
Physica D 136 (2000) 340–352

Spatial and temporal resonances in a periodically forced
hydrodynamic system

F. Marquesa,∗, J.M. Lopezb
a Departament de Física Aplicada, Universitat Politècnica de Catalunya, Jordi Girona Salgado s/n,

Mòdul B4 Campus Nord, 08034 Barcelona, Spain
b Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA

Received 5 December 1998; received in revised form 20 May 1999; accepted 10 July 1999
Communicated by S. Fauve

Abstract

The occurrence of a Naimark–Sacker bifurcation in a periodically forced spatially extended system is analyzed with Floquet
theory. The basic periodic state of the flow in an annular region consists of the superposition of circular Couette flow, driven
by the constant rotation of the inner cylinder, and annular Stokes flow, driven by the harmonic oscillation of the inner cylinder
in the axial direction. Windows in parameter space where onset of instability is via Naimark–Sacker correspond to forcing
frequencies close to the natural frequencies of the unforced system when the forcing amplitude is sufficiently large. In these
windows, not only have strong temporal resonances been identified, but also competition and resonances between various
spatial modes that are simultaneously excited take place. An excitation diagram mapping out these windows and loci of
resonance points is produced, providing a guide for future explorations into the nonlinear regime by either experimental or
computational techniques. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bifurcation theory is a powerful tool that has experienced extraordinary development over the past few decades.
It has supplied the basic building blocks that are very useful in organizing the dynamics of nonlinear systems: bifur-
cations of fixed points and periodic orbits, homoclinic and heteroclinic connections, and typical chaotic scenarios.

The bifurcations of fixed points of ODE are very well known and simple. The bifurcations of periodic orbits are
more complex, but the use of Poincaré maps reduces their analysis to the study of fixed points of maps. A limit cycle
may lose stability in three generic ways. Two of them are codimension-1 bifurcations associated with a single real
eigenvalue of the Poincaré map crossing the unit circle through either +1 (a saddle-node or a pitchfork bifurcation,
depending on the symmetries of the system) or−1 (a period-doubling bifurcation). The third way corresponds to
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a pair of complex conjugate eigenvalues crossing the unit circle (Naimark–Sacker, a Hopf for limit cycles). The
limit cycle with a single frequency bifurcates to a two-dimensional invariant torus with two frequencies. This is
a codimension-2 bifurcation; two parameters are necessary in order to unravel all the possible dynamics, which
include regions of frequency locking (Arnold’s tongues) alternating with quasiperiodic motion, and chaos associated
with the presence of strong resonances when the ratio of the two frequencies is a rational numberp/q, with q ≤ 4.
The overall dynamics in the case of strong resonances is not yet completely understood [1,11].

Parametric resonance is expected when a dynamical system is periodically forced, and the forcing excites some
natural frequency of the system. From a dynamical systems point-of-view, the basic state of such a forced system will
in general be a limit cycle with the periodicity of the forcing. When some natural frequency of the system becomes
excited, a Naimark–Sacker bifurcation results. This bifurcation provides the natural framework for parametric
resonance. Unfortunately, a substantial part of the parametric resonance literature has been devoted to Mathieu’s and
Hill’s equations which display a limited range of resonant behavior (p/q with q = 2) by comparison with the more
general Naimark–Sacker situation. In fact, Mathieu’s and Hill’s equations are conservative and two-dimensional,
and therefore can only undergo either synchronous or subharmonic bifurcations. Moreover, the basic state in these
problems is not a limit cycle, but a fixed point.

Naimark–Sacker bifurcations have been reported in many low-dimensional ODE systems, most of them peri-
odically forced, e.g. chemical reactors [9,10] and population dynamics [18]. We are interested in hydrodynamic
systems governed by the Navier–Stokes equations (a set of dissipative PDE). When such systems are periodically
forced, parametric resonances governed by Naimark–Sacker bifurcations are expected. This has been observed
experimentally in periodically forced thermal convection [2,5]. Naimark–Sacker bifurcations have also been ob-
served experimentally and numerically in unforced vortex breakdown flow [20]. The Naimark–Sacker bifurcation
is difficult to observe experimentally and to compute numerically as it is codimension-2 and so extensive regions of
a two-dimensional parameter space must be explored. When a single parameter is varied, only a one-dimensional
slice of the parameter space is observed. One of the most celebrated cases is the so-called quasiperiodic route to
turbulence [16,19]. Curry and Yorke [4] showed that this route to turbulence corresponds to a one-dimensional path
in the two-dimensional parameter space of a Naimark–Sacker bifurcation.

The Naimark–Sacker bifurcation in low-dimensional dynamical systems exhibits complex behavior associated
with temporal resonances. For extended systems, such as in hydrodynamics, various spatial modes can be excited
and spatial and temporal resonances between the various modes can be expected to lead to complex behavior.

In this study, we wish to explore spatio-temporal complexity associated with Naimark–Sacker bifurcations in
a spatially extended system. We select a temporally forced hydrodynamic system that is readily and precisely
reproduced in laboratory experiments and can be simulated numerically. The following section describes this flow
in detail, Section 3 discusses competitions between spatial modes and Section 4 deals with the temporal resonances.
The results are summarized in a figure mapping out in forcing frequency and amplitude space the regions where
various spatial modes occur and the loci of hard temporal resonances as well as loci of spatial resonances and
multicritical states.

2. Description of model problem

The model system used to explore the onset of Naimark–Sacker bifurcations in spatially extended systems is the
flow between two coaxial cylinders, the other one being stationary and the inner one rotating at some fixed rate, with
the inner cylinder also subjected to a harmonic oscillation in the axial direction (see Fig. 1). This system has been
investigated experimentally [25] and theoretically [7,12,14]. The system is governed by a number of non-dimensional
parameters. Dimensionally, the inner cylinder oscillates in the axial direction with velocityU sinΩt and rotates
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Fig. 1. Schematic of Taylor–Couette flow with axial oscillations of the inner cylinder.

at constant angular velocityΩi . Its radius isri and the radius of the outer stationary cylinder isro. The annular
gap between the cylinders isd = ro − ri . These parameters are combined to give the following non-dimensional
governing parameters: the radius ratioe = ri/ro, the Couette flow Reynolds numberRi = driΩi/ν, the axial
Reynolds numberRa = dU/ν, the non-dimensional frequencyω = d2Ω/ν, whereν is the kinematic viscosity of
the fluid. The experimental apparatus [25] has a radius ratioe = 0.905, and we have used this same value in all the
numerical computations presented in this paper.

The basic state consists of the superposition of two basic states, one azimuthal and the other axial. Due to the
constant rotation of the inner cylinder, the azimuthal component of velocity is described by circular Couette flow
and depends only on the radial coordinate. In the absence of any other mechanism, it loses stability whenRi exceeds
a critical value that depends one. Tagg [23] provides a recent guide on the extensive literature for this problem. The
axial oscillations of the inner cylinder provide the axial component of the basic state that is the annular analog of
Stokes flow ([21], e.g. see [26], p. 321). The annular analog introduces curvature in the azimuthal direction, but the
basic state still only has spatial variation in the radial direction and is time periodic. The presence of the outer cylinder
becomes very important when the flow is enclosed by endwalls even if the annular gap is large compared to the
Stokes layer thickness. The presence of endwalls even if placed far apart, i.e. in the limit of infinite length annulus,
produces a back-flow at the outer cylinder in order to conserve mass. This results in an oscillatory boundary layer
flow on the outer cylinder similar to the oscillatory Stokes layer on the inner cylinder. These oscillatory boundary
layers send waves of azimuthal vorticity, whose sign changes with the stroke of the inner cylinder, into the interior
annular region. The endwalls are incorporated into the basic state via a zero net axial mass flux constraint that is
enforced by a pressure that is linear in the axial direction. The basic state velocity is

Ub = (0, Vb(r), Wb(r, t)),

where

Vb(r) = Ri
riro

r2
o − r2

i

(
ro

r
− r

ri

)
and Wb(r, t) = Raw(r) sin(ωt + α(r)).
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The integral is the zero net axial mass flux constraint. The functionf (r) can be obtained in closed form in terms of
modified Bessel functions. The basic state pressure isp1(r, t)+p2(t)z, with p2 = 0 if the endwalls are not present.
The relationship betweenp0 andp2 is given byp2(t) = RaI(p0 exp(iωt)), and the integral constraint determines
the complex constantp0.

Although the stability analysis of this basic state can be thought of as a modulated Taylor–Couette problem, par-
ticularly whenRa is small orω is large, the dynamics of interest in the present study (Naimark–Sacker bifurcations)
occur when both components of the basic state (circular Couette and annular Stokes) are comparable. So, one could
also view this problem as the centrifugal destabilization of the annular Stokes flow.

The system is governed by the Navier–Stokes equations, which are reduced to a system of ODE by using a
Galerkin expansion based on Chebyshev polynomials. The stability analysis of the time-periodic basic state is
accomplished by using Floquet theory, and it reduces to the determination of the growth rates of normal mode
perturbations from the solution of a linear system of the form:

Gẋ = H(t)x = (A + B sinωt + C cosωt)x. (1)

The vectorx contains the coefficients of the perturbations from an expansion of the velocity given by

v(r, θ, z, t) = Ub(r, t) + exp(i(nθ + kz))u(r, t).

The entries in the matricesG andH are given in the appendix of Marques and Lopez [14].H is periodic, of period
2π/ω, whereω is the frequency of the axial oscillations of the inner cylinder, andG is time-independent and positive
definite. The axial and azimuthal wave numbers of the bifurcating solutions arek (real) andn (integer), respectively.

2.1. Symmetries

The Navier–Stokes equations governing this problem are invariant under translations (τ ) along and rotations (R)
around the common axis of the cylinders. Moreover, there exists an additional discrete symmetry (S) involving time
and the axial coordinate; it is a reflection about the plane orthogonal to the axis with a simultaneous time-translation
of a half period. Using cylindrical coordinates, they read:

(τav)(r, θ, z) = v(r, θ, z + a), a ∈ R mod 2π/k, (2)

(Rαv)(r, θ, z) = v(r, θ + α, z), α ∈ R mod 2π, (3)

(Sv)(r, θ, z, t) = (vr , vθ , −vz)(r, θ, −z, t + T/2). (4)

The involutive symmetrySsatisfiesS2 = I , and the symmetry group of our problem isSO(2)×O(2). The presence
of these symmetries has many consequences on the dynamics and the bifurcations this system can experience.
Chossat and Iooss [3] give details specific to the classical Taylor–Couette problem. In our case, due to the symmetries,
we need only consider then ≥ 0, k ≥ 0 cases.

The presence of the involutive symmetrySprevents period-doubling bifurcations, except in extraordinary cases
([11,22]; see Lemma 7.6, p. 286 of [11]). The main reason is that the Poincaré map (the monodromy matrix) is the
second iterate of another map. In the present formulation, the symmetrySis used to reduce the region of parameter
space to be explored, and the reduced system of equations governing the evolution of perturbations is of the form

ẋ = A(k, t)x, (5)

wherek > 0 and the termG−1 in (1) has been included in the right-hand side. The explicit details of the matrices
are given in the appendix of Marques and Lopez [14], and these show thatA transforms as follows:

A(−k, t + T/2) = A(k, t). (6)
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The monodromy matrix of (6) is not the second iterate of another map due to the restriction withk > 0. However,
the monodromy matrix of the full system, including positive and negative values ofk, is the second iterate of a map,
as demonstrated in Appendix A. Therefore, period-doubling is not expected in our system according to [22]. We
have only observed synchronous bifurcations (pitchforks for limit cycles) and Naimark–Sacker bifurcations with
symmetry.

Our basic state, consisting of a superposition of circular Couette flow and annular Stokes flow, is independent
of the axial and azimuthal directions, and time-periodic with the period of the forcing. Over an extensive range of
parameter space, the primary bifurcation is to an axisymmetric state that is periodic in the axial direction and time,
with the same temporal period as the forcing [14,25]. Due to the symmetries of the system, the bifurcation is not
the generic fold or saddle-node bifurcation, but a pitchfork for periodic orbits ([11], Theorem 7.12, p. 287). When
the basic solution loses stability, two time-periodic solutions resembling Taylor vortices appear; the symmetryS
transforms one to the other. The previous works on this problem [7,14,25] focused on delaying the onset of the
centrifugal instability of the circular Couette flow by imposing an adequate level of annular Stokes flow, and have
considered relatively small amplitude forcing where only synchronous bifurcations resulted. Here, we explore the
direct competition between the two mechanisms and how their competition leads to resonance behavior. We locate
windows of parameter space where interaction and competition between different axial modes occurs and where the
primary bifurcation is to a state that is periodic in both the axial and the azimuthal directions, and temporally has the
forcing frequency as well as a new frequencyωs so that the dynamics are on a torus. We are now in the presence of
a Naimark–Sacker bifurcation with symmetry, and these regions in parameter space are pockets of spatio-temporal
complexity.

3. Modal competition

The experiments and theoretical analysis of the model problem [14,25] clearly demonstrated the effectiveness of
the parametric forcing in stabilizing the basic flow and delaying the onset of the centrifugal instability. These works
also provided insight into the physical mechanisms involved. In order to gain a quantitative measure of the relative
efficiency of the parametric control mechanism, we introduce

Reff = N
R2

a

(criticalRi) − (criticalRi at zero forcing)

(criticalRi at zero forcing)
, (7)

whereN is a normalization factor such thatReff → 1 when the forcing is most efficient in delaying the onset of
instability in the basic flow to largerRi . This occurs at the double limitω → 0 andRa → 0. This ratio gives the degree
of enhancement of the critical inner cylinder rotation rate relative to the unforced flow to the amplitude squared
of the forcing (the criticalRi at zero forcing is 134.94 for the flow geometry under consideration, i.e.e = 0.905).
In fact,Reff is the ratio between the degree of stabilization obtained and the energy required (proportional to the
forcing amplitude squared). Fig. 2 showsReff as a function of the forcing frequencyω. There is a partial collapse
of this relationship (as first noted in [7] at small forcing amplitudes) over a wide range ofRa and particularly for
small amplitude and large frequency of the forcing. To quadruple the degree of stabilization at a given frequency,
one only needs to double the amplitude.

The dramatic reduction in the efficiencyReff observed in Fig. 2 for smallω and largeRa comes into play as
the non-axisymmetric modes become dominant, excited by the parametric resonance when the forcing frequency is
close to the frequency of the spiral modes in the unforced system, and when there is competition between distinct
(axisymmetric) modes that simultaneously become critical. The figure givesReff vs.ω for six values ofRa; from
the top curveRa = 10, 30, 50, 75, 100, and 125 (ande = 0.905). The two dots on theRa = 125 curve locate
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Fig. 2. Relative efficiencyReff of the forcing in delaying the transition vs. forcing frequencyω for six values ofRa; from the top curveRa = 10,
30, 50, 75, 100, and 125 (e = 0.905). The two dots on theRa = 125 curve locate transitions between distinct axisymmetric modes becoming
critical. The thick solid line segments correspond to the azimuthal moden = 1 being the critical, and the dotted line segment corresponds to the
n = 2 mode. The remaining lines correspond to axisymmetric critical modes.

transitions between distinct axisymmetric modes becoming critical. The thick solid line segments correspond to the
azimuthal moden = 1 being the critical, and the dotted line segment corresponds to then = 2 mode. The remaining
lines correspond to axisymmetric critical modes. The curves shown are constructed by taking the absolute minimum
in critical Ri over the distinctn for fixedRa andω, and plotting them as functions ofω.

The competition between axisymmetric modes is illustrated for theRa = 125 case in Fig. 3. The marginal stability
curve has several minima and inflection points, and their number varies withω. For largeω (≥ 40), the marginal
stability curve possesses a single minimum, and locally has the parabolic form typical of the unforced system.
When more than one forcing mechanism is present, multiple minima may occur in the marginal stability curves due
to competition between the various forces (e.g. [15,17]). In our problem, the two competing mechanisms are the
centrifugal instability of the circular Couette flow (which results in a cellular structure periodic inz of alternating
sign of azimuthal vorticity) and the annular Stokes flow (which sends waves, independent ofz, of alternating sign
of azimuthal vorticity into the annular region from both the inner and outer cylinder walls). Asω is reduced, an
inflection point develops atk greater than the critical value and byω = 38.15, the inflection point has a horizontal
tangent. A further decrease inω results in a second local minimum at largerk, signaling the birth of another solution
branch. Atω = 30.4, the two local minima have the sameRi value, indicating that eigenvalues corresponding to
each of these modes cross the unit circle (at +1) simultaneously. This bi-critical point is marked by a dot in Fig. 2.
As ω is further decreased, the second local minimum at the largerk becomes the dominant mode. Atω = 18.4,
another inflection point develops a horizontal tangency between the two minima, giving rise to a third branch at
lower ω. At ω = 16.7, the solution branch that existed forω ≥ 40 merges with an adjacent inflection point and
ceases to exist for lowerω. At ω = 16.42, the two remaining minima have the sameRi value, and this corresponds
to the other dot in Fig. 2. For lowerω, the last formed minimum is dominant, and the two modes are separated in
the marginal stability curve by a large maximum between them. Note that the efficiency of the forcing is increasing
with decreasingω as expected until there is modal competition and switching. Following this, there is a saturation
in the efficiency as the criticalRi varies little with further decreases inω.
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Fig. 3. Marginal stability curves for the azimuthal moden = 0 at forcing amplitudeRa = 125 for various forcing frequenciesω as indicated
(ande = 0.905).

Apart from the competition between distinct axisymmetric modes described above, there is also competition
between axisymmetric and non-axisymmetric modes. In the range of parameters where the saturation inReff is
observed, there appear windows where the azimuthal modesn = 1 andn = 2 are dominant. For each azimuthal
moden, there is also competition between modes with different axial wave numbersk. In order to gain a more
complete picture of this modal competition, we follow the development of each (n, k) mode forn = 0, 1, and
2 (n ≥ 3 do not become dominant for the range of parameters reported here) as the forcing amplitudeRa and
frequencyω are varied. This is summarized in Fig. 4, where the critical values ofRi andk are plotted vs.ω, for
variousRa = 65–125 in steps of 5. ForRa ≥ 100, there are more than one local minimum in the marginal stability
curvesRi vs.k, and these branches are also shown in the figure. The appearance of these multiple solution branches
for n ≥ 1 is analogous to the behavior described above in then = 0 case.

The existence of these multiple solution branches is expected to lead to hysteresis in the nonlinear regime close
to the bifurcation, with discontinuous jumps in the axial wave number changing by a factor of about 2 as well as
discrete jumps in the azimuthal wave number. Further, as the number of modes bifurcating is large, the nonlinear
dynamics near the bifurcation is expected to be complicated as they interact and compete.
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Fig. 4. CriticalRi andk as a function of the forcing frequencyω for Ra = 65–125 (in steps of 5), for the azimuthal modesn = 0, 1, and 2, and
for all the minima in the marginal stability curvesRi(k), which correspond to the different branches depicted. The branches forRa = 125 and
all n are thick lines and forRa = 105 withn = 0 and 1 are dashed lines, and forn = 2 the dashed lines correspond toRa = 100. All results are
for e = 0.905.

The forcing not only stabilizes the axisymmetric modes as observed experimentally [25], but it also delays the
onset of the non-axisymmetric modes. This is clearly shown in Fig. 4. On average, the degree of stabilization is
about the same for all three azimuthal modes (there are specific regions where this is different due to the modal
competition as is evident in Fig. 2). In the unforced Taylor–Couette flow, even though the primary bifurcation is
to axisymmetric steady Taylor vortex flow, bifurcations also exist to non-axisymmetric time-periodic flows. For
example, for an annulus withe = 0.905 then = 1 andn = 2 modes appear atRi = 135.59 andRi = 137.60
with natural frequencies 7.111 and 14.45, respectively (then = 0 mode is steady and appears atRi = 134.94).
Fig. 4 indicates that the modal interactions begin to occur with increasingRa for Ra ≥ 68 andω between the
natural frequencies of the unforced spiral modes. Although atRa ≈ 68 there is only one local minimum in the
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marginal stability curves, the imminent appearance of the other modes at higherRa begins to be felt, and this
shows up as a localized bump that develops into a steep peak in the criticalRi(ω) curves as well as in the critical
k(ω) curves that at sufficiently largeRa erupts. At this eruption,∂(criticalk)/∂ω → ∞. This vertical tangency
also occurs when branches terminate as a local minimum merges with an inflection point in the marginal stability
curve.

Our observation is that while the axial oscillations of the inner cylinder stabilizes the axisymmetric mode when
the amplitude of the oscillationsRa is large enough at frequenciesω close to the natural frequencies of the unforced
system, then it also tends to destabilize the corresponding non-axisymmetric modes. In the geometry considered,
for Ra greater than about 68, we begin to observe primary bifurcations to non-axisymmetric modes.

4. Temporal resonances

A distinction between the present system and other dynamical system in which Naimark–Sacker bifurcations
have been studied [9,10,18] is that in those other systems their natural frequency at the bifurcation has a fixed
known value (by design), and so is independent of the forcing. Following the bifurcation, the two frequencies are
known a priori — the imposed forcing frequency and the constant natural frequency. In the present system, the
Naimark–Sacker bifurcation leads to a second frequencyωs, which is analogous to the natural frequency that varies
with both the forcing amplitudeRa and frequencyω. It needs to be determined from the Floquet analysis, and a
robust technique for this has been presented in [12].

The axisymmetricn = 0 case in this problem does not undergo a Naimark–Sacker bifurcation; it undergoes a
pitchfork bifurcation for limit cycles, and the bifurcating states are synchronous with the forcing. Forn 6= 0, the
system undergoes a Naimark–Sacker bifurcation and introduces a second frequencyωs. The variation ofωs with
ω for Ra = 65–125, in steps of 5, for the casesn = 1 and 2 is shown in Fig. 5. These correspond to the solution
branches depicted in Fig. 4. In the range of parameters where the mode competition is not prevalent, there is a
gradual increase inωs with decreasingω and increasingRa. Further, in the limit ofω → ∞, ωs tends to the natural
frequency of the unforced corresponding spiral mode. Also, independent ofω, in the limit of Ra → 0, the same
limit for ωs is obtained. The modal interactions change this behavior dramatically. The eruptions in criticalRi(ω)

andk(ω) are also observed inωs(ω). These eruptions are confined to a sector between the linesωs/ω = 1 and
ωs/ω = 2 for n = 1 andωs/ω = 1 andωs/ω = 3 for n = 2. Within these sectors, there are several hard resonances
ωs/ω = p/q with q ≤ 4.

We now determine which mode(n, k) is dominant for given(Ra, ω), i.e. which mode bifurcates at the lowest
Ri . This is summarized in Fig. 6, where the criticalRi(ω) curves are plotted forRa = 65–125 in steps of 5. The
critical Ri , for a given (Ra, ω), is the minimumRi over all (n, k). The curves are plotted as loci with constantRa.
The thick lines separate regions corresponding to distinct modes. In region I,n = 1 dominates and in region II,
n = 2 dominates. Outside regions I and II,n = 0 dominates, and the two straight thick lines separate distinctn = 0
modes, with a discontinuous change ink across them. All the thick lines are the loci of multicritical points where
multiple modes bifurcate simultaneously. Non-axisymmetric states corresponding to the modes in regions I and II
have been observed experimentally [24], but were not studied in detail.

In general, away from the thick lines in Fig. 6, whenn = 0 there is a pair of real eigenvalues crossing the
unit circle at +1, corresponding to eigenvectors that are related by the discrete symmetryS. This corresponds to
pitchforks for limit cycles [11]. In regions I and II, wheren 6= 0, there are two identical pairs of complex conjugate
(c.c.) eigenvalues simultaneously crossing the unit circle, again with their respective eigenvectors related by the
symmetryS. This is a Naimark–Sacker bifurcation with symmetry analogous to the symmetric Hopf for ODE [8],
but to our knowledge it has not been studied theoretically. On the thick lines separating differentn = 0 modes, there
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Fig. 5. Second frequencyωs as a function of the forcing frequencyω for Ra = 65–125 (in steps of 5), for the azimuthal modesn = 1 and 2,
and for all the minima in the marginal stability curvesRi(k), which correspond to the different branches depicted. The branches forRa = 125
and bothn are thick lines, forn = 1 the dashed lines correspond toRa = 105 and forn = 2 they correspond toRa = 100. All results are for
e = 0.905.

Fig. 6. CriticalRi as a function of the forcing frequencyω for Ra = 65–125 as indicated, ande = 0.905. Thick solid lines separate regions
with different dominant modes. Regions I and II have critical azimuthal numbersn = 1 and 2, respectively. The remaining regions correspond
to differentn = 0 modes. Inside then 6= 0 regions, the position of all the strong resonancesp/q with q ≤ 4 are indicated using dashed lines.
Labelsa to i refer to the strong resonances 3/2, 5/3, 7/4, 2/1, 9/4, 7/3, 5/2, 8/3 and 11/4.
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are two pairs of real eigenvalues, each pair associated with different values ofk that bifurcate. This is a 1 : 1 strong
resonance with symmetry. On the thick lines separating either region I or II from then = 0 regions, there are a pair
of real eigenvalues and two pairs of c.c. eigenvalues bifurcating simultaneously. On the boundary between regions I
and II, four pairs of c.c. eigenvalues bifurcate, and more complicated situations arise at the tri-critical points where
three regions meet. Apart from the pitchfork for limit cycles, these bifurcations have not been studied theoretically.
By analogy with simpler multicritical bifurcations in ODE [6,13], complex dynamics and chaos can be expected
following these bifurcations.

Inside regions I and II, there are loci of hard resonance points depicted as dashed lines. These correspond to
ωs/ω = p/q, with q ≤ 4, and locate the tips of the widest resonance horns.

5. Summary

Theoretical analyses of the Naimark–Sacker bifurcation are usually restricted to asymptotic studies in the limit
of either small forcing amplitude or large forcing frequency. In our Floquet stability analysis of a forced extended
system as well as in corresponding experimental studies, Naimark–Sacker bifurcations have not been observed in
these limits. Windows of Naimark–Sacker bifurcations occur for amplitudesRa ≥ 65 and frequenciesω ≤ 21.
In these windows, the marginal stability curves,Ri(k), for all the azimuthal modesn considered, develop multiple
minima corresponding to distinct spatial modes that strongly interact and compete. The windows exist for forcing
frequencies in a neighborhood of the natural frequencies associated with non-dominant spiral modes in the unforced
system. These modes are excited when the forcing amplitude is sufficiently large and the forcing frequency is resonant
with the natural frequencies of the unforced system.

The natural frequencies of the forced system are not known a priori because they depend on the forcing amplitude
and frequency (see Fig. 6). These frequencies tend to the known natural frequencies of theunforcedsystem only in
the limitsRa → 0 andω → ∞; and as noted earlier, in these limits the system loses stability via a synchronous
pitchfork for limit cycles, and not via a Naimark–Sacker bifurcation.

The extended system considered possesses the symmetry groupSO(2) × O(2) with the Z2 symmetry corre-
sponding to a half-period translation in time together with the reflection inz. This symmetry prohibits a loss of
stability of the basic state via a period-doubling bifurcation. Of course, period-doubling could occur following a
symmetry breaking bifurcation.

Nonlinear analysis and experiments are necessary to explore the dynamics beyond the bifurcation points described
here and to determine whether the various bifurcations are super or subcritical.
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Appendix A. Symmetries and the monodromy matrix

Let Mτ
t (k) be the matrix obtained from (5) by integrating the identity matrix fromt to τ . The monodromy matrix

of (5) is given byMT
0 (k) and it obviously satisfies

MT
0 (k) = MT

T/2(k)M
T/2
0 (k). (A.1)
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The symmetry (6) does not apply to (5) since it changes the sign ofk and the entries in matrixA. In order to study
the action ofS, we consider theenlargedsystem, including positive and negative values ofk:(

ẋ
ẏ

)
=
(

A(k, t) 0
0 A(−k, t)

)(
x
y

)
. (A.2)

The solution of this system is given by

x(t) = Mt
0(k)x(0), y(t) = Mt

0(−k)y(0). (A.3)

Let us consider now the equation satisfied byz(t) = y(t + T/2),

ż(t) = ẏ(t + T/2) = A(−k, t + T/2)y(t + T/2) = A(k, t)z(t). (A.4)

Therefore,

z(t) = Mt
0(k)z(0) = y(t + T/2) = M

t+T/2
0 (−k)y(0) = M

t+T/2
T/2 (−k)M

T/2
0 (−k)y(0)

= M
t+T/2
T/2 (−k)y(T /2) = M

t+T/2
T/2 (−k)z(0). (A.5)

Sincez(0) is arbitrary,

Mt
0(k) = M

t+T/2
T/2 (−k) ⇒ M

T/2
0 (k) = MT

T/2(−k). (A.6)

This gives for the monodromy matrix of (5):

MT
0 (k) = MT

T/2(k)M
T/2
0 (k) = M

T/2
0 (−k)M

T/2
0 (k). (A.7)

The monodromy matrix of the enlarged system is

(
MT

0 (k) 0
0 MT

0 (−k)

)
=
(

M
T/2
0 (−k)M

T/2
0 (k) 0

0 M
T/2
0 (k)M

T/2
0 (−k)

)
=
(

0 M
T/2
0 (−k)

M
T/2
0 (k) 0

)2

.

(A.8)

Therefore, the monodromy matrix of the enlarged system is the square of a matrixB, and the Poincaré map is the
square of another map. But the matrixB mixes up both componentsx andy corresponding to solutions withk and
−k. Therefore, the monodromy map of the reduced system (5) will not be a square generically.
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