PHYSICS OF FLUIDS VOLUME 10, NUMBER 4 APRIL 1998
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We examine non-linear spiral flow in the Taylor—Couette problem for a wide gap with axially
periodic conditions. We present a highly efficient computational method adapted to this problem,
based on continuation methods applied to a pseudospectral discretization of the Navier—Stokes
equations in a rotating frame of reference. The spiral flow is computed in a wide range of
parameters, and different features are explored in detail: domain of existence of the flow, behavior
for high Reynolds number, appearance of axial flows, dependency on parameters, and stability
against helical disturbances. A first integral is obtained and used to describe the particle trajectories
in the fluid. This description shows that the axial and radial motion of the particles is mainly
confined within an internal boundary layer. €98 American Institute of Physics.
[S1070-663(198)01604-3

I. INTRODUCTION et all® have calculated the spiral flow assuming a helical

The Taylor—Couette problem has been the subject o?ymmetry. In this case, the 3D spiral flow is described by

: . . L ; .-using only two space coordinates, and computed by time-
many experimental and theoretical investigations since its . ! . . .

- X Y evolving the discretized Navier—Stokes equations. Edwards
origins at the end of last century. Tagg's compilatiaf

X e et al® have compared wave speeds with results obtained
I I h I ly 1 - . i .
iterature related to the problem containing nearly 1500 re ith the three-dimensional code of Marclisreporting a

erences, is a good indicator of the attention it has receive orv aood aareement. In both cases a relation between the
Much of this work deals with the stability of the basic Cou- very g 9 j ' W

axial and the azimuthal periodicities is imposed in advance.

ette flow. From the linear stability analysis many authorsI thi ish t lore the d d f the fl
have obtained amplitude equations to perform a weakly non-! (NS paper we wish 1o expiore the dependence of the Tlow

linear analysis; StuaftPavey?® Reynolds and PottérKirch- with this relation, and with respect to other parameters,
géssner and Sorg®and others when the two cylinders rotate mainly the angular velocities of the inner and outer cylin-
in the same direction or the outer one is at rest, and Edward"s: o _ _
et al® and others in the counter-rotating case. Other authors W& have used continuation methods in order to obtain
(looss’ Demay & loos€ Chossat & loos$,and othershave the spiral flow wherever it exists. This method has two ad-
used center-manifold reductions of the Navier—Stokes equa/@ntages with respect to time evolution; first, it is much less
tions or the theory of bifurcations in the presence of symmefimeé consuming; second, we can compute the spiral flow
tries to deduce reduced equations to be studied. With thedihether it is stable or not. Therefore this method is very well
tools secondary and tertiary bifurcations have been predictedtited for studying the stability of the SF in the future. The
that qualitatively reproduce the behavior found in the experi-formU|6}t'07n_ of the problem using velocity potentials
ments. (Marques™’) is given in Sec. II, and in Sec. Il we deal with

Many of these studies are restricted to small supercriticalh® numerical method used for the continuation procedure.
Reynolds numbers and cannot predict accurately the critica/e have found that the SF exists in a much wider parameter
Reynolds numbers for which new bifurcations appear. It iga@nge than is experimentally observegec. V). A limited
therefore necessary to calculate solutions of the full Navierlinear stability analysis of these flows, restricted to perturba-
Stokes equations. Taylor vortex flow has been calculated b{fons with helical symmetry, is presented.

many authors; Meyer-Spasche and Kéflét and Dinar and We have also found properties of the SF for high Rey-
Kellert? by continuation methods, and by Fasel and Bdoz nolds numbers, showing some features similar to Taylor
and Marcu$* by time evolution. Vortex Flow (TVF) at high Reynolds numbers, as in Fasel

Spiral flow (SP has received much less attention mainly and Booz:* A new feature is that the spiral flow in an axially
because of its three-dimensional structure which poses mameriodic domain exhibits a weak but not zero axial mass
more difficulties. Although they can be calculated with fully flow, as has been pointed out by Edwaetsal® This is a
three-dimensional time evolution codes, like Martug, is purely non-linear effect, appearing as a result of the reflex-
computationally expensive if an extensive parameter depenenal (z— —z) symmetry breaking bifurcation from which
dence study is to be done. Edwardsal® and Sachez the SF emergetSec. ).
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The trajectories of the velocity field generated by theandp=2z/b— 6, are invariant with respect to the helical sym-
spiral flow are also investigated in this pafg8ec. V). The  metries described above. It must also be noted that functions
formulation in terms of potentials for the velocity field and 2-periodic inp are 2r-periodic in 6 and 2wb-periodic in
the incompressibility condition provide a first integral that z. We will therefore look for solutions Witlagh=0. Replac-
provides a detailed description of the trajectories and an eXng in (4), we obtain the relations,= -4, and (9Z=b71(9p

planation for the axial mean flow. that are used in all subsequent equations. The three-
dimensional structure of the spiral flow is now described by
using only two space coordinates, and the flow can be nu-
merically computed in detail with a moderate computational
We consider the flow of an incompressible fluid confinedcost.
between two concentric cylinders, of inner and outer radii  The spiral flow is a traveling wave in both azimuthal and
ri, ry and gapd=rg —r{, which can rotate independently vertical directions(see Ref. & Therefore Navier—Stokes
with angular velocities);, Q,. The non-dimensional pa- equationg1) are written in a rotating frame of reference with
rameters are the radius ratip=r;/r5 , and the Reynolds an angular velocity), in which this flow is steady:
numbers associated with the tangential velocity of the cylin- . -
dersR,=dr¥Q;/v, R,=dr¥Q,/v wherev is the kinematic hv+20e,Xvtwxv=—Vp+Av, V.v=0, )
viscosity. We adimensionalize the equations usihgl?/ v
for space and time, respectively. The Navier—Stokes equ
tions and the incompressibility condition then read as

Il. FORMULATION OF THE PROBLEM

wherew=V XV is the vorticity field, we have used the iden-
Fity v- Vv=wxv+V(v¥2), and we have include¥ (v2/2)
and the centrifugal term intp. The presence of the Coriolis
dv+v-Vv=—Vp+Ay, V.v=0, (1)  term is equivalent to changing the vorticity=V Xv into

wherep is the pressure divided by the constant density of the¥ XV+2€e,. The Reynolds numbers in this frame change
fluid. We will assume infinite cylinders and solutions peri- iNt0 Ri—Ri—Qr;, Ry—R,—0r,. The (non-dimensional
odic in the axial direction, of period2b. angular velocity() is a property of the spiral flow, and will
The geometrica' structure and Symmetry properties Of)e determined Simultaneously with the ﬂOW, as will be seen
the spiral flow are well known. The book of Chossat andlater.
looss is an excellent review of the analysis based on center ~ T0 solve the equations, we introduce the mean velocities
manifold reduction and the corresponding amplitude equal the azimuthal and axial directions as averages pyand
tions. These methods do not supply a full description of theve use toroidal and poloidal potentials for thedependent
flow, and they are also limited to a neighborhood of thevelocity part,
bifurcation point. Nevertheless they are very useful because —n  —a -~ N
they give some of the global properties—as symmetry V= V#€ot V2TV X(4&)+ VXV X(e,), ©®
properties—of the flow, and a qualitative picture of the bi-\yhere
furcation. We have taken the benefit of these properties for
i i i i _ 1 (27
;huenjgirgzllﬁ:gphg;ger main equations and the correspondln%—az S S ﬂfo F(r.p.t)dp. @
The spiral flow that appears in the counter-rotating case - .
has a spatial structure invariant with respect to a rotatioNow v, andv, are only functions of, and and ¢ have a
around the cylinder’s axis and a simultaneous translation izerop averageP =P ,$=0.
the axis direction, i.e. a helical movement which we call  Velocity potentials have been used by several auttas's
helical symmetry(see Ref. & This symmetry can be written Yahata!® Kessler'® and Marcu®’ in thermal convection
in cylindrical coordinates, this method being coincident in axisingmetric cases with the
stream function formulatiofas in Jones). The formulation
(r,6,2)=(r, 0+ 5,z+bp), @ introduced by Marqug’ is very well suited in cylindrical
whereg is the rotation angle, 2b is the axial period, and  geometries, where some subtle problems with the boundary
a constant that fixes the relative magnitude of the rotatiortonditions arise, and are solved in the mentioned paper. The
and the translatiorh is then related to the slope of the spiral authors have applied this method to the thermal convection

pattern. in vertical cylinder$® and to the time dependent computation
We introduce the system of coordinates, of the spiral flow!® We will adopt this formulation, whose
X=2r—8, 6,=6, p=2b—0, (3 Mmain points follow.

The evolution equations for the mean velocities v,

are the averaged andz components of the Navier—Stokes

equations, and we use the axial components of the curl and

3,=b tap. (4)  double curl of the Navier—Stokes equations for the poten-
tials. Then the incompressibility condition is identically sat-

We have introduced because the unknowns of the problemisfied, and the pressure term is removed from the formula-

will be expanded in Chebyshev polynomials in the radialtion. A lengthy but straightforward computation gives

direction[Egs.(15), (16)]. It is easy to see that velocity fields o

whose components are functions only of the coordinates Pp(é6.~Av)=DD+v0, Pp(éZ-Av)=D+DvZ,

with §=r,+r,, (X,6h,p) e[ —1,1]X[0,27]X[0,27]. The
relationship between partial derivatives is

(9r=2c?x, 079=&‘gh—&p,
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~ L N/2-1
(1-P,) (e, VXV)=—Ani, .
o " sxp)=2 B daTi0e, (16)
(1-P,) (& VXAV)=—AApy, " Mato
(1-P,)(&,-VXVXV)=AA,d and analogous developments ﬁrand ¢. iy , are complex
P numbers but, ag is real, they satisfy), _,,= ¢, so only
~ , I,n
(1-P,) (&, VXV XAV)=AAA, (8)  half of them must be computed.
2.2 The discretization of the equations for the potentials is
where D=4,, D, =D+1Ir, Ay=D,D+r"%9,,, A=Ay,

obtained by a Galerkin projection on the periodic coordinate
p and a collocation method for the radial coordinaté\fter

the equations are separated into their Fourier components,
these are evaluated on a radial mesh of Gauss-Lobatto col-
V><A=(—r’lapAZ—b’lapA,,,b’lapAr—ﬁrAZ,D+A9 location point_s. T_his allows an efficient evaluation of the
equations fow 4, v,, ¥, and ¢ by using fast Fourier trans-

+b*2&§p. For a vector fieldA whose cylindrical compo-
nents depend only on, p, the explicit expression of its curl
is given by

r laPAf)' ©) forms in both coordinates.
We finally obtain the equations Since the spiral flow is now a fixed point in the rotating
_ . frame, it can be computed using continuation methods
(0;=DD)vy=—P,(&-b), (10) against different parameét(;rs. Wezshave used ?gme of the tech-
— - niques described in Kellér,Simg,*° and Seydef. To fix the
(=D Djvz=—P,(&:b), (11 phase of the steady solutions in the rotating frame we have
(09— A)Anh=(1—P )(éz’VXb): (12) added the equation that sets to zero the value of the imagi-
g nary part of one of the variables corresponding to the azi-
(0y—A)AALp=—(1— Pp)(éz~ VXV xb), (13) muthal dominant mode. This also determines the angular ve-
. locity of the rotating frame().
wjt_h b=wxv+2Q0e,xv. The corresponding boundary con- Let p be the continuation parameteR(, R,, or b) and
ditions are: let X be the vector formed with the coefficients of the expan-
U_a(ri): Ri—dfi*Q/V,U_o(fo)Z R,—dr*Q/v, sion forv, Uz, ¢, and ¢ [(1E_>)—(1§)]. Then th(_e discretized
(14 steady Navier-Stokes equations in the rotating frame have
U_z= Dy=¢p=Anp=0 the formF(X,(,p)=0. These equations implicitly define a
b+ 1D p=bAA S+ IDApg=0 on r=ri,rq. curve of solutionsX=X(p), Q=Q(p). At each stage of the

continuation process, from a set of known points on the
The last boundary condition is necessary in order to ensureurve of solutions, a predictor step provides an initial guess
the equivalence with the Navier—Stokes equation. The velodrom which a corrector step based on a modified Newton—
ity potentials are not uniquely determined by the velocityRaphson iteration converges to another point on the curve.
field, so the gauge boundary conditigr=0 has been used. For the first two steps the prediction is made using the tan-
The remaining boundary conditions come from the no slipgent to the curve. After this startup, polynomial extrapolation
condition on the cylinders surface. Using these equations, the used based on the last three points on the curve.
computation of the time periodic spiral flow reduces to a  To start the continuation procedure an initial solution is
two-dimensionalr, p) steady problem, in a rotating frame of needed. This is obtained by time evolution of the two-
reference. dimensional system for the spirals in a non-rotating reference
The above system of evolution equations were used isystem in order to attain the periodic regime.
Sanchezet al!® to calculate the spiral flow by time evolu- To determine the number of terms needed in the expan-
tion. Details on the methods used can also be found isions to obtain accurate results, several test have been made.
Sanchez2® Although in this paper we solve the equations The torques on the inner and outer cylinders have been cal-
(10)—(193) in the steady case, in order to start the continuatiorculated for different values of the number of terms in both
method we have used as an initial point a spiral flow obthe x and p coordinates, and for two values &;. The
tained by time evolution; the initial guess fé¥ is also ob-  torques on both cylinders must be the same. This has been
tained this way. considered as a precision test by some authbwith the
formulation used, the expression for the torque per axial pe-
riod on the cylinders is

!ll. NUMERICAL METHODS M1 o) =277 oV (T &) =T ar0 (T ), (17)
In order to solve the equations for the potentials we have , being the radius of any of the cylinders.
used spectral method€anutoet al?%). They have been ex- The variation of the angular velocity with the number of
panded using Chebyshev polynomials in the radial directionterms has also been considered, although this variable is
and a Fourier expansion for thecoordinate, more sensitive than the torque. The variation of the Fourier
L coefficients of thed component o/ has also been used as a
U—g(x)zz £T,(%) (15) test. This compc_)nent has been selec_ted be_cguse it is the one
=0 of largest magnitude and largest radial variation.
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TABLE |. Torque and angular velocity values f& =150, R,=—50, 7
=0.8,b=0.3055.(a) L =16 for differentN values;(b) N=16 for different
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TABLE II. Torque and angular velocity values f&; =350, R,= —50, 7
=0.8,b=0.3055.(a) L=16 for differentN values,(b) N=16 for different

L values. L values.
@ @
N Inner torque Outer torque Angular velocity N Inner torque Outer torque Angular velocity
12 0.428515H-05 0.428365H-05 0.106146E 02 12 0.146235H-06 0.147024H 06 0.292302H 02
16 0.426921H-05 0.426924H 05 0.1053678 02 16 0.152536H 06 0.152370H 06 0.257615H 02
24 0.426993H-05 0.426993H 05 0.105644HE-02 24 0.151755H-06 0.151752H-06 0.263790H02
(b) (b)
L Inner torque Outer torque Angular velocity L Inner torque Outer torque Angular velocity
12 0.426908H 05 0.426912H 05 0.105298H-02 12 0.156284H 06 0.156106H 06 0.276747802
16 0.426921E05 0.426924H 05 0.105367H-02 16 0.152536H-06 0.152370H 06 0.257615H 02
24 0.4269208 05 0.426924H 05 0.105368H-02 24 0.151834H 06 0.151653H 06 0.245542H02
In Tables I-Ill the results of some of the precision testswhose four first digits do not change whhiis increased to

are summarized. All parameters have been fixed exBept 24. For the angular velocity the difference between the val-
for which two different values have been considered. Bothues forN=16 andN=24 are in the fourth digit. Table II
values, 150 and 350, are above the region where spirals aslhows that keepingl=16 and varyingL gives better con-
stable but have been selected because spirals ranging fromergence; both torques and angular velocity differ in the
R;=110 to R;=500 will be analyzed later. The remaining sixth digit whenL=16 andL=24. The best results for the
parameters ar&,=—50, »=0.8, andb=0.3055. In Table torques are easy to understand because from(Ef. M,
I(a) the inner and outer torques and the angular velocity obnly depends om. The results folR;=350 shows an error
the spirals are shown fd®;=150,L=16, andN=12,16,24. less than 0.5% for torques and less than 5% for the angular
Table kb) shows the same results but for fixd=16 and  velocity, takingL=N=16 modes. As has been stated above,
L=12,16,24. The same results are reproduced in Taklas Il we see that the angular velocify is specially sensitive.
and ll(b) for R;=350. In Table lll the extreme values of the Fourier coeffi-
From Table | it is clear that using=16 andN=16 is cients for the azimuthal velocity are shown. After calculating
enough to have torques that differ in the sixth digit andthe velocity field from(6), v, can be written as

TABLE lIl. Extrema of Fourier amplitudes af ;. R,=—50, =0.8,b=0.3055,(a) L =16 and for differentN
values.(b) N=16 and for different. values.

(@

Ri =150 Ri =350
Mode N=16 N=24 N=16 N=24
0 —0.2716728-02 —0.2716718-02 —0.126811E8-03 —0.1272978-03
1 —0.170339B8-02 —0.170332B-02 —0.2675878-02 —0.284028B-02
2 —0.336842E-01 —0.3368848-01 0.793644HF 01 0.893874HF-01
3 0.105391E-01 0.105375801 0.643908E-01 0.526421801
4 0.106183H-00 0.106166H-00 —0.2644878-01 —0.1201638-01
5 —0.119893B-00 —0.1198478-00 0.228243E-01 0.176808E01
6 0.210001E-01 0.209143E01 —0.158626B8-01 —0.1463736-01
7 0.813100E-02 0.680715E02 0.116448E01 0.880084H-00
8 —0.258144E-02 —0.482239EB-00
9 0.205742E-03 0.223266H00
10 0.175274E 03 —0.890696E-01
11 —0.346771E-04 0.274590E01
(b)
R;=150 R;=350
Mode L=16 L=24 L=16 L=24
0 —0.2716728-02 —0.2786988-02 —0.126810E-03 —0.1259718-03

—0.1703398-02
—0.336842B-01
0.105391H-01
0.106183E-00
—0.119893E-00
0.210001E-01
0.813100E-02

—0.172286B8-02
—0.336914B-01
0.105424H01
0.111624E-00
—0.1194348-00
0.214979E01
0.815212E02

—0.2675878-02
0.793644E-01
0.643908H-01

—0.2644875-01
0.228243F01

—0.158626B8-01
0.116448H01

—0.2673876-02
0.791733801
0.657595H-01

—0.298387B-01
0.241191E01

—0.153259E-01
0.102392E-01

~NOoO O WN PP
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L N/2-1
vx,p)=2 2 g Ti(X)E™, (18)
I=0 n=—N/2 '
and its Fourier modes are defined as
L
04,(0=2 vy TiX)- (19
The coefficients displayed in Table Il are
maXUﬁn(xi) or minuﬁn(xi), i=0,...L, (20
i i
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FIG. 1. Branches of spiral flowa) Inner Reynolds numbéR; as parameter,
b=0.3055, andr,= —50. (b) Outer Reynolds numbeR, as parameteth

depending on which is larger in absolute value, and being. 3055, anr =110.

X;=cos{n/L) the radial Gauss—Lobatto collocation points.

As a measure of the precision we will use the maximum

error in the six dominant modes, because they account fogg ; times the sign of its real part, versus the inner Reynolds
99% of the amplitude in the worst case considered. The erranumberR; for R,= —50 andb=b,;;=0.3055. This value of

in a physical variable is much smaller, because the maximurh has been taken from the linear stability analyiangford

error considered appears in high modas-@3).

In Table Ill the coefficients for both casé&=150 and
R; =350 are shown. As for the torques, fey= 150, keeping
L =16 the three leading digiterror less than 0.5%of the
six dominant modes do not change whkiis increased from
16 to 24. The convergence whéhis kept to 16 and. is
increased is not so godtess than 5%indicating that better

et al?® and Sachezet all%. At this value the inner Rey-
nolds number at which Couette flow becomes unstable has a
minimum. At this pointR;=106.1, a Hopf bifurcation occurs
and the periodic spiral regime appears.

As a result of working in the rotating frame where the
spiral is at rest, a one parameter family of steady solutions
can be found. Two of these solutions differ only by a phase

resolution on the radial direction is needed. The same can kghift or a rotation around the axis of the cylinders. This is
seen forR; =350, with errors less than 12%. The presence ofwhy the sign of the real part of the variable plotted in Figs.
narrow boundary layers near the cylinders for highex-  1-2 has been included. The real part can be positive or nega-
plains why it is necessary to increase the number of radidiive, giving the two symmetrical branches shown. These two
modes. For this reason, in all subsequent calculations showsolutions differ only by a rotation around the axis of the
later we have usetl =24 andN=16. cylinders of 180 degrees. The horizontal line represents the
Because we have only studied qualitative properties ofouette flow. No other helical symmetric solutions branch-
spirals for highR; we consider the results accurate enoughing from the spiral regime were found in our calculations,
For the spirals experimentally observable beRy# 150 the  except the Couette flow. The branch has been calculated for
numerical results are very accurate. inner Reynolds numbers above those for which experiments
show that spirals become unstable, in order to study the spi-
ral properties for high Reynolds numbBy, and to search
for bifurcations that still retain the spiral invariance. The
As there are many parameters in the problem, we havstability of this branch is given by the eigenvalues of the
limited our study to the casg=0.8, and since changifgto  Jacobian matrix of the system, which is computed through-
—b corresponds to a reflexional symmetry with respect to aut the continuation procedure. We found a secondary Hopf
plane perpendicular to the axis of the cylinders, only positivebifurcation atR;=137.2. In the non-rotating reference frame,
values ofb have been used. the flow is quasiperiodic. In a previous pap&me already
The primary instabilities and bifurcation curves for the found bifurcations to a quasiperiodic regime by time evolu-
circular Couette flow in the counter-rotating case were comiion of the Navier—Stokes equations with helical symmetry.
puted and compared with experiments by Langfet@l.in  We showed that the presence of a quasiperiodic flow near the
198828 They found that for moderate outer Reynolds num-
ber R, in the counter—rotating case, the transition to spirals
take place with an azimuthal wave numbes1. For in-
creasing negative values &, the critical azimuthal wave
number isn=2,3,... .They also noticed that solutions
corresponding to different values nfhave identical qualita-
tive properties. Sachez, Crespo, and Marcgsté have com-
puted numerically by time evolution spiral flows for different
dominantn modes, and have found analogous results. There-
fore, we have selected the parameters to ensure that the az
muthal dominant mode is always=1.

IV. THE SET OF SOLUTIONS

120

@ )

crit.

b5
AO,I 0

3

1104

— 105

0.2 0.2 03 04 0.5

b

Figure Xa) shows a typical representation of the solu-
tions obtained by continuation methods. We have plotte

IG. 2. (a) Branches of spiral flow depending on the paramédter(b)
arginal stability curve of the transition from circular Couette flow to spiral

Ao1=sign(Req 1)| ¢ 4, the absolute value of the amplitude flow.
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nTs P 101 of the spirals would reveal a curve inside the transition one
. 16 o] \/ from Couette flow, indicating the interval of allowdxdas in
a ‘ Q | o the case of Taylor vortices for the axial wavelength.
9 / 12 The symmetry of the curve is related again to a 180
81’ ‘ . . degree rotation around t.he axjs of thg cylinders, and the
00 120 140 160 50 25 0 25 50 025 030 035 040 curve crosses the one-dimensional variety of Couette flow
i R, b solutions(parametrized this time by for the two Reynolds
FIG. 3. Angular velocity() of the spiral pattern along the continuation paths numbers fixegtwice.
using as paramete(s) the inner Reynolds numbd. , (b) the outer Rey- For fixedR;, the region in the R, ,b) space where the
nolds numbemR,, and(c) the spiral slopéd. The values of the parameters spiral flow exists is bounded. Thevalues are limited by the
held constant ar&; =110, R,= — 50, b=b¢iy=0.3055. critical curve corresponding to the transition from Circular

Couette Flow(CCH to Spiral flow, as shown in Fig. 2 right.

R, is limited because foR,=R;/#%>0 the rigid body rota-
primary instability was caused by the competition betweertion case CCF is absolutely stable. For negative and large
different spiral modes, with the same paramétdut differ-  R,, the outer rotation has a stabilizing effégso the spiral
ent azimuthal dominant mode. We have plotted the un- flow appears for higher and high&; . For very large and
stable branches with dashed lines, in Figs. 1 and 3. negativeR, values R,<—2x10%, other mechanisms of

Figure 1b) shows the curve of solutions obtained wheninstability appear, characterized by intermittency, hysteresis,
the outer Reynolds number is used as a parameter from and regions of turbulent flow. Cofsused the terncata-
solution slightly above the critical inner Reynolds number.strophic transitionfor these processes. They appear far from
For this plotR;=110, b=b,;=0.3055 as before, and the the parameter range we study here.
initial condition is taken from the other curve with
R,=—50. The horizontal line again co_rrespoqu to Couettev_ SPIRAL FLOW PROPERTIES
flow. We may now observe that solutions exist only for a
limited range of outer Reynolds numbdisetween—58.90 In Fig. 3 the dependence of the angular velocity of the
and 39.46 in this pl9t including positive values. This indi- pattern has been plotted versus different continuation param-
cates the existence of spirals in the co-rotating case that aegers. It increases with the inner Reynolds number, except at
not observed in experiments because Couette flow first bifurthe very beginning of the branch where a slight decrease can
cates to axisymmetric Taylor vortices, and probably becausbe noticed. The second curvR{ continuation has a mini-
these spiral solution§or R,>0) are unstable to non-helical mum atR,= —50, and the third also has a minimum fat
perturbations. All the branch is stable against perturbations-0.3486. If this last curve is compared with the stability
with helical symmetry. As the stability of these solutions curve in Fig. 2, it can be seen that the prefereat the onset
against 3-dimensional perturbations has not been studied it &f instability from Couette flowp=0.3055, is not the one
impossible to establish if they are stable along all the curvehat makes the angular velocity minimum. In fact, the pre-
or not. If they were stable they should be observed in experiferred valueb=0.3055 makes the axial period 1.92, nearly
ments at a certain interval aboW=—50 by moving the twice the gap between cylinders, as in the transition to Tay-
system from a counter-rotating stable spiral state to color vortices.
rotation simply by varying the outer Reynolds number. We now consider the properties of the spirals labeled 1,

The lower limit is R,= —58.90 where the flow bifur- 2, 3, 4 in the plot in Fig. 1 corresponding to inner Reynolds
cates to Couette flow. The criticaR; and b for  numbers 140, 220, 300, and 500, respectively. The behavior
R,=—58.90 areRf"'=109.99<110.00 andb®=0.3019, of the mean flows is displayed in Fig. 4. In Figajwe see
so the plotted curve of solutions ends very near the criticathat when the inner Reynolds number is increased, two
curve from Couette flow to spirals but not exactly because oboundary layers develop near the walls, where the fluid is
the different values ob. dragged by the wall rotation, and the fluid in the center of the

The symmetry of the curve is again related to a 180cylinders has nearly zero average azimuthal velocity; it is
degree rotation around the axis of the cylinders, and in thiglmost at rest in the rotating reference system. Figioe 4
case the curve crosses the two-dimensional variety of Cowshows the net azimuthal flux in the rotating reference system.
ette flow solutiongparametrized by the two Reynolds num- It is small and increases witR; until saturation near the
bers, for fixedb) twice. spiral flow labeled 2. Figure(®) shows that there are non-

The left plot in Fig. 2 shows the curve of solutions ob- zero mean axial flows with opposite signs near each cylinder.
tained whenb is used as continuation parameter, for fixedThis gives a large scale motion on tlzeaxis. Moreover,
R;=110,R,= —50. The set of values df for which spirals these mean axial flows do not compensate each other: a net
exist is limited by the stability curve of Couette flow, as canmass flux appears in the axial direction, as shown in Fig.
be seen in Fig. 2. The parabolic curve corresponds to thd(d). This net flux changes sign when the Reynolds number
transition from Couette flow to an spiral of dominant azi- is increased.
muthal numbem=1. The horizontal line aR;=110 is the The presence of a weak but not zero axial mass flow has
projection onto this plot of the curve of solutions dependingbeen pointed out by Edwardst al® This is a purely non-
onb. As the inner Reynolds number is increased, the intervalinear effect; it can easily be sedachez, Crespo, and
of possible slopes for the spirals is wider. A stability analysisMarques™®) that the linear eigenfunction that appears in the
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N
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bifurcation has zero mean flows;, v,, and therefore zero @

axial mass flow. This feature is not present in the Taylor
vortex flow, but appears in the spiral flow in an axially pe- %
riodic domain as a result of the reflexiona —z) symme- ()

try breaking bifurcation from which the SF emerges. Spirals
with opposite values db are symmetric with each other and
have Op_pOSIt(; aXIFIbmlaSS flow. f the fl b FIG. 5. (a) Perspective of the velocity field for the mean radits.Velocity

In F'.g- 5 the globa structure of the flow can be seen. Omield at a vertical plane(c) Isolines of azimuthal velocity(d) Isolines of
top of Fig. 5 a perspective view of the velocity field for the vertical vorticity. The four plots in each case correspond to the spirals 1, 2,
mean radius is shown. The flow looks sinusoidal near th&. and 4 along thé&; continuation curve of Fig. 1.
transition, but for high Reynolds number the center of the

vortices is almost at rest, as the mean flows also show.' Thig, ional (z— —2) symmetry: the vortices come in pairs of
suggests that the core of the vortices tends to move like

fifferent size, and a net axial mass flow appears.
rigid body, and in the rotating reference frame they are vir- ' PP

t_uaIIy at rest._ Th_is rigid body rotation _is conf_irmed by the IastVI_ STREAM FUNCTION AND TRAJECTORIES

line of plots(isolines of vertical vorticity, which shows that

the vertical vorticity in the center is almost constéint fact To describe the trajectories of the velocity field of the

nearly zerd. These results support the theoretical model prospirals, we find a first integral of the field from the incom-

posed by Batchelot: which is based on the assumption that, pressibility condition. In the case of Taylor vortices, the tra-

for R;—, the secondary flow in the axial plane consists ofjectories are easy to describe. The projections of the stream-

an inviscid core surrounded by boundary layers. lines in anr—z plane are closed curves, so the full
Figure §b) shows the velocity field in @ constant sec- streamlines lie on toroidal surfaces and almost all are dense

tion. When the Reynolds number increases, we see the fornd describe a quasiperiodic motidisee Ashwin and

mation of an outgoing jet. Figure(® shows the isolines of King®?). The situation in the case of the spirals is different

the azimuthal velocity, confirming the formation of the because the stream function depends on the three coordi-

aforementioned jet, which keeps the angular momentum upates. If expressed in terms of thecoordinate it is possible

to collide with the outer wall. Boundary layers appear neartto describe completely the set of trajectories.

the walls and between the vortices. The incompressibility condition written in the (p) co-
These results are similar in many aspects to those obRrdinates for the spiral flow is

tained by Fasel and BodZ,for the Taylor Vortex Flow

(TVF) at high Reynolds numbers. The evolution of a jetlike ———

or shocklike flow structures, boundary layers developing bor

near the walls, and the nearly inviscid behavior of the coreélhe boundary conditions say that the radial flux is zero, and

region for large Reynolds numbers, are very similar in boththis condition guarantees the existence of a stream function

SF and TVF. The differences are due to the lack of the rex(r,p,t) such that

iz

9

N

Uz Uy -0

Far(rvr)""&p (21)
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FIG. 6. Intersection of the integral surfacgs-const, with a vertical plane

f#=const.(a), (b), (c) correspond to the spirals 1, 2, 3 along fRecontinu-
ation curve of Fig. 1. FIG. 7. Axial shift per unit time corresponding to the spiral number 1. The

horizontal coordinates are ,p).

1 v, vy, 1 dy v,#0 in general, so the particles in these points can have an
V==X, V=T = Tdx= g =dx- (220 axial motion. On the homoclinic loops, the period goes to
infinity, as the particle tends to the saddle points; the axial
However, in the rotating frame the velocity field is motion of a particle in one of this homoclinic trajectories
steady, and therefore the stream function does not depeRgnd to be the same as the saddle points for large times.
explicitly on time. In this casay/dt=0 and the particle The axial shift per unit imeAz(x)/T(x) is shown in
trajectories lie on the surfaces=constant. These integral Fig. 7 as a function ofr(,p). We notice that the center of the
surfaces are invariant by a helical symmetry, and can bgortices is at rest and that the axial motion takes place in the
obtained from the curveg=constant in ther(, z) plane by  poundary layers near the walls and between the vortices,
a helical movement. Figure 6 shows the-constant curves jnside the jetlike structures described in Sec. V. As we have
at the 1, 2, 3, and 4 aforementioned points. Notice that &ready mentioned, the stream function has two saddle points
vertical plane (,z) defined byf=constant, is the same as a near the walls. Surprisingly, the axial motion is confined
plane in the (,p) coordinates, due tp=2z/b—6. In the  majnly near and between the homoclinic curves joining the

initial non-rotating reference frame these integral surfacegaddle points. The shape of these curves can be seen in Fig.
also exist, but they are not steady and they rotate around thgfor the 1, 2, 3 cases.

z-axis with the angular velocity) of the spiral pattern. Another striking fact is that these curves tend to merge
The stream function has a very simple expression inyhen the Reynolds numb&; increases. In fact, for the spi-
terms of the velocity potentials; ral labeled 3 in Fig. (a), they are almost identical, and the
r fr same happens for the spiral labelednét depicted There-
X(rp) == ¢t H(r), H(r)= fr (5 vz—vg)dr, fore the axial motion is concentrated in an internal boundary

layer that becomes very narrow at high Reynolds number. In
(23 . . o ;
any case, this axial motion is very small compared with the
where the contribution of the mean flows is in tHeterm. azimuthal velocities of the flow, as Fig. 4 shows.
A detailed description of the particle trajectories can be  Figures 9, 10 and 11 show different views of the particle

obtained from the stream function. Looking at Fig. 6, we segaths in case 1, corresponding to three of the five regions in
that the ¢,p) coordinates of a particle trajectory are periodic

in time, except for the fixed points and homoclinic trajecto-
ries described below. The period is the time taken to go ove
a y-constant curve; notice that being periodic, we may
identify the top p=27) and bottom p=0) of the plots in
Fig. 6. In a period, however, the coordinate may not re-
cover its initial value, and undergoes a shift both in the axia
and azimuthal directions. When the particle comes back ti
the starting poinAp=0 but, asp=2z/b— 0 (3), Az=bA#

#0 in general. Both the axial shithz(y) and the period Q
3

T(x) depend on the value gf on the y-constant curve con-
sidered.

There are four fixed points in the plot of the level curves
of y=constant(Fig. 6), defined byv,=v,=0: two centers 1 2
in the middle of the vortices, and two saddle points on the
Sld_eS of the small vortexsee Fig. 8 J0|n|ng_ the saddle FIG. 8. Homoclinic trajectories of the stream function iM&const plane.
points to themselves there are four homoclinic loops, dery (), (¢ correspond to the spirals 1, 2, 3 along fecontinuation curve
picted in Fig. 8. For the fixed points, the period is zero, butof Fig. 1.
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FIG. 11. Trajectories; top viewa), (b), (c) are the same as in Fig. 9.
FIG. 9. Trajectories; perspective viega) Initial point near the inner cylin-

der.(b) Initial point between the homoclinic curveg) Initial point near the ) ]
center of a vortex. much wider parameter range than experiments suggest. In

particular, it also exists in the corotating case. We have made
_ o _ a limited linear stability analysis of the spiral flow, restricted

which the homoclinic curves separate enz period. Plot 5 herturbations with helical symmetry. Even in this case, the
(@) in each figure corresponds to particles near the outer cylpirgis are only stable in a small range of the inner Reynolds
inder; the corresponding integral surfaces are nearly Cy”nhumberRi.
ders parallel to the walls. Pldb) corresponds to a particle The analysis of the flow properties shows some features
path confined between the homoclinic curves, and @oto  yery close to the ones corresponding to TVF, such as the
trajectories inside the bigger spiral vortex. In this last casgormation of jetlike structures and the appearance of an in-
the integral SL_lrface_s are spiral _tubular _surfa{:ss_e '_:'g- viscid core for high Reynolds numbg, in agreement with
9(c)]. Other trajectories, near the inner cylinder or inside thegsichelor's theory. The main differences are due to the
smallest vortex, look similar to plot&) and (b), respec-  preaking of the reflexional symmetey— — z. As a result the

tively: o ~ SFis made of couples of unequal vortices, and an axial mean
Figure 10 shows the axial displacement of the particlesgq,y giving a net axial mass flux appears.

It is clear that for trajectories between the homoclinic curves  ag 3 result of the helical symmetry of the flow, we have

of the stream function, the vertical displacement is greatef, ng a first integral of the velocity field, which provides us
than for any other: in a few periods they escape from th&iih 4 detailed description of the particle trajectories in the
depicted region. The axial drift of the trajectories in the firstfo This description shows that the axial motion is mainly
and third cases decreases if the particle is closer to the wallgynfined in a region near and between two homoclinic inte-
or to the center of the vortices. Figure 11 shows the radialy g syrfaces, which coincide with the boundaries of the spi-
displacement of the particles: If a particle is near any of theg| yortices and contain the inflow and outflow radial jets.
cylindrical surfaces it remains there. The others travel fromrpig region, where the axial motion takes place, shrinks to
cylinder to cylinder. The time a particle remains near one of¢q for high Reynolds number. This internal boundary layer
the two walls before leaving it is greater for the second kind.oncentrates most of the axial and radial motions of the par-
of paths, corresponding to trajectories confined between thgg|es.
homoclinic trajectories. Instabilities of this boundary laydfike jet instabilities

can be one of the instability mechanisms of the spiral flow.
VIl. CONCLUSIONS AND PERSPECTIVES Other forms of instability, such as competition between dif-

In this paper we have computed the spiral flow by intro-ferent modes, have also been suggested Ingtsz, Crespo,
ducing two space coordinates adapted to the symmetry of trahd Marque:™ In future work we need to address the ques-
flow, and using continuation methods in the rotating refer-tion of the stability of the spiral flow, the mechanisms of
ence system where the SF is steady. So we have obtained$tability that appear, and their relationship with the SF
highly efficient computation scheme, reducing the 3D timeProperties displayed in this work. This linear stability analy-
dependent flow to the computation of a steady 2D one. Thé&iS Will greatly benefit from the highly efficient SF compu-
continuation method allows us to compute this flow eventational methods introduced in this paper.
though it is unstable. We have found that the SF exists in a
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