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Stably stratified Taylor–Couette flow has attracted
much attention due to its relevance as a canonical
example of the interplay between rotation, stable
stratification, shear and container boundaries, as
well as its potential applications in geophysics and
astrophysics. In this paper, we review the current
knowledge on this topic, highlight unanswered
questions and propose directions for future research.
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The figure on the left is a schematic of the Taylor–Couette
apparatus, filled with fluid of kinematic viscosity ν and
initial density stratification ρ(z). The nondimensional
parameters come in three groups. Geometric parameters:
the radius ratio η=Ri/Ro and the aspect ratio γ =

H/d; for axially periodic flows with wavenumber k,
H = 2π/k. Dynamic parameters: the Reynolds number
Re =ΩiRid/ν, the rotation ratio µ=Ωo/Ωi, and the

Froude number Fr =Ωi/N , where N =
√
gρ−1

0 dρ(z)/dz

is the Brunt–Väisälä buoyancy frequency, ρ0 is the
mean density and g is the gravitational acceleration.
Fluid parameters: the Prandtl number Pr = ν/κ for
temperature stratification, or the Schmidt number Sc =
ν/D for solute concentration stratification, where κ and
D are the thermal and mass diffusivities. The figure on
the right shows the parameter regions in grey that will be
discussed.
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1. Introduction
The dynamics of Taylor–Couette flow has been extensively studied since the pioneering work
of [1]. It has become a canonical model for the study of nonlinear dynamics, bifurcations
and symmetries in fluid dynamics. Interests in stably stratified Taylor–Couette flows have
developed more recently, ranging from understanding the fundamentals of the dynamics in a
realizable laboratory flow, its relevance as a canonical example of the interplay between rotation,
stable density stratification, velocity shear and horizontal boundaries, to potential applications
in geophysics and astrophysics. The stratifying agent may be either temperature or solute
concentration (typically salt). The equations and the corresponding dynamics are essentially
the same in both cases, but the corresponding diffusivities differ by three orders of magnitude.
Moreover, the experimental boundary conditions for temperature and salt are usually different.
On the annular sidewalls, the boundary conditions for temperature and salt concentration are the
same, zero wall-normal flux, but they typically differ on the top and bottom endwalls. It is not
possible to fix the salt concentration at the endwalls (the physical condition is zero wall-normal
flux, as on the sidewalls), while with temperature it is the easiest condition to impose. In addition,
experiments using salt stratification have buoyancy boundary layers on the endwall (due to
the zero flux condition) that grow very slowly, eventually leading to uniform concentration
throughout the annulus.

For the sake of definiteness, we will discuss the governing equations for the temperature
stratification case, illustrated in figure 1(a). The non-dimensional governing equations, using
the annular gap d as the length scale, the viscous diffusion time d2/ν as the time scale and
the temperature difference between top and bottom lids ∆T ∗ as the temperature scale, in the
Boussinesq approximation and accounting for centrifugal buoyancy [2], are

(∂t + u · ∇)u=−∇p+∇2u+ GrT ẑ + ε T (u · ∇)u, (1.1)

(∂t + u · ∇)T = Pr−1∇2T, ∇ · u= 0, (1.2)

where ε= α∆T ∗ is the relative density variation, α is the coefficient of volume expansion,
and Gr = αg∆T ∗d3/ν2 is the Grashof number. The term ε T (u · ∇)u accounts for centrifugal
buoyancy effects. The Brunt–Väisälä buoyancy frequency is N =

√
αg∆T ∗/H ∝

√
Gr. Notice

that Gr and ε are both proportional to the imposed temperature gradient, and their ratio, the
Archimedes number Ar = Gr/ε= gd3/ν2, is fixed for a given experimental setting. Therefore, ε is
not an independent parameter, but depends on Gr via the fixed Archimedes number: ε= Gr/Ar.

The boundary conditions for temperature and velocity are:

r= ri : ∂T/∂r= 0, u=w= 0, v= Re, (1.3a)

r= ro : ∂T/∂r= 0, u=w= 0, v= µRe/η, (1.3b)

z =−γ/2 : T =−1/2, u=w= 0, v= qb(r), (1.3c)

z = γ/2 : T = 1/2, u=w= 0, v= qt(r), (1.3d)

where qt and qb are the top and bottom endwall velocities, and depend on the specifics of the
experiment or simulation model considered: the endwalls may be fixed, attached to the inner
or outer cylinder, or periodic boundary conditions in the axial direction may be used in model
simulations. Notice that Re and µ enter into the problem via the boundary conditions.

The governing equations and boundary conditions are equivariant under the mid-plane
reflection (Boussinesq symmetry), assuming qt = qb , whose action is

K : [u, v, w, T ](r, θ, z, t) 7→ [u, v,−w,−T ](r, θ,−z, t), (1.4)

if not for the centrifugal buoyancy term ε T (u ·∇)u; ε is a measure of the strength of the
centrifugal term. The denser fluid near the bottom endwall is centrifuged radially outwards, while
the lighter fluid near the top endwall is centrifuged inwards, generating a large scale circulation
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Figure 1. (a) Schematic of the stratified Taylor–Couette device showing the density stratification. (b) Schematic of the

large scale circulation (blue) and Ekman vortices (red) in finite stratified Taylor–Couette flow; the top and bottom endwalls

are fixed to the stationary outer cylinder. (c) Same as (b) but with the endwalls attached to the rotating inner cylinder.

that breaksK, as illustrated schematically in figure 1(b), when endwalls are fixed to the stationary
outer cylinder (µ= 0) and in figure 1(c) when endwalls are fixed to the rotating inner cylinder.

There are several instabilities in stratified Taylor–Couette flow. One is centrifugal instability
due to the rotation of the inner cylinder. The formation of Ekman vortices near the endwalls,
due to the differential rotation of the endwalls is another source of instabilities. The shear due to
the differential rotation between the cylinders and the centrifugal buoyancy term are additional
sources of instabilities. Finally, all these mechanisms are strongly modified by the presence of
a vertical stabilizing density gradient. Which one of these mechanisms is responsible for the
instability of the base flow depends critically on the geometry (radius ratio and aspect ratio)
and the different strengths of these mechanisms for different parameter values (Reynolds and
Froude numbers, rotation ratio and diffusivity ratio). This review paper is organized in two
blocks, one concerning on the instabilities in the classical Taylor–Couette setting, with the outer
cylinder at rest, and the other considers the strato-rotational instability (SRI) in centrifugally stable
flows. The corresponding parameter regimes are shown in the figure in the preamble on the
first page. Additionaly, in the Perspective final section, other horizontal shear flows with vertical
stratification, which are the subject of growing interest today, are discussed.

2. Stratified Taylor–Couette flows with the outer cylinder at rest
One of the first theoretical analysis of stratified Taylor–Couette flow was [3], who used highly
idealized model equations and found that stratification resulted in a higher critical Reynolds
number for instability, along with a reduced axial wavelength for the resulting Taylor vortices.
The analysis was restricted to flows with a stationary outer cylinder, and the idealizations of
the linear stability analysis included restricting to axisymmetric modes and assuming axial
periodicity. Some of the first experiments in Taylor–Couette flows with axial stratification were
conducted by [4]. Their apparatus had a small radius ratio (η= 0.2), linear density gradients, and
several rotation rates of the cylinder were used. With increasing density gradient, instability was
inhibited, with onset occurring at larger Reynolds numbers. The bifurcated state was a (non-
axisymmetric) rotating wave which had a cellular-like structure of substantially shorter axial
extent than the Taylor cells found in unstratified experiments (see figures 5 and 6 of [4]). In a
subsequent study [5], they tried to explain their experimental observations using linear stability
analysis. The results were not satisfactory due to the idealizations used: they considered only
axisymmetric perturbations, and assumed axial periodicity of the flow. Nevertheless, two general
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Figure 2. (a) Stratified Taylor–Couette flow with outer cylinder at rest and η∼ 0.4; experimental shadowgraph and

its schematic interpretation (reproduced from [6] with permission of the publisher). (b) DNS at Re = 800, Fr = 0.53,

η= 0.417 and γ = 3 showing contours of axial temperature gradient in an (θ, z) cylindrical plane at 1% gap distance

from the inner cylinder (reproduced from [7] with permission of the publisher). (c) Temperature profile of (b) at the same

radial distance from the inner cylinder and θ= π/2.

experimental observations were borne out: the linear density gradient inhibits onset of instability,
and the axial wavelength of the instability cells is diminished.

Several subsequent studies [6,8–11] explored stratified Taylor–Couette flows in detail via linear
stability analyses, nonlinear simulations, and experiments over a wide range of parameters. They
considered annuli with η∼ 0.8 and γ ∼ 50, and found experimentally that linear density gradients
inhibit instability, that the bifurcated state is generally unsteady, non-axisymmetric, and with
a reduced axial length scale, as can be seen in figure 6 of [6] (reproduced here in figure 2a).
They observed that instability originates at the inner cylinder and propagates toward the outer
cylinder in the form of pairs of vortices. The fluid between the cylinders is well mixed, and a
density interface with substantial gradients forms in the horizontal planes between the sets of
vortex pairs. The vortex pairs on diametrically opposite sides of the inner cylinder are shifted
vertically by a half axial wavelength (the height of one vortex). How these diametrically opposed
vortex pairs join together was not clear from their observations. The whole pattern rotated with a
constant velocity less than Ωi.

The modelling efforts of [6,8] were unable to reproduce the experimentally observed
oscillatory and non-axisymmetric instability. This, again, was due to the idealizations used to
make the analysis tractable. The basic state considered in the modelling was the unidirectional
circular Couette flow of [1],

v=Ar +B/r, (2.1)

where v is the azimuthal component of velocity and the constants A and B depend on η and
Re, together with a linear vertical stratification, and only allowed for axisymmetric and axially
periodic instability modes. The axisymmetric restriction was relaxed in [9], and they found
primary instabilities to non-axisymmetric modes with azimuthal wavenumbers m= 1, 2 or 3,
depending on the parameter regime. They found that these modes are not spirals, but instead
were similar to the structures experimentally observed in [6]. In [7], the experimental results
were reproduced by direct numerical simulations (DNS), which showed that endwall effects
and symmetries are critical ingredients for understanding the observed onset of instability and
subsequent dynamics. This series of studies suggests that the large-Prandtl (or Schmidt) number
limit is approached when Pr & 10.

Subsequent experiments were conducted by [13] with the goal of analyzing the robustness
of the density layers found in the experiments of [8]. These experiments used an apparatus with
smaller η and γ parameters, larger Re and considering both linearly and discretely stratified flows.
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RESULTS

As is apparent to the left of the left panel of figure 1, the initial spin-up of the flow is quite complex, with clear evidence
of spiral structures. These structures are reminiscent of the strato-rotational instability[3], but the characteristic length scale
of the layers which clearly develop are different from the most unstable wavelength of linear theory, pointing to the central
role played by nonlinear processes. More striking is the fact that the layers themselves continually appear and disappear, with
a characteristic period of existence which is robust over the entire flow life cycle.

Even more surprising, as shown clearly by the black line marked on the left panel of figure 1, is that there is strong
coupling between neighbouring interfaces, with a close to constant time lag between the reappearance onset of neighbouring
interfaces as shown in the right panel of figure 1, across different ‘runs’ of (typically) 100 rotation periods. The disappearance
of the interfaces appears to be associated with a coherent mode-1, inherently nonlinear structure, previously observed in such
high Reynolds number (but two-layer by design) STC flow, localised on the single density interface[5]. For sufficiently small
layers, apparently similar structures, localised on neighbouring interfaces, can couple strongly, and this coupling plays a
central role in the ensuing vertical turbulent transport of salinity and hence buoyancy flux. The robustness of these structures
across a wide range of flow parameters demonstrates that the layered state is strongly attracting, and that the predominant
mixing mechanism, at least in flows of this type, effectively ‘scours’ rather than ‘overturns’ the interface[4]. Generic, robust
scouring has significant implications for the appropriate parameterisation of diapycnal mixing in ‘strongly’ stratified flows.

Run Number
0 1 2 3 4 5 6

∆
φ

0

π

2π

ILS:
H

∆r
= 0.6

Figure 1: Left panel: Variation with time over initial 200-period run of shadowgraph images for an initially linearly stratified
experiment with RI = 10cm, N0 = 1.62s−1, and Re = ΩRI(RO − RI)/ν = 7000, where ν is the kinematic viscosity
of water. The formation of layers is visible with a well-defined wavelength, and a time-periodic structure is observed on
each interface. Moreover, these structures appear to be coupled between each interface, with some constant phase difference
between adjacent layers as indicated by the black solid line.
Right panel: Phase difference between adjacent layers for each run of an experiment with Re = 14000, and initial buoyancy
frequency N = 1.62 s−1. The phase difference is calculated from the cross spectrum of the time varying signals on adjacent
interfaces from the second 100 rotation period of each 200-period run (to minimise start-up influence), when the signal appears
to be quasi-steady. Each point represents the mean over a number of layer pairs with the error bars indicating one standard
deviation. The dashed line indicates the mean over all runs with the solid lines denoting one standard deviation.

References

[1] Oglethorpe R. L. F., Caulfield C. P. & Woods A. W.: Spontaneous layering in stratified turbulent Taylor-Couette flow. J. Fluid Mech. 721:R3 (12 pages),
2013.

[2] Phillips O.M.: Turbulence in a strongly stratified fluid - is it unstable? Deep-Sea Res. 19: 79-81, 1972.
[3] Le Bars M. & Le Gal P.: Experimental analysis of the stratorotational instability in a cylindrical Couette flow. Phys. Rev. Lett. 99:064502, 2007.
[4] Woods A. W., Caulfield C. P., Landel J. R. & Kuesters A.: Non-invasive turbulent mixing across a density interface in a turbulent Taylor-Couette flow.

J. Fluid Mech. 663:347-357, 2010.
[5] Oglethorpe R. L. F.: Mixing in stably stratified turbulent Taylor-Couette flow. Ph.D. Thesis, University of Cambridge, 257 pages, 2014.

Figure 3. Time series of a shadowgraph visualisation from an experiment with an initial linear stratification for Re = 7000,

Fr = 0.05, η= 0.417, γ = 1.5, and Sc = 700; the regions of high contrast show the locations of sharp density interfaces

(reproduced from [12] with permission of the publisher).

Additional experiments followed, with more sophisticated data acquisition techniques, and
focusing on the linearly stratified case with parameter values η∼ 0.4 and γ ∼ 3 [12,14–16]. They
observed the density interface using shadow-graph visualization, and reported that the density
interfaces are of an intermittent nature, mixing periodically. Figure 3 shows an example of such a
space-time shadowgraph. They performed a linear stability analysis of the unidirectional Taylor–
Couette flow (2.1). The linear stability analysis failed to reconcile the axial distance observed in the
experiment between the sharp density gradients. Subsequent nonlinear simulations, assuming
an infinitely long annulus periodic in the axial direction, showed that the onset of instability
breaks axisymmetry. The resulting flow structures have much in common with those reported
in [9]. According to [14], the absence of endwalls in these nonlinear numerical simulations
may be responsible for the differences between the simulated structures and those observed
experimentally. The experiments of [16] suggest that the axial wavelength (the distance between
the density layers) does not depend on the gap between the cylinders d, but rather depends on
the thickness of the boundary layer close to the rotating inner cylinder.

The experiments [14–16] on linearly stratified Taylor–Couette flows used salt as the stratifying
agent, and parameter values η= 0.417 and γ = 3. These experiments motivated a DNS study [7]
that reproduced these results and shed light on the instability mechanisms and flow structure.
The governing equations for the DNS study are (1.1) and (1.2), and the parameter values
η= 0.417, γ = 3, Ar = 1010 and Fr = 0.53 were fixed. Varying Re gives Gr = 20.8754Re2 and
ε= 2.087 54× 10−9 Re2; ε is small, of order 10−2 for Gr∼ 108. The steady axisymmetric base
state is essentially K symmetric. The centrifugal buoyancy effects near onset of instability are
almost negligible. The basic state loses stability at Re≈ 320 via a Hopf bifurcation breaking SO(2)

symmetry, leading to a rotating wave R1 with azimuthal wavenumber m= 1, that is stable up to
Re≈ 1000. The 3D structure is very similar to that found in the experiments [6], and illustrated
in figure 2(b), that shows contours of the axial temperature gradient ∂zT on a cylindrical surface
near the inner cylinder at 10% of the gap. Wide regions of almost constant temperature (∂zT ≈ 0,
the white regions in the figure) alternate with narrow regions of fast variation in T in an axially
periodic way for θ ∈ (0, π). In the other half of the cylinder, for θ ∈ (π, 2π), the same structure is
found, but shifted axially by half an axial wavelength. In between there is a narrow dislocation
region where both structures meet. The temperature profile near the inner cylinder shows a well
defined stair-case structure (see figure 2c).

Since the solution is a rotating wave, the temperature gradient plot in (θ, z) at an instant
in time at a given radius (figure 2b) is identical to a space-time plot with θ ∈ [0, 2π] replaced
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Figure 4. Rotating wave at Re = 800, showing contours of angular momentum Γ = rv, axial temperature gradient ∂zT ,

streamfunction ψ and velocity vectors projected onto a meridional plane for the angles θ= π/2 and 3π/2 in figure 2(b),

where the outgoing radial jets are strongest (reproduced from [7] with permission of the publisher).

by time over one rotation period. When solving the governing equations in the axisymmetric
subspace, the first instability is instead to an axisymmetric periodic solution, whose space time
plot (contours of ∂zT in a (t, z) plane for fixed r near the inner cylinder) is almost identical to
figure 2(b). The study of both the 3D rotating wave and the axisymmetric limit cycle provide
the same information for the states appearing at the first bifurcation. Figure 4 shows contours
of angular momentum Γ = rv, axial temperature gradient ∂zT , streamfunction ψ and velocity
vectors projected onto a meridional plane of the rotating wave in figure 2(b) for the angles θ= π/2

and 3π/2, away from the defect regions at θ= 0 and π. The jets of angular momentum emerging
from the inner cylinder due to the centrifugal instability have maximum intensity for θ= π/2

(h) and 3π/2 (a). The regions with large temperature gradient shown in (b, g) coincide with the
jets of angular momentum. These jets are periodically spaced with wavelength λ, except near
the endwalls where Ekman vortices exist. Between the jets are a pair of counter rotating Taylor
vortices (c, d, e, f), forming a Taylor cell of length λ. The Taylor vortices are very elongate radially,
substantially shorter in the axial direction than the Taylor vortices the absence of stratification,
which have λ≈ d. The Ekman vortices at the endwalls change size in order to accommodate the
different number of cells that exist in the two regions separated by the defect regions, and play a
subordinate role in the dynamics.

The DNS analysis in this problem, with η∼ 0.4, shows that the physical mechanism
responsible for the instability of the base state is the centrifugal instability, and the Ekman layers
play a secondary role. Moreover, the centrifugal buoyancy does not play any role in the primary
bifurcation. The DNS results fully agree with the afore mentioned experiments for the gap η∼ 0.4.

A recent experimental investigation [17] of stratified Taylor–Couette flow with a very
small radius ratio η≈ 0.066 and using salt as stratifying agent, found that at the onset of
instability spiral structures confined to the inner rotating cylinder appear, and the spiral near
the bottom endwall is being triggered first. This was a very different regime to that typically
studied for stratified Taylor–Couette flow discussed up to now. In [18], the experimental results
were reproduced by DNS, showing that endwall and centrifugal buoyancy effects are critical
ingredients for understanding the observed onset of instability and subsequent dynamics.

The spiral structures observed in [17] resemble the radiative instability (RI) reported by [19].
These authors placed a rotating cylinder in a large rectangular tank filled with a stratified fluid
using salt as stratifying agent. [20] analized the RI and showed, using the approximation of large
axial wavenumber, that RI and the strato-rotational instability (SRI) are related: the SRI transforms
into RI when the cylinder’s gap d becomes large enough. Along with their experiments, [19]
studied the linear stability analysis of the potential flow around an isolated infinitely long rotating
cylinder placed in a linearly stratified medium. The velocity field of the potential flow has
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azimuthal component v∝ 1/r, zero meridional components u=w= 0, and extends radially out to
r→∞. They considered the flow inviscid, and presented some comments on viscous effects. The
main mode of instability was found to result in helical waves with azimuthal wavenumbers that
depend on Fr and Re. Their experiments were conducted in a tank of depth 48 cm and horizontal
cross section 240 cm× 74 cm, filled to a height of 45 cm. They used three different cylinders of
radii Ri = 12.5, 15 and 20 cm. They observed instabilities typically consisting of helical waves
travelling up from the bottom and down from the top. They expected the flow to have the
reflection symmetry K about the horizontal mid- plane, but found in some cases that one of the
two waves could be dominant, and that there was a difference between the frequencies of the two
waves together with a slow drift toward the top. They also observed that the buoyancy frequency
was not uniform across the fluid depth, with departures mostly located at the top and bottom lids
in a region 10 cm deep, which they ascribed to salt diffusivity, evaporation effects and turbulent
mixing. Centrifugal buoyancy effects were not considered as a potential contributor to any of
these observations.

Centrifugal buoyancy effects in stratified Taylor–Couette flows have been neglected in most of
the studies. However, [21] suggested that centrifugal buoyancy effects may not be negligible,
and [22] raised the cautionary point that the use of the Boussinesq approximation without
centrifugal buoyancy seems to still be an open question for small Froude numbers. [23] considered
the possible contribution of centrifugal buoyancy in their experiments, and concluded that they
could neglect this contribution because RiΩ

2
i /g is small for the parameter regimes used in the

experiments. They also studied the linear stability of the unidirectional stratified Taylor–Couette
flow periodic in the axial direction, and found discrepancies between the model and experimental
results. They assumed the discrepancy would be due to ignoring endwall effects in their model,
but did not pursue this as it was beyond the scope of their study.

So far, the theoretical studies of stratified Taylor–Couette flow [9,22–27] have considered the
axial direction to be periodic and the base state to be the unidirectional flow of [1], equation
(2.1), together with a linear vertical stratification. However, all physical experiments have finite
axial length, and differential rotation between the top and bottom lids and the cylinders exists.
Moreover, the top endwall is sometimes open. This leads to vortex line bending near one or
both corners where the rotating inner cylinder meets the stationary bottom and top endwalls,
driving a secondary meridional flow, the so called Ekman vortices near the lids. Therefore the
base flow is not unidirectional. This meridional flow is a critical ingredient in determining the
helical instability reported in the experiments of [17].

Figure 5(a) shows a visualization of the flow from the experiments of [17] at η= 1/15,
displaying only a region very close to the inner cylinder. They found helical wave structures
confined to the inner cylinder in regimes where the Froude number is less than one. These helical
waves were reported to originate at the corners where the inner cylinder meets the top and bottom
boundaries, and were found to be asymmetric with the lower helical wave being more intense.
The DNS in [18] reproduced these results and found that endwall effects and centrifugal buoyancy
were critical ingredients for understanding the observed onset of instability and the subsequent
dynamics.

In a given experiment, Gr and ε are kept fixed, while the Froude number Fr∝Re/
√

Gr varies
when the rotation rate of the inner cylinder changes. The fixed parameter values in the experiment
[17] and numerical simulations [18] are η= 0.07, γ = 1, ε= 0.064 and Gr = 4× 1010, with Pr = 6

for the thermally stratified DNS and Sc≈ 700 for the salt stratified experiments. This results in
Ar = Gr/ε= 6.25× 1011. Notice that in this small η= 0.07 case, the Archimedes number is almost
two orders of magnitude bigger (and ε one or two orders of magnitude bigger, depending on Re)
than in the η= 0.417 cases discussed earlier.

The centrifugal buoyancy term generates a large scale circulation that breaks the reflection
symmetry K, illustrated in the schematics on figure 1(b). This large scale circulation reinforces
the Ekman vortex at the bottom lid, and weakens the Ekman vortex at the top lid when the
endwalls are stationary. The maximum value of the radial velocity u in the bottom boundary
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(a) (b) (c)

Figure 5. (a) Dye visualization of two helical waves travelling along the rotating inner cylinder from the top and bottom

(reproduced from [17] with permission of the publisher).(b) DNS at Re = 6100, Fr = 0.4052, Pr = 6, η= 0.07 and

γ = 1, showing isosurfaces of helicity density; (c) same as (b) but at Re = 6500 and Fr = 0.4318 (reproduced from [18]

with permission of the publisher).

layer is approximately 10% larger than the maximum value of u in the top boundary layer, for
the base state close to the first bifurcation [18]. This is in marked contrast with the η= 0.417 case
discussed earlier, where centrifugal buoyancy effects were negligible; in that case εwas two orders
of magnitude smaller near the instability threshold.

The basic state undergoes a supercritical Hopf bifurcation to a rotating wave with m= 1 and
frequency ω1. This happens at Re≈ 5970, which is smaller (approximately 2%) than the critical
Re when ε= 0. The bifurcated state, shown in figure 5(b) at Re = 6100, clearly has no symmetry
in z. The instability takes place at the bottom Ekman vortex near the inner corner and progresses
upwards, while the top Ekman layer remains stable, due to the centrifugal buoyancy mechanism
already discussed. Increasing the Reynolds number to Re≈ 6220, a helical wave appears at the top
of the cylinder. Both helical waves meet near the cylinder mid-plane, but a little closer to the top
endwall. The helical wave on the lower half of the cylinder is more intense, and their frequencies
are slightly different. They both rotate prograde with the inner cylinder, but the bottom helical
wave rotates slightly faster than the top helical wave. This results in a modulated rotating wave
state MRW. Most of the dynamics takes place near the inner cylinder. A snap-shot of MRW at
Re = 6500 is shown in figure 5(c). This state closely resembles the experimental flow obtained
by [17], shown in figure 5(a), that corresponds to Re≈ 6920. Further increasing Re results in
additional bifurcations resulting in spatio-temporal complex flows [18]. The DNS analysis of [18]
has shown that the instabilities of the Ekman vortices are the underlying mechanism, and the lack
of reflection symmetry is due to the centrifugal buoyancy. This is in marked contrast with the case
discussed before with gap η∼ 0.4 and a smaller ε value.

3. Strato-rotational instability in centrifugally stable flows
A major breakthrough in the study of stably stratified Taylor–Couette flow was the realization
that the region of linear instability extends beyond the Rayleigh line (µ> η2), thereby including
rotation laws which are centrifugally stable according to the Rayleigh criterion. This characteristic
was first reported by [28,29], who conducted a modal stability analysis of the inviscid equations
and found that a sufficient condition for instability is µ< 1, i.e. the angular velocity must
decrease radially outwards. They observed that the Couette flow becomes unstable as a result of a
pitchfork bifurcation, leading to non-axisymmetric and non-oscillatory structures (see figure 6a),
which are markedly distinct from the Taylor vortices and spirals observed in the centrifugally



9

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc0000000
..................................................................

(a) (b) (c)

Figure 6. (a) The most unstable eigenmode obtained from linear stability analysis for Fr = 0.01, µ= 0.5812, η= 0.67

and Re = 75 450 (reproduced from [28] with permission of the publisher). The arrows indicate the radial and azimuthal

velocities. The axial velocity is shown in color where upward (downward) motion corresponds to red (blue) regions. The

vertical axis shows the radial direction, rescaled and normalized with the mean radius, rm = 0.5(ri + ro), whereas the

abscissa shows the azimuthal direction. (b) Colour map of velocity perturbations showing the structure of the m= 1

mode of the SRI in experiments conducted at µ= 0.463, Re = 600, Fr = 2, η= 0.5172 and Rn = 289, where Rn =

Nri(ro − ri)/ν is the Brunt–Väisälä number. Prograde and retrograde flow are shown as red and blue, respectively. As

in (a), the vertical and horizontal axes show the radial and azimuthal directions, respectively. Note that here the radial

direction is rescaled with the inner cylinder radius, ri, and normalized by the gap size, ro − ri (reproduced from [31] with

permission of the publisher). (c) Space-time diagram obtained from experimental visualizations illustrating the pattern of

interpenetrating spirals characteristic of SRI in the centrifugally stable regime (reproduced from [32] with permission of

the publisher).

unstable regime (µ= 0) discussed in the previous section. The height-to-width aspect ratio
of these structures was found to be proportional to Fr, so that their axial extent becomes
increasingly smaller as the stratification level increases. [30] revisited the problem using several
methodologies, including the Wentzel–Kramers–Brillouin (WKB) approximation and numerical
simulations, and confirmed the stability threshold proposed by [28]. This study also showed that
the primary instability may occur through a Hopf bifurcation, resulting in non-axisymmetric
oscillatory modes. More recently, [25] showed that stably stratified flows may also become
unstable when the outer cylinder rotates faster than the inner cylinder, extending the instability
criterion to µ 6= 1, i.e. all rotation laws except for solid-body rotation. However, unlike cases with
µ< 1, where the flow becomes unstable for a wide range of Fr, for µ> 1 the instability only sets
in if the flow is strongly stratified. Although all these theoretical studies were performed in the
inviscid limit, they verified numerically that the instability persists for a finite viscosity.

Linear stability analysis including the viscous term was first performed by [22]. They
considered a fixed value of the Froude number, Fr = 0.5, and two values of the radius ratio,
η= 0.3 and η= 0.78, to examine the instability in small and wide gap configurations. The region
of instability was in both cases delimited by µ. η, a threshold that was much more restrictive than
that obtained in [28]. However, a subsequent study by the same authors [33] revealed that such
a threshold may vary depending on the stratification level and the curvature of the apparatus,
especially when the narrow or wide gap limits are approached. They observed that for values of
η close to the small gap limit (η→ 1), the critical threshold approaches the solid-body rotation
line (µ= 1), in agreement with the inviscid study of [28]. In contrast, if the wide gap limit is
approached (η→ 0), the instability threshold comes closer to the Rayleigh line. The unstable
modes obtained in the analysis of the viscous case were non-axisymmetric and oscillatory, as
those predicted by [30] in their inviscid study, and they were characterized by low azimuthal
wavenumbers.

The first experimental evidence for SRI in the centrifugally stable regime was provided by [32].
They conducted their experiments at Fr = 0.5 and η= 0.8, a configuration that was similar to
the narrow gap case considered by [22], and observed an instability threshold that was fully
consistent with that obtained by these authors (µ≈ η). From Kalliroscope visualizations, it was
shown that the flow pattern consists of a superposition of two spiral modes that propagate
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Figure 7. Critical stability boundary of SRI in the centrifugally stable regime obtained experimentally at three distinct

values of the Brunt–Väisälä buoyancy frequency (reproduced from [34] with permission of the publisher): N = 1.57s−1

(circles), N = 3.14s−1 (diamonds) and N = 4.71s−1 (triangles). The instability region grows with increasing N , i.e. as

the fluid’s stratification level increases. At a given value of µ=Ωo/Ωi, the region of instability is bounded by two values

of the inner cylinder Reynolds number, Rei =Ωirid/ν.

axially in opposite directions (see figure. 6c). In accordance with the theoretical predictions, the
structures were non-axisymmetric and oscillatory, rotating with a frequency equal to the mean
angular velocity of the system. Their wavelengths, which did not change as µ was varied within
the instability domain, were nearly the gap size, thereby confirming that stratification reduces
the vertical extension of the structures in proportion to Fr (recall that the wavelength of the
Taylor vortices in the non-stratified case is twice the gap size). Subsequent experiments by [34]
extended the range of Re and Fr previously investigated. Their observations with respect to
the structure of the unstable flow and its rotational frequency were in agreement with those
of [32]. The experiments were conducted in a narrower configuration (η= 0.88), where instability
was observed beyond µ= η (see figure 7), consistent with the prediction that the instability
threshold approaches µ= 1 as η→ 1. The critical threshold was also found to depend on the
stratification level, moving towards larger values of µ as Fr decreases. They also reported an
important characteristic which had been previously overlooked: the existence of a critical Re
above which the flow restabilizes. It was observed that this critical Re value, and consequently
the size of the instability domain, increases with increasing the stratification level (see figure 7).
These observations were later confirmed by [23] in a combined experimental and theoretical study
using a wider gap configuration with η= 0.52. It should be noted that in these latter experiments,
the flow pattern was found to rotate slightly faster than the outer cylinder, which was in contrast
with the experiments in [32] and [34], where the structures rotated with the mean angular velocity.
This discrepancy appears to suggest that the rotation frequency of the flow pattern is affected by
the curvature of the system and becomes slower in configurations with large curvature.

The physical mechanism underlying the instability was explained by [28] as a resonant
interaction between Kelvin waves located at opposite boundaries (these are illustrated in
figures 6a, obtained from linear stability analysis in [28], and 6b, obtained from PIV measurements
in [31]). The other key ingredient of the instability is shear. This modifies the phase speeds of the
Kelvin waves and creates a phase difference of nearly 90° between them. This phase shift results
in an optimal correlation between the radial and azimuthal velocities that maximizes the energy
growth rate (see equation 6 in [28]). Further discussion about this mechanism, which is widely
accepted at present, is given in [20] and [25].



11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc0000000
..................................................................

Although it has been speculated that SRI might play a major role in geophysical flows
(both shear and Kelvin waves are omnipresent in nature), most studies so far were motivated
by its potential relevance for astrophysical disks. Accretion in protostellar disks requires an
efficient transport of angular momentum radially outward, which is only possible if the flow
is turbulent. The source of this turbulence is however unclear [35]. Gases in accretion disks
follow quasi-Keplerian rotation laws (µ≈ η1.5), which are centrifugally stable, and according to
recent experiments and simulations, they also seem to be stable to finite amplitude disturbances
[36–39]. While magnetic fields can destabilise the flow and produce accretion rates consistent
with theoretical estimates through magneto-hydrodynamic instabilities [40,41], these instabilities
cannot operate in cool disks, e.g. disks around young stars or in binary systems, because these are
weakly ionized. The SRI emerged as a potential candidate to explain the presence of turbulence in
these cases. Stable vertical stratification is present in accretion disks as a result of the illumination
of the disk by the central object (a star or a planet) and the value of Fr associated with such
stratification was estimated as Fr≈ 3 [30], a value that is consistent with those at which the
instability is found in experiments and theoretical studies. A key question is whether SRI may
transport angular momentum outward at the rates required for accretion to occur. Using fully
nonlinear simulations of a temperature stratified Taylor–Couette flow, [24] quantified the outward
angular momentum transport associated with the nonlinearly saturated state of SRI. Although
these simulations were conducted at low Re (Re∼O(103)), they extrapolated their results to real
thin disks and obtained a turbulent viscosity of order unity, which was indicative of an efficient
transport [42]. Several other studies have, however, questioned the applicability of SRI to real
accretion disks. [43] found that SRI requires the presence of lateral boundaries to exist. If one or
both boundaries are removed, the instability ceases to occur. A similar conclusion was reached
by [20], who studied the stability of an unbounded Keplerian profile and observed that SRI is
replaced by a radiative instability, with characteristics that substantially differ from those of SRI.
The finding that there exist an upper bound for the rotation speed at which the instability occurs
also seems to undermine the relevance of SRI for accretion disks. Experiments show that for
Fr≈ 3, the upper bound of the instability is Re∼O(104) [34], which is very far from Re> 109

estimated for accretion disks [44]. It seems therefore very unlikely that this instability exists in
real accretion disks.

Whether SRI causes turbulence is another aspect that remains unclear. With the exception
of [28], where turbulence was found to occur following a well defined sequence of bifurcations,
evidence of SRI-driven turbulence has not been reported in experiments or simulations. It should
also be noted that the supercritical transition reported in [28] starts from stationary states which
have not been observed in any subsequent study. The closest experimental observation of a
turbulent state was reported by [34], who found a non-periodic state that quickly mixes the
fluid near the upper part of the critical stability boundary (see open symbols in figure 7).
However, such a state could not be characterized in detail, as the mixing rapidly destroys the
axial density gradient and the flow laminarises. This problem is avoided when the stratification
is accomplished via a stable vertical temperature gradient. Experiments and simulations using
temperature stratification have been recently conducted [31,45] and some interesting nonlinear
effects were reported at moderate value of Re. However, turbulence has so far not been observed
in these cases either.

4. Perspective
Interests in stratified Taylor–Couette flows have ranged from understanding the fundamentals
of the dynamics in a realizable laboratory flow, its relevance as a canonical example of the
interplay between rotation, stable density stratification, velocity shear, and horizontal boundaries,
to potential applications in geophysics and astrophysics.

Regarding the flows with only the inner cylinder rotating, the experiments and simulations
described in the two cases considered in this review show that many instability mechanisms
and bifurcation scenarios are possible, due to the large number of parameters involved. Many
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more additional studies, both experimental and DNS are necessary in order to find and describe
all these scenarios, in the same way that after one hundred years after G. I. Taylor’s pioneering
work on the Taylor–Couette problem there continues to be a steady flow of new studies in this
classical problem. The experiments and DNS studies have shown that the role of endwalls cannot
be neglected in any way, and play a fundamental role in the dynamics. We have also observed
that with stratification the effects of centrifugal buoyancy may be critical in some scenarios, so it
is convenient to include it in future studies.

There are many studies of stratified flows different from the stratified Taylor–Couette flows
discussed in this perspective review, with a variety of instability mechanisms. A discussion of
some of them and their relationship with the phenomena discussed in stratified Taylor–Couette
flow follows.

The stable stratification in stratified Taylor–Couette flow inhibits bulk vertical motions,
confining vertical motions primarily to the boundary layer on the rotating inner cylinder. In
the wide gap case [17,18], the instability develops at the cylinder endwalls. Above a critical
forcing amplitude (quantified by the inner-cylinder Reynolds number), the boundary layer loses
stability to a complex pattern of helical waves with both senses of chirality (see figure 5). Similar
consequences of stable stratification affecting boundary layer development and stability was also
found in [46], where the boundary layer on a vertically oscillating wall of a rectangular container
of stratified fluid underwent a similar helical instability. Stratification also restricts flows in the
bulk (away from viscous boundaries) to internal waves associated with a forcing frequency
if the system is periodically forced or to horizontal layers if the flow is steady. In comparing
simulations or theory to experiments, the details of the container and the forcing mechanism
matter. Idealizations ignoring, for example, endwalls lead to base states that are not compatible
with the experimental boundary conditions and the resulting flows differ in significant ways.

Another startling phenomena not yet fully understood that occurs in sheared stratified flows
is the formation of staircase horizontal layers in the vertical density profile; these are widely
observed in many situations [47]. They have been observed in stratified Taylor–Couette flow in the
medium gap case [6,7] (see figure 4). These structures also appear in stratified plane Couette flows.
Stratified plane Couette flows have been studied using linear stability analysis of the idealized
unidirectional flow, leading to instability modes that do not correspond well to the accompanying
experiments, in which the flow is fully contained and the unidirectional base state does not
correspond [48]; however, their nonlinear simulations that better account for the experimental
confinement effects closely reproduce the experimental observations. Stratified plane Couette
flows continue to be of interest, as other instability mechanisms such as Kelvin waves and
inertia–gravity waves [49] appear, and in part because they result in density staircase horizontal
layers. As noted by [50] however, stratified plane Couette flows remove two of the fundamental
ingredients of Taylor–Couette flows: the effects of rotation and curvature. Other interesting
stratified flows that also lack these ingredients but show different instability mechanisms are
stratified plane Poiseuille flow [51], where instability results from a resonance of internal gravity
waves and Tollmien-–Schlichting waves, and the stratified boundary layer flow on a vertical
wall [52], where Tollmien-–Schlichting waves and radiative instability compete.

Regarding SRI in the centrifugally stable regime, future research should focus on the nonlinear
development of the instability. These studies should clarify whether SRI driven turbulence exists
or not, and in case it does, they should identify the parameter regimes for which this happens
and the distinct transition pathways that emerge depending on the geometry of the apparatus
and the relative importance between rotational and stratification effects. A good starting point
would be understanding the reasons why the transition scenario reported in [28] has so far not
been observed in experiments. Additional analysis [53] of the role of the endwalls in the nonlinear
behaviour of the instability may help shed some light in this regard.

It should be noted that other instabilities associated with the stable stratification of accretion
disks have been recently proposed, and so the study of stably stratified quasi-Keplerian flows
continues to be an active focus of research. Prominent among these instabilities is the zombie
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vortex instability [54–57], which has been found in numerical simulations of stratified rotating
plane Couette flow. This instability arises when baroclinic critical layers, that exist in stably
stratified flows [58], are excited by nearby vortices. As a result, the critical layers grow and roll up
into new vortices, which in turn excite neighbouring critical layers. This process repeats until the
disk is fully populated with vortices that interact to sustain turbulence. Although stably stratified
Taylor–Couette flows include all the essential ingredients for the zombie vortex instability to
occur (rotation, shear and stable stratification), no laboratory or observational evidence of the
instability has been reported to date. Further research is thus needed to establish whether the
instability exist in these flows and to assess its relevance for the outward angular momentum
transport in accretion disks. The zombie vortex instability is inherently an inviscid instability of
an unconfined flow, and so it too explicitly lacks some fundamental ingredients of Taylor–Couette
flows: viscous boundary layers.
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