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The large-scale laminar/turbulent spiral patterns
that appear in the linearly unstable regime of
counter-rotating Taylor-Couette flow are investigated
from a statistical perspective by means of direct
numerical simulation. Unlike the vast majority of
previous numerical studies, we analyse the flow in
periodic parallelogram-annular domains, following a
coordinate change that aligns one of the parallelogram
sides with the spiral pattern. The domain size, shape
and spatial resolution have been varied and the
results compared with those in a sufficiently large
computational orthogonal domain with natural axial
and azimuthal periodicity. We find that a minimal
parallelogram of the right tilt significantly reduces the
computational cost without noticeably compromising
the statistical properties of the supercritical turbulent
spiral. Its mean structure, obtained from extremely
long time integrations in a corotating reference
frame using the method of slices, bears remarkable
similarity with the turbulent stripes observed in plane
Couette flow, the centrifugal instability playing only a
secondary role.

1. Introduction

Fluid flow intermittency, i.e. the spatio-temporal coexistence
of laminar and turbulent flow regions, remains one
of the most intriguing phenomena in fluid dynamics.
Intermittency arises frequently in the transitional regime

of a wide variety of canonical shear flow problems.

© The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

THE ROYAL SOCIETY

PUBLISHING


http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.&domain=pdf&date_stamp=
mailto:fernando.mellibovsky@upc.edu
mailto:fernando.mellibovsky@upc.edu

In pipe or channel flows, it typically shows in the form of localised turbulent patches
(customarily dubbed puffs or spots), flanked by laminar quiescent flow. For a thorough review
on the rich variety of existing intermittent shear flow phenomena, see [1] and references therein.

Interestingly, in some cases, as the turbulent fraction grows upon increasing the Reynolds
number, the spots rearrange in oblique turbulent bands or stripes that exhibit sharp interfaces at
a clear-cut tilt with respect to the main direction of the flow. A paradigm of banded intermittency
arises in counter-rotating Taylor-Couette flow (TCF), i.e. the fluid flow between independently-
rotating coaxial cylinders [2]. First discovered by Coles & Van Atta [3] in the 1960s, the Spiral
Turbulence regime (SPT) consists of a rotating helical pattern of alternated turbulent and laminar
stripes. This peculiar flow structure has since puzzled fluid dynamicists, physicists and the
scientific community in general [4]. It was not until the late 2000s that SPT could finally be
reproduced numerically by means of direct numerical simulation (DNS) [5-8], but the underlying
flow mechanisms remain still poorly understood.

For reasons that we shall discuss below, the main testing ground for turbulent stripe analysis
has mostly shifted to parallel flows, notably plane Couette flow (PCF) [9,10]. As a result, while
DN of parallel flows has already satisfactorily revealed in detail the mean properties of turbulent
stripes [1], the numerical analysis of SPT in TCF trails many years behind.

Given the statistical invariance of laminar/turbulent banded patterns along the stripe
direction, narrow rectangular computational domains, suitably tilted to align with the pseudo-
periodic pattern, have been used in cartesian geometries to curtail the computational burden
[11-14]. The task is straightforwardly undertaken for parallel shear flows by simply skewing
the base flow direction, but annular geometries demand essential modification of the numerical
formulation. The coordinate change that accomplishes this was first proposed by [15,16] with the
aim of computing mixed-mode TCF travelling-rotating waves as relative equilibria in minimal
domains. To the best of our knowledge, the generalisation of this coordinate change to allow
DNS in parallelogram-annular-shaped domains had not been attempted until very recently [17],
despite its being absolutely requisite to the efficient computation of SPT dynamics.

An additional difficulty that plagues the SPT regime in TCF, and concerns also the laminar-
turbulent stripes observed in PCF, is the drift of flow structures induced by the completely broken
streamwise symmetry (note that PCF retains a streamwise reflection symmetry in the form of a
composition with cross-stream reflection). This hinders the otherwise straightforward extraction
of the statistical large-scale structure of the banded pattern. A meaningful computation of mean
and root mean square (rms) fields requires the definition of a suitable frame of reference that
drifts with the flow structure of interest. A powerful tool to achieve this is provided by the
method of slices [18,19], which allows quotienting out the trivial drift dynamics along group
orbits associated with homogeneous space directions.

Moreover, SPT occurs in both the subcritical and supercritical parameter-space regions of TCF.
Subcritical SPT is qualitatively analogous to the laminar/turbulent patterns that arise in linearly
stable parallel flows such as PCF, and has therefore been the subject of much research. Meanwhile,
supercritical SPT, the focus here, has hitherto not been given much attention despite its practical
interest from the standpoint of competing shear and Coriolis forces. This interaction is at the
origin of large-scale coherent structures arising, as a relevant example, in geophysical flows,
SPT playing an archetypal role. In the early supercritical regime, before SPT sets in, the flow is
governed by a dislocated pattern of laminar spirals (SPI) that fills the centrifugally unstable region
of the annulus [20,21].

The DNS of laminar-turbulent banded patterns in extended shear flows such as SPT generally
requires discretising the Navier-Stokes equations in overly large computational domains, as their
oblique arrangement calls for long spanwise and streamwise periodicities even for a minimal
representation. Early numerical computations on SPT were therefore forced to sacrifice, to some
extent, spatial resolution in exchange for feasibility [5-7]. We will show that these studies can no
longer be considered sufficiently accurate by current standards. Especially if the focus is set on the
statistical properties of turbulence. Converging mean and rms statistics of velocity fields requires
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very well-resolved spatio-temporal scales and long time integrations, such that optimising the
computational cost through a convenient minimal choice of the domain is an essential step
towards undertaking comprehensive parameter explorations of SPT.

Our aim here is threefold. First, we set out to produce a highly accurate computation of
supercritical SPT in the minimal ordinary periodic-orthogonal-annular domain that can contain
it. The data set thus generated is not only valuable for the analysis of the supercritical SPT regime,
but also as a numerical benchmark for future analysis. Next, we switch to the parallelogram-
annular domain shape with the purpose of exploiting its versatility in finding something akin to
the minimal flow unit often used for the analysis of coherent structures in shear flow turbulence
[22,23], but aiming instead at retaining also the large-scale features of intermittency, including its
statistical properties. Finally, we compare the mean large-scale structure of SPT, computed in the
co-rotating reference frame through the slicing technique [19], with that of turbulent stripes in
PCF [9].

The paper is structured as follows. In section §2 we briefly present the formulation and
describe the numerical methods employed. The supercritical SPT regime and the specific choice
of geometric and flow parameters used in its obtention are provided in section §3, along with a
demonstration of the capabilities of the parallelogram domain when combined with the method
of slices. A thorough numerical convergence analysis varying domain size, shape, and spatial
resolution, is then carried out in section §4, followed by the statistical description of SPT and the
analysis of its mean large-scale structure in section §5. Finally, the main results are summarised
and conclusions drawn in section §6.

2. Formulation and methods

Consider the incompressible flow of a fluid of dynamic viscosity p and density ¢ (kinematic
viscosity v =p/o) completely filling the gap between two concentric and independently-
rotating cylinders, whose inner and outer radii and angular velocities are 7, r§ and (2, 2,
respectively. The dynamics is governed by the Navier—Stokes equations, which, after convenient
non-dimensionalisation with the gap d =% — 7 and d? /v as units for space and time, read

—Vp+ Vv + Fz, @2.1)
0. 2.2)

v+ (V- V)v
V.v

The axial forcing term F = F(t) in (2.1) is instantaneously adjusted to enforce the zero axial
net massflux condition at all times, and p =p(r, 0, z;t) and v=v(r,0, z; t) = (vr,vg,vz) =vr 7 +
v9 @ +v; 2 are the dimensionless reduced pressure and velocity, respectively, expressed in
cylindrical coordinates (r,0, z). The velocity must satisfy no-slip boundary conditions at the
cylinder walls and zero axial net massflux

27

Virer = (0,R5.0),  Vlrr, = (0, Ro,0), szj

JO(V~£)rdrd0:0, 2.3)
0 Ti

where ri=r{/d=n/(1—n) and 7o =715/d=1/(1 —n), with n=r]/r§ the radius ratio, and

Ri =dr{ /v and Ro = drg 2, /v are the inner and outer cylinder Reynolds numbers. The basic,
laminar and steady circular Couette flow, henceforth referred to as CCF, is

by2
w08 mm)=["Lan g=o 4

with vg =7(Ro — 7R))(1 + 1) "1+ n(Ri — nRo)(1 — 1) "1 (1 — n?)~1r~L. The perturbation velocity
and pressure fields are defined as

u(r,0,2;t) =v(r,0,2;t) — v (r) =ur i +ug 0 +u- 2, q(r,0,2t) =p(r,0,2t) — pp(r). (2.5)
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Formal substitution of (2.5) into (2.1)-(2.2) shows that the perturbation fields must satisfy
—Vg+Viu—(vp-V)u—(u-V)vy — (u- V)u+ F2 (2.6)
V.ou = 0, 2.7)

oru

with u obeying homogeneous boundary conditions at the walls, u(r;, 8, z;t) = u(ro, 0, z;t) =0,
and satisfying the zero net axial mass flux condition, Q(u) = 0.

Although this solenoidal boundary value problem is most naturally formulated in cylindrical
polar coordinates (r,6, z), many flow regimes involving spirals and/or mixed modes admit a
much simpler and more economical numerical representation employing the oblique coordinates

E=ml+kiz, (=n90+kaz. (2.8)

In this expression, the generalised wavenumber quadruplet (n1, k1, n2, k2) defines uniquely the
orientation of, and periodicity along, the new coordinate axes (&, ).

The numerical discretisation of the boundary value problem (2.6-2.7) is accomplished with
the solenoidal Petrov-Galerkin scheme originally formulated by [24], and suitably adapted to
the annular-parallelogram domain (r, ¢, ¢) € [rj, 7o) % [0,27] x [0, 27] by [17]. This discretisation
implicitly assumes 27-periodicity of both the pressure ¢ and velocity u perturbation fields in
the new ¢ and ¢ coordinates. In this transformed domain, the solenoidal velocity perturbation
is approximated by means of a Fourier x Fourier x Chebyshev spectral expansion us of order
L x N x M in { x £ x r, respectively, of the form

us(r,€,¢;1) Z i Z ‘"EZaﬁ?m oy +al? ou2 ), @9

{=—L n=

uﬂn(T; t)

with uy,, the velocity field associated with the Fourier x Fourier mode (¢, n). The specific radial
structure of the various u&)m(r) for each quadruplet (¢,n,m,:) must be chosen so that the
perturbation velocity field satisfies both the divergence-free (2.7) and the homogeneous Dirichlet
boundary conditions. The resulting solenoidal, boundary-condition-compliant basis, as well as its
dual counterpart, are an adaptation of those originally proposed by [24] for ordinary orthogonal
domains, and may be found in [17], along with a detailed account of how formal substitution
of the spectral expansion (2.9) into (2.6), followed by Hermitian projection onto each one of
the dual basis elements, leads to a nonlinear system of ordinary differential equations for the
x (2L +1) x (2N + 1) x (M + 1) expansion coefficients a( Y m (). This system we integrate in
time by means of a fourth-order linearly-implicit Backwards leferentiation scheme with explicit
polynomial extrapolation of the nonlinear terms, conveniently started with a fourth order Runge-
Kutta method. The factor 2 in the count of unknowns and the binary superindex : = {1, 2} are the
result of the solenoidal condition reducing from three to two the number of effective degrees of
freedom per grid point.
We will characterise flows by their associated normalised kinetic energy r of the perturbation
velocity field, and by the corresponding inner and outer cylinders normalised torque, T and 7o,

E(u) 87 (7" <u€>£<)
- ’ =1+ : 2.10
i E(vy) »° 87-(7“_1?1]0) r=ri,r ( :
where
1 21 27 pro 1_ . o
E(v)= QVJH V- vdV—wJ Jo JTi v-vrdrd&d(:mj;i (v-v)ecrdr 2.11)

is the volume-averaged kinetic energy of some velocity field v. The volume of the transformed

computational domain is V = 272 (r2 — rZ) = 2n%(1 — 1)/(1 + 1), and ( )ec implies averaging in

both parallelogram directions. With these definitions, x =0 and 7; = 7o =1 for CCF.
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Figure 1. The SPT regime for (1, Ri, Ro) = (0.883, 600, —1200), with (71, k) = (1,0.2). Instantaneous radial vorticity
(wr) fields on a Or — z section at » =rcy as computed in (a) the full orthogonal domain (ni,ki,n2,ke)=
(1,0.0,0,0.2) (See online movie), and (b) the parallelogram-shaped domain (n1, k1, n2, k2) = (1,0.2, —8,1.6). The
thin white lines demarcate the tessellation of the parallelogram domain (thick white).

3. Computational domains and the co-rotating reference frame

Throughout this study, we focus on the computation of the supercritical turbulent spiral known
to arise at (R;,Ro) = (600, —1200) in an apparatus with n=0.883 (r € [r;, ro] = [7.547, 8.547)),
and with an azimuthal-axial wavenumber pair (7, k) = (1, 0.2) [5,17]. At these parameter values,
CCF is subject to a centrifugal instability that is confined to the immediate neighbourhood of
the inner cylinder (r < ~ 7.867, where vg’ (rn) =0). The natural azimuthal periodicity of the
spiral is 27 /2 = 2 and the imposed axial periodicity A = 27 /k = 31.416, such that 71/k = 5, which
measures its slope, emulates the natural tilt selection observed in experiments [20].

In order to simulate the SPT regime in an ordinary orthogonal domain, a minimal choice for
the generalised wavenumbers in (2.8) is (n1, k1, n2, k2) = (7, 0.0, 0, k) =(1,0.0,0,0.2). Figure la
reproduces the computation of [5], but with a much higher spatial resolution of (L, N, M) =
(324,324,42), as required for statistical accuracy, and a time step At=8 x 1075. The colour
map shows the instantaneous radial vorticity (wr) field on an unrolled §r — z section at r =
Teu = (1 + 1n)/2="7.705, in the midst of the centrifugally unstable region that characterises CCF
at these values of the parameters. A well-defined stripe of turbulent flow dynamics stands out
from the otherwise regularly-patterned laminar flow region, here characterised by a dislocated
arrangement of SPI sustained by the centrifugal instability near the inner cylinder.

A statistically equivalent state can be approximately represented in a much smaller
parallelogram-shaped domain. The coordinate change (2.8) can be tailored to choose one of the
new coordinates along the statistically-invariant (tilt) direction of the spiral, say ¢ by enforcing
ny/k1 =n/k =5 for a left-handed spiral as that of figure 1a. If we are to keep the same statistical
axial/azimuthal periodicity of SPT we must in fact set (n1, k1) = (7, k) =(1,0.2). This pair
encodes all that is required of a domain to allow for the large-scale structure of SPT, such that
we are left with absolute freedom for the choice of the second pair (ng, k2). The tilt of the
second axis of the parallelogram domain, &, will then be given by ns/k2, and the volume ratio
of the full orthogonal domain to the parallelogram domain is V- = ko / k- ngo /n. Figure 1b shows
one such domain corresponding to (n1, k1, n2, k2) = (1, 0.2, —8,1.6) (thick white parallelogram),
which is V;- = 16 times smaller than the full orthogonal domain. In the figure, the instantaneous
field has been periodically replicated along both the { and ¢ coordinates, to exemplify how
the parallelogram domain relates to the orthogonal domain (white lines tessellation). The
instantaneous fields are undoubtedly similar, including the centrifugally driven SPI pattern in
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Figure 2. Space-time diagram of radial vorticity wy (rcu, 8(t), z; t) along an axial probe line in (a) the stationary reference
frame with 8(¢t) = 0, and (b) a reference frame rotating at the instantaneous angular velocity of SPT as obtained from the
method of slices, with 6(t) = — A6 (t) the instantaneous azimuthal drift with respect to the slice template. Colour range
as in figure 1.

the quiescent region of the large-scale structure. However, only a rigorous statistical analysis,
described in detail in section §4, can genuinely quantify the degree to which the computation
in the small parallelogram domain can be considered indistinguishable from that in the large
orthogonal domain.

In TCF, the broken symmetries induce a non-trivial angular drift on all non-axisymmetric
flow states, including SPT. This drift of SPT is clearly visible in the space-time diagram of
figure 2a. Computing statistics of local quantities in the stationary frame of reference would
result in averaging the laminar and turbulent regions together, and the essence of intermittency
would be lost in the process. Preserving the localised structure of SPT thus requires special
care in defining a suitable rotating frame of reference. In order to compute field statistics in
a co-rotating frame, Dong [6] estimated the average drift speed from a velocity point probe
employing Fourier analysis. This method crucially depends on the instantaneous drift being
nearly constant, drift speed fluctuations resulting in the undesired smearing out of the average
fields. Here we opt instead for using the instantaneous drift speed to avoid the blurring effect. This
can be done unambiguously by quotienting out the drift along the group orbit associated with
continuous rotation through the slicing technique [19], which renders the statistically converged
fields unique but for the (somewhat arbitrary) choice of the slice template (see appendix A in
supplementary materials). The template must of course capture the large-scale features of SPT
so that the instantaneous drift speed of the rotating reference frame effectively fixes the solution
and field statistics can be computed in a meaningful way and with sufficient sharpness. Figure 2b
shows the same space-time diagram of 2a, but obtained in the reference frame rotating with the
instantaneous angular speed of SPT as computed with the method of slices.

All cases run here but one have used a simple slice template with a(()ll)1 = 1.0 (equivalently
agll)l = 1.0 for the full orthogonal domain) and all other expansion coefficients set to exactly
0.0. This corresponds to a pure oblique/spiral mode with the same tilt as SPT and a purely
radial-azimuthal velocity field. A single run for the case (ng, k2) = (—8,1.6),i.e. V> =16,n2/ke =
—5, with (L, N, M) = (30,240, 24), At=8 x 109, and the template “821)1 =1.0, corresponding
to a spiral-like distribution of azimuthal-axial velocity, has been performed for comparison.
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Despite the two templates being essentially different, integral deviations remain below 1%
for both velocity and Reynolds stress fields, regardless of whether individual components or
vector /tensor norms are used in the comparison. The statistical flow fields seem therefore robust
to the choice of slice template. In section §5, we will examine the flow field topology of the
statistically converged mean SPT regime in detail.

4. Statistical and numerical convergence

The spatio-temporally chaotic nature of the SPT regime requires that convergence be analysed
from a statistical standpoint. We will be employing first and second order moments of turbulent
signals and field variables as a means of quantifying the inaccuracies associated with domain
shape, size and space discretisation.

All simulations were run for a minimum of 20 to 40 viscous time units past all foreseeable
transients until a statistically steady turbulent state had been reached. Statistics were then
collected over an additional 40 to 100 viscous time units, depending on domain size. The expected
statistical invariance of SPT along the spiral coil allows for a final averaging of already time-
averaged flow fields in this direction. As a consequence, the degree of convergence is not an
increasing function of just the total time-integration lapse 7', but of its product with the aspect
ratio A of the domain, namely 7T'A. Accordingly, a simulation in a domain double the aspect ratio,
requires, in principle, half the integration time for a comparable degree of convergence accuracy.

Signal stationarity, i.e. the absence of coherent trends on time scales longer than the simulation
time span, is an essential requirement for the obtention of meaningful and reliable statistics. The
augmented Dickey-Fuller test [25,26] was performed on all individual production data sets to
check for stationarity. The null hypothesis that a unit root is present in the time series sample was
rejected with over 99.999% confidence in all cases, implying that no long term trends pointing
at the presence of transients could be inferred from any of the signals. The mean and rms of
the fluctuation component (standard deviation) of every signal were computed directly from the
time series, and 95% confidence intervals were produced for both estimators using stationary
bootstrapping [27] with automatic block size optimisation [28,29].

All postprocessed data of time-series and field statistics used in the evaluation of statistical
and numerical convergence is given as supplementary material (Appendix E) for completeness.

(a) Baseline computation in the full orthogonal domain

Figure 3a shows the instantaneous axial-azimuthal modal energy distribution (Fy,) of the
instantaneous SPT snapshot of figure la as computed in the usual orthogonal domain. The
volume-averaged kinetic energy of the perturbation field has been additively decomposed into
the sum of the various modal energies following

L N

1—q (7
Ew=3 Y Em, Een:—”j ugn - ul, rdr, (4.1)

¢(=—Ln=—N Lam

where T denotes complex conjugation. The modal energy is high for the low axial (£) and
azimuthal (n) Fourier components of the instantaneous velocity field, but decays fast as higher
and higher wave numbers are considered. In order to resolve turbulence to an acceptable degree,
the axial and azimuthal resolutions have been set sufficiently high that the modal energy decays
by at least six orders of magnitude from the most energetic non-spiral (£# n) mode to the
tiniest resolved scales. Note that the decay exceeds the eight orders of magnitude if all modes
are considered, thus surpassing the most stringent criterion used in the literature [30]. The red
contour delimits the region of the spectrum beyond which the energy decay condition has been
accomplished. The particular time instant chosen for the analysis could have been resolved with
about (L, N) ~ (250, 250) < (324, 324).

10000000 V 008 "H "SUBLL lud B10'BulysgndAlaioosiesol-els) H



@ (b) N O

00 102

100 b 10°

C\ 1
: 1072
. Ff 1o

0 10 20 30

-100 £

-200 RRE

-300

— . 1076
)4 0 100 200 14 Em

Figure 3. Axial-azimuthal Fourier spectrum of SPT. Modal energy distribution Ey,, colourmaps. (a) Instantaneous
spectrum. (b) Time-averaged spectrum. (c) Spectrum of the mean field solution as obtained via the slicing technique.
The inset shows a zoom of the squared region. The red line indicates the contour level for six orders of magnitude decay
from the highest-energy non-spiral mode (£ £ n), shown in yellow.

estimator ‘ K Ti To co
0.0855 £+ 0.0002 1.657 £0.001  1.657 £0.002 —34.21 £0.07

0.0030 £ 0.0002 0.0200 £ 0.0006 0.0233 £ 0.0007  3.48 £ 0.06

ge=1/ (0 —9)2

Table 1. Statistics of normalised kinetic energy (), normalised inner (7;) and outer (7,) cylinder torque, and azimuthal
drift speed (cg) time signals of SPT in the full orthogonal domain.

To guarantee that the resolution is sufficient throughout the computation, the instantaneous
spectrum has been averaged in time (figure 3b) and the variance (not shown) computed
employing Welford’s online algorithm [31]. Mean and variance combined show that (L, N) =
(L, N) = (324, 324) modes are vastly sufficient to secure the six orders of magnitude decay at all
times in the orthogonal domain. Figure 3c shows instead the spectrum of the SPT mean velocity
field as obtained using the aforementioned slicing technique. All modes but those unravelling the
spatial arrangement of SPT exhibit a decaying trend, the spiral modes clearly sticking out from
the background within the low wavenumber region of the spectrum. This attests to an evident
preservation of the large-scale structure of SPT when averaging is done in an adequate rotating
frame.

The aggregate/integral signals used in assessing the degree of convergence of SPT are the
kinetic energy (), the inner (7;) and outer (7,) torques, and the azimuthal drift speed (cy), this
latter obtained through the slicing technique. The mean and rms of these scalar time series are the
statistical estimators that have mainly been used here to assess convergence.

The time-series statistics for the reference simulation in the full orthogonal domain are given
in table 1 for reference. While the mean of all four time signals is converged to within less than
1% with 95% confidence, the uncertainty in rms values is about 3% for cg, 6% for 7; , and reaches
up to 13% for k.

In order to dissect the mean structure of SPT and also to quantify deviations upon modifying
domain size, shape and resolution in section §4(b), we have computed the slice-averaged velocity
(@) and Reynolds stress tensor (u’ ®u’) fields, where u’ = u — u is the fluctuation component of
the velocity field and ® denotes the tensor product. By slice averaging, henceforth denoted with
an overline, we refer to the sequential application of time averaging in the co-rotating reference
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Figure 4. Transverse distributions of slice-averaged flow fields of SPT. (a) Radially-averaged norms of mean
2 2
velocity ((|[l|2)r = (@2 + % + w2)!/2, L2 norm) and Reynolds stress tensor ({[|[u’@u’||p), = (ujul.” + uhul, +

2 2 2 2 . - .
ulul,” 4 2upuy” 4 2uhul,” 4 2upul, )1/2, Frobenius norm). (b) Friction Reynolds number Re, on the inner and
outer walls.

frame defined with the method of slices, followed by further averaging along the invariant spiral
direction. This latter spatial averaging requires the prior expression of the time-averaged fields
in some parallelogram coordinate system with &€ = 71 + kz and arbitrary ¢, so that the ¢-axis is
parallel to the spiral. The precise definitions and implementation details of slice averaging are
presented in appendix A as supplementary material.

Figure 4a shows the transverse distribution of the radially-averaged norms of the slice-
averaged velocity ({||t]|2)r, L2-norm) and Reynolds stress tensor ({||u’ ®u’||r ), Frobenius norm)
fields. Slice-averaged fields might be equivalently depicted on any plane transverse to the spiral
direction on account of the helical invariance of SPT. Here and throughout the paper, we represent
all fields (and transverse distributions) as a function of  and the transverse coordinate ¢ € [0, 27].
The {-axis can be taken as pointing in any transverse direction by defining the { coordinate
appropriately. In particular,  can be interpreted as 6 € [0, 27] or z € [0, A] indistinctly, according
to the preference of the reader. The Reynolds stress norm peaks in the middle of the domain and
pinpoints the location of the turbulent stripe. The leading and trailing interfaces correspond to
the left and right fronts, respectively, as the left-handed spiral winds in the negative 6 direction.
Turbulent decay is nonetheless far from reaching stationarity. The laminar region retains a
considerable level of velocity fluctuations, due to the presence of a pattern of sri-like solutions
(see figure 1 and supplementary movie) that have a differential drift with respect to that of the
large-scale SPT. An extended analysis of the flow structure characterising SPT will be undertaken
in section §5.

The gap-based friction Reynolds number of the turbulent spiral has been computed a
posteriori by evaluating Rer = urd/v at r =r; or 7o. Here ur = /7w /p is the friction velocity,
which is obtained from the mean wall shear stress 7 =y (r9r(Tg/7) + 0r02). As shown in
Figure 4b, the values obtained range in Re; € [47.9,68.9] and [43.4, 60.5] for the inner and outer
wall, respectively. We shall see in section §5 that the extrema of the Re; along each one of the
cylinders correspond to the location where the sheared core of the laminar and turbulent regions
touch the walls. The radial spacing for an equivalent physical grid at the Chebyshev collocation
nodes is Art < 2.5 across the gap, reducing down to ArT < 0.09 on the walls. The azimuthal and
axial equivalent Fourier spacings are also very well resolved with A(rf)" < 5.1 and Az" < 3.4.
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Figure 5. Time-averaged modal energy distribution of SPT as computed in parallelogram domains with
(n1,k1) = (A, k) =(1,0.2), volume ratio V. =16 and various shapes prescribed by (na,k2)=(n2, Vi +
na/f)k = 3.2 + 0.2ny for ny € {—16, —14, —12, —10, —8, —6, —4, —2, 0}. The bottom rightmost panel contains
a sketch of the parallelogram domain shapes used.

(b) SPT in parallelogram-shaped domains

We proceed next to assess the feasibility of reproducing SPT statistics in parallelogram-shaped
domains with the aim of minimising the computational requirements.

First we consider what resolution in the simplest possible parallelogram-shaped domain
would be equivalent to a given axial-azimuthal resolution in the full orthogonal domain. The
parallelogram (n1, k1, n2, k2) = (7, k, —n, IAc) should in principle be capable of handling SPT of
one tilt (i/ fc) and its opposite (—7/ fs) with half the volume and, accordingly, half the resolution

L =N =/LN/2~230, which we have rounded up to (L, N) = (240, 240) to make the most of
the FFTW routines [32]. For other parallelogram domains, since the transverse () direction must
keep the periodicity of the spiral, we have fixed N = 240, while the resolution along the parallel
(¢) direction will be scaled with the domain size to keep an approximately constant resolution
density. All in all, we have used (L, N) = (480/V}, 240), always rounding L to some convenient
value. For instance, the parallelogram domain of figure 1b has V;- = 16 and, therefore, L = 30.
While there is a clear advantage in choosing one of the parallelogram domain sides in the
direction of the turbulent spiral, as this alone allows reducing the overall size of the domain
(and, with it, the computational burden), it is not obvious that there should be some preference
as regards the other side. In order to clarify this, we have run a batch of experiments with
varying transverse tilts na/k2, while keeping the parallel tilt at n /k1 = 5 and a domain size with
Vi =16, ie. ko = (Vi + na/n) k=3.2 + 0.2ny with ny € [~16,0]. As it happens, the resolution
used, (L, N)=(30,240), is more than enough to resolve SPT with an accuracy such that no
effect of domain shape can be perceived on either time-series statistics, or mean velocity or
Reynolds stress fields. However, the average spectra of figure 5 clearly show that the choice
for the second coordinates does indeed matter. The (ng, k2) = (—8,1.6) run, the one that has
na/ka=—n1/k1=—-n/ k=—5,is optimal in the sense that the threshold for the six orders of
magnitude decay in modal energy (red contour line) has no bias toward positive or negative n.
As ny/ks is modified away from this value, the energy decay threshold loses its symmetry to one
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or the other side and hits the +N or —N boundary. We can therefore expect that the resolution
in the ny/kg = —b case may be safely reduced without crucially affecting the statistical accuracy,
while such a resolution coarsening would be increasingly detrimental for domains approaching a
horizontal or vertical tilt. The nature of turbulence within the turbulent stripe provides a plausible
explanation for this fact. The high Fourier modes are indeed required to resolve the smallest
turbulent structures in the flow. Although the large-scale structure of SPT, along with other
smaller-scale coherent structures, introduces a certain degree of axial disymmetry in turbulent
fluctuations, the axial-azimuthal cross-correlations seem to remain quite impervious at the tiniest
scales. As a result, a mesh that preserves the mirror symmetry about r — 6 plane seems to work
best, and this is achieved with ng/ks = —n1/k1 and an adequate resolution.

While the convergence of Fourier expansions along periodic coordinates can be readily
assessed through the modal energy decay rule, the radial Chebyshev resolution requires explicit
appraisal. We find that M =24 modes are sufficient to keep deviations with respect to full
radial resolution (M = 42) within statistical accuracy (see appendix B in supplementary material).
Besides, the means of the inner and outer torques agree to within statistical accuracy (the radial
flux of azimuthal momentum must be conserved on average), which indirectly validates both
the spatial resolution and time sample length used [30]. Regarding time integration horizons,
T =40 to 100 time units as have been used in the bulk of the numerical experiments performed
are sufficient to drop the level of uncertainty in the estimation of time series mean below 1.3%
(with 95% confidence). The estimation of rms, however, typically exceeds 5% and sometimes
even reaches beyond 10%. Results show that extending the time integration from 7" = 100 to 1000
takes relative uncertainties in the mean below 0.5% and rms estimation can be trusted to within
2.5%, which is not a large gain for a 10-fold increase in computational time (see appendix C
in supplementary material). Statistics of SPT, particularly rms, require very long time series for
convergence so that a minimal parallelogram domain offers a clear benefit.

We next turn our attention to the effects of domain size on time series statistics. Following
the averaging properties of normalised aggregate/integral time signals as we are using here,
fluctuation amplitudes are expected to vanish in the limit of an apparatus of infinite aspect ratio.
For finite aspect ratio, fluctuation amplitude is therefore dependent on domain size and signal
variance is expected to scale inversely with the size of the domain along the spiral direction,
provided that the distance is long enough for flow structures to sufficiently decorrelate. All signal
variances have been accordingly scaled to the reference domain with A =2n/k =31.42 so as to
allow comparison. The deviation of signal mean and scaled variance from asymptotic saturation
as the domain size is increased quantifies the adequacy of the domain to allow for sufficient
flow decorrelation and, therefore, for properly capturing SPT. We define the relative accuracy

for a statistical estimator e as eq(e) = |1 — €/(eX0x — €22 )|, where € is the estimator mean and
min

25 and €92, the lower and upper bounds of the 95% confidence interval as estimated through
bootstrapping. We further define the relative deviation error with respect to the reference case
R as g4(e) = |1 — €/eRr|. The accuracy can only be improved by extending the time sample, and
provides a lower threshold below which deviations cannot be considered statistically significant.

Figure 6 shows relative accuracies and relative deviations of time-series statistical estimators
as the domain size is reduced by increasing the volume ratio Vi =kgo/k — na/n € [4,32]
while keeping na/ka = —5, (n1,k1) =(1,0.2) and (L, N, M) = (480/V}-, 240, 42). Deviations are
computed with respect to SPT in the full orthogonal domain (n1,k1,n2,k2)=(1,0.0,0,0.2),
(L, N, M) = (324, 324, 42). Time samples are long enough to keep accuracy of 7; below 4 (7;) <
1% (see figure 6a) while that of o, oscillates in the range eq (o) € [5,10]% (see figure 6c).
Accordingly, deviations cannot be considered significant for V- < 12 or 16, depending on whether
we aim at reproducing the mean (with under 1% error) or the rms (5% error) of 7;. Beyond these
values of V.., the deviations rapidly surge. The statistical estimators of the rest of time series
considered (%, To and ¢g) also follow similar trends (see figures 6b,d).

Domain size experiments suggest that flow structures with an axial scale of about
Az =A/Vy ~2~ 2.6 play an important role in the statistics. This length scale may be related to
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Figure 6. Domain size convergence assessment. For a domain characterised by (n1, k1) = (1,0.2) and na/ks = —5,

the volume ratio is varied in the range V;. = kg/fc — na /N € [4, 32], while keeping the resolution density constant with
(L,N, M) =(480/V;, 240, 42). The reference case is the full orthogonal domain (n1, k1, n2, k2) = (1,0.0,0,0.2),
(L, N, M) = (324,324, 42). (a) Relative deviation error £, and sample length accuracy ¢, for the mean inner cylinder
torque (7). (b) Deviation errors for mean normalised kinetic energy (x;), mean normalised outer cylinder torque (7) and
mean azimuthal drift speed (cg). (c) Same as (a) but for rms (or;). (d) Same as (b) but for rms (o, o7, and oc,). Also
shown are relative field deviations corresponding to (e) mean velocity components (u,-, g and u2), (f) normal Reynolds

stress components (u/}.u?., “laula and u/,u’,), (g) shear Reynolds stress components (U/T“/g! ulu!, and UQUL), and (h)
mean velocity (||u]|2) and Reynolds stress tensor (|[u’@u’||r) norms.

the spanwise size of a typical streak [11]. Given that the rolls have a typical diameter of about
the gap size (~ 1), the natural spanwise size of streaks should be about twice the gap. Highly
subcritical drifting-rotating waves have been identified in counter-rottating TCF that allegedly
participate in the dynamics of SPT [17,33]. Their characteristic axial length scale at onset (R; ~ 350
for Ro = —1200) is around A, ~ 1.4, but it may widen as the inner cylinder Reynolds number is
increased to R; =600 as we have here. It is therefore plausible that the somewhat larger axial
wavelength of the domain required for statistical convergence is a consequence of the nonlinear
interaction of a continuum of such states of varying size.

Comparison based on individual aggregate/integral time series statistics is prone to error
cancellation, particularly so in extremely inhomogeneous flows such as we have. A point-wise
comparison of field data provides a much more reliable basis for convergence analysis (see
figures 6e-h). Given a reference computation (subscript R), the volume-averaged deviation from
reference for the slice-averaged field f is obtained as (|f — fr|)r¢, where f might be any of
the mean velocity components (v, Uy or ), its Ly norm (||ul|2), any of the Reynolds stress

tensor components (vy.vr., vyvy, VAV, viUp, ViVL OF VRVL), or its Frobenius norm (|ju’®@u’||f). See
appendix A of supplementary material for the rigorous definition of volume averaging. We define
the relative deviation by normalising with the maximum absolute local value the field takes for
the reference computation: e4(f) = (|f — fr)r¢/ max,¢|fR/.

Relative field deviations are shown in figures 6e-h taking the full orthogonal domain as the
reference. All field deviation trends show a clear degradation of convergence for parallelogram
domains V;- 2 12 ~ 16 times smaller than the orthogonal domain.

5. The mean structure of statistically converged SPT

Our numerical simulations yield the three individual components of the sliced-averaged
perturbation velocity vector field T and the six independent components of the Reynolds stress
tensor field u’®@u’ in the usual cylindrical coordinates of TCF (see appendix D in supplementary
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Figure 7. Flow topology of slice-averaged SPT. The colourmaps depict (a) parallel velocity component U € [—280, 280],
(b) streamfunction ¥ € [0, 80], (c) fluctuation kinetic energy density Fiyyp and (d) Reynolds stress force FU e
[—2.5,2.5] x 104 in the helically invariant direction. Colour levels increase from blue to yellow and black to white.

material). While providing a general idea of the flow structure of SPT, this projection is not well
suited for a detailed examination and full comprehension of the flow mechanisms. We have
therefore chosen to project the flow onto a new set of coordinates that is better adapted to capture
the structure of SPT in a straightforward manner, as [9] did for PCF.

The helical coordinates of [34] afford a handy and natural description for helically-invariant
flows. In this coordinate system, velocity is locally projected onto an orthonormal basis defined by
the usual radial axis and two additional axes that are parallel and perpendicular to the direction
of spiral invariance. In terms of the notation used by [34], the helically invariant velocity field
depends on just the coordinate pair (r,¢), and its three components are given by (u”,u",u¢),
where n=af — bz/r? and € =az + bf are the coordinates parallel and perpendicular to the
invariant direction of the spiral, respectively. Notice that the positive 1 axis points down and
rightwards for a left-handed spiral as we have. Following their spiral invariance, slice-averaged
fields of SPT can be readily expressed in the helical coordinate system with a =k and b= 7.
This provides a projection that is amenable to direct comparison with the study by [9] of the
laminar-turbulent bands in PCF.

The perturbation velocity components in the helical coordinate system become

U=B (l%ﬂg - %EZ> , V=1, W=B (%ﬂg + fcﬁz> , (5.1)
where B(r) =r/v/k2r2 + 7#2. The three helical components have been renamed (U, V, W) in
analogy to the PCF analysis of [9], where V' is the wall-normal component, and U and W are the
components parallel and perpendicular to the stripes, respectively. Actually, the correspondence
is exact in the narrow gap limit. Note that the base flow (b, vh wh) = (Bl}vlg, 0, Bfwg /r) must
be added to the perturbation velocity when substituting the helical components of total velocity
(W u" u) = (U + U,V + VP, W+ WP into the helically-invariant Navier-Stokes equations
of [34]. According to the mass conservation equation in the transformed coordinates, the radial
and perpendicular velocity components can be combined into a streamfunction ¥ satisfying

0w
1V+6rv+iango =% o _po?
r B r

(.2)
;

Following the velocity transformation (5.1), and the definition of the streamfunction (5.2), the
velocity field has been visualised in figure 7a,b through its component U in the direction parallel
to the spiral (figure 7a), and the streamfunction ¥ (figure 7b) in a unified representation of the two
transverse components V' and W. The closed streamlines accompanying the ¥ colourmap reveal
that a mean anti-clockwise swirl occurs in the midst of the domain. The resulting recirculation
bubble moves downward in z and in the negative ¢ direction (from right to left in the figure)
with the spiral as seen from the stationary reference frame. The turbulent kinetic energy E\,,, =
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Tr(v’'®@u’)/2 = (urur + uyuy + uiul)/2 depicted in figure 7c shows that the core of the turbulent
spiral (the white region in the middle) extends over about half the domain periodicity in the
transverse direction, indicating that the turbulent and laminar bands are of about the same width.
There is a strong correlation between the location of the turbulent core and the mean swirl, which
suggests that the transverse perturbation velocity field (represented by ¥) is mainly driven by
turbulence.

The transverse advection induced by the swirling motion spreads the parallel U component
of velocity across the full transverse cross-section. The extrema occur precisely at the laminar-
turbulent boundaries, which points at a strong component of the mean flow along the spiral
fronts. In particular, fluid is, on average, pushed down at the leading edge (left) and pulled up
at the trailing edge (right), for a left-handed spiral. The parallel velocity U is the dominant one
of the three components, such that both the bimodal distribution of (||u||2) in figure 4a and the
friction Reynolds number distribution of figure 4b can be explained in terms of it.

The effects of turbulent fluctuations on the conformation of the mean velocity distribution
requires a thorough analysis of Reynolds stresses. The mean flow equations of [9] have also their
parallel in the helical coordinate system by applying Reynolds averaging to the helically-invariant
Navier-Stokes equations derived by [34]. In particular, the momentum conservation equation for
the parallel/invariant direction averages to

U = —AY 4DV —FY (5.3)
U 1 k> B2
AT = VOrU 4 Up) + (W + Wy)OU + — V(U + ) (5.4)
U 1 1 .o k?B?*(k*B?-2) 2knB
DY = ~0n(rdU) + 5y 0eU + 5 U+ =5~ [0V — 0r(BW)] (55)
[ [ A2 2 [
FY = 3,0V + iagU'W/ L PO b (5.6)
B r T

where c¢ =10¢g is the mean angular drift velocity and —AY, DY and —FY represent the
advection, diffusion and turbulent forces (the divergence of the Reynolds-stress tensor),
respectively. The fluctuation velocity components U/, V' and W’ in the transformed coordinates
are directly obtained from ul, 'U,/e and u, following the rules set by (5.1). Hence, U'V'and U'W' are
easily computed from the Reynolds stress tensor in cylindrical coordinates (shown in appendix D
as supplementary material). The distribution of FU in figure 7d indicates that the turbulent
Reynolds stresses that drive U are particularly strong near the cylinder walls.

Comparison of figures 7a-c with the mean structure of the laminar-turbulent patterns of PCF
as presented in figure 5 of [9] shows that, despite the slight but evident symmetry-breaking of SPT
their overall features are remarkably similar. Parallel turbulent force distribution of SPT, shown
in figure 7d, also compares favourably with that for laminar-turbulent stripes in PCF (see figure
14 of [9]). However, for the supercritical counter-rotating regime of TCF, the centrifugally-driven
SPI that arise due to the linear instability of CCF leave their distinct imprint on the fluctuation
kinetic energy E,1, and the parallel turbulent force F’ U which are from vanishing in the laminar
region. The velocity fluctuations they induce on account of their differential rotating speed with
respect to the large-scale structure of SPT (see figure 1 and supplementary movie) show as a faint
elongated band in close proximity of the inner cylinder.

The projections on an annular cross-section of the mean perturbation velocity and Reynolds
stress tensor field components in primitive cylindrical coordinates are provided as supplementary
material in appendix D.

6. Concluding remarks

We have investigated numerically the statistical properties of the turbulent spiral regime (SPT) in
the supercritical parameter region of counter-rotating Taylor-Couette flow. The steady progress
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in the numerical analysis of turbulent stripes in PCF can be mainly attributed to the use of
suitably tilted narrow computational domains and to the absence of drift. The combined use
of parallelogram-shaped domains and the method of slices, as we have illustrated here, seems
therefore a necessary step towards carrying the analysis of laminar-turbulent patterns over to
both the supercritical and subcritical SPT regimes of TCF.

Besides computing the supercritical SPT regime in the best-resolved simulations to date,
we provide a detailed characterisation from a statistical perspective. Long time series of
aggregate/integral quantities such as normalised kinetic energy (x), inner (7;) and outer (7o)
cylinder normalised torques, and azimuthal drift speed (cy) have been employed in the
characterisation. In particular, the mean and rms of fluctuations have been assessed and 95%
confidence intervals provided by means of stationary bootstrapping. Further, the statistical flow
topology of SPT has been determined by computing mean velocity and Reynolds stress fields in
a frame of reference rotating at the instantaneous angular velocity of the turbulent spiral. This
has been done via the slicing technique, which unambiguously eliminates the phase drift along
the group orbit associated with continuous rotation. The rotating frame is unique but for the
slice template (the reference flow field) used in defining it. Nevertheless, we have found that the
method is robust as long as the template has a structure that is sufficiently representative of the
mean flow field of SPT. If this condition is met, replacing the template does not significantly affect
statistical field results.

In the search for computational economy, we have further exploited the statistical invariance
of SPT along the direction of the spiral tilt to implement a coordinate transformation that replaces
the ordinary periodic orthogonal-annular domain with a periodic parallelogram-annular domain.
By aligning one of the new coordinates with the slope of the turbulent spiral band (parallel) and
setting the periodicity of the other (transverse) to retain the natural azimuthal periodicity of the
pattern, we find that the periodic size of the computational domain can be greatly contracted
along the spiral coordinate direction without significantly compromising the statistical properties
of SPT.

Altogether, a parallelogram-annular domain (n1, k1, n2, k2) = (1,0.2, —8,1.6), V, = 16 times
smaller than the usual orthogonal domain and with periodic coordinates aligned with the
turbulent spiral ny /k; = 5 and the opposite sign spiral ny/ko = —5, provide an optimal choice for
computing supercritical SPT at (R;, Ro) = (600, —1200) in an apparatus with 7 = 0.883. Reliable
statistics can be recovered with remarkable accuracy with a resolution (L, N, M) = (30, 240, 24),
although lower resolutions might still be sufficient in the Fourier directions. This domain
preserves the mean and rms of normalised kinetic energy, inner and outer cylinders normalised
torque, and azimuthal drift speed time series within 1% and 5%, respectively. The minimal size
of the domain appears to be limited by both the wavelength of the turbulent spiral band and the
cross-stream width of the typical streaks. While the orientation of the transverse coordinate may
be chosen arbitrarily, the apparent statistical axial symmetry of the tiniest turbulent scales seem to
favour slopes of the same magnitude but opposite tilt as that of the parallel (or spiral) coordinate.

In order to expose the mean structure of SPT, flow field statistics have been collected
on a suitably rotating frame of reference defined through the method of slices [18,19].
The characteristic statistical invariance in the spiral direction has been exploited to enhance
convergence by further averaging along the helical coordinate. Deviations in the norms of the
mean perturbation velocity and the Reynolds stress tensor fields for the optimal parallelogram
domain with respect to the full orthogonal domain are below 1% and 2%, respectively.

The mean flow topology reveals a distinct spiral structure, while the Reynolds stress fields
evince the localised nature of turbulent fluctuations within a well-defined spiral coil. The mean
flow structure is most clearly understood in a helical coordinate system [34], which also enables
direct comparison with the turbulent stripes in PCF. The qualitative similarity is striking. This
is a somewhat surprising result, given that the SPT regime we have analysed belongs in the
supercritical region of parameter space, where TCF is subject to centrifugal instability. It appears
that centrifugal effects are merely collateral and affect SPT only mildly. As for channel flows, the
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natural spacing between consecutive turbulent stripes does not allow for a clear relaxation onto
the laminar base flow. In supercritical TCF, however, centrifugally-driven SPI appear in the vicinity
of the inner cylinder and leave a slight but discernible signature on the mean structure of SPT.

The method we present dramatically reduces the computational cost of reproducing SPT
accurately. This paves the way to producing extremely long data series, which are essential to
the computation of higher-order statistics, as well as enabling parameter explorations hitherto
unaffordable. Moreover, we trust that dynamical systems theory will amply benefit from the
ready access to accurate datasets of SPT. The search for invariant solutions and the determination
of Lyapunov exponents are but two prominent examples of useful goals that the use of
parallelogram-annular domains in Taylor-Couette flow puts at the disposal of the fluid mechanics
community.
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