32, 100, respectively, whilst mode MRW1 at St = 50, and their

corresponding base states have already been illustrated in Figure 3.1. All the solutions have

been computed at Re slightly above Rec.

3.3.1 Synchronous modes

Three-dimensional synchronous states result when a pair of purely real eigenvalues (multiplicity

two due to the O(2) symmetry) cross the unit circle at +1 in the complex plane. When a
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Figure 3.3: (a) Time series of the energies of the leading Fourier modes, with azimuthal wave

numbers m as indicated, for the B2 state at (St,Re) = (32, 525); and (b) a close-up of E2(t)

after saturation.

synchronous axisymmetric flow is perturbed, the energies of the Fourier modes may grow or

decay depending on the case, but regardless their evolution is clearly modulated by the sidewall

frequency. When the basic flow is unstable to synchronous modes, the Fourier spectra begin

to grow and after some time reach an asymptotic state where the modes are saturated but

oscillate with the driving frequency of the sidewall about a mean value. Such an evolution can

be seen in Figure 3.3, where the energies, Em, of the leading Fourier modes are shown as a

function of time for the B2 state at (St,Re) = (32, 525); the inset displays the oscillations in

the energy, synchronous with the forcing (τ = 1/St = 1/32 = 0.03125), but with the period

halved because the energy is a sum of squares of the velocities. Since in this case the first

mode is linearly stable and quasiperiodic, the odd modes decay exponentially in a process that

involves two frequencies.

The three-dimensional structures of modes A and B are visualised in Figure 3.4 with

the aid of perspective views of instantaneous isosurfaces of the radial vorticity (dark/light

or red/yellow are positive/negative values), which show the braid structures, and azimuthal

vorticity (translucent), exhibiting the rollers. Note that the only component of vorticity of

the axisymmetric base state that is non-zero is the azimuthal component, and that the braids

are comprised of radial and axial components of vorticity and are a direct result of breaking

axisymmetry. In general terms, braids are located near the lids and away from the sidewall,

and they are born on the oblique jets alternatively emerging from the top and bottom corners.

Nevertheless, there are some subtle variations. For A2, braids suffer slight changes in shape



3.3. 3D STRUCTURE AND SYMMETRIES 39

(a) B1 (b) B2 (c) A2

Figure 3.4: Isosurfaces of radial vorticity ξ (solid) and azimuthal vorticity η (translucent) for

the synchronous states (a) B1 at (St,Re) = (10, 340) with ξ = ±50 and η = ±500, (b) B2 at

(St,Re) = (32, 525) with ξ = ±40 and η = ±1000, and (c) A2 at (St,Re) = (100, 700) with

ξ = ±150 and η = ±800. Dark/light (red/yellow) isosurfaces indicate positive/negative values

of ξ. This colour convention for the isosurfaces is used along this chapter.

and their behavior is quite regular as is that of the rollers. Notice that the shape of each roller

is essentially the same as those of the basic states. For B1 and B2, braids change abruptly

during a forcing cycle, as do the rollers in this regime, and their dynamics (creation, merging

and destruction) are much more complex. In addition, the azimuthal vorticity of the B modes

is very different from that of the corresponding basic state.

As the bifurcated solutions are no longer axisymmetric, the O(2) symmetry has been bro-

ken. Of the continuous family of rotations Rα, there only remains the discrete symmetry

R2π/m, a rotation of angle 2π/m around the axis, and its powers. The azimuthal wave num-

ber of the bifurcated solution is m. The continuous family of reflection symmetries about

meridional planes, Kβ, is also reduced to a collection of m reflection planes at angles π/m

apart, as was shown in Marques et al. (2004). These spatial symmetries are clearly evident

in Figures 3.5 and 3.6. The planes of reflection symmetry correspond to the diameters with

zero axial vorticity. Note that when the symmetry is preserved, the axial vorticity changes

sign according to (2.29a). The rotation and meridional reflection symmetries just described

generate the so-called Dm symmetry group (or dihedral group) with 2m elements, consisting of

m rotations and m meridional reflections. When m = 1, this group contains only the identity

and one meridional reflection, and is isomorphic to Z2.

Now, let us examine what happens with the spatio-temporal symmetry H. Figure 3.5
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Figure 3.5: Axial vorticity contours of the eigenfunctions at the bifurcation to states B1, B2

and A2 shown in Figure 3.4, in the z-sections and times indicated; t0 is a convenient time.

Solid (dashed) contours are positive (negative); light/dark (yellow/red) colours correspond

to negative/positive values. This contour/colour convention is used in all subsequent cross-

sections.

exhibits contours of the axial vorticity of the critical eigenvectors for the B1, B2 and A2 bi-

furcations in a horizontal section z = −Γ/4 for a given time, and in the reflection-symmetric

section z = +Γ/4 after advancing half the forcing period. The figure shows that the bifurca-

tions to B1 and B2 areH-symmetric, i.e. the values of the axial vorticity ζ of the eigenfunctions,

at a given time t0 and at z = −Γ/4, are the same as the values of ζ advancing time by half the

forcing period, t0 + τ/2, on the reflection-symmetric plane z = +Γ/4. The eigenfunction of

the A2 bifurcation is not H-symmetric, but changes sign, so the H symmetry is broken in this

bifurcation. However, H combined with the rotation Rπ/m, with m = 2 (half the angle of the

rotational symmetry of the state), results in a new space-time symmetry of the A2 eigenfunc-

tion. This is precisely the expected behavior from bifurcation theory (Marques et al., 2004):

there are only two options for three-dimensional synchronous eigenfunctions under the action

of the space-time symmetry H, either multiplication by +1 or −1. The behavior of all the
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Figure 3.6: Axial vorticity contours of the non-linear saturated states corresponding to B1,

B2 and A2 shown in Figure 3.4, in the z-sections and times indicated; t0 is a convenient time.

Contour/colour convention as in Figure 3.5.

velocity and vorticity components is given by

H preserved:

 (u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ,−z, t+ τ/2),

(ξ, η, ζ)(r, θ, z, t) = (−ξ,−η, ζ)(r, θ,−z, t+ τ/2),
(3.1)

H broken:

 (u, v, w)e(r, θ, z, t) = (−u,−v, w)e(r, θ,−z, t+ τ/2),

(ξ, η, ζ)e(r, θ, z, t) = (ξ, η,−ζ)e(r, θ,−z, t+ τ/2),
(3.2)

Rπ/mH preserved:

 (u, v, w)(r, θ, z, t) = (u, v,−w)(r, θ + π/m,−z, t+ τ/2),

(ξ, η, ζ)(r, θ, z, t) = (−ξ,−η, ζ)(r, θ + π/m,−z, t+ τ/2),
(3.3)

The space-time symmetries of the eigenfunctions are inherited by the non-linear saturated

states (as long as no additional bifurcations take place in the saturation process). However, the

multiplication by −1, whose action is described by (3.2), is a property only of the eigenfunction

and not of the resulting saturated non-linear state. The reason is that the eigenfunctions are

pure Fourier modes in the azimuthal direction, and when they develop into fully non-linear

three-dimensional bifurcated solutions, Fourier harmonics appear, and the even harmonics

(including the zero mode) are multiplied by (−1)2 = +1 under the action of H, so the full non-
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Figure 3.7: FFT of the time series of the near-wall axial velocity at mid-height (r, θ, z)P =

(0.9, 0, 0) for the (a) B1 at (St,Re) = (10, 340), and (b) A2 at (St,Re) = (100, 700).

linear solution does not have the multiplication by −1 property, (3.2), that the eigenfunction

possesses. Figure 3.6 shows the same information as in Figure 3.5, but for the full non-linear

bifurcated solutions, illustrating the symmetry properties of the saturated states. The non-

linear states are not invariant to the action (3.2), in contrast with the eigenfunctions, hence

the use of the subscript e refers to the eigenfunction. The preserved symmetries, H (3.1) and

Rπ/mH (3.3), clearly persist in the non-linear states.

In order to check more rigorously the spatial symmetries of mode B1, the asymmetry

parameter, SKβ , is employed, thus yielding SKβ (B1) = 0.0154. The measurement of SKβ for

the bifurcated states with even Fourier modes (B2 and A2) is not possible due to the absence

of the first Fourier mode. A more rigurous estimation of the spatio-temporal H symmetry

breaking based on Fourier analysis is explained in Section §2.1.3. Figure 3.7 displays the

power spectral density (PSD) after computing the Fast Fourier Transform (FFT) of the near-

wall axial velocity at mid-height (r, θ, z)P = (0.9, 0, 0) for the two types of synchronous modes.

The B modes, represented by a B1 solution computed at (St,Re) = (10, 340) in Figure 3.7(a),

only possess one frequency and its linear odd combinations; meanwhile, the A2 mode calculated

at (St,Re) = (100, 700) has a sole frequency and the even and odd harmonics. Therefore, both

modes are synchronous and the A modes do not preserve H, whilst B modes do.

Synchronous modes A and B with azimuthal wave number m have the same spatial sym-

metry group, the dihedral group Dm, and they also have one spatio-temporal symmetry: H

for the B modes, and Rπ/mH for the A modes. However, the complete symmetry groups of the

bifurcated states are different: as H commutes with O(2) it also commutes with the subgroup
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Figure 3.8: Time average of the energy of the dominant mode for the synchronous solutions as

a function of Re, (a) B1 solutions at St = 10, (b) B2 solutions at St = 32, and (c) A2 solutions

at St = 100. The diamond corresponds to the critical Re obtained by linear stability analysis

and the solid disks correspond to computed non-linear solutions.

Dm, and the complete symmetry group for the B modes is the direct product Dm×ZST2 . Nev-

ertheless, Rπ/mH does not commute with Dm, because rotations and meridional reflections

do not commute (KβRα = R−αKβ). So, for the A modes the complete symmetry group is

the semidirect product Dm o ZST2 . This is an example of a complete symmetry group where

the spatial and spatio-temporal symmetries do not commute, a possibility discussed in Mar-

ques et al. (2004), and also from a more theoretical point of view in Lamb (1996); Lamb &

Melbourne (1999).

The three bifurcations to B1, B2 and A2 are supercritical, as shown in Figure 3.8, where

the time-averaged energy of the dominant mode 〈Em〉 is plotted as a function of the Reynolds

number. The plot in Figure 3.8(a) is not linear, but this is not surprising as the path of

increasing Re in the (St,Re)-parameter space is not normal to the bifurcation curve (see

Figure 3.2). There is no hysteresis and the behavior of 〈Em〉 is linear as Re approaches the

critical value (�). The normal form for the amplitude of the bifurcated synchronous solutions

in the supercritical case is given by Ȧ = A(µ− c|A|2). When saturation is reached, Ȧ = 0 and

Re−Rec = µ = c|A|2 = d〈Em〉, the observed linear behavior close to the bifurcation point in

all cases.

3.3.2 Quasiperiodic mode

The onset of the quasiperiodic states occurs when two complex-conjugate pairs of eigenvalues

cross the unit circle, thus introducing a second frequency f2 related to the phase of the complex-
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Figure 3.9: Time series of the energy of the first Fourier mode, for (a) MRW1 and (b) MSW1,

at (St,Re) = (50, 615) near the saturation.

conjugate pairs. The second frequency f2 can manifest itself in two ways, depending on

whether the bifurcation breaks Kβ or Rα of the O(2) symmetry of the basic state. In the

linear stability analysis only appears the reference to mode MRW1, but this term encompasses

modulated θ-travelling wave (MRW) and modulated standing wave (MSW) states. Due to

the O(2) symmetry of the governing equations, there are two pairs of complex conjugate

eigenvalues that bifurcate simultaneously, and correspond to modulated θ-travelling waves,

which can travel in the positive or negative θ-direction; after a period of the forcing, the flow

pattern repeats itself, but rotated a certain angle, ±θ0, related to the second frequency by

θ0 = 2πf2/St, where St is the forcing frequency. Kβ transforms each one of the MRW into the

other, therefore the Kβ-symmetry is broken; the SO(2) rotational symmetry is also broken,

because the solution has azimuthal wave number m = 1 ; however, as they are modulated

travelling waves, there is a preserved space-time symmetry, consisting of advancing one forcing

period in time combined with the rotation R±θ0 . Besides the two MRW solutions, there is

also a third non-linear solution corresponding to a symmetric combination of the two MRW

states; these states, called modulated standing waves MSW, are Kβ-symmetric, but the SO(2)

rotational symmetry is broken too. For these solutions, there is no such thing as the emergence

of a new spatio-temporal symmetry.

Only one of the two families of solutions, MRW and MSW, is stable (Crawford & Knobloch,

1991; Marques, Lopez & Blackburn, 2004). In the present problem, as in the case for the driven

annular cavity (Blackburn & Lopez, 2003b) and for the driven annular cavity (Leung et al.,

2005), the stable solutions are MRW; their sense of travel depends on the initial condition for



3.3. 3D STRUCTURE AND SYMMETRIES 45

(a) MRW1 (b) MSW1

Figure 3.10: Isosurfaces of radial vorticity ξ (solid) and azimuthal vorticity η (translucent) for

(a) MRW1 with ξ = ±180, and (b) MSW1 with ξ = ±120, both with η = ±1000 and computed

at (St,Re) = (50, 615). Contour convention as in Figure 3.4.

the sign of the azimuthal velocity perturbation. In order to obtain MSW, it is necessary to

enforce the Kβ symmetry, restricting the computations to the appropriate Fourier subspace,

as is explained in Section §2.1.3. When an axisymmetric flow unstable to MRW1 mode is

perturbed, the energies of all Fourier modes begin to grow with the driving frequency and this

is additionally modulated by the quasiperiodic frequency, which is the same for both states and

the value is f2 ≈ 10.31, as exhibited in Figure 3.9. However, when MSW reaches a saturated

state, the energies of the Fourier modes retain both characteristic times and now f2 ≈ 10.07,

shown in Figure 3.9(b); whilst the quasiperiodic frequency for MRW, being related to the

azimuthal precession of the pattern, does not manifest in the energy of the Fourier modes,

Figure 3.9(a).

The three-dimensional structures of these quasiperiodic flows are visualised in Figure 3.10

by means of perspective views of instantaneous isosurfaces of the radial vorticity and azimuthal

vorticity, as it is done in for the synchronous modes in Figure 3.4. Braids are concentrated

on the cylinder endwalls away from the sidewall and suffer large variations in all cases. As

for the synchronous modes, the braids seem to be born along the oblique jets emerging from

the corners and propagate into the interior, interacting in a complex way with the braids

coming from the other endwall. For MSW, the braids possess very regular shapes and look

quite similar to those of the synchronous states, and the rollers are virtually not distorted.

Contrarily, for MRW, the braids have a helical structure and the rollers do not resemble the

corresponding base flow rollers at all. In fact, the rollers in MRW are tilted with respect to

the horizontal rollers in the base state.
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Figure 3.11: Same solutions and isosurface levels as in Figure 3.10, but strobed every 10 forcing

periods; t0 is a convenient time.

Figure 3.11 displays the same contours as in Figure 3.10, all at the same phase at integer

multiples of the forcing period apart. For MRW, the strobed structures do not change in a

frame of reference that rotates in the azimuthal direction an angle θ0 each forcing period,

justifying the name of modulated rotating wave. For the MRW shown in Figures 3.10 and

3.11 at (St,Re) = (50, 615), this value is θ0 ≈ 28.77◦. This results in a precession frequency

f2 = 3.996. For MSW, the strobed structures vary substantially in one period, as can be seen

in the sequence represented in the second row of Figure 3.11. In general, the ratio between the

quasiperiodic and sidewall periods are not commensurate, and the flow structure never repeats

itself. However, the flow structure of MSW remains almost unchanged after ten forcing periods,

as can be observed in Figure 3.11; the only noticeable difference is the formation of braids very

close to the bottom lid. This is because the ratio of quasiperiodic to forcing frequencies is very

close to 1/10 for the parameter values (St,Re) = (50, 615) of MSW, thus f2 ≈ 5; this question

is explored in more detail at the end of the present section.

In order to check the symmetries, Figure 3.12 exhibits contours of the axial vorticity for

the MRW1 and MSW1 in z-sections z = ±Γ/4 at the beginning of the forcing period, and

after advancing half-period and a whole period. Concerning to the spatial symmetries, the

MSW1 solutions possess the dihedral group D1, as well as the synchronous B1 modes do,
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Figure 3.12: Axial vorticity contours of the non-linear saturated states corresponding to MRW1

and MSW1 shown in Figure 3.4; t0 is at the beginning of the forcing period. Contour/colour

convention as in Figure 3.5.

while there is no trace of the initial spatio-temporal H symmetry. Contrarily, the MRW1

solutions do not have any of the initial symmetries of the basic flow, and are invariant under

the transformation of advancing one forcing period combined with rotating an angle θ0. The

asymmetry parameter, SKβ , is perfect to corroborate rigorously the spatial symmetry breaking

in the current cases: SKβ (MSW1) = 0 and SKβ (MRW1) = 0.774.

In contrast to the synchronous bifurcations, which are supercritical, the quasiperiodic

bifurcation is subcritical, for both MRW and MSW. Figure 3.13 shows the time average of the

energy of the m = 1 dominant mode for the quasiperiodic solutions, 〈E1〉, as a function of Re.

Obviously, this magnitude is averaged over the two characteristic times for the MSW. The

MRW solutions show a well-defined hysteretic region; for MSW, the hysteretic region is very

costly to compute as there are extremely long transients. The energies do not behave linearly

on the branch close to the critical Reynolds number, Rec = 610.47 for St = 50. The computed

energy amplitudes can be fitted utilising the normal form theory. According to Marques et al.

(2004), the amplitudes of the bifurcated solutions vary as

Re−Rec = µ = a|A|4 − b|A|2 = a〈E1〉2 − b〈E1〉, (3.4)
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Figure 3.13: Time average of the energy of the m = 1 dominant mode for the quasiperiodic

solutions as a function of Re, for St = 50. The diamond corresponds to the critical Re

obtained by linear stability analysis. Symbols correspond to computed saturated solutions,

and the curves are best fits to the parabolic profiles predicted by normal form theory.

where a quartic term has been included due to the subcritical nature of the bifurcation. The

fitting parameters a and b can be expressed in terms of the energy and Re at the saddle-node

point:
Re−Rec

Rec −ReSN
=
〈E1〉
〈E1〉SN

( 〈E1〉
〈E1〉SN

− 2

)
. (3.5)

The solid lines in Figure 3.13 are the best fits of this expression to the computed values. The

agreement is very reasonable and provides good estimates of the Reynolds numbers of the

saddle-node bifurcations. The estimates are ReSN ≈ 608.57 for MRW and ReSN ≈ 610.28 for

MSW.

The frequencies of the quasiperiodic states can be computed via FFT of the time series of

a convenient variable; for this purpose, the value of the axial velocity at a point P close to the

sidewall at the cylinder mid-plane, (r, θ, z)P = (0.9, 0, 0) has been chosen again. Figure 3.14(a)

displays the PSD for MRW at (St,Re) = (50, 615). The spectrum is clearly quasiperiodic, thus

having two well-defined frequencies, St = 50 and f2 = 3.996, and their linear odd combinations.

The ratio of the frequencies is close to resonance, f2/St = 0.0799 ≈ 2/25, and so a small

frequency corresponding to 2St − 25f2 ≈ 0.1 is also present. The FFT supplies f2 up to a

multiple of the forcing frequency; its precise value must be obtained by other methods. In

order to analyse in detail how close to resonance the Neimark-Sacker bifurcation is and also

to confirm the value of the second frequency, Poincaré sections of the quasiperiodic states

by strobing the MRW solution every period τ have been computed. The Poincaré section is

shown in Figure 3.14(b), where the infinite-dimensional phase space has been projected into

the plane corresponding to the values of the axial velocity w at two different locations P
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Figure 3.14: (a) FFT of the time series of the near-wall axial velocity at mid-height (r, θ, z)P =

(0.9, 0, 0), and (b) a Poincaré section strobing every τ for MRW at (St,Re) = (50, 615). Sym-

bols • and numbers in (b) correspond to successive iterates, showing that the frequency ratio

is close to rational: f2/St ≈ 2/25.

and Q in the cylindrical domain. The point P is the same used for computing the FFT, at

(r, θ, z)P = (0.9, 0, 0), and Q is close to the top endwall at (r, θ, z)Q = (0.9, 0, 0.95). The closed

curve is the section of the two-torus where the solution lives, and the symbols • correspond

to successive iterates that are numbered in the figure. The iterates undergo two turns on

the section before almost coinciding with the initial point after 25 iterates, so the rotation

number (ratio of the frequencies f2/St) is approximately 2/25. This justifies the selection of

f2 = 3.996 from the FFT. In this Poincaré section, there are 25 clusters of 5 points, so a

total of 125 iterates. For this kind of solutions the second frequency can also be estimated

by measuring the angle θ0 rotated by the flow pattern after one forcing period τ , for instance

in the first row of Figure 3.12, and the result is in full agreement with the Poincaré section

method.

Figure 3.15(a) depicts the PSD for MSW at (St,Re) = (50, 615). The second frequency

is f2 = 5.035, quite different and greater than the frequency of MRW. In this case, another

resonance is present and more discernible. From the Poincaré section in Figure 3.15(b), the

tenth iterate, after 10τ , almost coincides with the initial point. As a consequence, the rotation

number (frequency ratio) is f2/St = 0.1007 ≈ 1/10, and a very small frequency appears,

10f2 − St ≈ 0.353. This quasiperiodic frequency measured in the energy, Figure 3.9(b), is

doubled because this magnitude goes as the square of the velocity.

Since these solutions are quasiperiodic and synchronous with the forcing, they cannot be H-
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Figure 3.15: (a) FFT of the time series of the near-wall axial velocity at mid-height (r, θ, z)P =

(0.9, 0, 0), and (b) a Poincaré section strobing every τ for MSW at (St,Re) = (50, 615). Sym-

bols • and numbers in (b) correspond to successive iterates, showing that the frequency ratio

is close to rational: f2/St ≈ 1/10.

symmetric. Nevertheless, there are no even linear combinations in the spectra, thus indicating

that the solutions are almost H-symmetric. The reason is the fact that in both scenarios

the frequencies are almost in resonance, so the solution is periodic and fulfills exactly the

spatio-temporal symmetry with period τ2 = 1/f2.

As a matter of fact, the frequencies associated with MRW and MSW for (St,Re) = (50, 615)

are rather different, and this is the reason behind exploring f2 as a function of Re, for fixed

St = 50; the results are shown in Figure 3.16. The critical frequency at the bifurcation point,

f2,c = 5.1572, and the value of f2 for the most dangerous eigenfunction as a function of Re,

are also plotted. The quasiperiodic frequency for the eigenfunctions is computed directly from

the FFT of the axial velocity, or in the time series of the energy, such as Figure 3.9, and

halving the obtained value. The second frequency for the eigenfunction is almost constant,

as is that for MSW with f2 slightly smaller than the critical frequency f2,c. In contrast, the

second frequency of MRW is substantially smaller than the critical value, and it decreases with

Re, the amplitude of the forcing. This fact is probably related to the fact that the energy of

the MRW is much larger than the energy of MSW, and also to the larger subcriticality of the

modulated rotating waves, as exhibited in Figure 3.13.

From Figure 3.16, it is observable that f2 for MRW and for MSW at (St,Re) = (50, 615) is

very close to 4 and 5, respectively. As the forcing frequency is St = 50, the ratio f2/St is very

close to a rational number (2/25 and 1/10, respectively), as already noted from measuring
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the frequencies via FFT and Poincaré sections. Of course, along the curves f2(Re), other

resonances can be located, but they all have large denominators, so no new dynamics associated

with these resonances is expected in this region (Kuznetsov, 2004).

3.4 Conclusions

Several fluid systems with complete symmetry group O(2)×ZST2 have been explored in recent

years. Flows with this symmetry group only have three possibilities for the transition from

the basic state to three-dimensional flows: synchronous modes preserving or breaking the

space-time symmetry H or quasiperiodic modes, that come in two flavors, either modulated

travelling waves or modulated standing waves. Such systems include symmetric bluff-body

wakes produced by circular and square cylinders, rings and flat plates, and flows driven by the

periodic motion of one of the container walls, for example the rectangular driven cavity and a

driven annular cavity. The periodically driven flows are preferred because all the bifurctated

states can manifest as primary bifurcations. Unfortunately, the mentioned periodically driven

systems have some drawbacks and the cylindrical driven cavity with moderate aspect ratio has

been analysed because is has two advantages over them. First, the O(2) symmetry is exactly

fulfilled by the cylindrical geometry (periodicity in the azimuthal direction), eliminating the

spanwise endwall effects of the rectangular cavity. And second, the bifurcated states have

small azimuthal wave numbers (typically m = 1 or 2), so the competition between different

modes is greatly reduced.
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As a starting point of the analysis, the periodic synchronous base states have been com-

puted for different forcing amplitudes, Re, and forcing frequencies, St. These are non-trivial

states, with axisymmetric rollers forming alternatively close to each of the endwalls due to

the periodic oscillation of the cylinder sidewall. This oscillation produces axisymmetric jets

of azimuthal vorticity, emerging from the corners, moving into the interior, and forming the

rollers.

The linear stability analysis of the base state has resulted in the computation of the

marginal stability curve. Synchronous bifurcations that preserve the symmetry H are found

for small forcing frequencies St, while for larger St values the ones breaking H are the most

unstable. In between, for intermediate St values, there is a transition to quasiperiodic solu-

tions. The form of the instabilities is the same for all cases, in that the formation of braids

that are small-scale meridional perturbations of the rollers. The size and persistence of these

braids depend strongly on St. These results are in good agreement with previous results in

flows with the same symmetries, and the marginal curve bears a great resemblance to the

one corresponding to the driven rectangular cavity problem. Moreover, three codimension-two

points have been successfully identified and represent a stepping stone towards future studies.

In addition, the non-linear saturated states have been computed and analysed in detail. In

all cases, sufficiently close to the bifurcation curve, these are pure modes. The quasiperiodic

stable solutions in the present problem are modulated rotating waves, and by restricting the

computations to the appropriate subspace, the unstable modulated standing waves have been

found. As a result of these non-linear simulations, it is established that the bifurcations

to synchronous states are supercritical, whilst the bifurcations to quasiperiodic states are

subcritical. A careful analysis of the quasiperiodic frequency f2 of the modulated standing

waves has shown that f2 is almost constant and very close to the frequency that emerges from

the linear stability analysis, whereas the modulated rotating waves exhibit a smaller frequency

that varies significantly with St.



Chapter 4

Competition of synchronous modes

in Newtonian flows

The transition from two-dimensional to three-dimensional flows is of fundamental interest in

fluid dynamics. Planar two-dimensional flows like the von Kármán vortex street, or axisym-

metric flows with zero azimuthal velocity are examples of such two-dimensional flows. The

time-periodic Kármán vortex street and other bluff-body wakes are invariant in the spanwise

direction to both translations and reflections, thus generating the O(2) symmetry group. Fur-

thermore, these flows have an additional spacetime symmetry: a reflection about the wake

centre line followed by a half-period temporal evolution. In several wake flows, two distinct

synchronous modes that break into the spanwise direction (with real Floquet exponent) have

been observed experimentally (Williamson, 1988; Meiburg & Lasheras, 1988; Williamson, 1996;

Julien et al., 2003), computed as direct instabilities from the flow (Meiburg & Lasheras, 1988;

Barkley & Henderson, 1996; Robichaux et al., 1999; Blackburn et al., 2005; Blackburn &

Lopez, 2011), and studied theoretically (Lasheras & Meiburg, 1990; Barkley et al., 2000; Mar-

ques et al., 2004). These modes are associated with breaking or preserving the spatio-temporal

symmetry. Unfortunately, wake flows can only be studied in terms of a single control param-

eter, therefore only one of both synchronous modes can be observed at onset, the other one

appearing at secondary bifurcations in the form of mixed modes or complex time-dependent

flows. Additionally, there are instabilities of the basic periodic flow with complex Floquet

multipliers, resulting in quasiperiodic flows, which may also appear in secondary instabilities.

As a consequence, analysing the ineraction of the three-dimensional modes in this kind of

secondary bifurcations is far from simple.

In order to better understand the three-dimensional bifurcated modes, other fluid problems

53
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with the same symmetry group (spatial O(2) symmetry and spatio-temporal Z2 symmetry)

have been studied. One of these problems is the flow in a rectangular cavity driven by the

periodic oscillation of one wall (Vogel et al., 2003; Blackburn & Lopez, 2003a,b; Marques et al.,

2004; Leung et al., 2005). In this case, both synchronous and quasiperiodic modes have been

obtained and analysed experimentally and numerically as the primary bifurcation for different

control parameters. However, as in many wake scenarios, the spanwise direction is not really

periodic, but of infinite extent. By expanding in Fourier series, this flow is made periodic,

but the wave number varies continuously, resulting in a continuum of bifurcating modes that

interact in a complex manner.

A periodically driven annular cavity solves this issue and has been considered in Blackburn

& Lopez (2011). This case is a continuous deformation of the planar driven cavity flow in the

sense that the infinite spanwise direction becomes a periodic angular direction with a discrete

set of azimuthal wave numbers. The curvature of the annulus in conjunction with the Reynolds

number, determines the first mode to become unstable. It is found that even very near the

onset of three-dimensional instabilities, the dynamics are dominated by a variety of mixed

modes with complicated spatio-temporal structures. Even though the latter problem has

the correct symmetries and it is possible to select which one of the three-dimensional modes

becomes unstable first, the complexities of the dynamics and the mode interactions right from

the onset do not allow a detailed analysis of the bifurcated modes and their interactions.

This phenomenon is attributed to the fact that the azimuthal wave numbers of the bifurcated

solutions are large, so there are many modes bifurcating in a very narrow parameter range,

rendering impossible to follow the cascade of secondary bifurcations taking place.

The system under consideration, a fluid confined in a finite cylinder driven by axial oscilla-

tions of the sidewall, possesses all the mentioned symmetries and the azimuthal wave numbers

of the bifurcated solutions are much smaller in comparison with the annulus scenario. The

linear stability analysis of this flow (Panades et al., 2011) revealed that by an appropriate

selection of the forcing frequency both the synchronous and the quasiperiodic modes could

be obtained, and three codimension-two points where two of these different modes bifurcate

simultaneously were found. These codimension-two points act as organising centers of the

dynamics, and detailed analysis of the bifurcations and mode interactions around the first

bicritical point is presented here. In this case, two synchronous modes that preserve the

spatio-temporal symmetry and possess azimuthal wave numbers m = 1 and 2 compete vastly,

thus producing very rich dynamics and a wide variety of novel states.

The structure of this chapter is the following. Section §4.1 is referred to the states that are

obtained close to the bicritical point, meanwhile Section §4.2 deals with the solutions unravelled
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Figure 4.1: Families of bifurcated states near the bicritical point C1. The bifurcation curves

from the base state are indicated as black solid lines.

far away from it. The bestiary of bifurcations occurring around the codimension-two point

are discussed in Section §4.3. Finally, the main findings are summarised and commented in

Section §4.4. The main results of this chapter have been published in Panades et al. (2013).

4.1 Dynamics close to the codimension-two point

The intersection of two linear stability curves determines a codimension-two or bicritical point.

As it has been discussed in Section §3.2, Figure 3.2 exhibits three points of this kind (crosses)

because of the B1-B2, B2-MRW1 and MRW1-A2 intersections. The present chapter is focused

on the analysis of the first codimension-two point, C1, where the synchronous modes B1 and B2

bifurcate simultaneously and is located at (Stc, Rec) = (15.636, 394.57). As a reminder, these

synchronous states only possess the frequency associated with the forcing and, since they are

no longer axisymmetric, the symmetry O(2) has been broken. Nevertheless, there still remain

the discrete symmetry R2π/m (a rotation of angle 2π/m around the axis) and its powers, and

a collection of m reflection planes at angles π/m apart. The rotation and meridional reflection

symmetries just described generate the Dm symmetry group with 2m elements, consisting of m

rotations (including the identity) and m meridional reflections. Furthermore, these B modes

are invariant under the symmetry H. Hence, the complete symmetry group of the bifurcated

mode Bm is Dm o ZST2 .
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Comprehensive numerical explorations of the two-dimensional parameter space around this

bicritical point C1 have been performed, looking at the subsequent bifurcations of the B1 and

B2 states, their interactions and multiplicity, and transitions between them. A summary of

these results is detailed in Figure 4.1, that shows the critical Reynolds number, Rec, as a

function of the Stokes number, St, near C1. The solid black curves of this figure are the

same bifurcation curves appearing in Figure 3.2, but without symbols, which are used for

the bifurcated states. For instance, on the left side of C1, B1 modes (black circles) bifurcate

first, while on the other side B2 modes (blue solid triangles) do. In addition to these known

solutions, other states that might stem from C1 are achieved. These novel states are the

rotating waves B1RW (blue circumferences) that bifurcate from B1, the B1-B2 mixed modes

(violet solid squares) that emerge from B2, and the bursting solutions (red solid diamonds)

covering a large region in parameter space. In the following sections all of these states are

discussed in detail. Some additional curves are sketched to delimit their regions of existence.

The inset in Figure 4.1 displays a zoom near the linear stability curve at St = 16 in order

to be capable of observing the different states that appear very close to the B2 bifurcation

curve. Similar cascades of bifurcations resulting in flows with complex dynamics have been

reported in an annulus of radius ratio close to one also driven by axial oscillations of the

sidewall (Blackburn & Lopez, 2011). In this problem, the azimuthal wave numbers of the

bifurcated solutions are at least one order of magnitude larger than in our problem, so there is

a strong competition between the bifurcating modes. Consequently, the system suffers a rapid

succession of bifurcations in a very narrow parameter range and cannot be resolved numerically.

In our scenario, this succession of bifurcations is discernible because of the relatively small wave

numbers, as is exhibited in the inset of Figure 4.1.

4.1.1 Below the bicritical point

As can be observed in Figure 4.1, for Stokes number values below C1, St < Stc = 15.636, the

bifurcated mode B1 exists for a wide range of Reynolds numbers. However, on the vicinity of

the codimension-two point, this mode becomes unstable in a small Re region before becoming

stable again. Recalling the main features of B1, this mode preserves the H symmetry and, with

regard to the spatial symmetries, O(2) reduces to D1, generated by the reflection symmetry

about a sole meridional plane, and no rotational symmetry remains. Therefore, the symmetry

group of B1 is D1 o ZST
2 .
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Figure 4.2: Rotating wave solution B1RW for (St,Re) = (15.5, 395). Time series of the near-

wall axial velocity at mid-height (r, θ, z) = (0.9, 0, 0). (a) shows about eight forcing periods.

(b) plots the maximum values in (a), that displays the slow variation of the axial veocity due

to the slow precession rate of the rotating wave, in a much larger time scale.

B1RW solution

Starting with a pure B1 state and increasing Re for frequencies within the range 15.1 <

St < Stc = 15.636, the mode B1 undergoes a bifurcation, becoming a modulated rotating

wave B1RW (blue circumferences in Figure 4.1). Figure 4.2(a) depicts the time series of the

axial velocity of one of these B1RW states in a fixed point near the sidewall at mid-height

(r, θ, z) = (0.9, 0, 0), that looks periodic and very similar to the corresponding time series for

B1. However, by looking at the maximum values of this time series over a long time interval,

a slow variation with a large period is clearly observable in Figure 4.2(b); for the depicted

solution at (St,Re) = (15.5, 395), its value is τ2 ≈ 12.321 ≈ 190.98τ , two orders of magnitude

larger than the forcing period τ .

Panels (a) and (b) of Figure 4.3 compare the common mode B1 with the B1RW , and by

looking at the latter after 28 forcing periods in Figure 4.3(c), its rotating nature becomes

evident; the solution has rotated about 53◦, in full agreement with the measured precession

frequency f2 = 1/τ2 ≈ 0.0812. In fact, this state is a modulated rotating wave, because the flow

structure changes during the forcing period; nevertheless, if the flow is strobed with the forcing

frequency, the structure looks the same but rotated a certain angle, as shown in Figures 4.3(b)

and (c). This behaviour is completely equivalent to the MRW1 solutions appearing at higher

St that have been analysed in Chapter 3.

As a matter of fact, B1RW is a quasiperiodic solution with two well-defined frequencies,

the forcing frequency St = 15.5 and a much smaller frequency related with the rotation,

f2 = 0.0812. Figure 4.4(a) exhibits the power spectral density (PSD) after computing the
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Figure 4.3: (a) Pure B1 mode at (St,Re) = (15.5, 393). The straight line is the Kβ reflection

symmetry axis. (b) and (c) Rotating wave solution B1RW for (St,Re) = (15.5, 395). All

snapshots are taken at the beginning of a forcing period; (b) and (c) are taken 28 forcing

periods apart. Plots show axial vorticity contours at the horizontal section z = −Γ/4. Solid

(dashed) contours are positive (negative); light/dark (yellow/red) colours correspond to neg-

ative/positive values. This contour/colour convention is used in all subsequent cross-sections.

Fast Fourier Transform (FFT) of Figure 4.2(b), showing a single frequency St and its first

harmonic; the very small second frequency f2 is made apparent at the inset showing St± jf2

for j = 1, 2 and 3, in the form of additional peaks very close to the St = 15.5 peak. The

frequency of rotation is corroborated using the Poincaré sections in the same way as in the

previous chapter. Figure 4.4(b) represents a Poincaré section of the B1RW state, consisting

in sampling the values of the axial velocities at two different points P and Q with the forcing

frequency. The bullets represent consecutive points of the reduced space and after 191 iterates,

consistent with f2/St = 0.00524 ≈ 1/191, the full cycle is covered.

In relation to the symmetries of the B1RW solutions, it is obvious from Figures 4.3(b) and

(c) that the reflection symmetry Kβ has been broken, so no purely spatial symmetry remains.

This can be verified by computing the symmetry parameter of this B1RW solution, that gives

SKβ (B1RW ) = 0.478, to be compared with the value corresponding to the symmetric solution

B1 in Figure 4.3(a), SKβ (B1) = 8.29×10−10. Furthermore, SKβ for B1RW and MRW1 has the

same order of magnitude, thus indicating that both solutions have broken Kβ. This parameter

is an appropriate measure of the symmetry breaking, and it is plotted in Figure 4.23(a) in

order to be contrasted with the other solutions. Figure 4.5 displays the contributions of the

first (a) and second (b) azimuthal Fourier components to the B1RW solution of Figure 4.3(c),

and helps to understand the reason behind the breaking of Kβ. First of all, the angle β2 for
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Figure 4.4: (a) FFT of the time series in Figure 4.2(b). (b) Poincaré section (bullets) using two

axial velocities measured near the wall: (r, θ, z)P = (0.9, 0, 0) and (r, θ, z)Q = (0.9, 0, 0.95).
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Figure 4.5: Axial vorticity contours of the rotating wave solution B1RW in Figure 4.3(c). The

plots show the contributions of the first (m = 1) and second (m = 2) Fourier modes. Straight

lines are reflection Kβ symmetry axes. Contour/colour convention as in Figure 4.3.

the azimuthal Fourier component m = 2 is not the same in different points of the domain:

Figure 4.5(b) shows that close to the sidewall and in the bulk the flow possesses different

symmetry axis (straight lines in the figure), and they differ in about 6◦. Secondly, in both

modes the β angles of the Kβ symmetry do not satisfy the relation β2 = 2β1: from the

figure, β1 ≈ 55◦ and β2 ≈ 168◦ (the averaged value). Therefore, in the expression of the

symmetry parameter (2.36), both terms sin2(β2 − 2β1) and σ2
β2

are different from zero and

have a noteworthy contribution.

As has been discussed in Section §2.1.3, Kβ can be numerically imposed. Applying this

method to B1RW , the result is that depending on the parameters pure synchronous B1 and

B2 modes are recovered. For instance, a solution of this kind at (St,Re) = (15.5, 393.5), which



60 CHAPTER 4. MODE COMPETITION IN NEWTONIAN FLOWS

(a) (b)

40 50 60 70 80

t

10
−6

10
−3

10
0

10
3

E
m

E
1

E
2

40 50 60 70 80

t

150

160

170

w

Figure 4.6: Bursting solution at (St,Re) = (15.5, 400). Time series of (a) the energy of the

Fourier modes E1 and E2, and (b) maximum values of the near-wall axial velocity at mid-height

(r, θ, z) = (0.9, 0, 0); same plot as in Figure 4.2(b).

is below the marginal curve of B2, turns into a B1 mode, whilst another one at (St,Re) =

(15.5, 395), above that curve, becomes a B2 solution.

About the spatio-temporal symmetry H, since the solution is quasiperiodic and syn-

chronous with the forcing, it cannot be considered H-symmetric. However, the Fourier trans-

form of the axial velocity on the mid-plane shown in Figure 4.4(a) has zero (or very small)

even temporal Fourier components, as occurs for a B1 synchronous mode in Figure 3.7(a), in-

dicating that the solution is almost H-symmetric. There are two reasons for this approximate

symmetry. The first one is that the amplitude of the modulation due to the second frequency is

very small; comparing Figures 4.2(a) and (b) it is perceived that the modulation amplitude is

about 1% of the amplitude of the axial velocity. The second reason is that the two frequencies

are almost in resonance, so τ2 is very close to an integer multiple of τ : τ2 = 190.98τ ≈ 191τ .

When the ratio is integer, the solution is periodic and exactly satisfies the H symmetry (with

period τ2).

Bursting solution

For forcing frequencies close to the codimension-two point C1, 15.3 ≤ St < Stc = 15.636,

the stable B1 mode existing at large Re does not bifurcate into the rotating wave solution

B1RW when decreasing Re, but undergoes a bifurcation to a more complicated bursting state

(red solid diamonds in Figure 4.1). The bursting state and the B1RW coexist in a narrow

hysteretic region observable in Figure 4.1, and become unstable exiting the region, evolving

one into the other.

Figure 4.6(a) exhibits the time series of the energies of the first and second azimuthal
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Fourier components, of the bursting solution at (St,Re) = (15.5, 400). Both modes have

comparable energies, and the resulting state alternates between both, showing plateaus where

the energy is almost constant followed by rapid excursions, thus the name bursting solution.

These solutions are periodic in time, and the period from the energy plot is τ2 ≈ 8.2417 ≈
127.75τ . The solution is most of the time very close to a B2 mode, with excursions to a

mode B1. But the energy, being a global measure, does not capture the details of the flow.

Figure 4.6(b) provides the evolution of the maximum values of the axial velocity at (r, θ, z) =

(0.9, 0, 0). Measuring the period using this figure a different result is obtained, τ2 ≈ 33.065 ≈
512.51τ . This value is four times the one obtained from the energy plot. The reason behind is

the fact that the energy does not distinguish between solutions with the same structure, but

rotated a certain angle.

In Figure 4.7, contours of axial vorticity at z = −Γ/4 corresponding to consecutive minima

of E1 and E2 in Figure 4.6(a) are depicted; t0 is taken at the beginning of the forcing period.

The solutions are almost identical to the pure synchronous modes B1 (at the minimum of the

m = 2 mode, blue open squares in the figures) and B2 (at the minimum of the m = 1 mode,

red circumferences in the figures). But the solutions at two consecutive minima of the m = 2

mode (almost pure B1 modes) are rotated π/2; therefore, the initial state is recovered after

four alternations of the synchronous modes, almost 512 forcing periods, and the discrepancy

between the measures of τ2 in the previous paragraph gets explained.

As it happens with the rotating waves, the bursting solution is also quasiperiodic and

there are two well-defined frequencies, the forcing frequency, St = 15.5, and a very small

frequency associated with the bursts, f2 = 0.0302. Figure 4.19(b) displays the PSD related

with the velocity in Figure 4.6(b), showing the forcing frequency and its first harmonic. The

presence of a second frequency is evident. Unfortunately, since this frequency is so small,

a large temporal series would be necessary to measure f2 precisely and this is not the case.

Once again, the Poincaré section of the bursting solution, which is displayed in Figure 4.8(a),

provides a good measure of the second frequency. This Poincaré section is quite convoluted,

and the slow down where the solution is close to a pure B2 mode and the fast excursion

approaching a pure B1 mode are captured. The bullets represent 513 consecutive points in the

reduced space and corroborate that the mentioned f2 is correct, because St/f2 = 512.51, and a

whole lap around the cycle is done. The blue open squares and red circumferences correspond

to the minima of the first and second Fourier mode displayed in Figure 4.7. Moreover, there

seem to be two accumulation points, which are the two possibilities for the B2 modes depicted

in Figure 4.7. Apparently, there are two ways of entering and another two of escaping each

one of these accumulation points (pure B2 modes).
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t = t0 t = t0 + 50τ t = t0 + 128τ

t = t0 + 178τ t = t0 + 256τ t = t0 + 306τ

t = t0 + 384τ t = t0 + 434τ t = t0 + 512τ

Figure 4.7: Axial vorticity contours at z = −Γ/4 and different times of the bursts at (St,Re) =

(15.5, 400); t0 is at the beginning of the forcing period and each snapshot corresponds to

consecutive minima of E1 and E2. Contour/colour convention as in Figure 4.3.

This solution seems to preserve the spatial symmetries of the pure modes, because most

of the time is close to a pure synchronous mode, but it is not the case. Figure 4.8(b) exhibits

the evolution of SKβ along a burst: this parameter is most of the time constant, except for

a remarkable peak and valley that coincide with the minima of the energies, which are also

plotted in the figure. Therefore the reflection symmetry is broken mainly when the energy of

the m = 1 mode is minimum. Figure 4.9 helps to understand how this symmetry breaking
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Figure 4.8: Bursting solution at (St,Re) = (15.5, 400). (a) Poincaré section (bullets) using

two axial velocities measured near the wall. The minima of E1 (circumferences) and E2

(open squares) indicated in Figure 4.6 and 4.7 are also plotted. (b) Time evolution of the Kβ

asymmetry parameter, SKβ ; symbols refer to Figure 4.9.

t = t0 + 375τ t = t0 + 381τ t = t0 + 384τ t = t0 + 390τ

t = t0 + 300τ t = t0 + 304τ t = t0 + 306τ t = t0 + 310τ

Figure 4.9: Axial vorticity contours at z = −Γ/4 and different times of the bursts at (St,Re) =

(15.5, 400); t0 is at the beginning of the forcing period. The first row represents the first Fourier

mode contribution near its minimum, while the second one the analogous for the second mode.

The snapshots shown correspond to symbols in Figure 4.8(b). Contour/colour convention as

in Figure 4.3.
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process takes place. The first row shows a time sequence of the first Fourier mode near the peak

of SKβ (minimum of the first mode, red circles in the figure), while the second one exhibits

the behaviour of the second mode at the valley (minimum of the second mode, blue solid

squares in the figure). At the peak, the first mode becomes almost negligible (the amplitude

decreases three orders of magnitude, and the energy seven), while precessing in a fashion

similar to the B1RW of the former subsection; the total rotation of the first Fourier mode

is exactly π/2. When this mode is rotating, the reflection planes between the first and the

second Fourier mode become uncorrelated, thus enhancing SKβ . The second mode does not

rotate continuously at any stage, and what happens is that it changes sign when it is close

to the minimum of the second mode; the change of sign is not uniform, but begins near the

axis and propagates towards the sidewall. Therefore, the valley in SKβ is created when the

second mode becomes minimum. The maximum of SKβ is a good measure of the symmetry

breaking for this solution, and it is plotted in Figure 4.23 for comparison with other solutions.

In case of restricting the computations to the subspace that preserves the Kβ symmetry, the

synchronous B2 modes are recovered.

Regarding to the spatio-temporal H symmetry, mention that it is not preserved because

of the second frequency associated with the bursts, that makes it a quasiperiodic solution.

Curiously, but for the same reasons as the rotating wave solution B1RW , the even temporal

Fourier components of the axial velocity on the mid-plane are very close to zero, indicating

that the solution is almost H-symmetric, shown in 4.19(b).

4.1.2 Above the bicritical point

For St > Stc, at the right side of C1 in Figure 4.1, the bifurcated mode B2 exists in a very nar-

row region very close to the linear stability curve, as presented in the inset of Figure 4.1. This

synchronous mode becomes rapidly unstable when increasing Re, and a synchronous mixed

mode emerges subsequently. This mixed mode solution persists a little longer, but rapidly be-

comes unstable and reverts to the bursting solution already mentioned in the previous section.

By further increasing Re, the pure B1 mode is achieved.

The synchronous B2 mode (blue solid triangles in Figure 4.1) has been exhaustively anal-

ysed in Chapter 3. Summing-up, this solution is synchronous and possesses the symmetry

group D2 o ZST
2 . The spatial symmetries D2, which are illustrated in Figure 4.10(a), depict-

ing axial vorticity contours of B2 at (St,Re) = (16, 396.25), are generated by two orthogonal

reflection planes, whose product is a half-turn (a rotation of π around the cylinder axis). This

pure B2 mode is also H-symmetric. Since it is a pure B2 mode, only even azimuthal Fourier
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(a) (b) (c) (d)

t = t0, z = −Γ/4 t = t0, z = −Γ/4 t = t0 + τ/2, z = +Γ/4

Figure 4.10: (a) Axial vorticity contours of the B2 pure mode at (St,Re) = (16, 396.15). (b)

and (c) Axial vorticity contours of the B1-B2 mixed mode at (St,Re) = (16, 396.25), in the

z-sections and times indicated; t0 is at the beginning of the forcing period. The straight lines

are the Kβ reflection symmetry axes. Contour/colour convention as in Figure 4.3.

components are present in this solution.

SynchronousB1-B2 mixed mode solutions (violet solid squares in Figure 4.1) emerge rapidly

from the B2 solutions. Starting from B2 and augmenting Re, the first azimuthal Fourier mode

becomes unstable, and after an oscillatory transient, a B1-B2 mixed mode state is obtained,

that is synchronous with the forcing. A steady bifurcation occurs here and in the process the

D2 symmetry is lost. Figure 4.10(b) displays contours of axial vorticity for the mixed mode

B1-B2. This solution has the same spatial symmetries as the pure B1 mode: D1, consisting

of a single reflection symmetry Kβ. As can be observed in the figure, the even azimuthal

modes are still dominant, but the presence of the modus one modifies the symmetries of the

mixed solution. Panel (c) of Figure 4.10 exhibits the invariance of this mixed mode solution

under the spacetime symmetry H. This feature is also confirmed by scrutinising the PSD of

the axial velocity on the mid-plane, and checking the absence of the even temporal Fourier

components. Obviously, since this solution is Kβ-symmetric, the same state is recovered when

the computations impose this symmetry artificially.

To sum up, the main difference between the dynamics below and above the bicritical point

is the rapid sequence of bifurcations taking place above C1, resulting almost immediately in

bursting states that are quasiperiodic and possess very rich dynamics. In contrast, below C1

the pure mode B1 exists and is stable in a very large parameter domain, except in a region

close to the codimension-two point, where two kinds of quasiperiodic solutions (modulated

rotating waves and bursting solutions) come into sight.
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Figure 4.11: Families of bifurcated states around the bicritical point C1. The bifurcation

curves from the base state are indicated as black solid lines. The dashed rectangle corresponds

to Figure 4.1. The new bifurcated states away from the bicritical point C1 are indicated in

the figure legend.

4.2 Dynamics away from the codimension-two point

In the previous section, the dynamics and bifurcations close to the codimension-two point C1

have been analysed. In the present section, the analysis to secondary bifurcations is extended

in a larger region of parameter space, where a wealth of additional bifurcations is found.

These new results are summarised in Figure 4.11, where the different symbols correspond to

numerically computed states. The previous bifurcations of Figure 4.1 correspond to the region

close to C1 indicated by a dashed rectangle in Figure 4.11. As in Figure 4.1, the black solid

curves correspond to the bifurcation curves of the basic state that meet at C1, and the states

sketched in the previous section have been included. In addition to the mentioned states, some

novel states emerge away from C1. For instance, for Stokes numbers below Stc, the synchronous

B1 modes become quasiperiodic (brown open down triangles), while for St > Stc, new families

of mixed modes (violet open squares) and bursting solutions (orange open diamonds), different

from the ones previously obtained, enter the stage. Furthermore, at sufficiently high Re,

chaotic solutions develop from the B1QP , as well as, from the asymmetric bursts (not shown

in Figure 4.11). This cascade of bifurcations towards chaotic states complements the picture
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(a) (b) (c)

t = t0 t = t0 + τ t = t0

Figure 4.12: Axial vorticity contours at z = −Γ/4 and different times; t0 is at the beginning

of the forcing period. (a) and (b) Quasiperiodic solution B1QP at (St,Re) = (14, 425). (c) B1

chaotic solution for (St,Re) = (14, 500). Contour/colour convention as in Figure 4.3.

sketched in the previous section and helps to better understand the process described in

Blackburn & Lopez (2011).

4.2.1 Small St numbers

The pure mode B1 is very robust for small Stokes numbers St. By increasing enough the

Reynolds number, B1 undergoes a sequence of bifurcations strongly resembling the Ruelle-

Takens-Newhouse route to chaos. The periodic solution B1 bifurcates first to a quasiperiodic

solution with two frequencies, and by further increasing Re the torus is destroyed and a chaotic

state appears. The quasiperiodic solution, B1QP (brown open down triangles in Figure 4.11),

is a B1 mode pulsating with an additional characteristic frequency; this is clearly observed in

Figure 4.12(a) and (b), showing two axial vorticity contours at the beginning of the forcing

period. They strongly resemble the pure mode B1 in Figure 4.3(a), but the intensity of the

flow increases and decreases with the second frequency. By further increasing the Reynolds

number, other frequencies become apparent, and eventually the B1QP solutions acquire a

chaotic pattern. A snapshot of these chaotic solutions is shown in Figure 4.12(c). The main

difference with B1QP is that the reflectional symmetry Kβ is clearly broken in the chaotic

solution. This can be verified by computing the symmetry parameter of these two solutions:

SKβ (B1QP ) = (a)0.0234, (b)0.0132 and SKβ (chaotic) = 0.362. The asymmetry parameter

for the quasiperiodic solution has the same order of magnitude as the B1 mode analysed in

Section §3.3.1. The symmetry parameter of the chaotic state is one order of magnitude larger,

so the symmetry breaking can be visually observed. By means of imposing the Kβ symmetry
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Figure 4.13: Time series of energy of the Fourier mode E1 and E2 for (a) the B1QP at

(St,Re) = (14, 425), and for (b) the B1 chaotic solution at (St,Re) = (14, 500).
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Figure 4.14: FFT of the time series of the near-wall axial velocity at mid-height (r, θ, z) =

(0.9, 0, 0), for the (a) B1QP at (St,Re) = (14, 425) and (b) B1 chaotic solution at (St,Re) =

(14, 500).

artificially, the same states are recovered with the difference that both solutions preserve Kβ

respect to β = 0 and SKβ (B1QP ) = SKβ (chaotic) = 0. With regard to the spatio-temporal

symmetry, as both states have more than one frequency and are not periodic, the H symmetry

is broken.

The chaotic character of the state at (St,Re) = (14, 500) cannot be discerned in the

snapshot shown in Figure 4.12(c), but it is evident by comparing the time series of the energies

of the first and second Fourier modes shown in Figure 4.13(a) for the B1QP and (b) for the

chaotic state. The chaotic state is much more complex with a strong competition between

both modes, and shows random time intervals where the azimuthal mode m = 2 is dominant.

The solution alternates between pure modes, mixed modes or largely distorted modes without

a precise pattern. The comparison of the Fourier transforms of the axial velocity on the mid-
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Figure 4.15: Poincaré sections (bullets) using two axial velocities measured at (r, θ, z)P =

(0.9, 0, 0) and (r, θ, z)Q = (0.9, 0, 0), for the (a) B1QP at (St,Re) = (14, 425) and (b) B1

chaotic solution at (St,Re) = (14, 500).

plane for the two states is shown in Figure 4.14. The PSD of B1QP is clearly quasiperiodic

with two well-defined frequencies and their linear combinations, while the PSD of the chaotic

state exhibits a broad band of frequencies, and only a few multiples of the forcing frequency are

outstanding. Notice that in both Fourier transforms the even multiples of the forcing frequency

are very small, indicating that the spatio-temporal symmetry H is still approximately fulfilled.

Figure 4.15 represents the Poincaré section of two axial velocities measured at z = 0 and

z = 0.95 near the sidewall after performing a sampling of points every forcing period (bullets).

The Poincaré section for the B1QP displayed in Figure 4.15(a) produces a perfect cycle, so this

solution lives in a two-torus. The big circumferences represent four consecutive points in the

reduced space, and it is observed that the second iteration approaches the initial point and the

third one surpasses it, in excellent agreement with the second frequency f2 = 5.89 measured

from the Fourier transform in Figure 4.14(a), that provides St/f2 = 2.38, indicating that going

around the circle takes more than two iterates. Figure 4.15(b) represents the Poincaré section

of the chaotic state at (St,Re) = (14, 500). The result cannot be considered a limit cycle in

any case. The two-torus has been destroyed, and the points observed might be considered

the Poincaré section of a chaotic attractor. Curiously, the B1QP solution shares a strong

similarity with the MSW1 of the previous chapter.

4.2.2 Large St numbers

Observing Figure 4.11, for higher St than the bicritical value, two new branches of solutions

turn up. These two new solutions are called asymmetric mixed modes and asymmetric bursts.

The asymmetric mixed modes are very similar in some aspects to the former mixed modes, but

do not preserve the spatio-temporal symmetry H, thus the asymmetric adjective. Since the
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Figure 4.16: Asymmetric B1-B2 mixed mode at (St,Re) = (17, 414). (a) and (b) Axial vorticity

contours in the z-sections and times indicated; t0 is at the beginning of the forcing period.

Straight lines are Kβ reflection symmetry axes. Contour/colour convention as in Figure 4.3.

(c) FFT of the time series of the axial velocity at mid-plane near the wall (r, θ, z) = (0.9, 0, 0).

asymmetric bursts bifurcate from the asymmetric mixed modes, they are called asymmetric

too. By further increasing Re above the range of Figure 4.11, irregular or chaotic bursting

solutions are obtained.

B1-B2 asymmetric mixed mode solution

The mentioned asymmetric B1-B2 mixed modes solutions (violet open squares in Figure 4.11)

are obtained far away from C1 and its branch coexists in the parameter space with the bursts.

By increasing Re at St = 17, the symmetric bursts of the former section become unstable, and

after a transient the new asymmetric mixed mode is achieved. When continued to smaller Re,

this new branch of solutions coexists with the burst branch and there is a noticeable hysteresis

region, as can be seen in Figure 4.11. This asymmetric mixed mode has a single characteristic

time, the forcing period, hence this solution is synchronous, like the B1-B2 H-symmetric mixed

modes discussed in Section 4.1.2.

In Figure 4.16(a) and (b), contours of axial vorticity are depicted separated half-forcing-

period, and in symmetric planes with respect to z = 0, for the asymmetric mixed mode at

(St,Re) = (17, 414). At first sight the solution resembles the pure mode B2 of Figure 4.10(a).

Nevertheless, the difference in strength of the four quadrants in Figure 4.16(a) and (b), breaks

the rotational symmetry of π. Therefore this solution preserves exactly the same spatial

symmetries as the pure B1 modes do: of the continuous family of symmetries O(2) of the

governing equations, the final state only has one reflection plane of symmetry. In addition, it
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Figure 4.17: Asymmetric bursting solution at (St,Re) = (17, 425). Time series of (a) the

energy of the Fourier modes E1 and E2, and (b) maximum values of the near-wall axial velocity

at mid-height (r, θ, z) = (0.9, 0, 0).

is observed by inspection of the figures that this solution does not preserve the spatio-temporal

H symmetry: the two snapshots, that should be identical if this solution was H-symmetric, are

rotated a factor of π. Therefore, as occurred with the A2 modes in the previous paper, a new

spatio-temporal symmetry arises: the H symmetry combined with a rotation of π. Fig. 4.16(c)

represents the PSD of the time series of the axial velocity at mid-plane near the wall, and

there is clearly a single frequency, the forcing frequency, therefore it is a synchronous state.

In contrast with all the previous solutions, the spectrum manifests even and odd harmonics

of this sole frequency, which is also a clear indication of the breaking of the spatio-temporal

symmetry H, as occurred for the A2 mode in Figure 3.7(b). As a curiosity, this asymmetric

mixed mode does no longer exist when Kβ is numerically enforced, and the simulations result

in the common B2 solution.

Asymmetric bursting solution

Starting with the asymmetric B1-B2 mixed modes and further increasing Re, these modes

become unstable, and evolve towards a branch of asymmetric bursts (orange open diamonds

in Figure 4.11). Both asymmetric solution branches can be continued to smaller St values,

and they coexist in a wide parameter region with the symmetric mixed modes and bursts, as

it can be seen in Figure 4.11.

Figure 4.17(a) shows the time series of the energies of the asymmetric bursts at (St,Re) =

(17, 425). This time series is very similar to the one corresponding to the symmetric bursts in

Figure 4.6(a), but now the energy of the second mode is at least one order of magnitude larger

than the first one, except in a very narrow temporal window where it dominates. Figure 4.17(b)
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t = t0 t = t0 + 41τ t = t0 + 52τ

t = t0 + 83τ t = t0 + 103τ t = t0 + 145τ

t = t0 + 155τ t = t0 + 196τ t = t0 + 207τ

Figure 4.18: Axial vorticity contours at z = −Γ/4 and different times of the asymmetric

bursts at (St,Re) = (17, 425); t0 is at the beginning of the forcing period and each snapshot

corresponds to consecutive minima of E1 and E2. Contour/colour convention as in Figure 4.3.

displays the evolution of the maximum values of the axial velocity at z = 0 near the wall.

As for the symmetric bursts, in Figure 4.6(b), the period measured from the axial velocity

is four times the value obtained from the energy plot. The reason is the same as in the

symmetric bursts: the solutions at two consecutive minima of the m = 2 mode (almost pure

B1 modes) are rotated π/2, so it takes four bursts to recover the initial state. The period

measured in Figure 4.17(b) is τ2 ≈ 12.212, very long when compared with the forcing period
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Figure 4.19: FFT of the time series of (a) the asymmetric burst in Figure 4.17(b), and (b) the

symmetric burst in Figure 4.6(b).

τ = 1/St = 0.0588: τ2/τ ≈ 207.6.

As it has been done for the bursts of the previous section, Figure 4.18 shows contours

of axial vorticity at z = −Γ/4 that correspond to the succession of minima of E1 and E2

appearing in Figure 4.17(a). The solutions correspond to a modus B1 (at the minimum of the

m = 2 mode, blue open squares in the figures) and B2 (at the minimum of the m = 1 mode,

red circumferences in the figures). In this case, the solutions at two consecutive minima of the

m = 2 mode (almost pure B1 modes) have also rotated π/2, and the initial state is recovered

after four alternations; almost 207 forcing periods, in concordance with the estimation.

Consequently, this asymmetric bursts are quasiperiodic too, with two frequencies, St = 17

and f2 = 0.0816. Figure 4.19(a) represents the PSD of the asymmetric bursting time series in

Figure 4.17(b). The second frequency is observable in the inset of this PSD with the presence

of additional peaks at St ± 2jf2 for j = 1, 2, 3, 4, 5 and 6. Actually, measurements made to

the other bursting solutions, corresponding to Figure 4.19(b), may exhibit the same frequency

distribution of the inset.

In order to complement the picture of this asymmetric bursts, the bullets in Figure 4.20(a)

represent the Poincaré section of the asymmetric bursting solution considered, using two ax-

ial velocities measured near the wall at z = 0 and z = 0.95. This section is analogous to

Figure 4.8(a) from the symmetric bursts and possesses the same properties.

In the same direction as in the symmetic bursts, Figure 4.20(b) exhibits the evolution of

SKβ along an asymmetric burst: this parameter is most of the time constant, except for a

remarkable peak and valley that coincide with the minima of the energies, also plotted in the

figure. Therefore the reflection symmetry is broken mainly when the energy of the m = 1

mode is minimum, and the plot is similar to Figure 4.8(b) for the symmetric bursts. However,
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Figure 4.20: Asymmetric bursting solution at (St,Re) = (17, 425). (a) Poincaré section

(bullets) using two axial velocities measured near the wall. The minima of E1 (circumferences)

and E2 (open squares) indicated in Figure 4.17 and 4.18 are also plotted. (b) Time evolution

of the Kβ asymmetry parameter, SKβ ; symbols refer to Figure 4.21.

t = t0 + 146τ t = t0 + 148τ t = t0 + 150τ t = t0 + 152τ

t = t0 + 153τ t = t0 + 154τ t = t0 + 155τ t = t0 + 156τ

Figure 4.21: Axial vorticity contours at z = −Γ/4 and different times of the asymmetric

bursts at (St,Re) = (17, 425); t0 is at the beginning of the forcing period. Only the first

azimuthal Fourier component is plotted, at the points indicated by red circles in Figure 4.20(b).

Contour/colour convention as in Figure 4.3.
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the asymmetric bursts break the Kβ reflection symmetry in a different way that the symmetric

bursts. Azimuthal mode one preserved reflection symmetry, while mode two slightly broke it

in the symmetric bursts. The spike in the evolution of the symmetry parameter SKβ was due

to the fact that mode one rotated π/2 when it was very close to its minimum, but remaining

reflection-symmetric while rotating, as it is illustrated in the first row of Figure 4.9. For the

asymmetric bursts, the azimuthal mode two behaves in the same way as for the symmetric

bursts, but mode one differs enormously. Figure 4.21 shows a time sequence of the first Fourier

mode along the rapid decrease and about the minimum value of its energy. The eight snapshots

in Figure 4.21 correspond to the eight red circles in Figure 4.20(b). The first five snapshots

along the rapid decrease of mode one show that the symmetry line does not change and the

mode is reflection-symmetric, although the shape of this mode changes remarkably. The three

last snapshots, about the minimum, shows that mode one breaks the reflection symmetry

becoming distorted near the axis, where the pattern starts rotating, while the pattern close to

the sidewall does not move at the beginning of the process (snapshot 6), then rapidly rotating

(snapshot 7), until finally the reflection symmetry is restored with mode one having rotated

π/2 with respect to the starting point (snapshot 1). The distorted spiral pattern near the

axis resembles the quasiperiodic mode MRW1 of Figure 3.12 that bifurcates at much larger

St values. This resemblance suggests that the influence of the quasiperiodic modes could

be the origin of the two families of asymmetric solutions found. By means of imposing the

Kβ symmetry artificially, this solution cease to exist and the usual synchronous B2 mode is

obtained. This feature, which is common in the two asymmetric families, might indicate that

these solution come from a branch that has nothing to do with the B1 and B2 curves.

Concerning to the spatio-temporal symmetry of this asymmetric bursting solution, let us

turn again to the PSD of Figure 4.19(a). These solutions clearly manifest that are not H-

symmetric because of the presence of the even Fourier components. This is not surprising,

because the asymmetric bursts seem to bifurcate from the asymmetric mixed modes, that

neither are H-symmetric.

Irregular bursting solution

Starting from an asymmetric bursting solution and increasing Re beyond the limits in Fig-

ure 4.11, the bursts become chaotic and irregular. Figure 4.22(a) shows the time series of

the energies of the first and second azimuthal Fourier modes after saturation for the irregular

burst at (St,Re) = (17, 550). In this case, both modes acquire energies of similar order of

magnitude, showing irregular bursts from time to time and chaotic temporal behaviour.
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Figure 4.22: Irregular bursts at (St,Re) = (17, 550). (a) Time series of the energy of the

Fourier modes E1 and E2. (b) Axial vorticity contour at z = −Γ/4. Contour/colour convention

as in Figure 4.3.

In Figure 4.22(b), a contour of axial vorticity is depicted for z = −Γ/4 at a particular

time. This snapshot corresponds to a B2 mode that is strongly inflenced by a B1 mode,

some kind of irregular mixed mode. A sequence of cross-sections demonstrates the irregular

nature of these bursts: the presence of pure modes can be observed sporadically, but most

of the time there is a large interaction between the different modes. This solution resembles

the solutions in the bursting scenarios, however the visits to the B1 state are not periodic

but random, and between consecutive visits, the B1 pattern rotates randomly approximately

±π/2. Concerning the spatial symmetries, when the solution approaches a pure or a mixed

mode the corresponding spatial symmetries are observed, but otherwise the solution is largely

distorted without any symmetry. For example, SKβ (irregular) = 0.545 in Figure 4.22(b). The

Fourier transforms of the axial velocity on the mid-plane for this state is not shown but is very

similar to the other chaotic solution, displayed in Figure 4.14(b), and only possesses the odd

Fourier components too. Concerning the artificial enforcing of Kβ, a symmetric mixed mode

with 〈E1〉 � 〈E2〉 is achieved.

4.3 Discussion

The main findings are summarised in Figure 4.11, and in particular in Figure 4.23, showing the

variation of the asymmetry parameter SKβ for the different families of solutions along two one-

dimensional parameter paths at St = 15.5 and St = 17, below and above the codimension-two

point C1. Close to this bicritical point, the dynamics is dominated by two families of solutions,
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Figure 4.23: Kβ asymmetry parameter, SKβ , as a function of the Reynolds number, Re, for

(a) St = 15.5 and (b) St = 17.
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Figure 4.24: Period τ2 of the B1RW solutions as a function of Re for different Stokes numbers

St as indicated.

with dynamics governed by a very low frequency, in addition to the forcing frequency. They

are the modulated rotating waves B1RW (blue circumferences) and the symmetric bursting

solutions (red solid diamonds). The modulated rotating waves B1RW are present only below

C1, for St < Stc. Above the bicritical point C1, a succession of three bifurcations (Base

state → B2 → B1-B2 → Bursts) occurs rapidly, resulting in bursting solutions. These rapid

cascades of bifurcations are typical of fluid problems with O(2) × ZST
2 symmetry, and in the

present problem it has been possible to resolve the details of the cascade for the first time.

Close to C1 the bifurcated solutions preserve the spatio-temporal symmetry H exactly for

the synchronous solutions and very approximately for the quasiperiodic solutions. However,

when increasing St and Re, additional families of mixed and bursting solutions breaking the

H symmetry appear. These asymmetric solutions coexist and interact with the symmetric

families, and when increasing Re they become chaotic. As a matter of fact, SKβ is very useful

to classify the existing solutions but further insight is necessery to understand their origin.

In order to unravel the onset of the B1RW , let us focus on their small frequencies. Fig-
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Figure 4.25: (a) Period τ2 of the bursting solutions. The symbols are computed values, and

the solid lines are splines plotted to guide the eye. (b) Square-root fits to some of the SNIC

bifurcations in (a). The dashed lines indicate the Re bifurcation value obtained from the fit.

ure 4.24 exhibits the periods of rotation τ2 for the B1RW states in the region where these

solutions exist. It is observed that the period goes to infinity, so the precession frequency

f2 = 1/τ2 goes to zero along the bifurcation curve B1 → B1RW . The pure mode B1 does

not precess, because it is Kβ-reflection invariant, and there is a continuous family of B1, the

group orbit of SO(2) acting on them. What occurs is that in the bifurcation B1 → B1RW , the

Kβ-reflection symmetry is broken, and the bifurcated solutions start to drift along the group

orbit, resulting in a (modulated) rotating wave. Although the bifurcated state is quasiperiodic

(it has two frequencies, so it lives on a two-torus), the bifurcating eigenvalue is real, and the

second frequency comes from the symmetry breaking and the corresponding drift along the

group orbit (Crawford & Knobloch, 1991); the bifurcation is a pitchfork breaking Kβ, that

generates a drift because of the continuous family of B1 solutions. It has been manifested

in Crawford & Knobloch (1991) that the period τ2 must vary as the inverse of the square

root of the distance to the bifurcation point, a result consistent with the periods computed

and shown in Figure 4.24. The curves displayed in the figure are splines to guide the eye,

except the curves for St = 15.2 that correspond to square-root fits. The data adjusts very

well, corroborating the mentioned square-root law. The largest period computed corresponds

to the curve for (St,Re) = (15.2, 395), that gives τ2 ≈ 259, which in the figure is out of range.

In the same direction, to understand the origin of the small frequency of the bursting

solutions and the kind of bifurcations they undergo, the period τ2 is plotted in Figure 4.25(a)

as a function of the Reynolds number Re for different St values. The periods τ2 become very

large when approaching the upper Re bifurcation curve in Figure 4.1, where B1 bifurcates

to the bursting solution. This happens not only for St < Stc, below the codimension-two

point C1, but also for Stc < St ≤ 16. This infinite period bifurcation is called a saddle-node
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infinite cycle (SNIC) bifurcation, and occurs when a saddle-node bifurcation takes place on

an invariant cycle (Kuznetsov, 2004). Previously to the bifurcation, there exists a stable limit

cycle. At the bifurcation a saddle-node appears on the limit cycle. After the bifurcation,

the saddle-node splits into two fixed points, one stable and the other unstable, destroying the

limit cycle in the process. In our problem, there is a quasiperiodic solution on a two-torus,

the bursting solution, instead of a limit cycle; but the dynamics on a Poincaré section of

the torus are the same as the dynamics just described for the SNIC bifurcation. The fixed

points that appear on the SNIC bifurcation correspond in our case to the B1 synchronous

solution. This scenario is common in fluid dynamics, and is described in detail for example

in Lopez & Marques (2009), in a rotating convection problem. A characteristic signature of a

SNIC bifurcation is the law followed by the period when approaching the bifurcation, that also

scales as the inverse of the square root of the distance to the bifurcation point (Strogatz, 1994).

Indeed, the periods shown in Figure 4.25(a) that connect the bursts with the B1 mode follow

the square-root law, as shown in Figure 4.25(b). The bifurcation of the bursting solutions for

low Re values is also an infinite period bifurcation for St ∈ [15.8, 17], above the bicritical C1

point, as is clearly seen in Figure 4.25(a). In this scenario, τ2 also follows the square-root

law as shown in Figure 4.25(b), so it is considered a SNIC bifurcation, this time with the

sinchronous mixed mode solution B1-B2. However, below C1, there are not stable limit cycles

available, and the bifurcation of the bursts takes place at a finite value of the period, and

might be considered a saddle-node bifurcation of bursting solutions. When approaching the

bicritical point C1 from below (St < Stc), the period at the bifurcation becomes very large

(St = 15.5 and 15.6), suggesting that it is likely to become infinite at the C1 point, exactly

what happens just on the other side of C1 (St > Stc). The periods for St = 16.5 and 17 do

not go to infinity in the high Re region because for these large St values other branches of

solutions appear and the bursting solutions no longer bifurcate from B1, as it can be observed

in Figure 4.11.

Both bifurcations appear in infinite period bifurcations and the critical values can be

estimated using square-root fits. As it has been done in the former chapter, an analysis in

terms of the energy might be desirable to complement the picture. Figure 4.26 shows the time-

averaged energy of the dominant modes 〈Em〉 as a function of the Reynolds number for the

different families of solutions that appear at (a) St = 15.2 and (b) St = 16. On the one hand,

for St = 15.2, the dynamics is clearly ruled by the first Fourier mode. On the other hand, the

existance of the mixed modes and the bursts, which possess remarkable contributions of the

two first modes, demand the usage of both averages. Solutions that involve two frequencies in

the energy series have been averaged over the two characteristic times. As a matter of fact,

the B1RW solution clearly bifurcates supercritically from the B1 mode and the critical values
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Figure 4.26: Time average of the energy of the dominant modes as a function of Re considering

the branches of solutions at different St: (a) first mode St = 15.2, and (b) first and second

Fourier mode St = 16.
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Figure 4.27: Time average of the energy of the first and second modes as a function of Re

considering the branches of solutions at St = 15.5

can be estimated as the intersection of linear fits. According to Figure 4.26(b), the bursts

are supercritical bifurcations from the mixed modes and the B1 modes, but the obtaining of

critical value is not so effective as is in Figure 4.26(a). The most important conclusion that can

be extracted from the inset of Figure 4.26(b), as well as from Figure 4.28(b), is the fact that the

mixed modes bifurcate supercritically from the pure B2 modes and the bifurcating value can

be obtained from simple fits. Nevertheless, the interaction between the bursts and the B1RW

is quite obscure. Apparently, from Figure 4.27, the two families seem to be disconnected and

create a rather small region of hysteresis, in accordance with Figure 4.23(a).
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Figure 4.28: Time average of the energy of the dominant modes as a function of Re considering

the branches of solutions at different St: (a) first mode St = 14, and (b) first and second Fourier

mode St = 17.
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Figure 4.29: Period τ2 of the B1RW solutions as a function of Re for different Stokes numbers

St as indicated.

Before reaching the chaotic regions away from C1 (B1 chaotic solution and irregular bursts),

the flow suffers several bifurcations. The B1QP solution emerges from the B1 mode with the

appearance of an additional pulsating frequency. Figure 4.28(a) displays the time average of

the first Fourier mode, and the transition between both solutions seems to be supercritical and

the critical value well-defined. Recall that beyond the range of this figure, the dynamics of

the B1QP turns more and more complex and eventually becomes chaotic. This resembles the

classical Ruelle-Takens-Newhouse route to chaos. By means of increasing the parameter, the

flow undergoes a sequence of Hopf bifurcations and each one of them introduces an additional

frequency. With the presence of a third period, the flow is prone to become chaotic (Eckmann,

1981). Actually, this is what seems to happen at even higher Re.
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Concerning to the families of solutions that do not preserve the spatio-temporal symme-

try, Figure 4.28(b) exhibits the apparent disconnection between the asymmetric mixed modes

and the symmetric bursts at St = 17. There are some strong evidences indicating that the

asymmetric branch might come from the A2 synchronous or MRW1 quasiperiodic modes, thus

explaining the separation with the symmetric branches. Nevertheless, understanding the rela-

tion between the asymmetric families should be possible in terms of the secondary frequency

too. Figure 4.29 displays τ2 as a function of Re at the different St where the asymmetric bursts

exist. The same square-root fit employed for the symmetric bursts adjusts the data pretty well

at St = 17 and provides a critical value for a feasable SNIC bifurcation from the asymmetric

mixed modes. Note that these asymmetric bursts are quite robust and the irregular bursts only

emerge after having increased Re in a great measure. The bifurcation that the asymmetric

bursts might undergo to become irregular could be attributed to the Ruelle-Takens-Newhouse

scenario again: a Hopf bifurcation introduces another frequency that might induce the flow to

become chaotic because it would possess a total of three.

4.4 Conclusions

The three-dimensional dynamics of fluid problems with spatial O(2) symmetry and spatio-

temporal Z2 symmetry has aroused the interest of the fluid dynamics community in recent

years, owing to its relevance to wakes and periodically forced flows. Experiments and numerical

simulations have been conducted in these flows, looking for the three-dimensional dynamics

after breaking the O(2) symmetry Williamson (1996); Julien et al. (2003); Blackburn et al.

(2005); Leung et al. (2005); Blackburn & Lopez (2011). In these different settings, the analysis

of the three-dimensional dynamics has faced different drawbacks. In the wake flows, the lack

of enough control parameters does not allow the separated analysis of the different instability

modes, that can be only observed at secondary bifurcations that become chaotic rapidly when

increasing the control parameter. In other flows Leung et al. (2005); Blackburn & Lopez

(2011) the dynamics are dominated by a variety of mixed modes with complicated spatio-

temporal structures, even very near the onset of three-dimensional instabilities. The problem

of a Newtonian fluid enclosed in a cylindrical cavity whose sidewall oscillates harmonically in

the axial direction, solves the aforementioned problems.

As a consequence, the detailed analysis of the secondary bifurcations appearing in the

neighborhood of the first codimension-two point C1 has been possible for the first time. This

bicritical point acts as the organising center of the dynamics at moderate frequency forcing

values (St ≤ 17) and a series of different families of solutions emerge from C1. Since C1 is the
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intersection of the marginal curves of the B1 and B2 mode, the appearance of a synchronous B1-

B2 mixed mode through a synchronous bifurcation seems somehow predictable. Nevertheless,

the emergence of two novel quasiperiodic states (B1RW and bursts) is quite outstanding. The

B1RW solution comes from a pitchfork bifurcation of the B1 mode that breaks Kβ in the

process. This solution is a rotating wave, similar to the MRW1, but completely unrelated

with the complex eigenvalues of a Neimark-Sacker bifurcation. The bursts enter the stage by

means of a SNIC bifurcation of either the B1 mode or the B1-B2 mixed modes. Solutions with

a similar behaviour have been reported in systems with pure 1 : 2 modal resonance (Mercader

et al., 2002; Nore et al., 2003), but this is the first time in obtaining this kind of states in

periodically forced systems.

Some other solutions, which after some reasoning suggest to be disconnected from C1,

have been found. The succesion of bifurcations from B1 states towards a chaotic solution,

passing through the quasiperiodic solution B1QP , conveys the impression of a Ruelle-Takens-

Newhouse route to chaos. All of these solutions seem to preserve the H symmetry, in contrast

with the asymmetric B1-B2 mixed mode and asymmetric bursts. These states have nothing

to do with the linear stability curves of B1 and B2 and may have the origin in the A2 and

MRW1 branches. The asymmetric bursts come from a SNIC bifurcation of the asymmetric

mixed modes. By means of increasing Re, these bursts eventually become chaotic.

In contrast with the annulus scenario (Blackburn & Lopez, 2011), a comprehensible transi-

tion to a series of chaotic solutions has been possible in a periodically forced cylinder. Hopefully

the combination with the analysis of the remaining bicritical points, will complement the tran-

sition to chaos in wakes and periodically forced systems. Furthermore, the analysis of these

complex bicritical points from a theoretical dynamical system perspective yet to addressed,

and it would also shed light on the understanding of these complicated processes. All the

bifurcations that have been detected are supercritical and there are some hysteresis regions

caused by the disconnectedness of unrelated branches of solutions.
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Chapter 5

Normal form analysis of the 1 : 2

mode interaction

A normal form is a low-dimensional system with a polynomial expression of a certain order

that is able to describe the dynamics of a full non-linear system in the neighbourhood of a

bifurcation (Kuznetsov, 2004). Following the prescriptions of Iooss & Adelmeyer (1998), a

normal form can be deduced taking into account the symmetries that are being involved in

the problem.

The normal forms of the codimension-one bifurcations in systems with the O(2) × ZST2

are decribed in Marques et al. (2004), and the results have been employed in the bifurcations

appearing along Chapter 3. For example, the normal form for a mode Bm bifurcation up to

and including third order terms in A and the small bifurcation parameter, is

P : A 7→ A(1 + µ− a|A|2), (5.1)

where µ, a ∈ R. A and A are the amplitudes of the pair of eigenfunctions associated with the

bifurcation, with eigenvalues +1. As the base state that bifurcates is a periodic solution, the

normal form analysis is made on the Poincaré map P of the periodic solution, consisting in

strobing the solutions with the forcing frequency. In fact, due to the spatio-temporal symmetry

H of the base state, it is often convenient to analyse the normal form of H, and then obtain the

corresponding normal form of the Poincaré map by squaringH: P = H2 (Marques et al., 2004).

However, in the case of mode B bifurcations, including the codimension-two point analysed

in the previous chapter, the space-time symmetry acts as the identity on the bifurcating

eigenvectors, and in the scenario under study there is no particular advantage in considering

the normal form of H, which is identical to the normal form of P (except for a factor two in

85
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some of the normal form coefficients). The action of the symmetries on A is

RαA = eimαA, K0A = A, (5.2)

where the exponent m indicates that the bifurcating eigenfunctions have broken the SO(2)

symmetry, but are still invariant under rotations of α = 2π/m, i.e. they correspond to a mode

Bm.

In the same direction, the deduction of the normal forms of the three codimension-two

points described in Section §3.2 can be found in Appendix B. As it has been done before, the

idea of this chapter is the comparison of the numerical results presented in Chapter 4 with the

normal form that has been deduced in Appendix B.1 for the intersection of the two modes B1

and B2. In the codimension-two point studied in the previous chapter, the synchronous modes

B1 and B2 bifurcate simultaneously. There is a pair of eigenfunctions associated with mode

B1, with eigenvalues +1, and amplitudes A and A, and a pair of eigenfunctions associated

with mode B2, with eigenvalues +1, and amplitudes B and B. The normal form for P is given

by

P :

A 7→ A(1 + µ+ a1|A|2 + b1|B|2) +AB,

B 7→ B(1 + ν + a2|A|2 + b2|B|2) + σA2,
(5.3)

where the bifurcation parameters µ, ν and the coefficients ai, bi are all real. Close to the

codimension-two point µ = ν = 0, the bifurcations corresponding to B1 and B2 are non-

degenerate and supercritical, so we expect a1 < 0 and b2 < 0. Additional simplifications are

possible in the cubic terms, where one of the ai coefficients can be chosen arbitrarily (see the

discussion on the hypernormal normal form in the Appendix B.1.1).

We note that this normal form is exactly the same as the one corresponding to the 1 :

2 spatial resonance, but considering a continuous dynamical system, which is an Ordinary

Differential Equation (ODE), instead of a map. The spatial resonance 1 : 2 comes from the

interaction of two solutions that have broken the O(2) symmetry via wavenumbers with m = 1

and 2. This ODE has already been examined in some detail in previous works (see for example

Porter & Knobloch, 2001, and references therein), while there is no much knowledge regarding

the normal form of this map. Instead of dealing with the normal form for the Poincaré map,

which might be really cumbersome, it is preferible to analyse an interpolating ODE of the map

(5.3). In addition, the simplification that has been mentioned a few lines above, is postponed

until obtaining the interpolating ODE.

This chapter represents a first study of the normal form of C1 and is structured as follows.

Section §5.1 contains the details of the calculation of the interpolating ODE of the map.
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Section §5.2 is devoted to the analysis of the fixed points of the ODE and their stability. In

Section §5.3 a numerical exploration of the bifurcations appearing in the ODE, is performed

for a certain set of parameters. Section §5.4 is devoted to comment some features that might

appear when turning back to the analysis of the map. Finally, a discussion of the preliminary

results, as well as the future work that remains, can be found in Section §5.5.

5.1 Interpolating ODE

Provided a map

x→ F (x, α) = Lx+N(x, α), (5.4)

where L is a constant matrix and N(x, α) are non-linear terms (at least order two in x, but it

can contain linear terms in the parameters α), we seek an ODE of the form

ẋ = G(x, α) = Λx+ Y (x, α), (5.5)

such that the flow at t = 1 coincides with F up to a given order in (x, α): φ1(x, α) =

F (x, α) + O(k). The flow φt(x, α) satisfies (5.5) and the initial condition, φ0(x, α) = x. In

order to compute φt(x, α) as a power series in (x, α), a method based on Picard iterations,

described in Kuznetsov et al. (2004) and employed in Marques et al. (2013), is detailed next.

Proposition 5.1.1 The flow of (5.5), φt(x, α), satisfies the integral equation

φt(x, α) = etΛx+

∫ t

0
e(t−τ)ΛY

(
φτ (x, α), α

)
dτ. (5.6)

As Y is non-linear, the terms in φt of order k, φtk, are given by (5.6) in terms of lower order

terms. Equation (5.6) and φ1(x, α) = F (x, α) must be solved simultaneously order by order in

powers of x and α. At order one, φt1(x, α) = etΛx and φ1
1 = eΛx = F1 = Lx, so it is obtained

eΛ = L. This equation does not have a solution in general; for example, if L is real with some

negative eigenvalues, then it does not exist a real Λ fulfilling it. In these cases, one must resort

to more convoluted strategies, like looking for iterates of F (see Kuznetsov, 2004, Chapter 9),

or replacing F by MF , with an appropriate constant matrix (Kuznetsov et al., 2004). In the

current problem, described by (5.3), as L is the identity matrix, the solution is Λ = 0. Then,

(5.6) is reduced to

φt(x, α) = x+

∫ t

0
Y
(
φτ (x, α), α

)
dτ. (5.7)

The iterative procedure to solve this equation is given by:
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Proposition 5.1.2 The non-linear terms in Y (x, α) and φt(x, α) can be computed iteratively

for k ≥ 2 as:

Hk(x, α, t) =

∫ t

0

(
Y(k−1)

(
φτ(k−1)(x, α), α

))
k
dτ, (5.8)

Yk(x, α) = Nk(x, α)−Hk(x, α, 1), (5.9)

φtk(x, α) = tYk(x, α) +Hk(x, α, t). (5.10)

where the subscript (m) indicates all the terms up to and including order m.

Note that the subscript m is here a multi-index refering to the order of x and α. In our

problem, (5.3), there are three non-zero terms in N :

N1,1 =

µA
νB

 , N2,0 =

AB
σA2

 , N3,0 =

a1A|A|2 + b1A|B|2

a2B|A|2 + b2B|B|2

 , (5.11)

where the subscript m,n refers to terms of order xmαn, being x = (A,B) and α = (µ, ν). The

lowest order terms in φ are trivial:

φt0,0 = 0, φt1,0 = x, φt0,1 = 0. (5.12)

The remaining terms are computed order by order:

N1,1 =

∫ 1

0
Y (φt, α)1,1dt =

∫ 1

0
Y1,1(φt1,0, α)dt = Y1,1(x, α) =

µA
νB

 , (5.13a)

N2,0 =

∫ 1

0
Y (φt, α)2,0dt =

∫ 1

0
Y2,0(φt1,0, α)dt = Y2,0(x, α) =

AB
σA2

 , (5.13b)

φt2,0 =

∫ t

0
Y (φt, α)2,0dt = tY2,0(x, α) =

 tAB
tσA2

 , (5.13c)

N3,0 =

∫ 1

0
Y (φt, α)3,0dt =

∫ 1

0

(
Y3,0(x, α) + Y2,0(x+ φt2,0(x, α), α)3,0

)
dt =

= Y3,0 +

∫ 1

0

(A+ tAB)(B + tσA2)

σ(A+ tAB)2)

 dt = Y3,0 +

1
2σA|A|2 + 1

2A|B|2

σB|A|2


⇒ Y3,0 =

(a1 − 1
2σ)A|A|2 + (b1 − 1

2)A|B|2

(a2 − σ)B|A|2 + b2B|B|2

 , (5.13d)

and the resulting interpolating ODE is

Ȧ = A

(
µ+

(
a1 −

1

2
σ

)
|A|2 +

(
b1 −

1

2

)
|B|2

)
+AB, (5.14a)

Ḃ = B
(
ν + (a2 − σ)|A|2 + b2|B|2

)
+ σA2. (5.14b)
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At this point, the desired simplification of the cubic terms can be performed. By means of

choosing a2 = σ, the term B|A|2 in the second equation is simplified. Consequently, we have

finally obtained the sought ODE approximating the map up to third order:

Ȧ = A(µ− a|A|2 − b|B|2) +AB, (5.15a)

Ḃ = B(ν − c|B|2) + σA2, (5.15b)

where a = 1
2σ − a1, b = 1

2 − b1 and c = −b2.

It is convenient to introduce the modules and phases, A = reiφ, B = ρeiψ, and the mixed

phase θ = 2φ − ψ. The dynamics of (r, ρ, θ) decouple from the other phases and, in terms of

these variables, the three-dimensional normal form of the ODE is achieved

ṙ = r(µ− ar2 − bρ2) + rρ cos θ, (5.16a)

ρ̇ = ρ(ν − cρ2) + σr2 cos θ, (5.16b)

θ̇ = −(2ρ+ σr2/ρ) sin θ. (5.16c)

The obtaining of the individual phases is

φ̇ = −ρ sin θ, ψ̇ =
σr2

ρ
sin θ. (5.17)

The action of the symmetries on these variables is

Rα(r, ρ, θ, φ, ψ) = (r, ρ, θ, φ+ α,ψ + 2α), K0(r, ρ, θ, φ, ψ) = (r, ρ,−θ,−φ,−ψ). (5.18)

The three-dimensional normal form (5.16) is SO(2) invariant, while the reflection K0 changes

the sign of all the phases. The presence of 1/ρ in θ̇ results in discontinuities in θ due to the

singularity of the polar coordinates at the origin. This drawback can be avoided by introducing

two auxiliary Cartesian variables, x = ρ cos θ and y = ρ sin θ, resulting in the three-dimensional

normal form

ṙ = r
(
µ+ x− ar2 − b(x2 + y2)

)
, (5.19a)

ẋ = x
(
ν − c(x2 + y2)

)
+ σr2 + 2y2, (5.19b)

ẏ = y
(
ν − 2x− c(x2 + y2)

)
. (5.19c)

The action of the symmetries on (r, x, y) is

Rα(r, x, y) = (r, x, y), K0(r, x, y) = (r, x,−y), (5.20)

and, as a consequence, the solutions with y = 0 are reflection symmetric. The evolution of the

phases in terms of (r, x, y) is

φ̇ = −y, ψ̇ =
σr2y

x2 + y2
, θ̇ = −

(
2 +

σr2

x2 + y2

)
y. (5.21)
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Figure 5.1: Schematic of the phase space of the reduced three-dimensional system (5.19)

The coordinate planes r = 0 and y = 0, and their intersection, the x axis, are all invariant

manifolds of the ODE (5.19). In addition, the symmetry K0 and the positive definiteness of

r, allow us to study only the case y ≥ 0: given a solution (r(t), x(t), y(t)), (r(t), x(t),−y(t))

is also a solution, so the phase portrait for y ≤ 0 is the reflection image of y ≥ 0. Therefore,

it is sufficient to analyse the ODE (5.19) for (r, x, y) ∈ [0,+∞) × R × [0,+∞), which means

that θ ∈ [0, π]. The corresponding phase space is shown in Figure 5.1, that also exhibits the

fixed point O at the origin, corresponding to the base state in our problem. Note that (ρ, θ)

are the polar coordinates on the invariant plane (x, y).

Although there is not a complete analysis of the different scenarios that can take place in

the ODE normal form (5.19), there has been a number of detailed studies focusing on specific

scenarios, starting with Dangelmayr (1986) and continuing with a variety of studies focusing in

dynamical systems aspects related with heteroclinic dynamics and its applications to specific

problems in fluid dynamics (Proctor & Jones, 1988; Armbruster et al., 1988; Echebarŕıa et al.,

1997; Porter & Knobloch, 2001; Mercader et al., 2001, 2002; Nore et al., 2003). We will follow

the same procedure in the sequel, looking for scenarios that closely resemble the dynamics

unravelled in the previous chapter around the codimension-two point B1-B2. The starting

point is the analysis of the fixed points of (5.19) and their bifurcations, following the references

already mentioned, and adapting them to the problem under consideration.

5.2 Fixed points and their stability

Let us start computing the fixed points on the invariant manifolds. The dynamical system

restricted to the x axis (r = y = 0) is

ẋ = x(ν − cx2), (5.22)

which is the normal form of a pitchfork bifurcation. There are three fixed points, x = 0 that

is present for all ν values, and the pair x = ±
√
ν/c, existing for νc ≥ 0. They are fixed points
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of the four-dimensional ODE (5.15) and also of the original map (5.3), because all the phases

are constant (5.21):

O : (A,B) = (0, 0), Pψ : (A,B) = (0,
√
ν/c eiψ). (5.23)

The first one, O, is the base state, and Pψ form a circle of pure B2 modes in our original

fluid problem. This circle of solutions reduces to two solutions in the three-dimensional ODE

(5.19),

P+ : (r, x, y) = (0,
√
ν/c, 0), θ = 0, P− : (r, x, y) = (0,−

√
ν/c, 0), θ = π. (5.24)

At ν = 0 the base state O undergoes a pitchfork bifurcation (a pitchfork of revolution of

the four-dimensional ODE or map) resulting in the P± new fixed points. The bifurcation

line ν = 0, where the mode two solutions are born, will be called M2. As the bifurcation is

supercritical in our fluid problem, from now on it will be considered that c > 0.

The Jacobian matrix of the ODE (5.19) is

J =


µ+ x− 3ar2 − b(x2 + y2) r(1− 2bx) −2bry

2σr ν − 3cx2 − cy2 −2cxy + 4y

0 −2y(1 + cx) ν − 2x− cx2 − 3cy2

 . (5.25)

The Jacobian is diagonal at the fixed points O and P±, and the diagonal elements are their

eigenvalues directly:

JO = diag(µ, ν, ν), JP± =
(
µ±

√
ν

c
− bν

c
,−2ν, ∓2

√
ν

c

)
. (5.26)

The fixed point O is stable for µ < 0 and ν < 0, and unstable in the remaining parameter

space. Moreover, O undergoes bifurcations along the straight lines µ = 0 and ν = 0, where

some of the eigenvalues go through zero. P± are created from O on the straight line ν = 0,

and exist for ν > 0. Very close to the bifurcation line ν = 0, P− is always unstable, while P+

is stable for µ < 0 and unstable for µ > 0.

P± undergo additional bifurcations on the parabola µ ±
√
ν/c − bν/c. A convenient

parametrisation of the parabola is

SP : (µ, ν) = (bt2 − t, ct2), t ∈ R. Axis direction: (b, c). (5.27)

Vertex: tV =
b

2(b2 + c2)
, (µ, ν)V =

b

4(b2 + c2)2
(−b2 − 2c2, bc). (5.28)

As µ±
√
ν/c− bν/c = ±|t|− t, P+ undergoes a bifurcation when crossing SP for t > 0 (SP+),

i.e. for µ < 0 close to the origin, becoming unstable; and P− undergoes a bifurcation when

crossing SP for t < 0 (SP−), i.e. for µ > 0 close to the origin, but continues being unstable.



92 CHAPTER 5. NORMAL FORM OF THE 1 : 2 MODE INTERACTION

1

2

3 4
5

6

4

µ

ν

2

1

3

6

5

4

SP+

SP−

M2

M1

O

P+

P−

Figure 5.2: Schematic of the bifurcations of the fixed points O and P± on the x axis (r = y = 0).

There are four bifurcation curves: M1 where O loses stability to a mode one solution, M2 where

O undergoes a pitchfork bifurcation to a pair of mode two solutions P±, and SP± where P±

undergo secondary bifurcations.

A bifurcation diagram including the bifurcations found until now is shown in Figure 5.2. The

SP curve considers the case b < 0, meanwhile for b > 0 the curve is obtained by reflection

along the vertical axis.

5.2.1 Invariant plane r = 0

Let us look for fixed points of (5.19), assuming r = 0 and y > 0:

x
(
ν − c(x2 + y2)

)
+ 2y2 = 0

ν − 2x− c(x2 + y2) = 0

 ⇒ ν − c(x2 + y2) = 2x, 2x2 + 2y2 = 0. (5.29)

The only solution is the base state O and there are no additional fixed points on the invariant

plane r = 0. However, the ODE for the radial coordinate ρ in (5.16) reads

ρ̇ = ρ(ν − cρ2), (5.30)

which is again the normal form of a pitchfork bifurcation, and results in a stable fixed point

ρ =
√
ν/c for ν > 0. This fixed point corresponds to an attracting heteroclinic orbit Hr on

the (x, y) plane starting from P− at t = −∞ and ending at P+ for t = +∞. Figure 5.3 shows

the orbit Hr in blue, along with some additional orbits on the (x, y) plane. This orbit exists

for all ν > 0, and the explicit time dependence can be computed with ease:

Hr : (x(t), y(t)) = ρ
(

tanh(2ρt),
1

cosh(2ρt)

)
, ρ =

√
ν/c. (5.31)

The attracting or repelling character of this orbit outside the invariant plane in the r = 0

direction is given by the eigenvalue λ of the ṙ equation of (5.19) at the different points of the
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Figure 5.3: Heteroclinic orbit Hr in blue, on the plane (x, y).

heteroclinic orbit, parametrised by θ:

µ−
√
ν/c− bν/c ≤ λ = µ+ cos θ

√
ν/c− bν/c ≤ µ+

√
ν/c− bν/c. (5.32)

Hr is attracting below SP+ and repelling below SP−. Inside the parabola SP , the het-

eroclinic orbit is attracting close to P− and repelling close to P+. Notice that the solutions

on the plane r = 0 have broken the reflection symmetry K0, as long as y 6= 0. Therefore,

the orbit Hr joins two symmetric solutions P± along a path of non-symmetric solutions. The

phase dynamics associated with Hr is (5.21) φ̇ = −y, ψ̇ = 0 and θ̇ = −2y; in terms of the

four-dimensional system (A,B), we have A = 0 and B = ρeiψ constant, so the whole hete-

roclinic orbit Hr reduces to a constant B2 mode. The heteroclinic orbit is an artifact of the

singularity of the polar coordinates (ρ, θ). Nevertheless, the heteroclinic orbit Hr becomes

significant for solutions with r 6= 0 close to Hr, because then the small contribution of A (the

mode B1) undergoes a change of π/2 in the phase (half the phase change of θ that goes from

π to 0) when it is close to the heteroclinic orbit Hr. In fact, this is the origin of the successive

changes in π/2 along the bursts shown in Figures 4.6 and 4.7. The fact that the first Fourier

mode (A) rotates π/2, while the second Fourier mode (B) remains constant, can be observed

in the first row of Figure 4.9.
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5.2.2 Invariant plane y = 0

On the invariant plane y = 0, and assuming r > 0, the fixed points satisfy

µ+ x− ar2 − bx2 = 0

x(ν − cx2) + σr2 = 0

 ⇒ ar2 = σax(cx2 − ν) = µ+ x− bx2. (5.33)

The cubic equation for x, considering µ = 0, has the root x = 0 (so r = 0), and the other roots

(real or complex) are finite, away from the domain of validity of the normal form analysis, that

assumes small values of (r, x, y). Therefore, there is another fixed point Q on the invariant

plane y = 0 close to the origin. It is convenient to parametrise the fixed point with (x, ν)

instead of (µ, ν):

Q : (r, x, y) = (
√
σx(cx2 − ν), x, 0), µ = x

(
σa(cx2 − ν)− 1 + bx

)
, (5.34)

defined for (x, ν) values that fulfill σx(cx2 − ν) ≥ 0. For x = 0 (µ = 0), Q = O, and for

x = ±
√
ν/c (SP±), Q = P±. Consequently, Q bifurcates from the already found fixed points

O along µ = 0 and from P± along SP±. Q is a fixed point of the four-dimensional ODE (5.15)

and also of the original map (5.3), because all the phases are constant (5.21):

Qφ : (A,B) = (
√
σx(cx2 − ν)eiφ, xe2iφ). (5.35)

In the four-dimensional problem, it is another pitchfork of revolution of the base state O, that

in the three-dimensional ODE (5.19) reduces to a single point. This pitchfork of revolution

happens on the line M1 (µ = 0), and in the fluid problem of the previous chapters corresponds

to the B1 mode. All the fixed points that have been found until the moment (O, P± and Q)

are reflection symmetric.

The regions where Q exists (σx(cx2 − ν) ≥ 0) are bounded by the bifurcation lines µ = 0

and SP . Close to the origin in parameter space (µ, ν), sign(x) = sign(µ), and we are supposing

also c > 0. Therefore, for ν < 0, Q exists iff σx > 0, i.e. when σµ > 0; and inside the parabola

SP , cx2 − ν ≥ 0, so Q exists iff σµ > 0. Figure 5.4 displays the regions of existence of Q for

σ = ±1. As in our problem the bifurcation O → Q for ν < 0 is supercritical, i.e. Q exists for

µ > 0, from now on σ = −1 is assumed. There are two disconnected regions where Q exists.

In the region near µ = 0 and ν < 0, |A| = r =
√
xν, |B| = |x| � |A| close to bifurcation; thus,

in this region, there is a mode one (|A|) with a small contribution of mode two (|B|). This

is what has been called mode B1 in the fluid problem. Furthermore, in the region µ < 0 and

ν > 0, close to the SP+ line, we have |A| = r → 0 approaching SP+, while |B| = |x| is finite,

so Q is a mode two with a small contribution of mode one, a B1-B2 mixed mode, bifurcating

from B2.
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Figure 5.4: Regions of existence of the Q solution in grey, for the two values of σ.

The Jacobian matrix at Q is

J =


−2ar2 r(1− 2bx) 0

−2r ν − 3cx2 0

0 0 ν − 2x− cx2

 , r =
√
x(ν − cx2). (5.36)

The eigenvalues of Q are λ3 = ν − 2x− cx2, and the roots of λ2 − 2pλ+ q = 0,

λ± = p±
√
p2 − q, 2p = ν − 2ar2 − 3cx2, q = 2r2

(
1− 2bx+ a(ν − 3cx2)

)
. (5.37)

The different bifurcations are:

1) λ3 = 0, along the parabola

SBD : ν = 2x+ cx2, µ = −x
(
1− (2a+ b)x

)
, r =

√
2|x|. (5.38)

The other eigenvalues, at leading order in x are:

p = x+O(x2), q = 4x2 +O(x3), λ± = x(1−
√

3i) +O(x2), (5.39)

so the eigenvalues are complex and in the corresponding subspace, Q is stable for x < 0 and

unstable for x > 0. As the eigenvector corresponding to λ3 points in the y direction, this

is a reflection-symmetry breaking bifurcation, and the bifurcated state moves away from the

invariant planes.

2) Real bifurcation for q = 0, where one of the λ± is zero. The two cases x = 0, where Q

bifurcates from O along µ = 0, and ν = cx2, corresponding to Q bifurcating from P± along

SP±, have already been discussed. These bifurcations take place inside the invariant plane

y = 0 and preserve the reflection symmetry.

3) Hopf bifurcation for p = 0, q > 0. From p = 0 and (5.34), we can parametrise the

bifurcation curve in parameter space with x,

H : (µ, ν) =
x

1− 2ax

(
cx(3− 2ax),−1 + (b+ 2a)x+ 2a(c− b)x2

)
, (5.40)
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Figure 5.5: Bifurcation curves of the fixed points in the 3D system, for a = 1, b = −3 and

c = 4.

and compute r and q:

r2 =
2cx3

1− 2ax
, q = 2r2(1− 2bx+ 2a2r2). (5.41)

The Hopf frequency is
√
q =
√

2r = 2
√
cx3 at leading order. The Hopf bifurcation takes place

into the invariant subspace (r, x) (5.36), so the resulting periodic solution So is contained into

this plane, and it is reflection-symmetric.

Figure 5.5 shows the bifurcation curves of the fixed points on the invariant plane y = 0,

for the specified values of the parameters a, b and c. In order to compare the different regions

in parameter space with the regions found in the fluid dynamics problem shown in Figure 4.1,

we have made an affine transformation of this figure so that the bifurcation curves from the

base state to the bifurcated states B1 and B2 have horizontal and vertical tangents at the

codimension-two point, as well as the base state is stable in the third quadrant. The affine

transformation is described by

µ∗ = −0.8400(St− Stc) + 0.05726(Re−Rec)
ν∗ = −0.5255(St− Stc) + 0.1617(Re−Rec)

 , (5.42)

and the resulting regime diagram is shown in Figure 5.6. A non-linear coordinate transfor-

mation between (µ∗, ν∗) and (µ, ν) should be performed, so that the bifurcation lines from
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Figure 5.6: Families of bifurcated states near the bicritical point C1. They are the same as in

Figure 4.1, but the axis have been modified according to the affine transformation (5.42).

the base state to B1 and B2 become the coordinate axis. However, the resemblance between

Figures 5.6 and 5.5 is good enough for qualitative comparison. The normal form analysis

captures up to now five of the bifurcation curves that have been obtained by direct numerical

simulation of the Navier-Stokes equations. There remains to analyse the bifurcations of the

drift solutions Dr and additional global bifurcations related to the bursting dynamics.

5.2.3 Fixed points outside the invariant planes

The exploration of the possible fixed points with r > 0 and y > 0 still remains:

µ+ x− ar2 − b(x2 + y2) = 0,

x
(
ν − c(x2 + y2)

)
+ σr2 + 2y2 = 0

ν − 2x− c(x2 + y2) = 0

⇒ ν − c(x2 + y2) = 2x, 2x2 + 2y2 = −σr2, (5.43)

so new fixed points are only possible when σ = −1. The new fixed point lies on a cone with

vertex at the origin. It is obtained

Dr :


r =

√
4µ+ 2ν

4a+ 2b+ c
, x =

(2a+ b)ν − cµ
4a+ 2b+ c

,

y =
1

|4a+ 2b+ c|
√

(4a+ 2b+ c)(2µ+ ν)− ((2a+ b)ν − cµ)2.

(5.44)
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From (5.21) we arrive at θ̇ = 0 because r2 = 2(x2 + y2). However, φ̇ = −y and ψ̇ = −2y,

so it is a periodic solution of the 4D ODE, and a solution on an invariant circle of the 4D

map. The frequency of the periodic solution is y, and for y = 0 it is zero, an infinite period

bifurcation. When y = 0 the fixed point Dr coincides with Q along the parabola SBD (5.38).

From the point of view of the 4D ODE (5.15), this is an infinite-period bifurcation breaking

the reflection symmetry; the fixed points on the SO(2) orbit (5.35) start a slow drift with

frequency y along the group orbit, and at the bifurcation point the drift frequency is zero. As

the reflection symmetry K0 is broken, a couple of reflection-symmetry-related solutions, y and

−y, drift in opposite directions. In summary, the fixed points Q (belonging to an SO(2) orbit)

undergo a symmetry-breaking reflection bifurcation resulting in a drifting periodic solution

Dr along the bifurcation curve SBD.

Additional bifurcations of Dr can be analysed by looking at the eigenvalues of the Jacobian

matrix of Dr,

J =


−4a(x2 + y2) r(1− 2bx) −2bry

−2r 2x(1− cx) 2y(2− cx)

0 −2y(1 + cx) −2cy2

 , (5.45)

with r, x and y given by (5.44). The result is a cubic polynomial with coefficients that are

very complicated functions of µ and ν, so any further analysis must be performed numerically.

5.3 A numerical exploration of the 3D ODE

In order to analyse the sequence of bifurcations around the bicritical point, we have computed

numerically the solution of the three-dimensional ODE (5.19) for the same parameter values

as in Figure 5.5, a = 1, b = −3 and c = 4, and for bifurcation parameters (µ, ν) varying

along a circumference of radius 0.2 around the origin that is is depicted in Figure 5.7. The

same point (r0, x0, y0) = (0.1, 0.1, 0.1) has been taken as initial condition in all cases, and is

indicated in the subsequent phase portraits as a white disk, while the final point by a red disk.

The phase portraits corresponding to all the bifurcations that have been found, are plotted

in the following lines, and the symbols on the circumference in Figure 5.7 correspond to the

different phase portraits considered for this purpose.

Figure 5.8 shows the first two bifurcations obtained when increasing ν for µ < 0. In

Figure 5.8(a) and (b) we observe the bifurcation from the base state to the mode two, O → P+,

when crossing the M2 bifurcation line ν = 0, corresponding to the states labelled 1 and 2 in

Figure 5.7. This bifurcation is closely followed by the bifurcation from the mode two solution,

Figure 5.8(c), to a mixed mode, Figure 5.8(d), P+ → Q, along the line SP+, corresponding
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Figure 5.7: Bifurcation curves found in the 3D system, for a = 1, b = −3 and c = 4.

to the states labelled 3 and 4 in Figure 5.7. This two bifurcations are present in the fluid

problem: they are the bifurcations from the base state to the B2 pure mode and then to the

mixed mode B1-B2. In these and all the subsequent plots, the trajectory of the 3D ODE is

drawn in blue, and their projections on the invariant planes y = 0 and r = 0 are portrayed in

green and red, respectively, in order to better appreciate the three-dimensional shape of the

trajectory.

Figure 5.9 exhibits how the stable node Q becomes a stable focus (Figure 5.9(a) and (b),

corresponding to the states 5 and 6 in Figure 5.7). When the bifurcation line H is crossed,

the stable focus undergoes a Hopf bifurcation resulting in a periodic orbit, Q → So, lying

on the invariant plane y = 0 so that is is reflection-symmetric. So is shown in Figure 5.9(c),

corresponding to the state 7 in Figure 5.7. This periodic orbit undergoes a heteroclinic collision

with the unstable saddles P+ and O. Since O is connected with P− with a heteroclinic orbit

on the invariant line r = y = 0, and P− is also concatenated with P+ along the heteroclinic

semicircle Hr discussed in Section §5.2.1, a complex heteroclinic cycle is formed involving the

connection P+ → O in the y = 0 invariant plane, the connection O → P− on the invariant

line r = y = 0, and the connection P− → P+ in the r = 0 invariant plane. This heteroclinic

cycle is illustrated in Figure 5.9(d), corresponding to the state 8 in Figure 5.7. This global

bifurcation happens very close to the Hopf curve H, resulting in the bursting states observed

in the numerical simulations. After the heteroclinic connection is broken, a large periodic orbit

LAo (Large Asymmetric orbit) closely following the heteroclinic cycle is formed. As has been
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(a) (µ, ν) = (−0.2000, 0.0003) (b) (µ, ν) = (−0.2000, 0.0043)

(c) (µ, ν) = (−0.1871, 0.0708) (d) (µ, ν) = (−0.1856, 0.0745)

Figure 5.8: Phase portraits of the 3D system, for a = 1, b = −3 and c = 4. (a) and (b) shows

the bifurcation O → P+ along the M2 bifurcation line (states labelled 1 and 2 in Figure 5.7).

(c) and (d) shows the bifurcation P+ → Q along SP+ (states 3 and 4 in Figure 5.7.

explained in Section §5.2.1, the proximity to the heteroclinic semicircleHr is responsible for the

jump in π/2 of the phase of the mode A amplitude. Therefore, in the four-dimensional system

the orbit LAo is traversed four times before recovering the original phase. This orbit has broken

the reflection symmetry because y 6= 0. As the Hopf bifurcation and the heteroclinic collision

take place in a very small parameter range, we have not been able to observe the periodic

orbit in the full Navier-Stokes direct numerical simulations. In fact, due to the proximity to

the codimension-two point, and the very large period of So because it is very close to the

homoclinic collision, the necessary computations to find So would be extremely expensive.

Figure 5.10 shows the evolution of the LAo when moving away from the heteroclinic colli-

sion. In the sequence that goes from (a) to (c) the orbit becomes smaller in size, and very close
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(a) (µ, ν) = (−0.1671, 0.1099) (b) (µ, ν) = (−0.1302, 0.1518)

(c) (µ, ν) = (−0.1241, 0.1569) (d) (µ, ν) = (−0.1209, 0.1593)

Figure 5.9: Phase portraits of the 3D system, for a = 1, b = −3 and c = 4. (b) and (c) shows

the Hopf bifurcation Q→ So along the curve H (states 6 and 7 in Figure 5.7). (d) shows the

heteroclinic cycle P+ → O → P− → P+ formed when So collides with P+ and O.

to the SBD line, it undergoes a Hopf bifurcation when it crosses the Ha curve of Figure 5.7,

collapsing into a fixed point Dr, as can be seen in Figure 5.10(d) and Figure 5.11(a), corre-

sponding to the states 12 and 13 in Figure 5.7. This fixed point of the 3D system is a drifting

solution of the four-dimensional ODE, so it corresponds to solutions with two frequencies,

lying in a two-torus, as a solution of the fluid problem. One of the frequencies is the forcing

frequency, and the other one is a slow drift along the SO(2)-orbit of solutions. Therefore, the

large asymmetric orbit LAo corresponds to a three-torus state in the Navier-Stokes equation.

Figure 5.11 shows the evolution of the drifting solution Dr that in fact moves away from

the origin, in the grey region in Figure 5.7. The normal form coordinates (r, x, y) become of

order unity, suggesting that the dynamics in this region is poorly described by the normal form
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(a) (µ, ν) = (−0.1044, 0.1706) (b) (µ, ν) = (−0.0975, 0.1746)

(c) (µ, ν) = (−0.0832, 0.1819) (d) (µ, ν) = (−0.0796, 0.1835)

Figure 5.10: Phase portraits of the 3D system, for a = 1, b = −3 and c = 4. The phase portraits

show the shrinking of the large asymmetric periodic orbit LAo formed in the heteroclinic

collision described in Figure 5.9(d).

approach, and that in the real problem additional bifurcations are going to take place, as higher

order terms in the normal form come into play. This is what happens in the fluid dynamics

problem; in the grey region away from the codimension-two point new families of solutions

have been found, displaying a complicated dynamics, described in the precedent chapter. This

moving away of the Dr fixed point is illustrated in Figure 5.11(c) and (d) corresponding to

the states 15 and 16 in Figure 5.7.

Figure 5.12 shows the last two simple bifurcations of fixed points that complete the tra-

jectory around the codimension-two point in parameter space. One of them is the bifurcation

from the drifting solution to the mode one solution, Dr → Q, along the SBD line, illustrated

in Figure 5.12(a) and (b), corresponding to the states 17 and 18 in Figure 5.7. And the last
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(a) (µ, ν) = (−0.0759, 0.1850) (b) (µ, ν) = (−0.0647, 0.1893)

(c) (µ, ν) = (−0.0258, 0.1983) (d) (µ, ν) = (0.1274,−0.1541)

Figure 5.11: Phase portraits of the 3D system, for a = 1, b = −3 and c = 4. (a) shows the

Hopf bifurcation LAo → Dr along the Ha curve, very close to the SBD line (state 13 in

Figure 5.7). (b), (c) and (d) illustrate how the Dr solution moves away from the origin in the

grey region in Figure 5.7.

case is the bifurcation from the mode one solution into the base state, along the line M1. This

is shown in Figure 5.12(c) and (d), corresponding to the states 19 and 20 in Figure 5.7.

5.4 Considerations about the 4D ODE and the map normal

forms

The four-dimensional ODE (5.15) interpolating the map has been analysed in detail, following

previous studies like Porter & Knobloch (2001), that studied the 1 : 2 spatial resonance of
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(a) (µ, ν) = (0.1012,−0.1725) (b) (µ, ν) = (0.0871,−0.1800)

(c) (µ, ν) = (0.0022,−0.2000) (d) (µ, ν) = (−0.0018,−0.2000)

Figure 5.12: Phase portraits of the 3D system, for a = 1, b = −3 and c = 4. (a) and (b) shows

the bifurcation Dr → Q along the SBD line (states labelled 17 and 18 in Figure 5.7). (c) and

(d) shows the bifurcation Q→ O along the line M1 (states 19 and 20 in Figure 5.7.

ODEs with O(2) symmetry. In our problem, the relevant normal form corresponds to a map

with O(2) symmetry and 1 : 2 spatial resonance, so it would be necessary to move back to

the analysis of the map (5.3), and see how much of the previous analysis applies in the map

scenario. Although the ODE (5.15) has been obtained from the map, it is an approximating

interpolating ODE, up to third order in our problem. Consequently, the map obtained by

integrating the ODE up to time t = 1 may differ from the original map in terms of order

higher than three. We expect that most of the dynamics obtained close to the bifurcation

point and in a neighbourhood of the base state in phase space will be present in the map,

but small differences may appear when moving away from the origin. In particular, it is well

known that the dynamics related to local bifurcations of fixed points and periodic orbits will
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remain, while the dynamics related to global bifurcations may undergo significant changes (see

e.g. Kuznetsov, 2004).

Global bifurcation curves of the ODE involving homoclinic of heteroclinic collisions of limit

cycles typically become in the map a narrow region of complex dynamics. Generically, consider

a heteroclinic orbit γ starting at a fixed point s1 and ending in another fixed point s2 in the

ODE. For example, the heteroclinic loop P+ → O → P− → P+ shown in Figure 5.9(d) is made

of three heteroclinic orbits joining three unstable fixed points. The orbit γ is simultaneously

an unstable manifold of s1 and a stable manifold of s2. When the corresponding map is

assumed, the orbits are discrete, and the unstable manifold of s1 and the stable manifold

of s2 intersect transversally in the discrete heteroclinic orbit of the map. This transversal

intersection begins and ends in two heteroclinic tangency curves which are the limiting curves

of a narrow region with a horn shape in parameter space. Figure 5.13 shows the process of

tangency and transversal intersection of the invariant manifolds, and Figure 5.14 shows the

heteroclinic bifurcation curve for the ODE and the corresponding horn shaped region for the

map in parameter space.

In a generic system, instead of a single bifurcation curve associated with the heteroclinic

connection, there is a horn-shaped region about it. Inside the horn, the dynamics can be

extremely complex, including an infinity of two-tori, solutions homoclinic and heteroclinic
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to both unstable fixed points, cascades of saddle-node and period-doubling bifurcations, and

chaos. Other bifurcations may also result in qualitatively different dynamics. For example,

the Hopf bifurcations in the ODE become Neimark-Sacker (NS) bifurcations for the map. And

the Neimark-Sacker bifurcation is more complex than a Hopf bifurcation, because there are

two frequencies at play; and when the ratio of the frequencies is a rational number with a

small denominator, horns of complicated dynamics (involving saddle-nodes, period doublings

and torus break-up) appear. Therefore, a careful exploration of the map dynamics must be

carried out, at least close to the heteroclinic and Hopf bifurcations (including the bifurcation

Dr, which for the map involves also two frequencies).

5.5 Discussion

In this chapter, we have formulated a model based on dynamical system theory of the codimension-

two bifurcation explored numerically by direct numerical simulation of the Navier-Stokes equa-

tions in the preceding chapter. As the flow is periodically forced, the normal form of the

Poincaré map associated with strobing the flow at the forcing frequency, has been calculated.

Instead of working directly with the map, that is really an awkward task, we can try to work

with an equivalent continuous dynamical system. To this aim, we have obtained an interpo-

lating ODE such that at the t = 1 approximates the map to a desired order. The resulting

ODE is the normal form of a 1 : 2 spatial resonance with O(2) symmetry. Following previous

studies of this normal form, it has been possible to obtain a scenario that closely resembles

our problem, and the exploration combining analytical and numerical tools has resulted very

useful.

The results provided by the normal form fully agree with the results of the precedent

chapter, except in the grey region in Figure 5.7, where the normal form theory exhibits a

drifting solution, while the Navier-Stokes direct simulations show a more complex interaction

and coexistence between drifting and bursting solutions.

In order to complete the analysis in this chapter, there are several issues to pursue as an

immediate continuation of the present work. For instance, determining the precise values of

the parameters a, b and c of the normal form, by detailed quantitative (numerical) comparisons

between the normal form and the simulations in the fluid problem. Furthermore, comprehen-

sive numerical explorations looking for local and global bifurcations of the periodic solutions

obtained from the normal form are necessary. In addition, it would be desirable to conduct

detailed explorations of the normal form of the map, which is expected to differ with respect

to the ODE normal form results in the regions where global bifurcations of limit cycles are
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present, in particular in the aforementioned grey regions where we have observed discrepan-

cies between the ODE normal form and the Navier-Stokes results. Last but not least, the full

description of all the different scenarios corresponding to the normal forms obtained, both for

the ODE and the map, in order to help future research in problems with O(2)-equivariant

1 : 2 resonances. Of course, things are not as simple as they seem, and other aspects of the

problem may appear along the precedent analysis.
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Chapter 6

Viscoelastic flow

In general terms, the research that has been conducted on fluid dynamics since the first

experiments of Reynolds (1883) has provided the naive notion that the transitions in Newtonian

flows are governed mainly by the Reynolds number. This non-dimensional number represents

the ratio between inertial and viscous damping effects. Therefore, the typical scenario is that

as inertia becomes more and more relevant, the flow suffers more and more instabilities that

tend to increment its complexity. Of course, in some cases such as the plane Couette or

the pipe Poiseuille, a direct transition to turbulence is fait accompli. Since viscoelastic fluids

possess a very high viscosity, the Reynolds number is very small, so the inertial effects cannot

be the instability agent. In fact, the elasticity associated to the polymers diluted in the fluid,

is the mechanism that induces the transition in viscoelastic flows (Larson, 2000). Analogously

to the Reynolds number, the so-called Weissenberg number, which accounts for the elasticity,

is crucial in the destabilisation process in viscoelastic flows (Morozov & van Saarlos, 2007).

The case under study consists in a fluid confined in a cylindrical cavity whose lateral

wall oscillates periodically in time, so the basic flow is invariant under the symmetry group

O(2)×ZST2 . The first symmetry, O(2), is purely spatial, acts on the azimuthal direction, and

is composed by all the rotations and reflections generated by the cylindrical configuration. The

second one, ZST2 , is a spatial reflection about the middle of the cylinder after half the period

forcing, thus being imposed by the sidewall frequency. The Newtonian scenario has been

deeply analysed in Panades et al. (2011, 2013) and depending on the dimensionless group, St

and Re, it has been observed how the inertia breaks the symmetry group in a variety of ways.

For a viscoelastic fluid, the idea is similar but driving the instability through the elasticity

parameters and analysing, if possible, the symmetry-breaking process.

The comparison with experimental work is always desirable, but as far as we are concerned

109
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there are no experiments being carried out with the exact setting that has been described.

Nevertheless, some experimental research with a very large aspect ratio has been taking place

for some years (Torralba et al., 2005, 2007; Casanellas & Ort́ın, 2012a). In practical terms,

the cylinder can be considered periodic in the axial direction and this periodicity introduces

an additional symmetry: the flow remains invariant under translations in the axial direction.

Furthermore, note that in this scenario the spatio-temporal symmetry changes because now

the reflection applies to any plane with constant z. A theoretical analysis of the laminar

oscillatory flow can be found in Casanellas & Ort́ın (2012b). As Casanellas (2013) reports,

after the occurrence of the first instability, some vortices enter the stage, so the translational

symmetry breaks partially: the system is only invariant under some specific translations related

with the periodicity of the vortices. Concerning the spatio-temporal symmetry, the infinite

family of reflection planes is reduced to just a collection of them. Consequently, the symmetry

group that emerges from the first bifurcation resembles O(2) × ZST2 , so the analysis between

the first bifurcations in our system and the secondary bifurcations of this experimental device

might be intimately related.

This chapter has the following structure. In Section §6.1 the main features of the vis-

coelastic flow are described. Section §6.2 is devoted to the analysis of the spectral accuracy in

terms of the flow parameters. In Section §6.3, evidences of elastic instability are tried to find.

After showing the existance of an elastic instability, the artificial diffusion is introduced in an

attempt of obtaining a stable state in Section §6.4. This chapter closes with Section §6.5, a

discussion of the main results.

6.1 Basic state

As occurs in the Newtonian scenario, the basic state of an Oldroyd-B flow has to be also

axisymmetric, time-periodic and synchronous with the sidewall oscillation. By means of using

the Classical Oldroyd (CO) numerical scheme described in Section §2.2.2, the basic state of a

dilute polymer solution for (St,Re,We, β) = (1, 0.01, 0.01, 0.9) with ∆t = 10−2 is computed.

Since Re and We are moderately small, a steady state is reached in a relatively small amount

of time. The convergence of this state is displayed in Figure 6.1(a). As expected, the solution is

clearly axisymmetric. Curiously, the axial coefficients are distributed in two bands composed

by odd and even coefficients. The even band is several orders of magnitude greater than

the other, which might imply that the energy is almost symmetric respect to the mid-plane

z = 0. This result has nothing to do with the viscoelastic fluid because the same behaviour

is observed for a Newtonian fluid with (St,Re) = (1, 0.01). Therefore, the inertia and the
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Figure 6.1: Chebyshev amplitudes of the suare root of the kinetic energy for the radial coeff-

cients nr (circumferences) and axial coefficients nz (squares), and Fourier modes of square

root of the kinetic energy nθ (diamonds), for the basic state of the viscoelastic flow at

(St,Re,We, β) = (1, 0.01, 0.01, 0.9) with ∆t = 10−2. (a) exhibits the contribution of all

the coefficients, while (b) focuses the attention on the relevant ones.

elasticity are likely to be irrelevant in comparison with the viscosity, which dominates the

dynamics. Taking into account the axisymmetry and the presumed pseudo-reflection in z,

the most relevant contribution of the coefficients to the convergence of this state is plotted

in Figure 6.1(b). The ratio between the leading coefficients and the ones in the tail for the

radial and axial coordinates are qr ≈ 2955 and qz ≈ 3752, respectively; therefore the solution

is accurate enough despite the aliasing at high values of n in both directions.

In the manner done in Section §3.1, Figure 6.2 represents meridional planes of some useful

magnitudes at a time t0 and after advancing in time half of the period for the viscoelastic flow.

The minima of these magnitudes correspond to integral multiples of the period and its half,

because the flow and the sidewall are completely in-phase. Column (a) shows the contours of

the kinetic energy, E, and serves to illustrate the statement of the previous paragraph: at first

sight, this magnitude is almost symmetric respect to the z = 0 plane. The streamfunction

displayed in Figure 6.2(b), shows a single roller occupying the whole cylinder throughout the

forcing cycle. Since St and Re are small enough, these rollers have enough time to form and

dissipate during each half of the forcing period. Columns (c) and (d) are used to demonstrate

that the velocity field is invariant to the spatio-temporal symmetry H, eq. (2.28). In the

current scenario, instead of using the azimuthal vorticity η, the non-zero velocity components

have been used because the visualisations of η are really bothersome: almost neglectable in the

whole domain and concentrated in a very small region near the junctions. This insignificant
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Figure 6.2: Contours of (a) kinetic energy E, (b) streamfunction ψ, (c) radial velocity vr, and

(d) axial velocity vz of the basic state of a viscoelastic flow computed at (St,Re,We, β) =

(1, 0.01, 0.01, 0.9). Solid (dashed) contours are positive (negative); light/dark (yellow/red)

colours correspond to negative/positive values. The initial time is t0 = τ/3 and has been

selected where the magnitudes are most intense.

azimuthal vorticity is translated in a very small recirculation of the flow near the corners.

Apparently, from the flow visualisations, this state possesses a reflection symmetry in z, but

numeric data, such as the two bands in Figure 6.1(a), make evident that this solution is not

symmetric at all and this curiosity is caused by the small forcing. Therefore, talking about

this pseudo-symmetry is avoided intentionally from now on due to its lack of interest.
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Figure 6.3: Spectral precision as a function of the non-dimensional parameters: (a) Re

with (St,We, β) = (1, 0.01, 0.9), (b) We with (St,Re, β) = (1, 0.01, 0.9), and (c) β with

(St,Re,We) = (1, 0.01, 0.01).

6.2 Spectral convergence

The solution displayed in the previous section, which is computed at (St,Re,We, β) = (1, 0.01, 0.01, 0.9),

is accurate enough in terms of spectral accuracy. Several authors (Sureshkumar & Beris, 1995;

Fattal & Kupferman, 2005) have reported how numerical simulations of non-Newtonian flows

begin to lose their numerical stability when the polymeric stress becomes rather large, the

so-called High Weissenberg Number Problem (HWNP). Hence, the importance of studying

the spectral convergence as a function of the flow parameters: the Stokes number is kept fixed

at St = 1, while the other three are modified, one at a time (Figure 6.3). Mention that a

Newtonian flow with the same Stokes number is linearly unstable to a synchronous B2 mode

for Re > Rec = 262.866.

In Figure 6.3(a), the Reynolds number range is Re ∈ [0.0001, 0.2], while (St,We, β) =

(1, 0.01, 0.9). With a time step of ∆t = 10−2, the accuracy in the radial direction is quite

constant, whereas in the axial direction decreases dramatically atRe = 0.2. At higher Reynolds

numbers, the simulations explode. By means of employing smaller time steps, ∆t = 10−3 and

10−4, a higher precision is achieved in z, but the numerical breakdown persists. In all cases,

the determinant of the conformation tensor becomes negative almost at the same time and

this eventually leads the system to a numerical blow-up. Increasing the Reynolds number

beyond Re = 0.02 might indicate that the advection of the flow is beginning to influence the

dynamics and this is probably causing large gradients that induce numerical instabilities in

the integration of C. The presence of the advection is necessary, but its influence has to be
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neglectable to obtain purely viscoelastic instabilities. As a consequence, values of Re > 0.02

are avoided.

Figure 6.3(b) exhibits the variation of the spectral accuracy as a function of We with fixed

Reynolds number and viscosity ratio, (St,Re, β) = (1, 0.01, 0.9). Considering ∆t = 10−2, the

accuracy in r and z does not suffer substantial variations except for We ∈ [0.02, 2]. These

variations seem to be caused by an enhancement of the aliasing in the last coefficients. When

the Weissenberg number is high enough, the dynamics need very long time scales to establish

and, for We > 200, det (C) eventually becomes negative, thus causing numerical instabilities.

By means of utilising ∆t = 10−3, the spectral accuracy improves remarkably in the axial

direction and, with this time step, the computations at even higher We are stable, but the per

se slow dynamics need even much more time to settle. Since the advection is small enough, it

is expected that for high We the system is likely to have entered the region where the elasticity

of the polymers is relevant.

The variaton of the spectral accuracy in terms of β is displayed in Figure 6.3(c). In this

case, (St,Re,We) = (1, 0.01, 0.01). The accuracy decreases monotonically with β considering

∆t = 10−2. For β < 0.7, the simulations explode and the utilisation of smaller time steps is

necessary. The integration results successful at first, but for β < 0.2 the numerical blow-up

appears again. Employing even smaller time steps of ∆t = 10−3 solves the problem temporarily

and the same problem appears again at even larger stages (β < 0.05). Furthermore, working

with such small ∆t is not feasible because elastic instabilities develop at large time scales

and these simulations last an eternity. Decreasing β signifies increasing the concentration of

polymers, thus getting really far away from the Newtonian case and escaping the definition

of a dilute solution. Reducing the viscosity ratio might intensify the effects of the velocity

gradients and the elasticity at the same time.

Consequently, in an attempt to find some evidences of elastic instability, some consider-

ations about the parameters have to be kept in mind. The system has to be set in a frame

where the viscosity dominates over the inertia, but with a non-zero velocity, so Re = 0.01

and St = 1 are chosen. In addition, the concentration of polymers difficults the integration

and distances us from the Newtonian scenario. Hence, this magnitude is selected close to one,

β = 0.9. Even though the system is different, the chance of finding resonance phenomena is

slim because of the proximity of β to the unity (Casanellas & Ort́ın, 2012b). After fixing all

these non-dimensional numbers, it is intended to destabilise the basic flow changing the Weis-

senberg number with We > 1, because this parameter is supposed to enhance the elasticity

effects (Morozov & van Saarlos, 2007).
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Figure 6.4: Time series of the (a) kinetic energy E0 and (b) elastic energy U0 of the axisym-

metric Fourier mode (St,Re,We, β) = (1, 0.01, 10, 0.9).

6.3 Elastic instability

As it has been mentioned in the previous section, the system might be entering the elastic

regime forWe > 1, so (St,Re,Weβ) = (1, 0.01, 10, 0.9) is considered here. Figure 6.4 shows the

time evolution of the kinetic and elastic energy of the axisymmetric mode. From Figure 6.4(a),

E0 clearly reaches a steady state very rapidly, while U0 needs much more time, at least two

more orders of magnitude to arrive Figure 6.4(b). Thus, the presence of the elasticity in the

flow dynamics cannot be denied. Time steps of ∆t = 10−2 and 10−3 have been employed and

the same steady states are achieved.

After obtaining the axisymmetric basic state, all the Fourier modes are perturbed at once

introducing a small perturbation δ = 10−10 in their radial velocity components, as is explained

in Section §2.4. By taking a glimpse to Figure 6.5, which shows the time evolution of the

kinetic energy of the different modes, there is no doubt that the solution under consideration

is linearly stable. This feature does not depend on the time step and the growth rates of the

different m Fourier modes, σm, are listed in Table 6.1. As occurs in the Newtonian scenario,

the second Fourier mode is the least stable one. These growth rates, which are intimately

related with the eigenvalues, seem to not depend substantially on ∆t. In fact, assuming that

the measure with ∆t = 10−3 is the most accurate, the relative error between them can be

easily computed, thus yielding a maximum error of about 4%. The fact that σm are so close,

translates in a contiuous eigenspectrum, which is typical from hyperbolic equations, as the

Oldroyd-B equation is (Sureshkumar & Beris, 1995; Chokshi & Kumaran, 2009).
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Figure 6.5: Time series of the kinetic energy of all the Fourier modes for an axisymmetric base

state at (St,Re,We, β) = (1, 0.01, 10, 0.9) considering different time steps ∆t. The growth

rates of the different modes are displayed in Table 6.1.

∆t 10−2 10−3 Error (%)

σ1 -0.2142 -0.2173 1.43

σ2 -0.2002 -0.1963 1.99

σ3 -0.2097 -0.2161 2.96

σ4 -0.2033 -0.2006 1.35

σ5 -0.2153 -0.2243 4.01

σ6 -0.2074 -0.2058 0.78

σ7 -0.2100 -0.2106 2.85

σ8 -0.2283 -0.2284 0.04

σ9 -0.2178 -0.2212 1.54

Table 6.1: Growth rates of the different Fourier modes exhibited at Figure 6.5 and the relative

error between them.

As a consequence, by means of increasing the Weissenberg number, the growth rates should

increment too. Keeping in mind the Newtonian flow, in case that the basic flow becomes

unstable at a finite We, the least stable σm ought to become positive, thus indicating the first

mode that bifurcates from the axisymmetric state. Figure 6.6(a) shows the growth rates of

the different Fourier modes as a function of We considering (St,Re, β) = (1, 0.01, 0.9) and

computed with ∆t = 10−2 . All the Fourier modes tend te become unstable when We is

incremented and the leading mode is still the second one. Unfortunately, the computations

explode beyond We = 325, thus rendering the presumably interesting regions inaccesible with
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Figure 6.6: Growth rates of the Fourier modes as a function of We at (St,Re, β) = (1, 0.01, 0.9)

considering different time steps ∆t.

the time step considered. In this context, Figure 6.6(b) is completely equivalent to (a) but a

smaller time step is used to explore the regions that were unreachable. Apparently, the critical

value cannot be estimated in a simple way and it seems to be necessary to go to even higher

We. Note that the computational cost of working with such small time steps and the large

dynamics developed because of We, forces us to think in another direction because there is

the possibility that the system might be always linearly stable, as occurs in the Newtonian

plane Couette and pipe Poiseuille flow (Schmid & Henningson, 2001; Drazin, 2002).

In this case, the transition ought to be subcritical and by means of employing higher

perturbations, the basic flow should become unstable at some point due to the non-linear

interactions of the different modes. Thus, perturbations ranging from δ = 10−9 to δ = 10−3

are introduced to a basic flow with (St,Re,We, β) = (1, 0.01, 10, 0.9) and ∆t = 10−3. The

result is that for δ = 10−3 the simulations begin to explode after some time steps, whilst for

δ = 10−4 they are stable, very similarly to Figure 6.5. This process is refined introducing

perturbations comprised between the two values in another series of computations and the

main findings are displayed in Figure 6.7. Perturbing with δ = 7.5 ·10−4, Figure 6.7(a), results

in almost the usual linear decay to the basic state. Increasing the amplitude of the perturbation

to δ = 7.9 · 10−4, Figure 6.7(b), yields the base state after a strange transient. Apparently, the

first Fourier mode (black) excites the remaining ones, but this is not sufficient to destabilise the

basic flow. Nevertheless, a slightly larger perturbation, δ = 8 · 10−4 in Figure 6.7(c), provides

enough strength to the excitation of the first Fourier mode to make the system unstable.

All the Fourier modes begin to grow in a non-linear fashion and, eventually, a numerical
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(c) δ = 8 · 10−4 (d) δ = 8.7 · 10−4
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Figure 6.7: Time series of the Fourier modes at (St,Re,We, β) = (1, 0.01, 10, 0.9) with ∆t =

10−3 considering different perturbations δ.

breakdown occurs when they become of the same order as the axisymmetric mode, which is

roughly speaking the same of Figure 6.4(a), and after the determinant becomes positive. This

feature indicates the possibility that there is no such thing as a saturation process. For even

higher amplitudes, δ = 8.7 · 10−4 in Figure 6.7(d), not only the first Fourier mode is initially

unstable, but others, such as the second one (red), which has the highest energy of all, begin to

grow from the start and the simulations explode after some forcing periods due to the inability

to saturate.

As is mentioned for parallel shear flows in Morozov & van Saarlos (2007), once the am-

plitudes of the perturbations are large enough, the perturbations will grow even larger due to

the non-linear interactions between them. This reasoning is applicable here too, and it would

be very helpful if we could obtain an estimate for the critical amplitude that drives the finite-
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amplitude instability. Note that the initial value of the kinetic energy Em,i from which every

Fourier mode begins to grow or decrease is achieved in a relatively short scale, less than a forc-

ing period, and Em,i might be closely related with the mechanism that triggers the instability.

At first sight, there seems to be two ways for the Fourier modes to become unstable: interplay-

ing with other modes and/or through the self-interaction. When comparing both mechanisms,

the cooperative effects between modes give the impression to appear at smaller energies, as can

be observed in Figure 6.7(c) and (d). For the sake of comparison and in order to corroborate

the previous statement, it is necessary to perturb only one Fourier mode that has no interac-

tions with others, such as is the case of m = 5. In this scenario, the estimation of a critical

value E5,iC is possible and the result is that E5,iC ∈ [2.01 · 10−12, 3.17 · 10−12]. In contrast,

when there is cooperativity between modes, the maximum energies in Figures 6.7(b) and (c),

which correspond to m = 2, might trigger the instability, and have a value of E2,i = 9.68·10−13

and 1.21 · 10−12, respectively. Consequently, the interval described by these values contains

the minimum energy that is necessary to destabilise the basic state. This energy cannot be

understood as critical value in the usual sense, because they need the assistance of the other

modes. The sequence sketched in Figures 6.7(a)-(d), plus this qualitative analysis in terms of

the initial kinetic energies, reinforces the idea that the strong cooperation between modes is

crucial in the process.

The emerging picture suggests the absence of a precise Fourier number guiding the insta-

bility process and the idea that there might be a rapid transition to a fully developed turbulent

state when the flow becomes unstable. Furthermore, the fact that the perturbations seem to

be unable to saturate, maybe are a sign that there is no stable finite-amplitude branch of solu-

tions. This is exactly what Morozov & van Saarlos (2007) claim in their study of viscoelastic

parallel shear flows. In addition, they stated that the threshold in this kind of flows under-

going a subcritical instability, has to decrease as 1/We2 for sufficiently large We. Therefore,

based on this surmise, the next step is the application of different perturbations to flows with

different Weissenberg numbers and note down the minimum value of the energy that is needed

to trigger the transition. In other words, the same exact procedure described in the previous

paragraph is repeated for We ∈ [5, 500].

Figure 6.8 displays the approximate minimum energy that destabilises the basic flow as a

function of the Weissenberg number. For instance, for We = 10, it corresponds to a second

mode with initial energy E2,i = 1.21 · 10−12. The second mode always possesses the largest

Em,i in the whole range, and E2,i decreases with We because as the Weissenberg number

increases. it becomes easier to surpass the critical amplitude that separates decaying and

growing amplitudes. After fitting the data with a power law, it is infered that E2,i ∼ Weγ
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Figure 6.8: Initial kinetic energy E2,i for different Weissenberg numbers We at (St,Re, β) =

(1, 0.01, 0.9) with ∆t = 10−3.

with γ = −1.99 ≈ 2. The idea is that for a range of E2,i below the dashed line, the system

returns to the axisymmetric state. For slightly higher initial perturbations of the second

mode, the second mode is stable at first, but after some time it becomes unstable, as occurs

in Figure 6.7(c). At even higher values, the analogous behaviour depicted in Figure 6.7(d) is

observed: the perturbations are so high that the Fourier modes grow non-linearly from the

beginning because of their self-interactions and, after some time, the cooperative effects take

control.

In contrast with the Newtonian scenario, it has not been possible to obtain any stable

state, besides, of course, the axisymmetric flow. Apparently, the system is always linearly

stable, but there seems to be a subcritical transition for a large enough perturbation. These

perturbations never saturate, so there seems to be no such thing as a stable branch or, perhaps,

there is still the possibility to jump into the stable branch for We very close to the saddle-

node point, as is suggested in Morozov & van Saarlos (2005) for plane Couette viscoelastic

flows. Morozov & van Saarlos (2007) stated that the threshold in viscoelastic parallel shear

flows undergoing a subcritical instability, should decrease as 1/We2 for sufficiently large We.

Actually, the same power law is recovered, although the cylinder is finite and has the two

lids. It has been constantly manifested (Pakdel & McKinley, 1996; Morozov & van Saarlos,

2007) that the curvature of the streamlines in combination with the polymeric forces induce

the elastic instability. Due to the cylinder lids, in the case under study the streamlines are

always curved, as can be observed in the streamfunction of Figure 6.2(b). This curvature is

probably responsible for the numerical blow-ups explained in the former section, but once the

basic state is reached, the effect of this curvature as a destabilising factor should be irrelevant.
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Nevertheless, when the axisymmetric flow is perturbed in the azimuthal direction beyond a

critical amplitude, the distortion of the streamlines makes the polymers stretch, thus creating

the mechanism that induces the elastic instability. As a result, when the elastic instability

achieves the breaking into θ, all the Fourier mode are excited almost at the same time without

any apparent saturation.

6.4 Diffusive models

There are some strong evidences suggesting that the system is always linearly stable and can

suffer a subcritical instability depending on the perturbation. The strong non-linearities of the

perturbations make the system unstable. In canonical Newtonian shear flows, the generic tran-

sition scenario is characterised by a sudden transient non-modal growth of the perturbation

superseded by either a relaminarisation or eventual transition to turbulent regimes. Accord-

ing to our computations, modal instabilities associated with a precise wavenumber have not

been identified. However, it is unclear whether the flow reaches a saturated non-linear regime

before an eventual transition. In an attempt to stabilise the numerical simulations of vis-

coelastic flows, it is common practice to include a diffusive term κ in the constitutive equation

(Sureshkumar & Beris, 1995)

As has been described in Section §2.2, we have developed four numerical schemes that intro-

duce κ in the computations: Diffusive Oldroyd Dirichlet (DOD), Diffusive Oldroyd Neumann

(DON), Purely Diffusive Oldroyd Dirichlet (PDOD), and Purely Diffusive Oldroyd Neumann

(PDON). Recall that the purely diffusive models consider the diffusivity of the conformation

tensor from the beginning, while the diffusive ones perform an explicit update of C and later

introduce the diffusivity to gain stability. In Section §6.2, the spectral accuracy of the basic

states in terms of the different parameters has been analysed. Figure 6.9 goes in the same

direction but contrasting the results of the diffusive models with a small diffusivity (κ = 10−4)

and the Classical Oldroyd (CO).

Column (a) in Figure 6.9, exhibits qr and qz as a function of Re by keeping fixed the

remaining parameters, (St,We, β, κ) = (1, 0.01, 0.9, 10−4). with ∆t = 10−2. In comparison

with CO, the numerical schemes that employ Dirichlet boundary conditions (DOD and PDOD)

possess less acuracy and explode at smaller Re. In contrast, DON and PDON allow us to

explore the same regions as CO with a less dramatic decrease in qr and qz for Re = 0.2.

Nevertheless, they are less acurate in r, but more precise in z

In terms of changing We and fixing the other parameters, to the common values of
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Figure 6.9: Spectral precision in the radial qr and axial qz direction for the differ-

ent numerical schemes as a function of the non-dimensional parameters: (a) Re with

(St,We, β, κ) = (1, 0.01, 0.9, 10−4), (b) We with (St,Re, β, κ) = (1, 0.01, 0.91, 0−4), and (c)

β with (St,Re,We, κ) = (1, 0.01, 0.01, 10−4). The time step is set to ∆t = 10−2 in all cases.

(St,Re, β, κ) = (1, 0.01, 0.9, 10−4) and ∆t = 10−2, column (b) of Figure 6.9, it is observed

the same severe decrease in accuracy that has been already mentioned for Figure 6.3(b). Con-

cerning the regions of high Weissenberg number, which are the intereseting ones, there is no

much difference between CO, DOD and PDOD. However, the numerical schemes that use

Neumann boundary conditions (DON and PDON), are much more stable and precise than the

other three.

The analysis of the accuracy as a function of the viscous ratio is performed for the sake

of completeness, (St,Re,We, κ) = (1, 0.01, 0.01, 10−4). Apparently, PDON is stable where

the others breakdown (β < 0.7). In addition, DOD and PDOD are always less precise than

CO, while the comparison of precisions between the remaining depends on the finite direction:

DON and PDON are more accurate than CO in the axial direction, but the opposite in the

radial coordinate.
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Figure 6.10: Time series of the elastic energy U0 of the axisymmetric Fourier mode at

(St,Re,We, β, κ) = (1, 0.01, 10, 0.9, 10−4) with ∆t = 10−3 for the different numerical schemes.

The main conclusions that can be extracted from this analysis is that the two numerical

schemes that use the explicit update of C as Dirichlet boundary conditions (DOD and PDOD)

are always less precise than the usual Oldroyd-B equation (CO). They are stable for the

same ranges of parameters, with the exception of Re = 0.2. There is the possibility that the

discontinuous boundary conditions are the source of all these problems. On the other side of

the coin, there are the Neumann-based schemes (DON and PDOD). Generally, they are more

accurate in z than in r and can arrive to We and β unatteinable for the CO.

Recall that introducing κ is just an artifact to try to stabilise the simulations. Therefore,

it is important to keep the flow dynamics as unaltered as possible (Thomas et al., 2006, 2009).

For this reason, the equivalent flow of the previous section is again under study with a small

κ, (St,Re,We, β, κ) = (1, 0.01, 10, 0.9, 10−4). Time steps of ∆t = 10−2 and 10−3 have been
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∆t 10−2 10−3 Error (%)

σ1 -0.2035 -0.2033 0.10

σ2 -0.2047 -0.2040 0.35

σ3 -0.1968 -0.2017 2.43

σ4 -0.2009 -0.2037 1.37

σ5 -0.1999 -0.2042 2.11

σ6 -0.2033 -0.2061 1.36

σ7 -0.2045 -0.2071 1.26

σ8 -0.2057 -0.2086 1.39

σ9 -0.2080 -0.2088 0.38

Table 6.2: Growth rates of the different Fourier modes after perturbing an axisymmetric base

state at (St,Re,We, β, κ) = (1, 0.01, 10, 0.9, 10−4) with δ = 10−10 employing different time

steps with the DOD scheme, and the relative error between them

employed without any remarkable changes. The diffusivity of the conformation tensor does not

alter substantially the kinematic energy in any case: E0 is the same as the one in Figure 6.4(a)

with the same average value, 〈E0〉 = 1.12 · 10−5. However, the dynamics that spread from the

polymers, characterised by Figure 6.4(b), vary in a relevant manner (Figure 6.10). The process

towards saturation is almost the same in DOD and PDON, Figure 6.10(a) and (c), and is quite

similar to CO: after a first excitation, the elastic energy relaxes to the steady state. Observe

that the steady state of Figure 6.4(b) has an average value of 〈U0〉 = 5.85 · 10−6, while in the

Dirichlet-based schemes this value is at least a factor two higher: 〈U0〉DOD = 1.50 · 10−5 and

〈U0〉PDOD = 1.38 · 10−5. Nevertheless, the process in DON and PDON is much more different:

the first excitation does not decay and the elastic energy U0 results in a rather high value in

comparison with the others, Figure 6.10(b) and (d). In this case, 〈U0〉DON = 2.97 · 10−5 and

〈U0〉PDON = 2.68 · 10−5. Notice that the differences between the diffusive schemes with their

respective purely diffusive cases are minimal. As a matter of fact, the introduction of a small

κ preserves somehow the dynamics towards equilibrium in DOD and PDOD respect CO, but

the numerics suffer some variations; in the case of DON and PDON, the dynamics and the

numerical values are very different.

In fact, incorporating a small diffusivity in the constitituve equation modifies the flow

strongly and the choice of the boundary conditions is crucial. For this reason, the numerical

schemes that employ Neumann boundary conditions (DON and PDON) are rejected, whereas

the ones that use the explicit update of C (DOD and PDOD) seem to be more convenient.

Since both of them behave in a very similar way, DOD is preferred because by taking a
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Figure 6.11: Growth rates of the Fourier modes as a function of We at (St,Re, β, κ) =

(1, 0.01, 0.9, 10−4) considering a time step of ∆t = 10−2.

look at the literature, it is observed that similar algorithms are utilised by different authors

(Sureshkumar & Beris (1995); Atalik & Keunings (2002)). As it is done in the previous section,

let us perturb an axisymmetric flow at (St,Re,We, β, κ) = (1, 0.01, 10, 0.9, 10−4) with a small

perturbation δ = 10−10. The result of applying this perturbation is perfectly compatible with

the decay of all the Fourier modes of Figure 6.5. The growth rates of the different modes are

listed in Table 6.2 and changing the time step does not affect appreciably σm; the maximum

discrepancy is provided by the maximum relative error of the measurements and is about the

2% . Apparently, the m = 3 Fourier mode is the least stable one and the values of σm are very

close, in contrast with the CO scenario (Table 6.1).

Once again, by means of increasing the Weissenberg number, the growth rates tend to

become more and more unstable (Figure 6.11). However, some remarkably high We have been

achieved considering (St,Re, β, κ) = (1, 0.01, 0.9, 10−4) with ∆t = 10−2 and the basic flow

does not become unstable. As a consequence, the axisymmetric state might be always linearly

stable, the same scenario sketched in the former section.

As a consequence, the amplitude of the perturbation has to be increased in order destabilise

the basic flow, the same procedure that has been done in Section §6.3. The main findings are

presented in Figure 6.12. Introducing a small perturbation of δ = 7 · 10−4, Figure 6.12(a),

yields a clear linear decay of all the Fourier modes. By means of incrementing the amplitude to

δ = 7.3 ·10−3, Figure 6.12(b), the linear trend is distorted because of a small bump introduced

by the second mode (red), and later on the usual decay is recovered. Presumably, the m = 2

mode excites the even Fourier modes, but this is not enough to make the axisymmetric flow

unstable. However, imposing a little bit larger perturbation, δ = 7.4 · 10−3 in Figure 6.12(c),
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(a) δ = 7 · 10−4 (b) δ = 7.3 · 10−4
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(c) δ = 7.4 · 10−4 (d) δ = 8 · 10−4
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Figure 6.12: Time series of the Fourier modes employing the DOD scheme for

(St,Re,We, β, κ) = (1, 0.01, 10, 0.9, 10−4) with ∆t = 10−3 considering different perturbations

δ.

causes dramatic changes in the dynamics: the excitation of the second Fourier mode, which is

also followed by all the even ones, is strong enough to excite all the remaining modes, headed

by the m = 1 mode (black). The modes begin to interact non-linearly and these perturbations

never cease their growth, until acquiring energies of similar order as the axisymmetric mode.

For higher amplitudes, δ = 8 · 10−4 in Figure 6.12(d), the same process occurs in a much

smaller time scale. Following the prescriptions of the previous section, the critical amplitude

that is able to destabilise the basic flow has to be comprised between the maximum initial

energies of Figures 6.12(b) and (c), E2,i = 4.89 · 10−12 and E2,i = 6.49 · 10−12, respectively.

Therefore, the diffusive term κ produces a stabilising effect on the perturbed flow because

higher perturbations are necessary to exceed the threshold and destabilise the basic flow, in

comparison with the usual Oldroyd-B equation. Using the PDOD numerical scheme, the same
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results are obtained with some minor changes in the numbers. The same conclusions expressed

in the last paragraph of Section §6.3 seem applicable here too.

6.5 Discussion

A dilute polymer solution described by the Oldroyd-B equation is the most closely related

viscoelastic material to a Newtonian fluid. Nevertheless, these polymers change the flow

properties and the instabilities mechanisms enormously. This precept is also valid in the

case under, a dilute polymeric solution enclosed in a cylinder whose lateral sidewall oscillates

harmonically. In particular, the Newtonian flow with St = 1 is unstable to a synchronous

B2 mode at a finite critical Reynolds number, meanwhile the equivalent viscoelastic scenario

is characterised by undergoing a subcritical finite-amplitude instability for small Reynolds

numbers.

Once the amplitudes of the perturbations are strong enough, the non-linear interactions

are enhanced and are capable of destabilising the axisymmetric basic state. Consequently,

there is not a precise Fourier mode leading the process, in contrast with the Newtonian case.

As a matter of fact, we have provided a semi-quantitative measure of the critical amplitude

that enables the instability, and this magnitude shows a power-law dependence with the Weis-

senberg number of the form 1/We2. These perturbations never saturate, independently of

We. This might indicate that there is no such thing as a stable branch of solutions for such

high We. Another possibility is that this hypothetical branch only exists for Weissenberg

numbers very close to the saddle-node value. In an attempt to stabilise the perturbed flow, an

artificial diffusivity is inserted in the constitutive equation and different boundary conditions

are used. Whatever the case, the Neumann-based schemes change completely the dynamics,

meanwhile the ones that utilise Dirichlet boundary conditions are almost equivalent to the

former case with just an increase in the critical amplitude because the diffusivity acts as a

stabiliser. Although our computations are consistent with Newtonian subcritical phenomena

and the arguments developed in Morozov & van Saarlos (2007), the results that have been

obtained should be confirmed in the future with alternative methodologies.

The transition scenario clearly resembles the typical one of the plane Couette and pipe

Poiseuille, because the basic state is always linearly stable. These solutions include stationary

and travelling-wave solutions that are unstable and disconnected from the basic state. For this

reason, it seems a good idea to use similar techniques, such as Newton-based solvers, instead

of the usual time integration to obtain travelling-wave states, as Roland et al. (2010) do for

pipe flows. In fact, Kaptan et al. (2010) used these kind of methods to simulate successfully
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a non-Newtonian fluid in a cylindrical cavity whose top lid is under rotation.

What was supposed to be a natural extension of the Newtonian scenario, has become

a tremendous challenge. Since one of the initial interests was the comparison with some

experimental work with a large height-to-radius ratio cylinder, the cylindrical cavity should

be abandoned and replaced in the first place by a periodic cylinder. Atalik & Keunings (2004)

have studied the same system but with a planar geometry and have obtained some interesting

results with the Giesekus and Johnson-Segelman equations. Actually, surpassing the Oldroyd-

B model is an upgrade that has to be kept in mind for future studies.



Chapter 7

Conclusions and future perspectives

Fully unravelling the emergence of spatio-temporal complexity and the origin of turbulence

in fluid dynamics, represent the ultimate goal of scholars that devote their efforts to this

discipline. For this reason, researchers in the past century considered what were supposed to

be simple problems to tackle this question. Among these, there is the study of wakes past a

cylinder and the subsequent flow regimes. The transition from the von Kármán vortex street

to turbulent wakes made of a superposition of large-scale coherent structures and incoherent

motion on much smaller spatial scales, is still under study. In order to discern the cascade

towards chaos, an oscillatory cylindrical cavity is proposed here as a subject of study because

the same symmetry group, O(2) × ZST2 , is present and seems more appropriate than other

periodically forced cavity flows.

In order to solve the incompressible Navier-Stokes equations of a Newtonian fluid enclosed

in a cylindrical cavity that is forced periodically in the axial direction, an efficient and accu-

rate pseudospectral code has been adapted. This code, which is based on spectral-projection

methods formulated in terms of primitive variables, has been the indispensable intrument to

attain the main results of Chapters 3 and 4.

The basic state is axisymmetric, time-periodic and synchronous with the forcing. The

linear stability analysis has revealed that this two-dimensional flow is able to become three-

dimensional via the three different types of bifurcations reported for systems with the same

symmetry group. Curiously, it has been observed a striking similarity between the marginal

curve of the driven rectangular cavity and the one obtained in our case. The bifurcating modes

might be synchronous or quasiperiodic, depending on the flow parameters. Synchronous modes

preserve (B1 and B2) or break (A2) the spatio-temporal symmetry, meanwhile quasiperiodic

modes always break it because of the presence of the additional period, of course. The temporal
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evolution of axisymmetric states that are linearly unstable to these bifurcating modes, result

in the non-linear saturated states of synchronous or quasiperiodic nature. As occurred in

other periodically forced cavity flows, the modulated rotating waves MRW1 are the only

quasiperiodic stable solutions. Nonetheless, these synchronous and quasiperiodic states have

been obtained for the first time in curved geometries. Truth is that resorting to simulations on

a proper subspace was necessary in the annular geometry because of the strong competition

of the modes.

Furthermore, the marginal stability curve has exposed the existence of three codimension-

two points where two modes bifurcate simultaneously. The first bicritical point C1 where

the two synchronous modes that preserve the spatio-temporal coincide, has been analysed

carefully. Close to C1, a B1-B2 mixed mode is obtained from the bifurcation of a pure B2

state and the resulting solution is synchronous. The obtaining of this kind of solutions is

somehow predictable, but the appearance of the rotating wave B1RW and bursting solutions,

which have an additional period, is more than remarkable. Although systems with the pure

1 : 2 modal resonance exhibit analogous solutions, states with these properties have never

been found in periodically forced systems. Away from C1, there are other families of solutions

that apparently are unrelated with this point and help to understand the transition to chaos.

The pulsating solution B1QP and the asymmetric bursts look like intermediate states before

reaching chaos. The latter might stem from the asymmetric B1-B2 mixed modes and their

occurrence might come from the distant MRW1 branch of solutions. In contrast with other

periodically forced cavities, a detailed examination of the transition to some chaotic states by

means of a series of secondary bifurcations, has been possible. However, in order to complement

the picture, it would be desirable to explore the remaining codimension-two points.

In addition, a first analysis of C1 from the theoretical dynamical system perspective has

been addressed. Systems with a pure 1 : 2 modal resonance have been modelled employing

continuous dynamical systems. Due to the forcing, a Poincaré map associated with strobing

the flow at the frequency has been obtained. In order to be capable of performing an anal-

ysis, an interpolating ODE that approximates the map has been achieved, thus resulting in

the normal form of the 1 : 2 spatial resonance with O(2) symmetry. As this issue has been

examined before, the previous studies are a great asset in our problem. The combination of

analytical calculations and numerical methods, are able to capture the main characteristics of

the solutions obtained close to C1 and provide a relatively good agreement with the bifurcation

curves. It is clear that there are several open questions regarding the complete description

of the normal form, but we would like to emphasise the preliminary character of these explo-

rations. Of course, the normal form of the other codimension-two point has been found, but
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an analysis similar to the one that has been discussed still remains.

As can be observed, Newtonian fluids enclosed in a periodically driven cylindrical cavity

offer a very rich dynamics and there are still many unresolved issues. Despite this fact, a new

line of research has been commenced at the end of the thesis: the substitution of the Newtonian

flow by another of viscoelastic character. To this end, a variety of numerical schemes mainly

based on the Newtonian code have been programmed to simulate a dilute polymer solution

(Oldroyd-B fluid) in our system. As a matter of fact, it seems that the polymers alter the

properties and the instability mechanisms of the flow critically. The highly hyperbolic nature of

the equations tends to cause numerical instabilities, as well as a clustering of the growth rates

of the different modes. Introducing perturbations of different amplitudes in the viscoelastic

basic flow, provides the idea that the base state is only unstable if the initial perturbations are

strong enough. The non-linear interactions are amplified and all the modes lead the transition

in this case. The minimum perturbation that is able to destabilise the basic state shows a

power-law dependence of the form 1/We2. At first sight, this transition recalls the scenarios

of plane Couette and pipe Poiseuille flows, despite having a dependence with 1/Re. With this

argument, we think that using the same techniques might produce fruitful results to tackle

this problem. However, if we are interested in comparing with the experimental work that is

being conducted with very large aspect ratio cylinders, the most reasonable option will be the

removal of the lids. Last but no least, employing more realistic models for viscoelastic fluids

(FENE-P, Giesekus or Johnson-Segelman) has to be considered for future studies.
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Appendix A

Cylindrical coordinates

This appendix is devoted to write down in cylindrical coordinates all the terms that appear

in the incompresible Navier-Stokes equations:

∇ · u = 0, (A.1a)

∂tu + u · ∇u = −∇p+∇2u, (A.1b)

and constitutive equations for an Oldroyd-B viscoelastic fluid:

∇ · u = 0, (A.2a)

∂tu + u · ∇u = −∇p+
1

Re

(
(1− β)∇ · T + β∇2u

)
, (A.2b)

T =
C− I
We

, (A.2c)

∂tC + u · ∇C− C · ∇u− (∇u)† · C = −C− I
We

+
[
κ∇2C

]
. (A.2d)

Consider a scalar, the kinematic pressure p. Then, a generic vector in cylindrical coordi-

nates, the velocity u, is expressed as

u = ur er + uθ eθ + uz ez = u er + v eθ + w ez, (A.3)

and a second-order tensor, the conformation tensor C, is

C = Crr er ⊗ er + Crθ er ⊗ eθ + Crz er ⊗ ez+

+ Cθr eθ ⊗ er + Cθθ eθ ⊗ eθ + Cθz eθ ⊗ ez+

+ Czr ez ⊗ er + Czθ ez ⊗ eθ + Czz ez ⊗ ez.

(A.4)

Since C is symmetric, this tensor can be written as follows:

C = Crr er ⊗ er + Crθ {ereθ}+ Crz {erez}+ Cθθ eθ ⊗ eθ + Cθz {eθez}+ Czz ez ⊗ ez, (A.5)
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where {eiej} = ei ⊗ ej + ej ⊗ ei.

The divergence of a vector is a scalar

∇ · u =

(
∂r +

1

r

)
ur +

1

r
∂θuθ + ∂zuz, (A.6)

while the divergence of a symmetric second-order tensor results in a vector

∇ · C =

(
∂rCrr +

Crr
r

+
1

r
∂θCrθ −

Cθθ
r

+ ∂zCrz

)
er+

+

(
∂rCrθ +

2Crθ
r

+
1

r
∂θCθθ + ∂zCθz

)
eθ+

+

(
∂rCrz +

Crz
r

+
1

r
∂θCθz + ∂zCzz

)
ez.

(A.7)

The gradient of a scalar is a vector

∇p = ∂rp er +
1

r
∂θp eθ + ∂zp ez. (A.8)

The gradient of a vector results in a second-order tensor

∇u = ∂rur er ⊗ er + ∂ruθ er ⊗ eθ + ∂ruz er ⊗ ez+

+
1

r
(∂θur − uθ) eθ ⊗ er +

1

r
(∂θuθ + ur) eθ ⊗ eθ +

1

r
∂θuz eθ ⊗ ez+

+ ∂zur ez ⊗ er + ∂zuθ ez ⊗ eθ + ∂zuz ez ⊗ ez,

(A.9)

meanwhile the gradient of a symmetric second-order tensor is one of third-order:

∇C = ∂rCrr er ⊗ er ⊗ er + ∂rCrθ er ⊗ er ⊗ eθ + ∂rCrz er ⊗ er ⊗ ez+

+ ∂rCrθ er ⊗ eθ ⊗ er + ∂rCθθ er ⊗ eθ ⊗ eθ + ∂rCθz er ⊗ eθ ⊗ ez+

+ ∂rCrz er ⊗ ez ⊗ er + ∂rCθz er ⊗ ez ⊗ eθ + ∂rCzz er ⊗ ez ⊗ ez+

+
1

r
(∂θCrr − 2Crθ) eθ ⊗ er ⊗ er +

1

r
(∂θCrθ + Crr − Cθθ) eθ ⊗ er ⊗ eθ+

+
1

r
(∂θCrz − Cθz) eθ ⊗ er ⊗ ez +

1

r
(∂θCrθ + Crr − Cθθ) eθ ⊗ eθ ⊗ er+

+
1

r
(∂θCθθ + 2Crθ) eθ ⊗ eθ ⊗ eθ +

1

r
(∂θCθz + Crz) eθ ⊗ eθ ⊗ ez+

+
1

r
(∂θCrz − Cθz) eθ ⊗ ez ⊗ er +

1

r
(∂θCθz + Crz) eθ ⊗ ez ⊗ eθ+

+
1

r
∂θCzz eθ ⊗ ez ⊗ ez+

+ ∂zCrr ez ⊗ er ⊗ er + ∂zCrθ ez ⊗ er ⊗ eθ + ∂zCrz ez ⊗ er ⊗ ez+

+ ∂zCrθ ez ⊗ eθ ⊗ er + ∂zCθθ ez ⊗ eθ ⊗ eθ + ∂zCθz ez ⊗ eθ ⊗ ez+

+ ∂zCrz ez ⊗ ez ⊗ er + ∂zCθz ez ⊗ ez ⊗ eθ + ∂zCzz ez ⊗ ez ⊗ ez.

(A.10)
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Thus, the non-linear term of the Navier-Stokes equations is:

N(u) = u · ∇u =
(
ur∂rur +

uθ
r

(∂θur − uθ) + uz∂zur

)
er+

+
(
ur∂ruθ +

uθ
r

(∂θuθ + ur) + uz∂zuθ

)
eθ+

+
(
ur∂ruz +

uθ
r
∂θuz + uz∂zuz

)
ez.

(A.11)

The non-linear term for the constituve equations of a viscoelastic fluid is computed term by

term

u · ∇C =
(
ur∂rCrr +

uθ
r

(∂θCrr − 2Crθ) + uz∂zCrr

)
er ⊗ er+

+
(
ur∂rCrθ +

uθ
r

(∂θCrθ + Crr − Cθθ) + uz∂zCrθ

)
{ereθ}+

+
(
ur∂rCrz +

uθ
r

(∂θCrz − Cθz) + uz∂zCrz

)
{erez}+

+
(
ur∂rCθθ +

uθ
r

(∂θCθθ + 2Crθ) + uz∂zCθθ

)
eθ ⊗ eθ+

+
(
ur∂rCθz +

uθ
r

(∂θCθz + Crz) + uz∂zCθz

)
{eθez}+

+
(
ur∂rCzz +

uθ
r
∂θCzz + uz∂zCzz

)
ez ⊗ ez,

(A.12)

C · (∇u) =

(
Crr∂rur +

Crθ
r

(∂θur − uθ) + Crz∂zur

)
er ⊗ er+

+

(
Crr∂ruθ +

Crθ
r

(∂θuθ + ur) + Crz∂zuθ

)
er ⊗ eθ+

+

(
Crr∂ruz +

Crθ
r
∂θuz + Crz∂zuz

)
er ⊗ ez+

+

(
Crθ∂rur +

Cθθ
r

(∂θur − uθ) + Cθz∂zur

)
eθ ⊗ er+

+

(
Crθ∂ruθ +

Cθθ
r

(∂θuθ + ur) + Cθz∂zuθ

)
eθ ⊗ eθ+

+

(
Crθ∂ruz +

Cθθ
r
∂θuz + Cθz∂zuz

)
eθ ⊗ ez+

+

(
Crz∂rur +

Cθz
r

(∂θur − uθ) + Czz∂zur

)
ez ⊗ er+

+

(
Crz∂ruθ +

Cθz
r

(∂θuθ + ur) + Czz∂zuθ

)
ez ⊗ eθ+

+

(
Crz∂ruz +

Cθz
r
∂θuz + Czz∂zuz

)
ez ⊗ ez,

(A.13)
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(∇u)† · C =

(
Crr∂rur +

Crθ
r

(∂θur − uθ) + Crz∂zur

)
er ⊗ er+

+

(
Crθ∂rur +

Cθθ
r

(∂θur − uθ) + Cθz∂zur

)
er ⊗ eθ+

+

(
Crz∂rur +

Cθz
r

(∂θur − uθ) + Czz∂zur

)
er ⊗ ez+

+

(
Crr∂ruθ +

Crθ
r

(∂θuθ + ur) + Crz∂zuθ

)
eθ ⊗ er+

+

(
Crθ∂ruθ +

Cθθ
r

(∂θuθ + ur) + Cθz∂zuθ

)
eθ ⊗ eθ+

+

(
Crz∂ruθ +

Cθz
r

(∂θuθ + ur) + Czz∂zuθ

)
eθ ⊗ ez+

+

(
Crr∂ruz +

Crθ
r
∂θuz + Crz∂zuz

)
ez ⊗ er+

+

(
Crθ∂ruz +

Cθθ
r
∂θuz + Cθz∂zuz

)
ez ⊗ eθ+

+

(
Crz∂ruz +

Cθz
r
∂θuz + Czz∂zuz

)
ez ⊗ ez.

(A.14)

Therefore, the non-linear term that involves the conformation tensor and the velocity is:

N (u,C) = v · ∇C− C · ∇v − (∇v)† · C =

=

(
vr∂rCrr +

vθ
r
∂θCrr + vz∂zCrr − 2Crr∂rvr −

2Crθ
r

∂θvr−

− 2Crz∂zvr

)
er ⊗ er+

+

(
vr∂rCrθ +

vθ
r
∂θCrθ + vz∂zCrθ − Crr

(
∂rvθ −

vθ
r

)
−

− Crθ
(

1

r

(
∂θvθ + vr

)
+∂rvr

)
− Crz∂zvθ −

Cθθ
r
∂θvr − Cθz∂zvr

)
{ereθ}+

+

(
vr∂rCrz +

vθ
r
∂θCrz + vz∂zCrz − Crr∂rvz −

Crθ
r
∂θvz − Crz (∂zvz + ∂rvr)−

− Cθz
r
∂θvr − Czz∂zvr

)
{erez}+

+

(
vr∂rCθθ +

vθ
r
∂θCθθ + vz∂zCθθ − 2Crθ

(
∂rvθ −

vθ
r

)
− 2Cθθ

r
(∂θvθ + vr)−

− 2Cθz∂zvθ

)
eθ ⊗ eθ+

+

(
vr∂rCθz +

vθ
r
∂θCθz + vz∂zCθz − Crθ∂rvz − Crz

(
∂rvθ −

vθ
r

)
− Cθθ

r
∂θvz−

− Cθz
(

1

r
(∂θvθ + vr) + ∂zvz

)
− Czz∂zvθ

)
{eθez}+

+

(
vr∂rCzz +

vθ
r
∂θCzz + vz∂zCzz − 2Crz∂rvz −

2Cθz
r

∂θvz − 2Czz∂zvz

)
ez ⊗ ez.

(A.15)
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The rotational of a vector is the vorticity:

∇× u =

(
1

r
∂θuz − ∂zuθ

)
er + (∂zur − ∂ruz) eθ +

(
∂ruθ +

uθ
r
− 1

r
∂θur

)
ez, (A.16)

and its rotational is:

∇×∇× u =

(
− 1

r2
∂2
θθur − ∂2

zzur +
1

r2
∂θuθ +

1

r
∂2
θruθ + ∂2

zruz

)
er+

+

(
1

r
∂2
rθur −

1

r2
∂θur − ∂2

zzuθ − ∂2
rruθ −

1

r
∂ruθ +

uθ
r2

+
1

r
∂2
zθuz

)
eθ+

+

(
1

r
∂zur + ∂2

rzur +
1

r
∂2
θzuθ −

1

r
∂ruz − ∂2

rruz −
1

r2
∂2
θθuz

)
ez.

(A.17)

The laplacian of a scalar is

∇2p = ∆p = ∂2
rrp+

1

r
∂rp+

1

r2
∂2
θθp+ ∂2

zzp, (A.18)

where:

∆ = ∂2
rr +

1

r
∂r +

1

r2
∂2
θθ + ∂2

zz. (A.19)

Thus, the laplacian of a vector is

∇2u =

(
∆ur −

ur
r2
− 2

r2
∂θuθ

)
er+

+

(
∆uθ −

uθ
r2

+
2

r2
∂θur

)
eθ+

+ ∆uz ez,

(A.20)

whilst the laplacian of a second-order symmetric tensor is

∇2C =

(
∆Crr −

4

r2
∂θCrθ −

2

r2
(Crr − Cθθ)

)
er ⊗ er+

+

(
∆Crθ +

2

r2
∂θ(Crr − Cθθ)−

4

r2
Crθ

)
{ereθ}+

+

(
∆Crz −

2

r2
∂θCθz −

1

r2
Crz

)
{erez}+

+

(
∆Cθθ +

4

r2
∂θCrθ +

2

r2
(Crr − Cθθ)

)
eθ ⊗ eθ+

+

(
∆Cθz +

2

r2
∂θCrz −

1

r2
Cθz

)
{eθez}+

+ ∆Czzez ⊗ ez.

(A.21)

The laplacian operators couple different components of vectors and tensors, in each case.

Appropriate linear combinations decouple the different components. For a vector field, the

combination is:

uα = ur − iuθ = u− iv, (A.22a)
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uβ = ur + iuθ = u+ iv, (A.22b)

and the usual components can be computed afterwards by means of:

ur = u =
1

2
(uα + uβ) , (A.23a)

uθ = v =
i

2
(uα − uβ) . (A.23b)

For a second-order symmetric tensor field, the combination is:

Cαβ = Crr + Cθθ, (A.24a)

Cαα =
1

2
(Crr − Cθθ − 2iCrθ) , (A.24b)

Cββ =
1

2
(Crr − Cθθ + 2iCrθ) , (A.24c)

Cαz = Crz − iCθz, (A.24d)

Cβz = Crz + iCθz, (A.24e)

and the physical components are obtained employing the following expressions:

Crr =
1

2
(Cαβ + Cαα + Cββ) , (A.25a)

Cθθ =
1

2
(Cαβ − Cαα − Cββ) , (A.25b)

Crθ =
i

2
(Cαα − Cββ) , (A.25c)

Crz =
1

2
(Cαz + Cβz) , (A.25d)

Cθz =
i

2
(Cαz − Cβz) . (A.25e)



Appendix B

Normal forms

A normal form is a low-dimensional system with a polynomial expression that is able to describe

the dynamics of a full non-linear system in the neighbourhood of a bifurcation. As a matter of

fact, normal forms can provide us with a clear and simple method to capture the dynamics of

our system. Following the method of Iooss & Adelmeyer (1998), the derivation and application

of normal forms of codimension-one bifurcations in systems with the O(2) × ZST2 symmetry

group have been done in Marques et al. (2004). This work can be extended straightforwardly

to the codimension-one bifurcations of our scenario but additional calculations are necessary

for the normal forms of the three codimension-two points. Our intention is to obtain the

normal form for each bifurcation, associated with the half-period-flip map H, and then the

corresponding normal form for the Poincaré map P = H2 is easily achieved.

B.1 Codimension-two bifurcation point F+
2 and F+

2 with spatial

resonance 1 : 2

In the first codimension-two point, the synchronous modes B1 and B2 bifurcate simultaneously.

There is a pair of eigenfunctions associated with B1, with eigenvalues +1, and amplitudes A

and A. The normal form for a F+
2 bifurcation is (see Marques et al., 2004, sections §4.1 and

§5.1)

H : A 7→ A
(
1 + P (|A|2, µ)

)
, (B.1)

where P is a real polynomial and µ the bifurcation parameter. Up to and including third order

terms in A and the small bifurcation parameter, the normal form is

H : A 7→ A(1 + µ− a|A|2), (B.2)

139
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where µ, a ∈ R. The action of the symmetries and the linearised half-period-flip map on (A,A)

is

RαA = eimαA, K0A = A, LHA = A, (B.3)

where the exponent m indicates that the bifurcating eigenfunctions have broken the SO(2)

symmetry, but are still invariant under rotations of α = 2π/m. All the operators are real, and

their action on the complex conjugate is obtained using OpA = OpA. The action of Kβ can

be obtained from Kβ = RβK0R−β : KβA = e2imβA.

In the codimension-two point where two F+
2 modes bifurcate simultaneously, we have two

complex amplitudes (A,B), corresponding to exponents m and n respectively. In our problem,

(m,n) = (1, 2), corresponding to the B1 and B2 modes. The action of the symmetries and the

linearised half-period-flip map on X = (A,B,A,B) is

Rα(A,B) = (eimαA, einαB), K0(A,B) = (A,B), LH(A,B) = (A,B). (B.4)

The space-time symmetry LH acts as the identity on A and B, so it does not impose any

condition on the normal form, which possesses the structure

H :

A 7→ A+ P1(A,B,A,B, ),

B 7→ B + P2(A,B,A,B),
(B.5)

and the complex conjugate equations for A and B. Introducing P = (P1, P2, P1, P2), the

conditions the normal form P (X) satisfies are given by

RαP (X) = P (RαX), K0P (X) = P (K0X), LHP (X) = P (LHX). (B.6)

The expansion of these conditions read

P1(eimαA, einαB, e−imαA, e−inαB) = eimαP1(A,B,A,B), (B.7)

P2(eimαA, einαB, e−imαA, e−inαB) = einαP2(A,B,A,B), (B.8)

P1(A,B,A,B) = P1(A,B,A,B), (B.9)

P2(A,B,A,B) = P2(A,B,A,B). (B.10)

The last two equations say that P1 and P2 are real polynomials. Applying the first two relations

to a monomial of the form ApBqA
r
B
s

in P1 and P2, the result is

P1 : m(p− r − 1) = n(s− q),

P2 : m(p− r) = n(s− q + 1).
(B.11)

where p, q, r, s ∈ N0. Equation (B.11) for P1 gives p = r + 1 + jn, s = q + jm, j ∈ Z and the

form of the monomial is A(AnB
m

)j |A|2r|B|2q. In our particular case, where there is a spatial
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resonance 1 : 2, A(A2B)j |A|2r|B|2q for j ≥ 0 and AB(A
2
B)j |A|2m|B|2q for j < 0. Treating P2

similarly, the form of the monomial is A2(A2B)j |A|2r|B|2q for j ≥ 0 and B(A
2
B)j |A|2r|B|2q

for j < 0. The resulting polynomials are

P1(A,B,A,B) =AP11(|A|2, |B|2, A2B) +AB P12(|A|2, |B|2, A2
B),

P2(A,B,A,B) =B P21(|A|2, |B|2, A2
B) +A2 P22(|A|2, |B|2, A2B),

(B.12)

where all of them are real in their arguments. Therefore, the normal form is

H :

A 7→ A
(
1 + P11(|A|2, |B|2, A2B)

)
+AB P12(|A|2, |B|2, A2

B),

B 7→ B
(
1 + P21(|A|2, |B|2, A2

B)
)

+A2 P22(|A|2, |B|2, A2B).
(B.13)

Up to and including third order terms and small bifurcation parameters, the normal form

becomes

H :

A 7→ A(1 + µ+ a1|A|2 + b1|B|2) + c1AB,

B 7→ B(1 + ν + a2|A|2 + b2|B|2) + c2A
2,

(B.14)

where the bifurcation parameters and the coefficients µ, ν, ai, bi, ci ∈ R. The Poincaré map

normal form, P = H2 has exactly the same form, but with different values of the parameters

and coefficients.

B.1.1 Hypernormal form

By assuming the non-degeneracy condition c1c2 6= 0, additional simplifications in the normal

form are possible. The resulting map is called the hypernormal form (Algaba et al., 1998;

Murdock, 2004). Let us consider a second order coordinate transformation

P = A+ dAB, Q = B + eA2, with inverse (B.15)

A = P (1 + de|P |2 + d2|Q|2)− dPQ, B = Q(1 + 2de|P |2)− eP 2, (B.16)

that does not change the second order terms and do not introduce new terms in the normal

form, but changes the coefficients of the third order terms. The map (B.14) in the new

coordinates is

P 7→ P
(

1 + µ+ (a1 + dc2 − ec1)|P |2 + b1|Q|2
)

+ c1PQ, (B.17)

Q 7→ Q
(

1 + ν + (a2 + 2ec1 − 2dc2)|P |2 + b2|Q|2
)

+ c2P
2. (B.18)

As d and e appear in the same combination dc2 − ec1, only one of the cubic terms in (B.14)

can be simplified. The simplification will be postponed for the moment.
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Additional simplifications can be introduced into the normal form (B.14) by rescaling the

amplitudes A and B: given a map xi 7→ fi(x1, . . . , xn), i = 1, . . . , n, it can be rescaled yi = kixi,

and

yi 7→ kifi(x1, . . . , xn) = kifi(y1/k1, . . . , yn/kn) = f̃i(y1, . . . , yn). (B.19)

Applying this method to (B.14) results in the same expression with different coefficients:

ãi =
ai
k2

1

, b̃i =
bi
k2

2

, i = 1, 2; c̃1 =
c1

k2
, c̃2 =

c2k2

k2
1

. (B.20)

As all coefficients are real, the case ki real is the only under consideration. Assuming the

non-degeneracy condition c1c2 6= 0, and choosing k1 =
√
|c1c2|, k2 = c1 and σ = sign(c1c2),

we arrive at the hipernormal form (with ˜ suppressed for convenience)

P :

A 7→ A(1 + µ+ a1|A|2 + b1|B|2) +AB,

B 7→ B(1 + ν + a2|A|2 + b2|B|2) + σA2,
(B.21)

where the bifurcation parameters µ, ν and the coefficients a1, b1, b2 are all real. Close to the

codimension-two point µ = ν = 0, the bifurcations corresponding to B1 and B2 are non-

degenerate and supercritical, so we expect a1 < 0 and b2 < 0.

B.2 Codimension-two bifurcation point F+
2 and FC

4 with spatial

resonance 1 : 2

In the second codimension-two point, the synchronous mode B2 and the quasiperiodic mode

MRW1 bifurcate at the same time. All the considerations for the B2 mode commented in

the former section are applied here straightforwardly. Concerning to the quasiperiodic mode,

there are two pairs of eigenfunctions associated with MRW1, whose complex eigenvalues are

e±iθ/2 with θ being an arbitrary angle, and amplitudes B, C, B and C. The normal form for

a FC4 bifurcation is (see Marques et al., 2004, sections §4.2 and §5.3)

H :

B 7→ B
(
eiθ/2 +Q(|B|2, |C|2, ν)

)
,

C 7→ C
(
eiθ/2 +Q(|C|2, |B|2, ν)

)
,

(B.22)

where Q is a complex polynomial and ν the bifurcation parameter. Up to and including third

order terms in B and C and the small bifurcation parameter, the normal form is

H :

B 7→ B(eiθ/2 + ν + b|B|2 + c|C|2),

C 7→ C(eiθ/2 + ν + b|C|2 + c|B|2),
(B.23)
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where ν, b, c ∈ C. The action of the symmetries and the linearised half-period-flip map on

(B,C,B,C) is

Rα(B,C,B,C) = (einαB, e−inαC, e−inαB, einαC), (B.24a)

Kβ(B,C,B,C) = (C,B,C,B), (B.24b)

LH(B,C,B,C) = (eiθ/2B, eiθ/2C, e−iθ/2B, e−iθ/2C), (B.24c)

where n = 1. Therefore, the action of the symmetries and the linearised half-period-flip map

on X = (A,B,C,A,B,C) is

Rα(A,B,C,A,B,C) = (eimαA, einαB, e−inαC, e−imαA, e−inαB, einαC), (B.25a)

Kβ(A,B,C,A,B,C) = (A,C,B,A,C,B), (B.25b)

LH(A,B,C,A,B,C) = (A, eiθ/2B, eiθ/2C,A, e−iθ/2B, e−iθ/2C). (B.25c)

The action of the space-time symmetry LH is no longer the identity and introduces some

conditions over the normal form, which has the structure

H :


A 7→ A+Q1(A,B,C,A,B,C),

B 7→ Beiθ/2 +Q2(A,B,C,A,B,C),

C 7→ Ceiθ/2 +Q3(A,B,C,A,B,C),

(B.26)

and the complex conjugate equations for A, B and C. Here, all theQi are complex polynomials.

Introducing Q = (Q1, Q2, Q3, Q1, Q2, Q3), the conditions the normal form Q(X) satisfies are

given by

RαQ(X) = Q(RαX), KβQ(X) = Q(KβX), LHQ(X) = Q(LHX). (B.27)

Expanding these expressions, they become

eimαQ1(A,B,C,A,B,C) = Q1(eimαA, einαB, e−inαC, e−imαA, e−inαB, einαC), (B.28a)

Q1(A,B,C,A,B,C) = Q1(A,C,B,A,C,B), (B.28b)

Q1(A,B,C,A,B,C) = Q1(A, eiθ/2B, eiθ/2C,A, e−iθ/2B, e−iθ/2C), (B.28c)

einαQ2(A,B,C,A,B,C) = Q2(eimαA, einαB, e−inαC, e−imαA, e−inαB, einαC), (B.28d)

Q3(A,B,C,A,B,C) = Q2(A,C,B,A,C,B), (B.28e)

eiθ/2Q2(A,B,C,A,B,C) = Q2(A, eiθ/2B, eiθ/2C,A, e−iθ/2B, e−iθ/2C), (B.28f)

e−inαQ3(A,B,C,A,B,C) = Q3(eimαA, einαB, e−inαC, e−imαA, e−inαB, einαC), (B.28g)

Q2(A,B,C,A,B,C) = Q3(A,C,B,A,C,B), (B.28h)

eiθ/2Q3(A,B,C,A,B,C) = Q3(A, eiθ/2B, eiθ/2C,A, e−iθ/2B, e−iθ/2C). (B.28i)
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These relations have to be applied again to a polynomial of the form ApBqCrA
s
B
t
C
u
, where

p, q, r, s, t, u ∈ N0.

For Q1 and assuming θ/(2π) 6∈ Q, (B.28a) and (B.28c) result in two constrains for the

exponents:

m(p− s− 1) = n(r − u+ t− q), r − u = t− q, (B.29)

and there are two scenarios to be considered, r − u ≥ 0 or r − u < 0.

Case 1 : r− u = t− q = v ≥ 0. Then, m(p− s− 1) = 2nv and considering w = gcd(m, 2n)

the greatest common divisor of m and 2n: m = jw, 2n = kw and gcd(j, k) = 1, so they do

not have any common factor. For instance, for m = 2 and n = 1, w = 2 and j = k = 1 are

obtained. Therefore, from j(p − s − 1) = kv it follows p − s − 1 = kl with v = jl for some

integer l ≥ 0. The exponents of the monomial satisfy

p = s+ kl + 1, r = u+ jl, t = q + jl, (B.30)

where q, s, u, l ∈ N0 and j, k ∈ N. The monomial is A|A|2s|B|2q|C|2u
(
Ak(BC)j

)l
. Grouping

all these monomials together, the contribution to Q1 is

AQ11

(
|A|2, |B|2, |C|2, Ak(BC)j

)
, (B.31)

where Q11 is an arbitrary complex polynomial.

Case 2 : r−u = t−q = −v, v > 0. Then, m(s−p+1) = 2nv; let w = gcd(m, 2n), m = jw,

2n = kw and gcd(j, k) = 1 as before. From j(s − p + 1) = kv it follows s − p + 1 = kl′ and

v = jl′. But l′ > 0 because v > 0, so l′ = l+ 1, with l ≥ 0 and the exponents of the monomial

fulfill

q = t+ jl + j, s = p+ kl + k − 1, u = r + jl + j, (B.32)

where p, r, t, l ∈ N0 and j, k ∈ N. The monomial is A
k−1

(BC)j |A|2p|B|2t|C|2r
(
A
k
(BC)j

)l
.

Gathering all these monomials, the following contribution to Q1 is procured

A
k−1

(BC)jQ12

(
|A|2, |B|2, |C|2, A k

(BC)j
)
, (B.33)

where Q12 is another arbitrary complex polynomial.

The normal form Q1 is the sum of the contributions (B.31) and (B.33), and the last

remaining condition (B.28b) must be satisfied. This results in

Q11

(
|A|2, |B|2, |C|2, Ak(BC)j

)
= Q11

(
|A|2, |C|2, |B|2, A k

(BC)j
)
, (B.34a)

Q12

(
|A|2, |B|2, |C|2, A k

(BC)j
)

= Q12

(
|A|2, |C|2, |B|2, Ak(BC)j

)
. (B.34b)
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Conditions (B.34) ascertain a relationship between the monomials of the form |B|2q|C|2r and

|B|2r|C|2q, without any contribution of all other factors, yielding combinations of the form

|A|2p
(
α|B|2q|C|2r + α|B|2r|C|2q

)(
Ak(BC)j

)l
for Q11, (B.35a)

|A|2p
(
α|B|2q|C|2r + α|B|2r|C|2q

)(
A
k
(BC)j

)l
for Q12. (B.35b)

The final expression for Q1 is

Q1(A,B,C,A,B,C) = AQ11

(
|A|2, |B|2, |C|2, Ak(BC)j

)
+

+A
k−1

(BC)jQ12

(
|A|2, |B|2, |C|2, A k

(BC)j
)
, (B.36)

where Q11 and Q12 are complex polynomials with monomials gathered as mentioned in (B.35).

Equations (B.28e) and (B.28h) are identical, and provide Q3 once Q2 is known. Therefore,

determining Q2 is the only remaining part. Keeping in mind the same considerations made

with Q1, (B.28d) and (B.28f) result in two constrains for the exponents of the polynomial

m(p− s) = n(r − u+ t− q + 1), r − u = t− q + 1, (B.37)

and once again two cases have to be tackled, r − u > 0 or r − u ≤ 0.

Case 1 : r−u = t− q+1 = v+1, v ≥ 0. Introducing j and k as before, j(p−s) = k(v+1),

so p− s = kl′ and v+ 1 = jl′. But l′ > 0 because v ≥ 0, so l′ = l+ 1, l ≥ 0 and the exponents

of the monomial satisfy

p = s+ kl + k, r = u+ jl + j, t = q + jl + j − 1, (B.38)

where q, s, u, l ∈ N0 and j, k ∈ N. The monomial is AkB
j−1

Cj |A|2s|B|2q|C|2u
(
Ak(BC)j

)l
.

After grouping all these monomials together, the following contribution to Q2 is obtained:

AkB
j−1

Cj Q22

(
|A|2, |B|2, |C|2, Ak(BC)j

)
, (B.39)

where Q22 is an arbitrary complex polynomial.

Case 2 : r−u = t−q+1 = −v, v ≥ 0. With the same procedure, j(s−p) = kv is procured,

so s− p = kl and v = jl, l ≥ 0 and the exponents of the monomial satisfy

q = t+ jl + 1, s = p+ kl, u = r + jl, (B.40)

where p, r, t, l ∈ N0 and j, k ∈ N. The monomial is B|A|2p|B|2t|C|2r
(
A
k
(BC)j

)l
and gathering

together all these monomials the following contribution to Q2 is achieved:

BQ21

(
|A|2, |B|2, |C|2, A k

(BC)j
)
, (B.41)
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where Q21 is an arbitrary complex polynomial.

Summing up the contributions (B.39) and (B.41), and using (B.28e), the final expressions

for Q2 and Q3 are

Q2(A,B,C,A,B,C) = BQ21

(
|A|2, |B|2, |C|2, A k

(BC)j
)
+

+AkB
j−1

Cj Q22

(
|A|2, |B|2, |C|2, Ak(BC)j

)
, (B.42)

Q3(A,B,C,A,B,C) = C Q21

(
|A|2, |C|2, |B|2, Ak(BC)j

)
+

+A
k
BjC

j−1
Q22

(
|A|2, |C|2, |B|2, A k

(BC)j
)
, (B.43)

where Q2 and Q3 are arbitrary complex polynomials.

Curiously, the apparently more general expressions

Qii′
(
|A|2, |B|2, |C|2, Ak(BC)j , A

k
(BC)j

)
(B.44)

in (B.36, B.42, B.43) also satisfy (B.28). Nevertheless, the five arguments in (B.44) are not

independent, and verify

Ak(BC)j · A k
(BC)j = |A|2k|B|2j |C|2j , (B.45)

A · A k
(BC)j = A

k−1
(BC)j · |A|2 (B.46)

A
k−1

(BC)j · Ak(BC)j = A · |A|2k−2|B|2j |C|2j , (B.47)

B · Ak(BC)j = AkB
j−1

Cj · |B|2 (B.48)

AkB
j−1

Cj · A k
(BC)j = B · |A|2k|B|2j−2|C|2j , (B.49)

C · A k
(BC)j = A

k
Bj C

j−1 · |C|2 (B.50)

A
k
Bj C

j−1 · Ak(BC)j = C · |A|2k|B|2j |C|2j−2. (B.51)

By means of employing (B.45), all monomials in Qii′ can be eliminated with simultaneous

powers of Ak(BC)j and A
k
(BC)j . Then, by using (B.46) and (B.47) all monomials containing

A
k
(BC)j can be transferred from Q11 to Q12, the same for the ones that possess Ak(BC)j from

Q12 to Q11. Considering now the case in Q2 and by means of utilising (B.48) and (B.49), all

monomials possessing Ak(BC)j can be moved from Q21 to Q22, and all monomials that contain

A
k
(BC)j from Q22 to Q21. At last, in Q3, employing (B.50) and (B.51), all monomials that

include A
k
(BC)j can be transferred from Q21 to Q22, and all monomials possessing Ak(BC)j

from Q22 to Q21. Thus, B.36, B.42, B.43 are recovered. In these expressions the polynomials

in the normal form are uniquely determined, while in the apparently more general form (B.44)

there seem to be many different ways to express the polynomials, and the unicity is lost.

Turning back to our particular case, where m = 2 and n = 1, so j = k = 1, and the
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polynomials are

Q1 = AQ11

(
|A|2, |B|2, |C|2, ABC

)
+BC Q12

(
|A|2, |B|2, |C|2, ABC

)
, (B.52)

Q2 = BQ21

(
|A|2, |B|2, |C|2, ABC

)
+AC Q22

(
|A|2, |B|2, |C|2, ABC

)
, (B.53)

Q3 = C Q21

(
|A|2, |C|2, |B|2, ABC

)
+ABQ22

(
|A|2, |C|2, |B|2, ABC

)
. (B.54)

Up to and including third order terms and small bifurcation parameters, the normal form can

be written as

H :


A 7→ A

(
1 + µ− a|A|2 − e|B|2 − e|C|2

)
+ dBC,

B 7→ B
(
eiθ/2 + ν − f |A|2 − b|B|2 − c|C|2

)
+ gAC,

C 7→ C
(
eiθ/2 + ν − f |A|2 − b|C|2 − c|B|2

)
+ gAB,

(B.55)

where µ, a, d ∈ R, whilst ν, b, c, e, f, g ∈ C. The Poincaré map normal form, P = H2 has

exactly the same expression with another parameters and coefficients, given by

θ̃ = 2θ, µ̃ = µ(2 + µ), ã = 2a(1 + µ), ẽ = 2e(1 + µ)− dg(eiθ/2 + ν),

d̃ = d(1 + µ+ |eiθ/2 + ν|2), ν̃ = ν(2eiθ/2 + ν), f̃ = 2f(eiθ/2 + ν)− g2(1 + µ),

b̃ = 2b(eiθ/2 + ν), c̃ = (2c− dg)(eiθ/2 + ν), g̃ = g(2 + µ)(eiθ/2 + ν). (B.56)

Additional simplifications can be performed into the normal form (B.55) by rescaling the

amplitudes A, B and C utilising the rescaling method of the previous section. Applying (B.19)

to (B.55), with complex ki, results in the same expression but with different coefficients:

ã =
a

|k1|2
, b̃ =

b

|k2|2
=

b

|k3|2
, c̃ =

c

|k2|2
=

c

|k3|2
, d̃ =

k1d

k2k3

,

ẽ =
e

|k2|2
=

e

|k3|2
, f̃ =

f

|k1|2
, g̃ =

k2g

k1k3
=

k3g

k1k2

. (B.57)

These equations impose some restrictions on the ki scaling factors, in order to preserve the

structure of the normal form. Using ki = rie
iαi and replacing in the former equations, the

following expressions are achieved

ei(α1−α2+α3) = ±1 = s,
k1

k2k3

=
sr1

r2
2

,
k2

k1k3
=

k3

k1k2

=
s

r1
. (B.58)

All transformation factors in (B.57) are real, and using complex ki do not make any improve-

ment at all. At last, the coefficients become

ã =
a

r2
1

, b̃ =
b

r2
2

, c̃ =
c

r2
2

, d̃ =
sr1d

r2
2

, ẽ =
e

r2
2

, f̃ =
f

r2
1

, g̃ =
sg

r1
. (B.59)

From now on, the tilde is omitted for the sake of simplicity. Supposing that close to the

codimension-two point µ = ν = 0, the bifurcation corresponding to B2 is non-degenerate, then
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a 6= 0, and it is always possible to choose the scaling factor r1 so that a is ±1. In the case under

consideration B2 bifurcates supercritically, so a = 1 is taken in (B.55). If d 6= 0, it is always

possible by choosing r2 and s appropriatelly, to take d = 1, and there are no more degrees of

freedom to use for simplifying the normal form (B.55). With these values, the hypernormal

form is procured

P :


A 7→ A

(
1 + µ− |A|2 − e|B|2 − e|C|2

)
+BC,

B 7→ B
(
eiθ/2 + ν − f |A|2 − b|B|2 − c|C|2

)
+ gAC,

C 7→ C
(
eiθ/2 + ν − f |A|2 − b|C|2 − c|B|2

)
+ gAB,

(B.60)

where µ ∈ R and ν, b, c, e, f, g ∈ C.

B.3 Codimension-two point FC
4 and F−2 with spatial resonance

1 : 2

In the last codimension-two point, the synchronous mode A2 and the quasiperiodic mode

MRW1 bifurcate simultaneously. There is a pair of eigenfunctions associated with A2, with

eigenvalues −1, and amplitudes A and A. The normal form for a F−2 bifurcation is (see

Marques et al., 2004, sections §4.1 and §5.2)

H : A 7→ A
(
− 1 +R(|A|2, µ)

)
, (B.61)

where R is a real polynomial and µ the bifurcation parameter. Up to and including third order

terms in A and the small bifurcation parameter, the normal form is

H : A 7→ A(−1− µ+ a|A|2), (B.62)

where µ, a ∈ R. The action of the symmetries and the linearised half-period-flip map on (A,A)

is

Rα(A,A) = (eimαA, e−imαA), (B.63a)

Kβ(A,A) = (A,A), (B.63b)

LH(A,A) = (−A,−A), (B.63c)

where m = 2 because the A2 mode is being analised. All the considerations for the quasiperi-

odic MRW1 mode commented in the previous section are also used here. The action of the
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symmetries and the linearised half-period-flip map on X = (A,B,C,A,B,C) is

Rα(A,B,C,A,B,C) = (eimαA, einαB, e−inαC, e−imαA, e−inαB, einαC), (B.64a)

Kβ(A,B,C,A,B,C) = (A,C,B,A,C,B), (B.64b)

LH(A,B,C,A,B,C) = (−A, eiθ/2B, eiθ/2C,−A, e−iθ/2B, e−iθ/2C). (B.64c)

The action of the space-time symmetry LH is no longer the identity and introduces some

conditions over the normal form, which has the structure

H :


A 7→ −A+R1(A,B,C,A,B,C),

B 7→ Beiθ/2 +R2(A,B,C,A,B,C),

C 7→ Ceiθ/2 +R3(A,B,C,A,B,C),

(B.65)

and the complex conjugate equations for A, B and C. Here, all the Ri are complex polynomials.

Introducing R = (R1, R2, R3, R1, R2, R3), the conditions the normal form R(X) fulfill are

provided by

RαR(X) = R(RαX), KβR(X) = R(KβX), LHR(X) = R(LHX). (B.66)

Expanding these expressions, they become

eimαR1(A,B,C,A,B,C) = R1(eimαA, einαB, e−inαC, e−imαA, e−inαB, einαC), (B.67a)

R1(A,B,C,A,B,C) = R1(A,C,B,A,C,B), (B.67b)

−R1(A,B,C,A,B,C) = R1(−A, eiθ/2B, eiθ/2C,−A, e−iθ/2B, e−iθ/2C), (B.67c)

einαR2(A,B,C,A,B,C) = R2(eimαA, einαB, e−inαC, e−imαA, e−inαB, einαC), (B.67d)

R3(A,B,C,A,B,C) = R2(A,C,B,A,C,B), (B.67e)

eiθ/2R2(A,B,C,A,B,C) = R2(−A, eiθ/2B, eiθ/2C,−A, e−iθ/2B, e−iθ/2C), (B.67f)

e−inαR3(A,B,C,A,B,C) = R3(eimαA, einαB, e−inαC, e−imαA, e−inαB, einαC), (B.67g)

R2(A,B,C,A,B,C) = R3(A,C,B,A,C,B), (B.67h)

eiθ/2R3(A,B,C,A,B,C) = R3(−A, eiθ/2B, eiθ/2C,−A, e−iθ/2B, e−iθ/2C). (B.67i)

These relations have to be applied once again to a polynomial of the form ApBqCrA
s
B
t
C
u
,

where p, q, r, s, t, u ∈ N0.

For R1 and assuming θ/(2π) 6∈ Q, (B.67a) and (B.67c) result in the same pair of constrains

found in the previous section and an additional condition:

m(p− s− 1) = n(r − u+ t− q), r − u = t− q, p+ s = odd, (B.68)
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so the same results are valid here too, but in the latter stage the last condition will be taken

into account.

Case 1 : r − u = t− q = v ≥ 0. The exponents of the monomial satisfy

p = s+ kl + 1, r = u+ jl, t = q + jl, kl = even (B.69)

where q, s, u, l ∈ N0 and j, k ∈ N. The monomial is A|A|2s|B|2q|C|2u
(
Ak(BC)j

)l
, as expected,

and there is a subtlety related with the last condition. Since k = 1, l is forced to be even, so

l→ 2l and the contribution to R1 is

AR11

(
|A|2, |B|2, |C|2, A2k(BC)2j

)
, (B.70)

where R11 is an arbitrary complex polynomial.

Case 2 : r − u = t− q = −v, v > 0. The exponents of the monomial fulfill

q = t+ jl + j, s = p+ kl + k − 1, u = r + jl + j, k(l + 1) = even (B.71)

where p, r, t, l ∈ N0 and j, k ∈ N. The monomial is A
k−1

(BC)j |A|2p|B|2t|C|2r
(
A
k
(BC)j

)l
again. In our case, k = 1, thus l must be odd, l → 2l + 1 can be considered and contributes

to R1 with

A
2k−1

(BC)2jR12

(
|A|2, |B|2, |C|2, A 2k

(BC)2j
)
, (B.72)

where R12 is an arbitrary complex polynomial.

The normal form R1 is the sum of the contributions (B.70) and (B.72), and the last

remaining condition (B.67b) must be fulfilled. This results in

R11

(
|A|2, |B|2, |C|2, A2k(BC)2j

)
= R11

(
|A|2, |C|2, |B|2, A 2k

(BC)2j
)
, (B.73a)

R12

(
|A|2, |B|2, |C|2, A 2k

(BC)2j
)

= R12

(
|A|2, |C|2, |B|2, A2k(BC)2j

)
. (B.73b)

Conditions (B.73) establishes the same relationship between the monomials found in the pre-

vious section, thus giving combinations of the form

|A|2p
(
α|B|2q|C|2r + α|B|2r|C|2q

)(
A2k(BC)2j

)l
for R11, (B.74a)

|A|2p
(
α|B|2q|C|2r + α|B|2r|C|2q

)(
A

2k
(BC)2j

)l
for R12. (B.74b)

At last, the expression for R1 is

R1(A,B,C,A,B,C) = AR11

(
|A|2, |B|2, |C|2, A2k(BC)2j

)
+

+A
2k−1

(BC)2jR12

(
|A|2, |B|2, |C|2, A 2k

(BC)2j
)
, (B.75)
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where R11 and R12 are complex polynomials with monomials grouped as mentioned in (B.74).

As occurred in the former section, equations (B.67e) and (B.67h) are identical, and provide

us with Q3 once Q2 is known. Considering (B.67d) and (B.67f), the same two constrains for

the exponents of the polynomial and another condition are obteined

m(p− s) = n(r − u+ t− q + 1), r − u = t− q + 1, p+ s = even. (B.76)

As a consequence, the same results can be used here too, but taking into account the latter

condition. Once again, two cases have to be studied separately, r − u > 0 or r − u ≤ 0.

Case 1 : r − u = t− q + 1 = v + 1, v ≥ 0. The exponents satisfy

p = s+ kl + k, r = u+ jl + j, t = q + jl + j − 1, k(l + 1) = even (B.77)

where q, s, u, l ∈ N0 and j, k ∈ N. The monomial is AkB
j−1

Cj |A|2s|B|2q|C|2u
(
Ak(BC)j

)l
again. Considering the fact that in our case k = 1, l is forced to be odd and l→ 2l+ 1 can be

considered. Therefore, its contribution to R2 is

A2kB
2j−1

C2j R22

(
|A|2, |B|2, |C|2, A2k(BC)2j

)
, (B.78)

where R22 is an arbitrary complex polynomial.

Case 2 : r − u = t− q + 1 = −v, v ≥ 0. The exponents of the monomial fulfill

q = t+ jl + 1, s = p+ kl, u = r + jl, kl = even (B.79)

where p, r, t, l ∈ N0 and j, k ∈ N. The monomial is B|A|2p|B|2t|C|2r
(
A
k
(BC)j

)l
. Since k = 1,

l has to be even, so l → 2l. Grouping together all these monomials, the contribution to R2

becomes:

BR21

(
|A|2, |B|2, |C|2, A 2k

(BC)2j
)
, (B.80)

where R21 is an arbitrary complex polynomial.

Summing up the contributions (B.78) and (B.80), and employing (B.67e), the final expres-

sions for the remaining polynomials, R2 and R3 are

R2(A,B,C,A,B,C) = BR21

(
|A|2, |B|2, |C|2, A 2k

(BC)2j
)
+

+A2kB
2j−1

C2j R22

(
|A|2, |B|2, |C|2, A2k(BC)2j

)
, (B.81)

R3(A,B,C,A,B,C) = C R21

(
|A|2, |C|2, |B|2, A2k(BC)2j

)
+

+A
2k
B2jC

2j−1
R22

(
|A|2, |C|2, |B|2, A 2k

(BC)2j
)
, (B.82)

where R2 and R3 are arbitrary complex polynomials.
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Similarly to the previous section, the apparently more general expressions

Rii′
(
|A|2, |B|2, |C|2, A2k(BC)2j , A

2k
(BC)2j

)
(B.83)

in (B.75, B.81, B.82) also satisfy (B.67). The five arguments in (B.83) have a clear dependence,

and verify similar expressions to the ones of the previous section (equations B.45-B.51), thus

possessing analogous properties. However, treating this question exhaustively does not provide

any novelty at all.

Regarding the case where m = 2 and n = 1, so j = k = 1, the polynomial are

R1 = AR11

(
|A|2, |B|2, |C|2, (ABC)2

)
+A(BC)2R12

(
|A|2, |B|2, |C|2, (ABC)2

)
, (B.84)

R2 = BR21

(
|A|2, |B|2, |C|2, (ABC)2

)
+B(AC)2R22

(
|A|2, |B|2, |C|2, (ABC)2

)
, (B.85)

R3 = C R21

(
|A|2, |C|2, |B|2, (ABC)2

)
+ C(AB)2R22

(
|A|2, |C|2, |B|2, (ABC)2

)
. (B.86)

Up to and including third order terms and small bifurcation parameters, the normal form can

be written as

H :


A 7→ A

(
− 1− µ+ a|A|2 − d|B|2 − d|C|2

)
,

B 7→ B
(
eiθ/2 + ν − e|A|2 − b|B|2 − c|C|2

)
,

C 7→ C
(
eiθ/2 + ν − e|A|2 − b|C|2 − c|B|2

)
,

(B.87)

where µ, a ∈ R, whilst ν, b, c, d, e ∈ C. Due to the A2 mode, the Poincaré map normal form,

P = H2 has a different expression,

P :


A 7→ A

(
1 + µ̃− ã|A|2 + d̃|B|2 + d̃|C|2

)
,

B 7→ B
(
eiθ̃/2 + ν − ẽ|A|2 − b̃|B|2 − c̃|C|2

)
,

C 7→ C
(
eiθ̃/2 + ν − ẽ|A|2 − b̃|C|2 − c̃|B|2

)
,

(B.88)

and the relation between the parameters is:

θ̃ = 2θ, µ̃ = µ(2 + µ), ã = 2a(1 + µ), d̃ = 2d(1 + µ), ν̃ = ν(2eiθ/2 + ν),

ẽ = 2e(eiθ/2 + ν), b̃ = 2b(eiθ/2 + ν), c̃ = 2c(eiθ/2 + ν). (B.89)

Further simplifications can be obtained proceeding exactly in the same way as it was done

previously. From now on, the tilde is omitted for the sake of simplicity. Assuming that close to

the codimension-two point µ = ν = 0, the bifurcation corresponding to A2 is non-degenerate,

then a 6= 0, and it is always possible to choose the scaling factor that makes a = ±1. As before,

the + (−) sign corresponds to a supercritical (subcritical) bifurcation. Since A2 bifurcates

supercritically, a = 1 is considered. Unfortunately, there are no more possible simplifications.
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With these, the hypernormal form is

P :


A 7→ A

(
1 + µ− |A|2 + d|B|2 + d|C|2

)
,

B 7→ B
(
eiθ/2 + ν − e|A|2 − b|B|2 − c|C|2

)
,

C 7→ C
(
eiθ/2 + ν − e|A|2 − b|C|2 − c|B|2

)
,

(B.90)

where µ ∈ R and ν, b, c, d, e ∈ C.
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