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Abstract

The nonlinear dynamics of the flow in a short annular container driven by the rotation of the inner cylinder is studied using
direct numerical simulations of the three-dimensional Navier—Stokes equations. The basicB¥®) is Z, symmetric. For
aspect ratios between 3.6 and 4.4, we have located three codimension-two bifurcations: a cusp, a double Hopf and a fold-Hop
bifurcation. All these local bifurcations aé&-invariant. The breaking af, symmetry involves very complex Shil’nikov-type
dynamics, not directly connected to any of the three codimension-two bifurcations, but associated with five unstable limit cycles
and a wealth of heteroclinic connections between them. Period-adding cascades, both direct and reverse, of 2-tori have bee
found. Narrow regions of chaotic dynamics are interspersed within these quasiperiodic solutions.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The flow between two concentric cylinders driven
by their differential rotation, Taylor—Couette flow, has
played a central role in the development of hydrody-
namic stability theory{34] and has also provided a
testbed for the application of low-dimensional dynam-
ical systems theory to an infinite-dimensional system
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[32]. Its geometric simplicity also allows for well-
controlled experiments which may shed light on the
transition to hydrodynamic turbulence.

Theoretical progress, starting with Tay[8#], pro-
ceeded by making two geometric idealizations: (1) that
the height-to-gap aspect ratio of the annuius> oo,
and (2) that the radius ratio of the two cylinders> 1.

The simplifications in the mathematical description of
the problem due to these geometric idealizations are
that in the limitn — 1, curvature effects are negligible
and the basis functions for the radial dependence of the
flow are trigonometric rather than Bessel functions. The
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limit ' — oo, together with the assumption of period-
icity in the axial z direction leads to a unique basic
state, specified by the radii and the non-dimensional
rotation rates of the cylinders (i.e. Reynolds numbers),
and is a function only of. Under these idealizations,
the system hasO(2) x O(2) symmetry;SO(2) being
due to invariance to arbitrary rotations about the axis (@ (b) O
(axisymmetry) andO(2) being due to invariance to
both reflection about any heighaind translations in. Fig. 1. Schematics of (a) the pitchfork for— oo, and (b) the imper-
Theoretical predictions from normal form theory incor-  fect pitchfork for finite (large
porating these symmetries have reproduced and pre-
dicted many of the primary and subsequent instabilities state that breaks the axial translation invariance and
observed experimentally in long, narrow-gap Taylor— produces a family of Taylor vortex flow states, each of
Couette systen{9,12]. Nevertheless, the limit — oo which is distinguished by its phase in In practice,
is singular, and endwall effects are not negligible even the phase ir; is fixed once boundary conditions are
in very long Taylor—-Couette systenf§,7,10,22,31] imposed (e.g., setting the axial velocity= 0 atz = 0
The presence of endwalls, even if they are infinitely far andz = A, whereA is the wavelength of the assumed
apart, completely destroys the translation invariance of periodicity) and the pitchfork bifurcation becomes a
the 0(2) symmetry in the idealized theory. In any phys- regular pitchfork, as illustrated iRig. 1(a). The two
ical Taylor—Couette system in which the two endwalls bifurcating branches differ by a translation &f/2
are both stationary or both rotating at the same rate, thein z, or equivalently, by a reflection abowgt= A/4
symmetry of the problem (ignoring any small imper- (note that the schematics of the solutions show only
fections) isSO(2) x Z5, consisting of rotations about  one axial period and that the solution consists of the
the axis and a reflection about the cylinder half-height. periodic extension of these to= +00). The reflection
A direct consequence of destroying the continu- aboutz = A/4is theZ, symmetry thatis broken at the
ous translation symmetry by the presence of end- pitchfork bifurcation. In fact, in the idealizeld — oo
walls is that instead of a continuous spectrum in axial case, once periodicity inis assumed and (identical)
wavenumber, and stability characteristics determined boundary conditions at= 0 andz = A are imposed,
by the Eckhaus instabilitj30], the system has a dis- the continuoug)(2) symmetry is replaced by the dis-
crete spectrum ip, and the basic state is a function of crete Z, x Z, symmetry, which is generated by the
(, 2). Instability is still, primarily, centrifugal in nature,  reflections about = A/2 andz = A /4. The pitchfork
owing to the rotating inner cylinder introducing a large  bifurcation shown irFig. 1(a) preserves the invariance
negative radial gradient of angular momentum into the to reflections about = A /2 and breaks the invariance
flow. The flow tends to redistribute the angular momen- to reflections about = A /4.
tum via viscous diffusion if the flow inertia is suffi- In a real physical apparatus,is finite and has no-
ciently small, or by nonlinear advection for larger flow slip endwalls. In this case, the reflection about A /4
inertia. When the outer cylinder is at rest, which is the (or equivalently, the\ /2 translation iry) is not a sym-
case considered inthis paper, the nonlinear advection ofmetry of the problem. For large but finitg the flow
angular momentum is accomplished by the eruption of away from the endwalls behaves approximately as in
jets of angular momentum from the boundary layer on thel’ — oo case, and the pitchfork shownfiig. 1(a)
the rotating inner cylinder, which lead to the formation isimperfect, as shown ifig. 1(b). For endwalls at rest,
of counter-rotating cells about the jets—known as Tay- the boundary layer flow tends to be radially inward; on
lorvortices. These vortices tend to have unitaspect ratio increasingRe from the basic state, weak Taylor-like
in (r, z) when the endwalls are far apart, but for short cells appear close to the endwalls that become stronger
annuli the cells can be quite far from unit aspect ratio. and eventually fill the gap between the cylinders in a
In the idealizedl” — oo case, the onset of Taylor smooth process resulting in the cellular flow with radial
cells is via a supercritical pitchfork of revolution bifur-  inflow at the endwalls. The cellular flow with radial
cation from thez-independent circular Couette basic outflow at the boundaries is a disconnected branch,
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Fig. 2. (a) Successive pitchfork bifurcations of the base state for
' = 0o, and (b) schematic of the bifurcations for finlte

the so-called anomalous cdég7]. For smaller”, the
saddle-node bifurcation at which the anomalous branch
is created occurs at larg&e.

In theI" — oo case, the base state undergoes sec-
ondary bifurcations to states with different numbers of
Taylor vortices, as illustrated iRig. 2(a). These sec-
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codimension-two cusp bifurcation at which both modes
(1-jet and 2-jets) bifurcate simultaneously. There are
a variety of scenarios corresponding to different one-
parameter paths near the cusp bifurcation, many of
them like Fig. 2(b) and their counterpart (where the
2-jet state is continuous with the base state and the 1-
jet state appears in a saddle-node). A very specific path
through the cusp point (the path tangent to the cusp)
results in a pitchfork scenario. But this pitchfork is not
associated with a symmetry of the system, it is due to
the competition between two distinct modes not related
by any symmetry. It can only be located by tuning
two parameters at the same time (codimension-two). A
pitchfork due to a symmetry breaking is a codimension-
one bifurcation, located by varying only one parameter.
This codimension-two pitchfork must necessarily be

ondary bifurcated states may eventually become stablepart of a codimension-two bifurcation that includes

at higher Re, producing a multiplicity of coexisting
stable states with different numbers of Taylor cells.
The order in which the pitchfork bifurcationgif.
2a) take place depends on the imposed axial wave-
length A; changes inA can result in changes in the
order of the bifurcations. In particular, there exist
values where two pitchforks bifurcate simultaneously,
due to the competition between two modes with differ-
ent number of cells trying to fit in the prescribed axial
periodicity.

For I' finite, all the above-mentioned pitchforks
result in imperfect pitchforks with disconnected
branches originating at saddle-node bifurcations. All

the unfolding of the pitchfork, as is the case of the
cusp bifurcation, that includes a pitchfork together with
‘imperfect’ pitchforks, such as shown Fig. 2(b).

Fig. 3 shows a schematic of the cusp bifurcation,
and several one-parameter paths nedfig. 4 shows
schematics of the bifurcations along the one-parameter
paths. Path 1, through the cusp point and tangent to the
cusp, is identical to a pitchfork bifurcation. Paths 2
and 3 show the two possible unfoldings, where either
the 1-jet or the 2-jet state remains continuously con-
nected with the base state. Path 4 shows the relationship
between the two saddle-node bifurcations, connected
via an unstable intermediate statg, in Fig. 3a).

the branches corresponding to anomalous modes (such For sufficiently large but finitd”, the cells away

as the 3-cell state shown Fig. 2a) move to highre,
and the first bifurcations involve only ‘normal’ modes.

from the endwalls appear periodiciand their period-
icity is well described by the idealizdd — oo linear

These modes have necessarily an even number of cellsstability analysis. For small, non-uniqueness of these

(2N), grouped in pairs, each pair corresponding to a jet
of outgoing flow, anV-jet state. The result is shown in
Fig. 2(b), where the two coexisting states correspond
to 1-jet and 2-jet states. Althoughig. 2(b) resem-
bles an imperfect pitchfork, the two branches come
from different pitchforks bifurcations from tHe — oo
case, having their counterparts (the ‘missing’ anoma-
lous branches) moved to higRe for finite I". If it
was an imperfect pitchfork resulting from axial sym-
metry when' — oo being broken for finitel", both

cellular (basic) states occui34]. For a given range in

", this non-uniqueness leads to competition between
cellular states with & and 2V + 2 cells (where the
integer 2V is of orderT"), which is organized by a cusp
bifurcation (the v and 2V + 2 cell states are born at
respective saddle-node bifurcations, and the saddle-
node curves meet at a cusp point), as described above.
Mullin [24] gives a detailed experimental account of
this competition. This picture is further complicated by
subsequent symmetry breaking of these cellular states.

branches should have the same number of cells, andThe cellular states hav®0(2) x Z, symmetry. If the

one of them should be anomalous, which is not the
case. The situation for finité (shown schematically in

primary symmetry-breaking bifurcation breal®,
then two steady axisymmetric states, that are mirror

Fig. 2b) corresponds to a one-parameter path through aimages of each other about the cylinder half-height,
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State variables

Cusp point R
(a) - (b) = Re

Fig. 3. (a) Schematic of the cusp bifurcation, and (b) one-parameter paths near the cusp bifurcation.

result. There have been many studies of this, both observed a universal character to this competition, but
numerical and experimental, most recently in Mullin the competition between th€ = 1 andN = 2 states
et al.[28] where curvature effects (i.e. variabjghave does notfit this general scheme. Abshadgmexplored
been considered. this competition experimentally, and found that again

If SO(2) is the first symmetry that is broken, then a it is organized by a codimension-two cusp bifurcation,
time-periodic rotating wave (i.e. a three-dimensional but that the sequence of instabilities suffered by the
state that is steady in an appropriate rotating frame-of- basic states, and in particular the way thasymmetry
reference) results via a Hopf bifurcation. For wide gaps is broken, is quite distinct from that found fof > 2.
(n ~ 0.5), the Hopf bifurcation is often observed asthe Those experiments focused on the 4-ckIl-€ 2) state,
primary symmetry breaking bifurcation (depending on and by subsequent comparison with detailed numerics,
I"). Gerdts et al[11] provides an extensive account of it was shown[3,2] that the experimentally observed
experimental observations in such cases over a largecomplex dynamics are robust and not driven by extra-
range inI" with n = 0.5. Often, very complicated neous noise or imperfections in the experiment. The
dynamics are observed close to these Hopf bifurca- sequence of bifurcations suffered by the 2-cell state
tions, and the complex dynamics tend to result from (N = 1) was not explored in those experiments, and in
the collision of a Hopf bifurcation curve with one of this paper we provide the first systematic parametric
the saddle-node curves involved in the cusp bifurcation study of the bifurcations involved using direct numeri-
between the ® and 2V + 2 cell states. These complex cal simulations of the three-dimensional Navier—Stokes
dynamics occur in the “standard” set-up with both equations, revealing yet another rich route to complex
endwalls stationanf11,26,29,35] as well as when  dynamics.
both endwalls co-rotatf27,33], and even when one
endwall rotates and the other is stationary (so that
Z> symmetry is completely absent from the system) 2. Navier-Stokes equations and the numerical
[20,25] scheme

The competition between the\2and 2V + 2 cell
states invariably involves very-low-frequency states Consider the flow in an annular region with inner
[11]. ForN > 2, Gerdts et al11] have experimentally ~ radiusr; and outer radius,, capped by endwalls a

-

Fig. 4. Bifurcations along the one-parameter paths shovign3(b).
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distance: apart. The endwalls and the outer cylinder
are stationary, and the flow is driven by the rotation of
the inner cylinder at constant angular sp€edo non-
dimensionalize the system, the annulardap r, — r;

is used as the length scale, and the time scale is the!=0 /=0k=—Ns

viscous timed2/v, wherev is the kinematic viscosity
of the fluid. The system is governed by two geometric
parameters and one dynamic parameter:

ri

n=—,

Yo

Radius ratio :

. h
Aspect ratio : = 7

d

QI",’
Vv

Reynolds number Re =

Throughout this study, we shall keep the radius ratio
fixed atn = 0.5 and varyI’ and Re. The dynam-
ics we shall explore are organized by a number of
codimension-two bifurcations and global bifurcations
in (T, Re) space, and we also explore in detail a one-
parameter path with fixed = 4.

In cylindrical coordinates, r(0,z), the non-
dimensional velocity vector and pressure are denoted
by u = (u, v, w) and p, respectively. The governing
equations are the (non-dimensional) Navier—Stokes
equations

ou

ot
V.-u=0,

+((u-V)u=-V ~|—V2u,
(u-V) p B

subject to no-slip boundary conditions. Specifically,
u, v, andw are zero on all stationary boundaries, i.e. at
the outer cylinder; = r,/d = 1/(1 — n) = 2, and the
top and bottom endwalls = +0.54/d = £0.5T". On
the rotating inner cylinder, = r;/d = n/(1 —n) = 1,

u andw are zero ana@ = Re.

To solve(1), a stiffly stable semi-implicit second-
order projection scheme is used, where the lin-
ear terms are treated implicitly while the nonlinear
terms are explicit (se§l9,21] for details). For the
space variables, we use a Legendre—Fourier approx-
imation. More precisely, the azimuthal direction is
discretized using a Fourier expansion wiNy + 1
modes corresponding to azimuthal wavenumbees
0,1, 2, ... Ny, while the axial and radial directions are
discretized with a Legendre expansion. For example,
the spectral expansion for the axial velocity component,
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w(r, 0, z, 1), is

N, N Ny

ZZ Z wi, k()i

2z ' B 1+9\ e
(F)w(e-15)e
)

whereg; andy; are appropriate combinations of Leg-
endre polynomials in order to satisfy boundary condi-
tions.

The spectral convergence of the code in the radial
and axial directions has already been extensively
describedinf21] form = 0;the convergence properties
in these directions are not affected fay=# 0. For the
convergence in azimuth, we note that the mode of insta-
bility being investigated here leads to rotating waves
with azimuthal wavenumbers 1 or 2. This numerical
scheme has been used to investigate similar dynamics
in Taylor—-Couette flows with different boundary con-
ditions and parameter regimes, where resolution issues
have been addressgd,20] The results presented here
have 48 and 64 Legendre modes in the radial and axial
directions, respectively, and up to 11 Fourier modes in
6 (resolving up to azimuthal wavenumber= 10); the
time-step used i& = 104,

3. Results

Although the problem is geometrically simple, there
isavery richand complex dynamics, inlarge partdue to
the multiplicity of co-existing states. In order to system-
atically examine the dynamics, we begin by restricting
the solutions to various invariant subspaces, defined by
their symmetry properties, before considering the full
unrestricted problem. Many of the solutions which play
important roles in the full problem are unstable, and
so generally not readily observable. However, some of
these are stable in certain subspaces and we are able
to get a more complete picture by computing in these
subspaces.

The governing equations and boundary conditions
are equivariant to rotation®,, of arbitrary anglex,
around the cylinder axis, and to a reflecti&in about
the midplane = 0. Their actions on the velocity vector
u are

Ro(u, v, w)(r, 0, z) = (u, v, w)(r, 0 + «, 2), 3)
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K, (u, v, w)(r, 0, 2) = (u, v, —w)(r, 6, —2). 4) for w. This enforces the condition
) ou v
Since R, and K, commute, the symmetry group of i w =0, (5)

the problem isG = SO(2) x Z,. The basic state, i.e.

the unique solution of the Navier—Stokes equations at the midplane, which means that on this plane there

for small values ofRe, is steady and invariant to the is no through-flow and there are no tangential stresses.

groupg. The restriction to theS0(2) x Z,-invariant subspace
We shall consider the dynamics in a number is accomplished by imposing botSO(2) and Z

of invariant subspaces: (i) th80(2) x Zo-invariant ~ invariance.

subspace, where all solutions are axisymmetric and

reflection symmetric about the midplare= 0, (ii) 3.1. Axisymmetric subspace

the SO(2)-invariant subspace, where all solutions are

axisymmetric but the midplane need notbe asymmetry For n =05, =4 and Re not too large (we

plane, (iii) theZo-invariant subspace, where the mid- have considerede up to about 500), there are two

plane is a symmetry plane but the solutions need not be branches of solutions in the axisymmetric subspace

axisymmetric, and finally (iv) the full problem where (incidentally, both branches are reflection invariant).

no symmetry conditions are imposed. With the spec- One is characterized by two jets of angular momen-

tral method used, the restriction to the axisymmetric tum emerging from the boundary layer on the inner

SO(2)-invariant subspace is accomplished by setting cylinder, denoted S2jet, and the other, Sljet, has

to zero all but the zeroth Fourier mode. We can also a single jet at the midplane. Contour plots of the

restrict to subspaces with discrete azimuthal symme- streamfunction and the azimuthal velocity for solu-

try, of say wavenumben:, by setting to zero all the tions on these branches are shownFigs. 5 and

Fourier modes except the zero mode and the modestha6 for S2jet and Sljet, respectively, fdr = 4. At

are multiples ofn. The restriction to the&,-invariant I' =4, the S2jet solution branch is smoothly con-

subspace is simply accomplished by setting to zero all nected to the unique basic statek¥s— 0 (the Stokes

the odd Legendre polynomials in théasis foru and flow limit), which is characterized by Ekman vortices

v and all the even Legendre polynomials in tHeasis on the endwalls. Fol" < 3.81, the Sljet branch is

Re = 60

Fig. 5. Streamlines and contoursw{side-by-side) of steady axisymmetric state$ at 4, n = 0.5 andRe as indicated; all these states are
connected smoothly and lie on the S2jet branch [8ge7b). The left boundary in each plot is the rotating inner cylinder and the right boundary
is the stationary outer cylinder.
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Re =100 Re =150 Re =200

Fig. 6. Streamlines and contourswofside-by-side) of steady axisymmetric stateF at 4, n = 0.5 andRe as indicated; these states are on the
Sljet branch which for thif andyn begins at a saddle-node bifurcationfat= 80.55 (sedFig. 7).

connected smoothly with the Stokes flow limit (see with Re for these two solution branches at (&)= 3.7

Fig. 7a). and (b)I" = 4, illustrating the smooth transition from
One global measure we have used to characterizethe Stokes flow limit to S1jet for = 3.7 and to S2jet

the various solutions obtained is the (scaled) kinetic for I' = 4, as well as the onset of the other branch

energy in thenth Fourier mode of the solution: (S2jet forT" = 3.7 and Sljet forl' = 4) via saddle-
node bifurcations. Tracing these saddle-node bifurca-
1 =tz pr=2 — drd tions in (T, Re) space, we find that they meet at a
m = SRe2 /z:—F/Z /rzl Um - Umr ArQz, ©) codimension-two cusp point aF (~ 3.81, Re ~ 76).

The loci of these saddle-node bifurcation curves are
where u,, is the mth Fourier mode of the velocity  plotted inFig. 8 The figure also includes a pair of Hopf

field. Note that aske — 0, Eg — 0.5 andE,, — O bifurcation curves and a Neimark—Sacker bifurcation
for m # 0. For the axisymmetric solutions Sljet and curve; the Hopf bifurcations are both from the Sljet
S2jet, onlyEg # 0. Fig. 7 shows the variation oEg solution, and the resulting time-periodic states break
r=37
1 T T T T 1
S2jet
0.8 1 0.8
E, £y
Sljet
0.6 F . 0.6
0.4 0 .'(I.'(Jl . .2(IJU .?(IIU 4(IHJ‘ 500 0.4 0 ' ‘I{IJ{J‘ 2;)() _'h:)() 4;)0. . .50{1
@) Re (b) Re

Fig. 7. Kinetic energyEo, of the two basic states Sljet (squares) and S2jet (circlg@syal.5 as functions oRe for (a) ' = 3.7 and (b)["' = 4.0
(determined numerically by restriction to the axisymmetric subspace).
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T LI T T

44 =—e Saddle—node:S Ljet 4
=—= Saddle—node:S2jet
o—o Hopl:RWle 1
42F o—a HopfiRW2e 1
oo Neimark—Sacker:MRWe

3.6

60 80 100 120 140 160 180 200

Re

Fig. 8. Partial regime diagram at fixed= 0.5.

the SO(2) symmetry, but remain&, invariant. The
resulting limit cycle solutions are rotating waves RW1le
(with azimuthal wavenumber = 1) and RW2e (with
azimuthal wavenumber = 2). The Neimark—Sacker
bifurcation is an instability of RW1e that breals
symmetry. We explore these non-axisymmetric bifur-
cations in the following subsections.

3.2. Reflection symmetric subspace

Forn = 0.5, the primary instabilities of thO(2) x

Z, basic state Sljet lead to limit cycles via Hopf bifur-
cations which break th&0(2) symmetry (for the range
of I' and Re we consider here, S2jet remains stable,
and all the complexity in the dynamics results from
instabilities of Sljet). The normal form for a Hopf
bifurcation from a base state with symmetry group
G = SO(2) x Z is the same as for the standard Hopf
bifurcation. Using the complex amplitude of the limit
cycle,A, the normal form, up to third order i, is

A = Aiwo + 1 — alA|?), @)

wherewg is the imaginary part of the critical eigenvalue
at the bifurcation andg. is the bifurcation parameter
(here,u is a function ofRe andI’). Although the pres-
ence of the symmetry grou@ does not modify the
generic Hopf normal form, the bifurcated limit-cycle
solution,y, may have symmetries different fragnThe
action ofG on the amplitudet is [14]:

RoA=6€"A, K.A=sA, (8)

wherem is an integer (the azimuthal wavenumbeyof
in our problem) and = +1. Whenm = 0, the eigen-
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vector isSO(2)-invariant, i.e. axisymmetric; when=
+1, the eigenvector iZ,-invariant. The action of on
the periodic bifurcated solutiop is the following: if
m = 0, the action ofR,, leaves every point of invari-
ant. If m # 0, the action ofR,, ony is equivalent to a
time translatiorr — ¢ + ma/wp: advancing in time is
equivalent to a rigid rotation of the flow pattern, and
y is called arotating wave with precession frequency
w, = wo/m. If s =1, the action ofK, leaves every
point of y invariant. If s = —1, the action ofK, is
equivalent to a time translation af wg, which is half
the period ofy.

The bifurcated limit cycle, as a set, i§-invariant,
but the individual points orr (the solution at a given
time), are only invariant to a subgrouy of G, called
the group ofspatrial symmetries of the bifurcated peri-
odic solution. That is, applying an element®to a
given point iny will either leave it invariant or produce
a symmetrically related point ip. The elements of
which leave the point invariant form the subgrotp
The remaining elements &f are calledspatiotempo-
ral symmetries of y, and their action is equivalent to
a specified time translation along the orbit. There are
four different possibilities for the symmetries of the
bifurcated orbity:

m s A
Type | 0 +1 SO(2) x Z»
Type ll 0 -1 SO(2) 9)
Type 1l #0 +1 Zm X Z2
Type IV #0 -1 Zom

whereZ,, is the discrete group of rotations generated
bY Rz m, andZy,, is generated bX; R/, andZs is
generated by the reflectidk, .

Fig. 8shows the Hopf bifurcation curves leading to
RW1e and RW2e from Sljet. BothRW1le and RW2e are
K invariant (hence = +1), havem = 1 andm = 2,
respectively, and so both are Type Il limit cycl€sys.

9 and 1Ghow contours of the axial velocityat various
meridional planes (angkas indicated in the figures)
for RWle and RW2e, respectively. Théit invariance
is clearly evident, as is the = 2 azimuthal periodicity
of RW2e (the meridional cut at angbas the same as
até + ).

FromFig. 8 we see thatfoF < 3.72, Sljetis stable
when it exists, i.e. foRe > 90 (we have checked this
using computations not restricted to symmetric sub-
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0 /3 2n/3 i 4m/3 Sm/3

Fig. 9. Contours ofv in meridional planes at as indicated for RW1le a@e = 95, " = 4, n = 0.5. There are 24 contour levels ir 15, 15].

spaces). So, fof = 3.7, the only bifurcation of the  the RW2e Hopfcurve has been continuelite 4.5 by
system (up tdke = 500) is the saddle-node Rt ~ 90, computing in a even Fourier subspace (although Rw2e
indicated inFig. 7a, at which Sljet is created. For is unstable tan = 1 perturbations, i.e. to RW1le, these
I' > 3.72, Sljet undergoes a number of bifurcations. are not present in an evemsubspace).

Primarily, S1jetis unstable via two different Hopf bifur- Double Hopf bifurcations can lead to several differ-
cations. For fixed", Sljet is first unstable to RW1le ent dynamic scenarios in their neighborhood, depend-
for low Re and to RW2e for largeRe, and there is  ing on the particulars of the problem at hafid].

a codimension-two double Hopf bifurcation point at The double Hopf bifurcation in our problem is one
about " = 3.77, Re = 155) at which Sljetis simulta- of the simplest in which the two Hopf bifurcations
neously unstable to RW1e and RW2e. The RW1e Hopf are super-critical and there is a wedge-shaped region
curve has not been followed beyond the double Hopf in (I, Re)-space delineated by the parts of the Hopf
point (as there is no subspace in which RW1e is stable); curves which are second bifurcations from S1jet (meet-

Fig. 10. Contours ofv in meridional planes at as indicated for RW2e ate = 180, I' = 4, n = 0.5. There are 24 contour levels ir {0, 40].
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ing at the double Hopf point) in which both RW1e tial conditions near Sljet evolve toward RW2e (recall
and RW2e co-exist. In a smaller wedge-shaped regionthat in this parameter regime, S2jet is also stable).
within this co-existence region, there is a mixed-mode RW2e can be followed to largee; at Re = 375 a super-
state (unstable in our problem) and the two limit cycles critical Hopf bifurcation from Sljet spawns RW2e to
are simultaneously stable. This inner wedge region is lower Re. Restricting computations to an even Fourier
delineated by a pair of Neimark—Sacker curves. At each subspace (in which RW1e does not exist), RW2e can be
Neimark—Sacker curve, one or other of the limit cycles traced all the way down t&e = 1158 where it bifur-
changes stability (these curves are not showidn8). cates from Sljet in a supercritical Hopf bifurcation.
This double Hopf scenario has been described in detail At Re = 1158, Sljet is already unstable to RW1e, so
for a different fluid dynamics problem in Marques etal. RW2e is unstable at onset. Performing computations
[23], and we refer the reader there for further details. without restriction to an even Fourier subspace and
We have examined RW1e and RW2e in further detail monitoring £; of RW2e, we have located the other
along a one-parameter path Re with ' = 4 fixed. Neimark—Sacker bifurcation which emerges from the
We begin by describing the dynamics iKa-invariant double Hopf point; fol™ = 4 it occurs at abouRe =
subspace (note that for = 4, RW2e is stable to per- 139, which is about th&e value at whichE1 of RW1le

turbations that are nak, invariant for Re < 365; at is maximal forI" = 4. Note that the two Neimark—
Re = 365 RW2e collapses onto Sljet via a Hopf bifur- Sacker bifurcations that emerge from the double Hopf
cation). point have been detected ink invariant subspace,
As a global measure of the “amplitude squared” of and so these bifurcations do not break the reflection
the limit cycles RW1le and RW2e, we ugg andE», symmetry. The mixed mode which emerges from these
respectivelyFig. 11a shows the variation witlke of however is unstable and we are unable to say much

E1 for RW1le andE; for RW2e atl” = 4. RW1e bifur- about it. The precession periods corresponding to the
cates from Sljet at a supercritical Hopf bifurcation at RW1e and RW2e solutions Bt= 4 vary between 0.1
about Re = 93,6, its amplitude reaches a maximum and 0.35 viscous times, and their variations wkthare

at aboutRe = 138. At aboutRe = 180, RW1e loses  shown inFig. 11b.

stability via a Neimark—Sacker bifurcation (associated From Fig. 8 we find that the Hopf bifurcation
with the double Hopf bifurcation discussed earlier), curve at which RWle emerges from Sljet collides
which spawns an unstable mixed mode. Neither the with the saddle-node curve of Sljet at a codimension-
unstable RW1e foRe > 180, nor the unstable mixed two fold-Hopf point at aboutI{ = 4.41, Re = 90.0).
mode are directly observable as there is no symmetric The dynamics associated with a fold-Hopf bifurcation
subspace in which either are stable. Rer> 180, ini- without symmetries are well known, see for exam-

0.12

0.3F RWle -

0.08
E m

T

021

0.04

T

0.00 [ PR TR R R
75 300 375 75 150 225 300 375

(a) Re (b) Re

PR B
150 225

Fig. 11. Variation withRe of (a) the kinetic energieE; andE; of them = 1 andm = 2 Fourier components of RW1e and RW2e, and (b) their
corresponding precession periods['at 4. Stable (unstable) solutions in tlig invariant subspace have filled (open) symbols.
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ple Guckenheimer and Holm¢§%3]; Kuznetsov[17].
The SO(2) x Z2 symmetry does not alter the normal
form (see the analysis in thgppendix A). In the case
under consideration, both the fold and the Hopf bifur-
cations areZ, invariant, and hence all the dynamics in
the center manifold of the fold-Hopf bifurcation %
invariant.

There is a Neimark—Sacker bifurcation curve which
emerges from a neighborhood of the fold-Hopf point,
shown as the dotted curve Kig. 8 At this bifurca-
tion curve RW1e loses stability to a modulated rotating
wave solution which is nogZ, symmetric. Therefore,
the modulated rotating wave does not fit in any sce-
nario of theZ,-symmetric fold-Hopf or double Hopf
bifurcations.

3.3. Breaking reflection symmetry

RW1e loses stability via a supercritical Neimark—
Sacker bifurcation and a quasiperiodic solution,
MRWe, is spawned. MRWe is a modulation of the rotat-
ing wave RW1e. The quasiperiodic solution evolves
on a 2-torus which iIS0O(2) x Z»-invariant; applying
either the reflectiok , or rotationR, to a MRWe solu-
tion results in a different MRWe solution on the same
2-torus.Fig. 12shows contours of vertical velocity of
MRWe atRe = 97 in a meridional plane at some point
intime. Clearly itis not reflection-symmetric about the

0 /3 2n/3
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midplane; and as the solution is quasiperiodic, it can-
not be Z-space-time symmetric either. Nevertheless,
the quasiperiodic trajectory evolves o gsymmetric
torus. To illustrate this, we plot a two-dimensional pro-
jection of the 2-torus ontoW —, W), wherew= are
the axial velocities at the points & r;/d + d/2,0 =

0,z = £I'/2). For a pointwiseZ,-symmetric solu-
tion, such a projection would be a segment of the line
W+ 4+ W~ = 0. Projections of MRWe foRe = 97 and
98.82 are shown ifrig. 13 The Z, symmetry of the
2-torus is indicated by the reflection symmetry about
the linew™ 4+ W~ = 0 of the projected phase portrait.

The dynamics associated with the breaking of the
Z> symmetry is extremely complicated. Here, we will
provide an indication of the complexity by considering
a one-parameter path with fixétd= 4.

The modulation periody, of MRWe at the onset of
the Neimark—Sacker bifurcation is about two viscous
times (about 6 times longer than the precession period
of the underlying rotating wave state RW1le). With
increasingRe, T2 increases without boundtig. 14
shows the variation in the modulation period and mod-
ulation amplitude (as measured by the variatioEin
over a modulation period, denotedE); these plots
clearly indicate the supercritical nature of the Neimark—
Sacker bifurcation ake ~ 95.96, and that the 2-torus
undergoes a global bifurcation with — oo at about
Re = 98.82. The phase portraits irig. 13show that

T 4m/3 Sm/3

Fig. 12. Contours ofv in meridional planes as indicated for MRWe at one point in time o= 97, I = 4, n = 0.5. There are 24 contour

levels in [-15, 15].
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Re=97 Re =98.82
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Fig. 13. Projections of the phase portraits of MRWe oiito( W), forI" = 4, n = 0.5, andRe as indicated. The diagonal liné* + W~ = 0
is included to help see the reflection symmetry.

the 2-torus isZ, symmetric, and give an indication of  heteroclinic to two distinct limit cycles (e.g., one for
how the 2-torus deforms as the global bifurcation is ¢ € (10, 20) and the otherfare (23, 33)). TheE; time
approachedrig. 13 shows the critical slowing down  series are periodic because the rotating wave compo-
asthe global bifurcationis approached, butitis not clear nent of the quasiperiodic solution is simply a rotation,
from this figure whether the bifurcation is heteroclinic and does not change the energy (for rotating waves
or homoclinic. the energy is constant). In fact, for all the periodic,
Fig. 15 shows time series oV (a local mea- guasiperiodic and more general time-dependent states
sure) andE; (a global measure) of MRWe near (a) considered in this papet,is a constant (in time) that
the Neimark—Sacker bifurcation and (b) near the global depends only very weakly on parameters, and so the
bifurcation, from which it is clear that MRWe becomes phase dynamics associated with the underlying rotat-

0 0.015 —————T————

20 N 0.010

o | 1 AE,

101 N 0.005

0 i I I L 1 L L " L 1 L L L n 0.000
96 97 98 99 s

(a) Re (b)

Fig. 14. Variations withRe of (a) modulation periodsz, and (b) modulation amplitudé\ E1, of MRWe, for fixedI" = 4 andn = 0.5.



180 J.M. Lopez, F. Marques / Physica D 211 (2005) 168—191

Re =97 Re=98.82
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Fig. 15. Time series oW ™ (top panel),E; (bottom panel, dotted line) and@ ) (bottom panel, solid line), for MRWe at (®e = 97 and (b)
Re = 9882, all atl" = 4.

ing wave component of the solutions are trivial and traits become limit cycles. The low-pass filtered limit
essentially decouple from the rest of the dynamics. This cycle corresponding to MRWe &e = 98.82 is plot-
allows us to low-pass filter such solutions and extract ted in Fig. 16 (thick solid contour) along with the
a clearer picture of the dynamics. Given a function of corresponding unfiltered quasiperiodic solution (dots).
time f(¢), the filtered function{ f (¢)), isarunning aver-  Filtered MRWe solutions are shown kig. 16 for a

age defined as number ofRe, from close to the Neimark—Sacker bifur-
cation (Re = 96.2) to near the heteroclinic bifurcation
1 [r+/2 (Re = 98.82). At the two largest values aRe, the
(@) = T /t_r /2 S dy, (10) portraits are shown as discrete dots plotted at time inter-

valsdr = 0.04 viscous time units over one modulation

where t is the period associated with the rotating period. ForRe = 98, these dots are quite equispaced,
wave component of the solution considered. The mod- butfor Re = 98.82 they accumulate at two points (indi-
ulation periods are considerably longer, and they are cated by open square symbols). These correspond to
not filtered out. The filtered signals¥*(r)) of the two Z»-conjugate saddle limit cycles to which MRWe
time seriesW™(r) are plotted on the same graphs is heteroclinic. The concave nature of the heteroclinic
as E;(¢) in Fig. 15 Note that the period of thé&q connections indicate that it is a “big” saddle hetero-
time series is half the period aw™(s)) (and half clinic loop (e.g., see Fig. 6.17 of [1)]
the modulation period of th&*(r)), due to theZ,- Although we cannot directly compute the unstable
symmetry of the 2-torus on which MRWe evolve. The rotating waves to which MRWe is heteroclinic, we can
time series of W+ near the heteroclinic bifurcation still get a very good idea of their structure by looking
indicates that the two saddle limit cycles differ in at MRWe at a time during which it is close to these
that one has large oscillations for= 0 and the other  unstable state&ig. 17shows contours ai in merid-
forz < 0. ional planes for MRW1e ake = 98.82 at timer ~ 24

The phase portraits of MRWe showrfig. 13are of during which it is very close to being heteroclinic to
highly distorted 2-tori. Applying the low-pass filt€r0) one of the unstable rotating waves (the one with larger
to the MRWe solutions, the corresponding phase por- oscillation in the top half of the annulus); it is clear
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Fig. 16. (a) Projection of the phase portrait of MRWe oriio(, W), for Re = 98.82, superimposed with the same solution with the frequency
7 filtered out (thick solid line). (b) Phase portraits with the frequendijtered out, of the MRWe projected oW ~), (WT)) for fixedI' = 4
andn = 0.5, andRe as indicated. The two open square symbols indicate the two saddle limit cycles to which MRWe becomes heteroclinic.

that the rotating wave is ndf, symmetric. The other
rotating wave to which MRWe is heteroclinic is simply

the reflection of this one through the midplane- 0

(not shown).

Beyond the heteroclinic bifurcation, nearby initial

99. This is a case where the large oscillations occur for

z > 0;itsZ>-conjugate has large oscillations fok O.

The structure of RW1o is very similar to that of the
unstable rotating wave to which MRWe is heteroclinic

(compareFigs. 17 and 1B The large oscillations are

conditions evolve to a stable rotating wave that is not due to a spiraling “jet” which forms at abogt= 1/3

Zy-symmetric, RW1o. Of course, there are a pair of (z = —1/3 for the conjugate case).
these Fig. 18shows contours of the axial velocity of

one of the RW1o in various meridional planesRat=

The RW1o solutions can be continued back to lower

Re, and coexist with MRWe. We define a global mea-

Fig. 17. Contours ofv in meridional planes at as indicated for MRW1e ate = 98.82," = 4, = 0.5; at a time { ~ 24, sedrig. 1%) when

it is very close to being heteroclinic to one of the unstable rotating waves. There are 24 contour levél itf].
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Fig. 18. Contours ofv in meridional planes at as indicated for RW1o ake = 99, I" = 4, n = 0.5. There are 24 contour levels ir 15, 15].

sure of the extent to which these are nénsymmetric:

km
|w2i,j,k|ZCO§ (2m>

km
(30)
This parametet,, is zero for aZ,-symmetric solu-
tion. Fig. 19 shows the variation of; with Re for
RW1o0. At aboutRe = 98.6, 3¢1/9Re — oo while ¢1
remains finite, indicative of a cyclic-fold bifurcation

(saddle-node bifurcation of limit cycles); of course
there are a pair of such cyclic-fold bifurcations due

N,

=)

J=0k=—Np

Ny [N2

>

i=0

(N--1)/2
+ Y wagakl?sin?

i=0

11

waves, MRWo Fig. 20a shows the variation wittRe

of the modulation amplitude of MRWoA Eq. As its
amplitude grows (from zero), its modulation period
72 also grows until at abouke = 10082 it becomes
unbounded (sekig. 2M).

Low-pass filtered phase portraits of MRWo pro-
jected onto (W), (W*)) are shown irFig. 21a. Near
the Neimark—Sacker bifurcation, these portraits are
smooth contours and they begin to develop a kink at
larger Re. The orbits show critical slowing down at
the tip of the kink. At this global bifurcation, MRWo
becomes homoclinic to an unstable rotating wave,
which we surmise is on the same branch of solu-
tions as the unstable rotating wave to which MRWe
was heteroclinic to aRe = 98.82. Evidence support-

to the reflection symmetry. The unstable branches of ing this claim comes from comparing the states to

these two cyclic-fold bifurcations are the unstable rotat-
ing wave solutions to which MRWe is heteroclinic to
at aboutRe = 98.82; we base this conclusion on the

observations that both periodic solutions have the same

symmetries, and that the corresponding velocity fields
are very similar, as we have already mentioned (com-
pareFigs. 17 and 1B

With increasingke, RW10 become more asymmet-
ric. Over the range oRe for which RW1o are stable,
their precession periods only vary from 0.27 to 0.25 and
their amplitudes are in the randg e (0.045 0.053).
AtaboutRe = 99.7, the pair of RW1o become unstable
via a supercritical Neimark—Sacker bifurcation, spawn-
ing a pair of nonZ, symmetric modulated rotating

145

135 h

125 p

1
115 i

99.25 99.5

Re

98.75 99 99.75

al

ig. 19. Variation of; with Re for RW1o atl’ = 4.
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Fig. 20. Variations withRe of (a) modulation amplitudes E£1, and (b) modulation periody, of MRWo for fixedI" = 4 andn = 0.5.
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Fig. 21. Phase portraits projected am/("), (W™)) of (a) RW1o (solid circles) and MRWo (solid lines B¢ = 99.75, 100.0, 100.5, 100.6,
100.75 and 100.82), and (b) MRWe R¢ = 98.82 and the pair o¥,-conjugate MRWo aRe = 100.82. Symbols in (b) correspond to limit
cycles described in the text.

which MRWe and MRWo respectively become hetero-

MRWh
clinicand homoclinictoFig. 21b shows phase portraits ~ rwie {4 4L,
of MRWe and MRWo, very close to the correspond-
ing heteroclinic and homoclinic bifurcations, projected ~  MRe—-.._ N _________l.[__
onto (W), (W™)). The symbols (fixed points) corre-
spond to limit cycles; numbers 1 andafe the pair — vt Pt T rericd i N/
of cyclic fold bifurcation of RW1o, numbers 2 and 2 _311;{.95_1%19}_@_ ______
2'are the pair of limit cycles to which MRWe is het- and chios
eroclinic, and numbers 3 andase the pair of limit S~~~ IV ..
cycles to which MRWo are homoclinic. These all lie 03,60 08,60 g0
on straight lines over a range & < (98.6, 100.82), ; —t —+ —t ¢

80.75 95.96 98.82 100.82 105.2

suggesting that all these limit cycles belong to the
same pair ofZz-conjugate branches of unstable limit  rig 22, schematic bifurcation diagram atfied- 4 andy = 0.5 of
cycles. the bifurcations associated with the S1jet solutioRass increased.
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Fig. 22is a schematic bifurcation diagram at fixed RW?1o (for each pair of these, one comes from the sta-
I' = 4 andn = 0.5 of the bifurcations associated with  ble branch of the cyclic-fold bifurcation and the other
the Sljet solution aRe is increased from its inception ~ from the unstable branch). The dynamics in this region,
at the saddle-node bifurcation at abaki = 80.75. sketched itrig. 22, is explored in the following section.
The dynamics up to the homoclinic bifurcations at
aboutRe = 10082 have already been described; the 3.4. Shil’nikov dynamics
labelled points orfrig. 21b are also labelled on this fig-
ure. TheZ, symmetry is broken following a complicate Following the homoclinic bifurcation at aboRt =
scenario that includes global (heteroclinic) bifurca- 10082, MRWo ceases to exist. Nearby initial condi-
tions and hysteresis. Beyond the homoclinic bifurca- tions at slightly higherRe evolve to aZ, symmetric
tion between MRWo and the unstable branch of RW10, modulated rotating wave state which has much more
there exist five unstable rotating wave solutions: the complicated structure than MRWe which we encoun-
Z>-symmetric RW1le and two pair af»-conjugate tered at lowerRe. This branch of solutions, which we

Re=100.8 Re=101.1
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(a) <W > (b) <W =
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Fig. 23. Phase portraits of MRWh projected ont&/ ("), (W)).



J.M. Lopez, F. Marques / Physica D 211 (2005) 168—191

shall simply refer to as MRWh, can be continued back
to lower Re (down to 100.80), so that it co-exists with
MRWo. The modulation period of these solutions is
about 20 viscous time units, roughly 4 times longer
than the modulation period of MRWo.

Fig. 23shows phase portraits of MRWh projected
onto (W™), (WT)). The MRWh phase portrait & =
10080 (Fig. 23) indicates that this solution consists
of two orbits near the orbit of one of the MRWo fol-
lowed by two orbits near thg,-conjugate MRWo with
the switch between the two being via an orbit structure
which is very similar to that of MRWe (which no longer
exists at this highre); compare withFig. 21b. When
Reis increased to about 101.1, MRWh only completes

185

asingle loop around each MRWo (d€g. 2X), and the
modulation period is reduced to about 10 viscous times.
In between the double loop and single loop MRWh
states (which are setwige symmetric), we have found
anonZ, symmetric quasiperiodic MRWh that consists
of two loops around one MRWo followed by a single
loop around the conjugate MRWE&if. 230). Increas-
ing Re a little to 101.2, the 1-1 loop MRWh develops
a pair of small loopsZ, conjugates) before the switch
(Fig. 23). These small loops seemto play a central role
as turnstiles in a period-adding cascade whereby the
MRWh solutions go from being 1-1 to 2-2 to 3-3 loop,
all the way ton-n loop (we have been able to compute
up to a 10-10 loop case), & is increased. A few of
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0.42 1 0.42}
<W'> 036} 4 <W'> 036}
0.3} 1 0.3+
0.24 L . L 0.24 L : L
~0.48 —0.42 —0.36 -0.3 —0.24 ~0.48 —0.42 —0.36 -0.3 —0.2¢
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0.42F E 0.42
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0.24 L . L 0.24 L L L
~0.48 —0.42 —0.36 -0.3 —0.24 ~0.48 —0.42 —0.36 0.3 ~0.2¢
(c) <W > (d) <W >

Fig. 24.

Phase portraits of MRWh projected ont@/ ("), (W™)), showing a period-adding cascade.
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Fig. 25. Phase portraits of MRWh projected ot (), (W ™)), showing an inverse period-adding cascade and “chaos”.
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Fig. 26. Time series of W) for (a) a 2-2 loop MRWh aRe = 1022, and (b) nearby chaotic orbit & = 102.1.

these states are showrhig. 24 showing (a) 2-2 loop,  sible. What we have observed are a large variety of
(b) 3-3 loop, (c) 4-4 loop and (d) 10-10 loop MRWh the possible stable quasiperiodic orbits and the transi-
solutions. At the end of this period-adding cascade (at tions between these are through homoclinic and het-
aboutRe = 103), there is a regime consisting of a sim- eroclinic loops. In fact, since our solutions are 2-tori,
ple nonZ; symmetric quasiperiodic orbit (alimitcycle instead of heteroclinic connections at a given parame-
in the phase portrait of the low-pass filtered solution) ter value, what we have are complicated bifurcational
with a modulation period of about &ig. 25). We have processes in exponentially small regions of parameter
computed such states f& < [103.1, 1036]. Further space that separate the periodic orbits showRigs.
increasingRe, we encounter a 4-4 loop setwige- 23-25 These bifurcational processes involve trans-
symmetric MRWh with modulation period of about 40  verse intersections of stable and unstable manifolds of
(Fig. 29%), followed by a 3-3 loopKig. 25c)and thena  saddle structures, implying the presence of horse-shoes
2-2loop MRWh Fig. 2%e). This reverse period-adding  and the accompanying chaotic dynanjied7,36] We
cascade does not seem to settle down to a 1-1 loop (wehave found numerical evidence of these narrow regions
have computed for over 200 viscous times). We are of chaotic dynamics interspersed within the regime of
unable to distinguish between a chaotic state and a longquasiperiodic MRWh solutiongzig. 26 shows time-
chaotic transienfig. 25 show a phase portrait of such  series of W) for (a) a 2-2 loop MRWh aRe = 1022,
an ambiguous state & = 1050. ForRe > 1052, the and (b) a nearby “chaotic” orbit d&te = 1021.
flow quickly (within a few viscous times) evolves away The branch of MRWh solutions, displaying the
from this region of phase space and converges onto theShil’'nikov-type dynamics just described, contains
steadyS0O(2) x Z» two-jet solution, S2jet. The region manyZ,-symmetric stable solutions (e.g., thos&ig.
where these complex dynamics take place is roughly 23). Other solutions are naZ,-symmetric, such as
sketched irFig. 22 bounded by trajectories that move those inFig. 24a) and (d). The chaotic solutions are
around the five unstable rotating wave solutions exist- not Zo-symmetric, but they appear to be almost sym-
ing in this parameter range. metric (sed-ig. 24). We can say that th&, symmetry,
The above phenomena are highly reminiscent of broken after the heteroclinic bifurcation 2& about
Shil'nikov dynamics with period-adding cascades Re = 98.82)inFig. 22 isin some sense restored. This
associated with the Shil'nikov “wiggle” (e.g., see behaviour is typical of many hydrodynamic problems,
[5,17,36). But our situation is more complicated inthat after a sequence of symmetry-breaking bifurca-
because we have at least five different unstable limit tions, when the flow becomes turbulent, the symmetries
cycles involved and many different homoclinic and are restored ‘on average’. This is the case in the turbu-
heteroclinic loop connections between them are pos- lent Taylor—Couette flow for large aspect ratio, where
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the axisymmetry and the axial reflection symmetry are clinic collisionsin fold-Hopf bifurcations are with fixed
restored ‘on averag¢32]. points). In similar problems, local codimension-two
bifurcations act as organizing centers of the dynam-
ics in large regions of parameter space. In the present
4. Discussion and conclusions problem, the complex dynamics we have observed
associated wittZ, symmetry breaking is not related
Finite aspect ratio Taylor—-Couette flow is typically to any of the local codimension-two bifurcations, but
characterized by the competition between states thatinstead itis associated with complex global heteroclinic
haveN andN + 1 jets of angular momentum issuing dynamics. The validity of the center manifold dynami-
from the boundary layer on the rotating inner cylinder cal description is limited to small neighborhoods of the
(with N depending on the aspect ratio). This com- codimension-two bifurcation points.
petition invariably involves very-low-frequency states The complex dynamics which is novel to this prob-
[11]. For N > 2, Gerdts et al[11] have experimen-  lem follow from the MRWe becoming heteroclinic to a
tally observed a universal character to this competition, pair of saddle rotating waves that a¥e-conjugates.
but the competition between the Slj&f & 1) and At lower Re, these saddle states spawn stable
S2jet (V = 2) does not fit this general scheme. Here, conjugate rotating waves, RW10, ata pair of cyclic-fold
we have investigated this S1jet/S2jet competition using bifurcations. These RwW1o then suffer Neimark—Sacker
direct numerical simulations of the three-dimensional bifurcations at higheRe, spawning modulated rotat-
Navier—Stokes equations. ing waves MRWo which become homoclinic to the
In the axisymmetric subspace, this competition same branch of saddle rotating waves that MRWe was
is organized by a codimension-two cusp bifurcation heteroclinic to at loweRe. Following the homoclinic
where the two basic states, Sljet and S2jet, terminatebifurcation of MRWo, at higherRe all the rotating
at saddle-node bifurcation curves which meet at the wave states are unstable, but a multitude of heteroclinic
cusp point. In this paper, we concentrate on the sta- loops between them survives for a rangekef and we
bility and nonlinear dynamics associated with Sljet. observe quasiperiodic and chaotic states close to these
Symmetry breaking is primarily via Hopf bifurcations heteroclinic loops. The heteroclinic loops connecting
to rotating wave states. Sljet is unstable to two differ- the saddle rotating waves have Shil'nikov characteris-
ent Hopf bifurcations, leading to rotating waves with tics, and forward and reverse period-adding cascades
azimuthal wave numberg = 1 (RW1e) andn = 2 associated with the Shil’nikov “wiggle” are observed.
(RW2e), and a codimension-two double Hopf bifur- Finally, at higherRe, the orbits near the heteroclinic
cation organizes the dynamics locally in a region of loops are unstable and evolve to the S2jet solution.
parameter space. One of these Hopf curves (leading Itwould appearthatthe complex dynamics observed
to RW1e) collides with the Sljet saddle-node curve, in this study is intimately connected with tife sym-
giving a codimension-two fold-Hopf bifurcation. Both  metry of the problem. While the details certainly are,
the double Hopf and the fold-Hopf bifurcations are the overall big picture is quite independent of thg
Z> symmetric, and so are the associate center man-symmetry. Specifically, in Taylor—Couette flow with
ifolds. In the full problem,Z> symmetry breaking  comparable geometry)(= 0.5 andl" € (2.8, 3.3)) but
occurs via a Neimark—Sacker bifurcation from RW1e; with a rotating bottom and stationary top, so tixat
the quasiperiodic solution that results, MRWe, is not symmetry is completely lacking, a very similar compe-
S0O(2) x Z, symmetric, but there are a complete cir- tition between two basic states has been observed both
cle of these that generateS®(2) x Z,-invariant 2- experimentallyj25] and numericallyf18]. There, as in
torus. TheZ, symmetry breaking is not described by the present problem, the competition is organized by a
the dynamics in center manifolds of the cusp, double cusp bifurcation inSO(2) subspace, double Hopf and
Hopf or fold-Hopf bifurcations. The dynamics asso- fold-Hopf bifurcations, and a region of complex global
ciated with the Neimark—Sacker bifurcation involves dynamics. The difference is that in the absenc& pf
homoclinic and heteroclinic collisions of 2-tori with symmetry, the region of complex dynamics emerges
limit cycles, which are absent in any of the fold-Hopf from the heteroclinic bifurcation associated with the
bifurcation scenarios (all the homoclinic and hetero- fold-Hopf bifurcation, while in the present problem the
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region of complex dynamics (which breaks symme- If up(7, z) does not change sign under the action of
try) is not associated with any of the local codimension- K, we have the fold-Hopf bifurcation. The action of
two bifurcations (which preseng, symmetry). SO(2) x Zp onX is of the form

R, = diag(1 €™, e ™), K, = diag(l s, ).
Acknowledgements (A.2)

This work was partially supported by MCYT grants Whens = 1 the action ofZ; is trivial, and all the solu-
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action of a rotatiorR,/,, around the;-axis with angle
w/m.

Appendix A. Normal form of the fold-Hopf The technique of looss and Adelmey#&4], which

bifurcation with SO(2) x Z, symmetry provides a clear and simple method to obtain normal

forms, incorporating symmetry considerations, is now
At the bifurcation point, there are three critical used forthe fold-Hopf bifurcation with th€0(2) x Z>
eigenvalues, 0 andtiw, all of multiplicity one. If an ~ Symmetry group. The dynamical system in a neighbor-
eigenvector is nof0(2) equivariant, applyingO(2) hood of the bifurcation point in the center manifold has
to it generates a two-dimensional linear space. There- the form
fore, the eigenvector corresponding to the eigenvalue
! S X =LX+P(X, n1, n2), A3
0 with multiplicity one must beSO(2) equivariant, +P(X, i1, 12) (A-3)
and of formug(r, z). The pair of complex conjugate  whereu; andu, are parameters, = diag(Q iw, —iw)
eigenvectors, corresponding #fiw, correspond to a  is the linearized evolution operator, aicontains
rotating wave when th80(2) symmetry is broken, and  the nonlinear term®(X, 0, 0) = O(X?). The normal

are of the formuy (r, z)€@0+@) anduy (r, z)e 1m0+, form theorem says that using coordinate transforma-
this includes the case: = 0, corresponding to an tions close to the identity, and up to any finite order
axisymmetric Hopf bifurcation preservinggO(2) in X, we can simplifyP until it satisfies
symmetry. L s

Let us now consider the effects of tde symmetry. €~ PX) =P X) v, (A-4)

SinceZ, commutes witl§O(2) and time evolution, the  \yhere 1.* is the adjoint (transposed conjugate)lof
reflectionK; acting on any of the three eigenvectors  Tpjs is thenormal form of the bifurcation. If a sym-
must leave them invariant, except for a multiplica- - metry groupg leaves the base state invariant, then the
tive factor that is either +1 or 1. If uo(r, z) changes  canter manifold can also be taken Gsnvariant, the
sign under the action oK, we have a pitchfork-  4tion ofG on the coordinates is described by a linear

Hopf bifurcation. Using the amplitudes A andA of representation f commuting withZ, and the normal
the eigenvectors, u; anduy as coordinates of the  5rm must also satisfy

center manifold, the action &fO(2) x Z» on the vec-
tor X = (x, A, A) in the pitchfork-Hopf bifurcationis ~ MP(X) = P(MX), (A.5)

given by the matrices for all M € G. WhenG = SO(2) x Z», the action of

R, = diag(1 € e ") k. = diag(-1, s, ), the symmetries is given biA.2). Considering that
(A1) e 'L = diag(1, €', e7'"), (A.6)

where the integem and the sign = +1 have exactly ~ and comparing witA.2), we see that

the same meaning as (8) and determine the symme- R, — e~(ma/o)L* g _ o—(r/o)L* (A7)
tries of the bifurcated limit cycle as described(B). * ' ‘

The pitchfork-Hopf bifurcation has been extensively Since(A.5) follow from (A.2), the presence of the sym-
studied (e.g., sed]). metry groupSO(2) x Z, does not modify the normal
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form of the generic (non-symmetric) fold-Hopf bifur-
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is Z» pointwise invariant. Fos = —1, K, is a space-

cation. We now need to consider the symmetries of the time symmetry, equivalent to a time translationtgé,

bifurcating states.

In terms ofx and the modulus and phase 4f=
pe€?. the normal form has the form
X = p1+x2+ op?,

p = p(uz+ xx — x?),

¢ =w,

wheres = +1, and y and w depend on the param-
etersp1 and o and satisfy certain non-degeneracy
conditions in the neighborhood of the bifurcatian

0, x # 0. The actions of the symmetries in these coor-
dinates are

Ra(-xv 109 ¢) = ()C, 107 ¢ + ma)a
Kz(xv P, d)) = (X, P, ¢ + (1 - s)n/2)

The normal form(A.8) admits a multitude of dis-

(A.8)

(A.9)

tinct dynamical scenarios, depending on the values of

x ando. These are divided into two classes. When
ox > 0, only fixed points and a limit cycle exist in the
neighborhood of the bifurcation point. Whery < O
more complex solutions exist, including 2-tori, hete-
roclinic structures, homoclinic solutions and more. A

or to an azimuthal rotation af/ m, andPs is K ; setwise
invariant.

When oy < 0, P3 undergoes a Neimark—Sacker
bifurcation; a limit cycley appears in thex p) plane, it
is a 2-torus when the phagés included; the quasiperi-
odic solutions born at the Neimark—Sacker bifurcation
are onthe 2-torus. Since the limit cyglés SO(2) x Z»
invariant (because it lives in the invariant plane4)),
the 2-torus isSO(2) x Z» setwise invariant. The rota-
tions are no longer space-time symmetries because the
solutions on the 2-torus are quasiperiodic and never
repeat. S&0(2) symmetry is completely broken, and
a rotation produces a different solution on the same 2-
torus. Fors = 1, the 2-torus is pointwis& ,-invariant,
and K, is preserved; fos = —1, the K, space-time
symmetry of Pz is broken, and the action &, pro-
duces a different solution on the same 2-torus.

Wheno =1 and x < 0, a heteroclinic invariant
two-dimensional manifold appears when the 2-torus
collides simultaneously with the two unstable fixed
points P; and P, on thex-axis. However, this invari-
ant sphere is a highly degenerate heteroclinic structure
and high-order terms in the normal form destroy it (see

comprehensive description of these scenarios is givendiscussions irf13,17,36). A complete description of

in Kuznetso17].

In the normal form(A.8), the dynamics of X, p)
decouples fromp. There are up to three fixed points
(x, p) in a neighborhood of the origin, depending on

the parameter values. These are given by (up to leading

order terms inuy)

P].:(V —M 70)7 P2=(_V_ILL 70)7 (Alo)

(A.11)

Rotation about the-axis recovers anglesj informa-
tion. SinceP; and P, are on ther-axis, they are fixed
points of the system. Further, sin6®(2) x Z» acts
only on the phase, and P; and P, are independent of
¢, these fixed points arg0(2) x Z» pointwise invari-
ant. P3is off thex-axis, and so rotation about theaxis
gives thatPs is a limit cycle, with the angle being the
only time dependent coordinatg(r) = ¢, + wt. The
action of R, (A.9) is equivalent to a time translation
1, = ma/w, hencePs is arotating wave. For= 1, P3

the associated dynamics is still lacking; some effects
of higher order terms in the normal form have been
investigated (e.g., s48,15,16), and these depend on
the particulars of the problem considered.
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