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Non-linear spirals in the Taylor–Couette problem
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We examine non-linear spiral flow in the Taylor–Couette problem for a wide gap with axially
periodic conditions. We present a highly efficient computational method adapted to this problem,
based on continuation methods applied to a pseudospectral discretization of the Navier–Stokes
equations in a rotating frame of reference. The spiral flow is computed in a wide range of
parameters, and different features are explored in detail: domain of existence of the flow, behavior
for high Reynolds number, appearance of axial flows, dependency on parameters, and stability
against helical disturbances. A first integral is obtained and used to describe the particle trajectories
in the fluid. This description shows that the axial and radial motion of the particles is mainly
confined within an internal boundary layer. ©1998 American Institute of Physics.
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I. INTRODUCTION

The Taylor–Couette problem has been the subjec
many experimental and theoretical investigations since
origins at the end of last century. Tagg’s compilation1 of
literature related to the problem containing nearly 1500 r
erences, is a good indicator of the attention it has receiv
Much of this work deals with the stability of the basic Co
ette flow. From the linear stability analysis many autho
have obtained amplitude equations to perform a weakly n
linear analysis; Stuart,2 Davey,3 Reynolds and Potter,4 Kirch-
gässner and Sorger5 and others when the two cylinders rota
in the same direction or the outer one is at rest, and Edw
et al.6 and others in the counter-rotating case. Other auth
~Iooss,7 Demay & Iooss,8 Chossat & Iooss,9 and others! have
used center-manifold reductions of the Navier–Stokes eq
tions or the theory of bifurcations in the presence of symm
tries to deduce reduced equations to be studied. With th
tools secondary and tertiary bifurcations have been predi
that qualitatively reproduce the behavior found in the exp
ments.

Many of these studies are restricted to small supercrit
Reynolds numbers and cannot predict accurately the cri
Reynolds numbers for which new bifurcations appear. I
therefore necessary to calculate solutions of the full Nav
Stokes equations. Taylor vortex flow has been calculated
many authors; Meyer-Spasche and Keller10,11 and Dinar and
Keller12 by continuation methods, and by Fasel and Boo13

and Marcus14 by time evolution.
Spiral flow ~SF! has received much less attention main

because of its three-dimensional structure which poses m
more difficulties. Although they can be calculated with ful
three-dimensional time evolution codes, like Marcus,15 it is
computationally expensive if an extensive parameter dep
dence study is to be done. Edwardset al.6 and Sa´nchez
8291070-6631/98/10(4)/829/10/$15.00
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et al.16 have calculated the spiral flow assuming a heli
symmetry. In this case, the 3D spiral flow is described
using only two space coordinates, and computed by tim
evolving the discretized Navier–Stokes equations. Edwa
et al.6 have compared wave speeds with results obtai
with the three-dimensional code of Marcus,15 reporting a
very good agreement. In both cases a relation between
axial and the azimuthal periodicities is imposed in advan
In this paper we wish to explore the dependence of the fl
with this relation, and with respect to other paramete
mainly the angular velocities of the inner and outer cyl
ders.

We have used continuation methods in order to obt
the spiral flow wherever it exists. This method has two a
vantages with respect to time evolution; first, it is much le
time consuming; second, we can compute the spiral fl
whether it is stable or not. Therefore this method is very w
suited for studying the stability of the SF in the future. T
formulation of the problem using velocity potentia
~Marquès17! is given in Sec. II, and in Sec. III we deal wit
the numerical method used for the continuation procedu
We have found that the SF exists in a much wider param
range than is experimentally observed~Sec. IV!. A limited
linear stability analysis of these flows, restricted to pertur
tions with helical symmetry, is presented.

We have also found properties of the SF for high Re
nolds numbers, showing some features similar to Tay
Vortex Flow ~TVF! at high Reynolds numbers, as in Fas
and Booz.13 A new feature is that the spiral flow in an axiall
periodic domain exhibits a weak but not zero axial ma
flow, as has been pointed out by Edwardset al.6 This is a
purely non-linear effect, appearing as a result of the refl
ional (z→2z) symmetry breaking bifurcation from which
the SF emerges~Sec. V!.
© 1998 American Institute of Physics
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The trajectories of the velocity field generated by t
spiral flow are also investigated in this paper~Sec. VI!. The
formulation in terms of potentials for the velocity field an
the incompressibility condition provide a first integral th
provides a detailed description of the trajectories and an
planation for the axial mean flow.

II. FORMULATION OF THE PROBLEM

We consider the flow of an incompressible fluid confin
between two concentric cylinders, of inner and outer ra
r i* , r o* and gapd5r o* 2r i* , which can rotate independentl
with angular velocitiesV i , Vo . The non-dimensional pa
rameters are the radius ratioh5r i* /r o* , and the Reynolds
numbers associated with the tangential velocity of the cy
dersRi5dri* V i /n, Ro5dro* Vo /n wheren is the kinematic
viscosity. We adimensionalize the equations usingd, d2/n
for space and time, respectively. The Navier–Stokes eq
tions and the incompressibility condition then read as

] tv1v•“v52“p1Dv, “•v50, ~1!

wherep is the pressure divided by the constant density of
fluid. We will assume infinite cylinders and solutions pe
odic in the axial direction, of period 2pb.

The geometrical structure and symmetry properties
the spiral flow are well known. The book of Chossat a
Iooss9 is an excellent review of the analysis based on cen
manifold reduction and the corresponding amplitude eq
tions. These methods do not supply a full description of
flow, and they are also limited to a neighborhood of t
bifurcation point. Nevertheless they are very useful beca
they give some of the global properties—as symme
properties—of the flow, and a qualitative picture of the
furcation. We have taken the benefit of these properties
the formulation of our main equations and the correspond
numerical methods.

The spiral flow that appears in the counter-rotating c
has a spatial structure invariant with respect to a rota
around the cylinder’s axis and a simultaneous translation
the axis direction, i.e. a helical movement which we c
helical symmetry~see Ref. 9!. This symmetry can be written
in cylindrical coordinates,

~r ,u,z!→~r ,u1b,z1bb!, ~2!

whereb is the rotation angle, 2pb is the axial period, andb
a constant that fixes the relative magnitude of the rota
and the translation;b is then related to the slope of the spir
pattern.

We introduce the system of coordinates,

x52r 2d, uh5u, r5z/b2u, ~3!

with d5r i1r o , (x,uh ,r)P@21,1#3@0,2p#3@0,2p#. The
relationship between partial derivatives is

] r52]x , ]u5]uh
2]r , ]z5b21]r. ~4!

We have introducedx because the unknowns of the proble
will be expanded in Chebyshev polynomials in the rad
direction@Eqs.~15!, ~16!#. It is easy to see that velocity field
whose components are functions only of the coordinater
x-
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andr5z/b2u, are invariant with respect to the helical sym
metries described above. It must also be noted that funct
2p-periodic inr are 2p-periodic inu and 2pb-periodic in
z. We will therefore look for solutions with]uh

50. Replac-
ing in ~4!, we obtain the relations]u52]r and ]z5b21]r

that are used in all subsequent equations. The th
dimensional structure of the spiral flow is now described
using only two space coordinates, and the flow can be
merically computed in detail with a moderate computatio
cost.

The spiral flow is a traveling wave in both azimuthal a
vertical directions~see Ref. 9!. Therefore Navier–Stokes
equations~1! are written in a rotating frame of reference wi
an angular velocityV, in which this flow is steady:

] tv12Vêz3v1v3v52“ p̃1Dv, “•v50, ~5!

wherev5“3v is the vorticity field, we have used the iden
tity v•¹v5v3v1“(v2/2), and we have included“(v2/2)
and the centrifugal term intop̃. The presence of the Corioli
term is equivalent to changing the vorticityv5“3v into
“3v12Vêz . The Reynolds numbers in this frame chan
into Ri→Ri2Vr i , Ro→Ro2Vr o . The ~non-dimensional!
angular velocityV is a property of the spiral flow, and wil
be determined simultaneously with the flow, as will be se
later.

To solve the equations, we introduce the mean veloci
in the azimuthal and axial directions as averages overr, and
we use toroidal and poloidal potentials for ther-dependent
velocity part,

v5 v̄uêu1 v̄zêz1“3~cêz!1“3“3~fêz!, ~6!

where

v̄u5Prvu , v̄z5Prvz , PrF5
1

2pE0

2p

F~r ,r,t !dr. ~7!

Now v̄u and v̄z are only functions ofr , andc andf have a
zeror average:Prc5Prf50.

Velocity potentials have been used by several authors~as
Yahata,18 Kessler,19 and Marcus20 in thermal convection!,
this method being coincident in axisymmetric cases with
stream function formulation~as in Jones21!. The formulation
introduced by Marque`s17 is very well suited in cylindrical
geometries, where some subtle problems with the bound
conditions arise, and are solved in the mentioned paper.
authors have applied this method to the thermal convec
in vertical cylinders22 and to the time dependent computatio
of the spiral flow.16 We will adopt this formulation, whose
main points follow.

The evolution equations for the mean velocitiesv̄u , v̄z

are the averagedu andz components of the Navier–Stoke
equations, and we use the axial components of the curl
double curl of the Navier–Stokes equations for the pot
tials. Then the incompressibility condition is identically sa
isfied, and the pressure term is removed from the formu
tion. A lengthy but straightforward computation gives

Pr~ êu•Dv!5DD1v̄u , Pr~ êz•Dv!5D1Dvz ,
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~12Pr!~ êz•“3v!52Dhc,

~12Pr!~ êz•“3Dv!52DDhc,

~12Pr!~ êz•“3“3v!5DDhf,

~12Pr!~ êz•“3“3Dv!5DDDhf, ~8!

where D5] r , D15D11/r , Dh5D1D1r 22]rr
2 , D5Dh

1b22]rr
2 . For a vector fieldA whose cylindrical compo-

nents depend only onr , r, the explicit expression of its cur
is given by

“3A5~2r 21]rAz2b21]rAu ,b21]rAr2] rAz ,D1Au

1r 21]rAr !. ~9!

We finally obtain the equations

~] t2DD1!v̄u52Pr~ êu•b!, ~10!

~] t2D1D !v̄z52Pr~ êz•b!, ~11!

~] t2D!Dhc5~12Pr!~ êz•“3b!, ~12!

~] t2D!DDhf52~12Pr!~ êz•“3“3b!, ~13!

with b5v3v12Vêz3v. The corresponding boundary con
ditions are:

v̄u~r i !5Ri2dri* V/n,v̄u~r o!5Ro2dro* V/n,
~14!

v̄z5Dc5f5Dhf50

2bc1rDf5bDDhf1rDDhc50
J on r 5r i ,r o .

The last boundary condition is necessary in order to ens
the equivalence with the Navier–Stokes equation. The ve
ity potentials are not uniquely determined by the veloc
field, so the gauge boundary conditionf50 has been used
The remaining boundary conditions come from the no s
condition on the cylinders surface. Using these equations
computation of the time periodic spiral flow reduces to
two-dimensional~r, r) steady problem, in a rotating frame o
reference.

The above system of evolution equations were used
Sánchezet al.16 to calculate the spiral flow by time evolu
tion. Details on the methods used can also be found
Sánchez.23 Although in this paper we solve the equatio
~10!–~13! in the steady case, in order to start the continuat
method we have used as an initial point a spiral flow o
tained by time evolution; the initial guess forV is also ob-
tained this way.

III. NUMERICAL METHODS

In order to solve the equations for the potentials we h
used spectral methods~Canutoet al.24!. They have been ex
panded using Chebyshev polynomials in the radial direct
and a Fourier expansion for ther coordinate,

v̄u~x!5(
l 50

L

f lTl~x! ~15!
re
c-

p
he

in

in

n
-

e

n,

c~x,r!5(
l 50

L

(
n52N/2

n5” 0

N/221

c l ,nTl~x!einr, ~16!

and analogous developments forv̄z andf. c l ,n are complex
numbers but, asc is real, they satisfyc l ,2n5c l ,n* , so only
half of them must be computed.

The discretization of the equations for the potentials
obtained by a Galerkin projection on the periodic coordin
r and a collocation method for the radial coordinatex. After
the equations are separated into their Fourier compone
these are evaluated on a radial mesh of Gauss-Lobatto
location points. This allows an efficient evaluation of th
equations forv̄u , v̄z , c, andf by using fast Fourier trans
forms in both coordinates.

Since the spiral flow is now a fixed point in the rotatin
frame, it can be computed using continuation metho
against different parameters. We have used some of the t
niques described in Keller,25 Simó,26 and Seydel.27 To fix the
phase of the steady solutions in the rotating frame we h
added the equation that sets to zero the value of the im
nary part of one of the variables corresponding to the a
muthal dominant mode. This also determines the angular
locity of the rotating frameV.

Let p be the continuation parameter (Ri , Ro , or b) and
let X be the vector formed with the coefficients of the expa
sion for v̄u , v̄z , c, andf @~15!–~16!#. Then the discretized
steady Navier-Stokes equations in the rotating frame h
the formF(X,V,p)50. These equations implicitly define
curve of solutionsX5X(p), V5V(p). At each stage of the
continuation process, from a set of known points on
curve of solutions, a predictor step provides an initial gu
from which a corrector step based on a modified Newto
Raphson iteration converges to another point on the cu
For the first two steps the prediction is made using the t
gent to the curve. After this startup, polynomial extrapolati
is used based on the last three points on the curve.

To start the continuation procedure an initial solution
needed. This is obtained by time evolution of the tw
dimensional system for the spirals in a non-rotating refere
system in order to attain the periodic regime.

To determine the number of terms needed in the exp
sions to obtain accurate results, several test have been m
The torques on the inner and outer cylinders have been
culated for different values of the number of terms in bo
the x and r coordinates, and for two values ofRi . The
torques on both cylinders must be the same. This has b
considered as a precision test by some authors.13 With the
formulation used, the expression for the torque per axial
riod on the cylinders is

Mz~r a!52pr a~ v̄u~r a!2r a] r v̄u~r a!!, ~17!

r a being the radius of any of the cylinders.
The variation of the angular velocity with the number

terms has also been considered, although this variabl
more sensitive than the torque. The variation of the Fou
coefficients of theu component ofv has also been used as
test. This component has been selected because it is the
of largest magnitude and largest radial variation.
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In Tables I–III the results of some of the precision te
are summarized. All parameters have been fixed excepRi

for which two different values have been considered. B
values, 150 and 350, are above the region where spirals
stable but have been selected because spirals ranging
Ri5110 to Ri5500 will be analyzed later. The remainin
parameters areRo5250, h50.8, andb50.3055. In Table
I~a! the inner and outer torques and the angular velocity
the spirals are shown forRi5150,L516, andN512,16,24.
Table I~b! shows the same results but for fixedN516 and
L512,16,24. The same results are reproduced in Tables~a!
and II~b! for Ri5350.

From Table I it is clear that usingL516 andN516 is
enough to have torques that differ in the sixth digit a

TABLE I. Torque and angular velocity values forRi5150, Ro5250, h
50.8, b50.3055.~a! L516 for differentN values;~b! N516 for different
L values.

~a!
N Inner torque Outer torque Angular velocity

12 0.428515E105 0.428365E105 0.106146E102
16 0.426921E105 0.426924E105 0.105367E102
24 0.426993E105 0.426993E105 0.105644E102

~b!
L Inner torque Outer torque Angular velocity

12 0.426908E105 0.426912E105 0.105298E102
16 0.426921E105 0.426924E105 0.105367E102
24 0.426920E105 0.426924E105 0.105368E102
s

h
re

om

f

whose four first digits do not change whenN is increased to
24. For the angular velocity the difference between the v
ues for N516 andN524 are in the fourth digit. Table II
shows that keepingN516 and varyingL gives better con-
vergence; both torques and angular velocity differ in t
sixth digit whenL516 andL524. The best results for the
torques are easy to understand because from Eq.~17! Mz

only depends onr . The results forRi5350 shows an error
less than 0.5% for torques and less than 5% for the ang
velocity, takingL5N516 modes. As has been stated abo
we see that the angular velocityV is specially sensitive.

In Table III the extreme values of the Fourier coef
cients for the azimuthal velocity are shown. After calculati
the velocity field from~6!, vu can be written as

TABLE II. Torque and angular velocity values forRi5350, Ro5250, h
50.8, b50.3055.~a! L516 for differentN values,~b! N516 for different
L values.

~a!
N Inner torque Outer torque Angular velocity

12 0.146235E106 0.147024E106 0.292302E102
16 0.152536E106 0.152370E106 0.257615E102
24 0.151755E106 0.151752E106 0.263790E102

~b!
L Inner torque Outer torque Angular velocity

12 0.156284E106 0.156106E106 0.276747E102
16 0.152536E106 0.152370E106 0.257615E102
24 0.151834E106 0.151653E106 0.245542E102
TABLE III. Extrema of Fourier amplitudes ofvu . Ro5250,h50.8,b50.3055,~a! L516 and for differentN
values.~b! N516 and for differentL values.

~a!
Ri5150 Ri5350

Mode N516 N524 N516 N524

0 20.271672E102 20.271671E102 20.126811E103 20.127297E103
1 20.170339E102 20.170332E102 20.267587E102 20.284028E102
2 20.336842E101 20.336884E101 0.793644E101 0.893874E101
3 0.105391E101 0.105375E101 0.643908E101 0.526421E101
4 0.106183E100 0.106166E100 20.264487E101 20.120163E101
5 20.119893E100 20.119847E100 0.228243E101 0.176808E101
6 0.210001E201 0.209143E201 20.158626E101 20.146373E101
7 0.813100E202 0.680715E202 0.116448E101 0.880084E100
8 20.258144E202 20.482239E100
9 0.205742E203 0.223266E100

10 0.175274E203 20.890696E201
11 20.346771E204 0.274590E201

~b!
Ri5150 Ri5350

Mode L516 L524 L516 L524

0 20.271672E102 20.278698E102 20.126810E103 20.125971E103
1 20.170339E102 20.172286E102 20.267587E102 20.267387E102
2 20.336842E101 20.336914E101 0.793644E101 0.791733E101
3 0.105391E101 0.105424E101 0.643908E101 0.657595E101
4 0.106183E100 0.111624E100 20.264487E101 20.298387E101
5 20.119893E100 20.119434E100 0.228243E101 0.241191E101
6 0.210001E201 0.214979E201 20.158626E101 20.153259E101
7 0.813100E202 0.815212E202 0.116448E101 0.102392E101
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vu~x,r!5(
l 50

L

(
n52N/2

N/221

vu l ,n
Tl~x!einr, ~18!

and its Fourier modes are defined as

vun
~x!5(

l 50

L

vu l ,n
Tl~x!. ~19!

The coefficients displayed in Table III are

max
i

vun
~xi ! or min

i
vun

~xi !, i 50, . . . ,L, ~20!

depending on which is larger in absolute value, and be
xi5cos(ip/L) the radial Gauss–Lobatto collocation poin
As a measure of the precision we will use the maxim
error in the six dominant modes, because they account
99% of the amplitude in the worst case considered. The e
in a physical variable is much smaller, because the maxim
error considered appears in high modes (n.3).

In Table III the coefficients for both casesRi5150 and
Ri5350 are shown. As for the torques, forRi5150, keeping
L516 the three leading digits~error less than 0.5%! of the
six dominant modes do not change whenN is increased from
16 to 24. The convergence whenN is kept to 16 andL is
increased is not so good~less than 5%! indicating that better
resolution on the radial direction is needed. The same ca
seen forRi5350, with errors less than 12%. The presence
narrow boundary layers near the cylinders for highRi ex-
plains why it is necessary to increase the number of ra
modes. For this reason, in all subsequent calculations sh
later we have usedL524 andN516.

Because we have only studied qualitative properties
spirals for highRi we consider the results accurate enou
For the spirals experimentally observable belowRi5150 the
numerical results are very accurate.

IV. THE SET OF SOLUTIONS

As there are many parameters in the problem, we h
limited our study to the caseh50.8, and since changingb to
2b corresponds to a reflexional symmetry with respect t
plane perpendicular to the axis of the cylinders, only posit
values ofb have been used.

The primary instabilities and bifurcation curves for th
circular Couette flow in the counter-rotating case were co
puted and compared with experiments by Langfordet al. in
1988.28 They found that for moderate outer Reynolds nu
ber Ro in the counter–rotating case, the transition to spir
take place with an azimuthal wave numbern51. For in-
creasing negative values ofRo , the critical azimuthal wave
number isn52,3, . . . . They also noticed that solution
corresponding to different values ofn have identical qualita-
tive properties. Sa´nchez, Crespo, and Marque`s16 have com-
puted numerically by time evolution spiral flows for differe
dominantn modes, and have found analogous results. Th
fore, we have selected the parameters to ensure that the
muthal dominant mode is alwaysn51.

Figure 1~a! shows a typical representation of the so
tions obtained by continuation methods. We have plot
A015sign(Rec0,1)uc0,1u, the absolute value of the amplitud
g
.

or
or
m

be
f

al
n

f
.

e

a
e

-

-
s

e-
zi-

d

c0,1 times the sign of its real part, versus the inner Reyno
numberRi for Ro5250 andb5bcrit50.3055. This value of
b has been taken from the linear stability analysis~Langford
et al.28 and Sa´nchezet al.16!. At this value the inner Rey-
nolds number at which Couette flow becomes unstable h
minimum. At this pointRi5106.1, a Hopf bifurcation occurs
and the periodic spiral regime appears.

As a result of working in the rotating frame where th
spiral is at rest, a one parameter family of steady soluti
can be found. Two of these solutions differ only by a pha
shift or a rotation around the axis of the cylinders. This
why the sign of the real part of the variable plotted in Fig
1–2 has been included. The real part can be positive or n
tive, giving the two symmetrical branches shown. These t
solutions differ only by a rotation around the axis of th
cylinders of 180 degrees. The horizontal line represents
Couette flow. No other helical symmetric solutions branc
ing from the spiral regime were found in our calculation
except the Couette flow. The branch has been calculated
inner Reynolds numbers above those for which experime
show that spirals become unstable, in order to study the
ral properties for high Reynolds numberRi , and to search
for bifurcations that still retain the spiral invariance. Th
stability of this branch is given by the eigenvalues of t
Jacobian matrix of the system, which is computed throu
out the continuation procedure. We found a secondary H
bifurcation atRi5137.2. In the non-rotating reference fram
the flow is quasiperiodic. In a previous paper,16 we already
found bifurcations to a quasiperiodic regime by time evo
tion of the Navier–Stokes equations with helical symmet
We showed that the presence of a quasiperiodic flow near

FIG. 1. Branches of spiral flow.~a! Inner Reynolds numberRi as parameter,
b50.3055, andRo5250. ~b! Outer Reynolds numberRo as parameter,b
50.3055, andRi5110.

FIG. 2. ~a! Branches of spiral flow depending on the parameterb. ~b!
Marginal stability curve of the transition from circular Couette flow to spir
flow.
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primary instability was caused by the competition betwe
different spiral modes, with the same parameterb but differ-
ent azimuthal dominant moden. We have plotted the un
stable branches with dashed lines, in Figs. 1 and 3.

Figure 1~b! shows the curve of solutions obtained wh
the outer Reynolds number is used as a parameter fro
solution slightly above the critical inner Reynolds numb
For this plot Ri5110, b5bcrit50.3055 as before, and th
initial condition is taken from the other curve wit
Ro5250. The horizontal line again corresponds to Coue
flow. We may now observe that solutions exist only for
limited range of outer Reynolds numbers~between258.90
and 39.46 in this plot!, including positive values. This indi
cates the existence of spirals in the co-rotating case tha
not observed in experiments because Couette flow first b
cates to axisymmetric Taylor vortices, and probably beca
these spiral solutions~for Ro.0) are unstable to non-helica
perturbations. All the branch is stable against perturbati
with helical symmetry. As the stability of these solutio
against 3-dimensional perturbations has not been studied
impossible to establish if they are stable along all the cu
or not. If they were stable they should be observed in exp
ments at a certain interval aboveRo5250 by moving the
system from a counter-rotating stable spiral state to
rotation simply by varying the outer Reynolds number.

The lower limit is Ro5258.90 where the flow bifur-
cates to Couette flow. The criticalRi and b for
Ro5258.90 areRi

crit5109.99,110.00 andbcrit50.3019,
so the plotted curve of solutions ends very near the crit
curve from Couette flow to spirals but not exactly because
the different values ofb.

The symmetry of the curve is again related to a 1
degree rotation around the axis of the cylinders, and in
case the curve crosses the two-dimensional variety of C
ette flow solutions~parametrized by the two Reynolds num
bers, for fixedb) twice.

The left plot in Fig. 2 shows the curve of solutions o
tained whenb is used as continuation parameter, for fix
Ri5110,Ro5250. The set of values ofb for which spirals
exist is limited by the stability curve of Couette flow, as c
be seen in Fig. 2. The parabolic curve corresponds to
transition from Couette flow to an spiral of dominant a
muthal numbern51. The horizontal line atRi5110 is the
projection onto this plot of the curve of solutions depend
on b. As the inner Reynolds number is increased, the inte
of possible slopes for the spirals is wider. A stability analy

FIG. 3. Angular velocityV of the spiral pattern along the continuation pat
using as parameters~a! the inner Reynolds numberRi , ~b! the outer Rey-
nolds numberRo , and~c! the spiral slopeb. The values of the parameter
held constant areRi5110,Ro5250, b5bcrit50.3055.
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of the spirals would reveal a curve inside the transition o
from Couette flow, indicating the interval of allowedb as in
the case of Taylor vortices for the axial wavelength.

The symmetry of the curve is related again to a 1
degree rotation around the axis of the cylinders, and
curve crosses the one-dimensional variety of Couette fl
solutions~parametrized this time byb for the two Reynolds
numbers fixed! twice.

For fixedRi , the region in the (Ro ,b) space where the
spiral flow exists is bounded. Theb values are limited by the
critical curve corresponding to the transition from Circul
Couette Flow~CCF! to Spiral flow, as shown in Fig. 2 right
Ro is limited because forRo5Ri /h.0 the rigid body rota-
tion case CCF is absolutely stable. For negative and la
Ro , the outer rotation has a stabilizing effect,29 so the spiral
flow appears for higher and higherRi . For very large and
negativeRo values (Ro,223104), other mechanisms o
instability appear, characterized by intermittency, hystere
and regions of turbulent flow. Coles30 used the termcata-
strophic transitionfor these processes. They appear far fro
the parameter range we study here.

V. SPIRAL FLOW PROPERTIES

In Fig. 3 the dependence of the angular velocity of t
pattern has been plotted versus different continuation par
eters. It increases with the inner Reynolds number, excep
the very beginning of the branch where a slight decrease
be noticed. The second curve (Ro continuation! has a mini-
mum atRo5250, and the third also has a minimum atb
50.3486. If this last curve is compared with the stabil
curve in Fig. 2, it can be seen that the preferredb at the onset
of instability from Couette flow,b50.3055, is not the one
that makes the angular velocity minimum. In fact, the p
ferred valueb50.3055 makes the axial period 1.92, nea
twice the gap between cylinders, as in the transition to T
lor vortices.

We now consider the properties of the spirals labeled
2, 3, 4 in the plot in Fig. 1 corresponding to inner Reynol
numbers 140, 220, 300, and 500, respectively. The beha
of the mean flows is displayed in Fig. 4. In Fig. 4~a! we see
that when the inner Reynolds number is increased,
boundary layers develop near the walls, where the fluid
dragged by the wall rotation, and the fluid in the center of
cylinders has nearly zero average azimuthal velocity; it
almost at rest in the rotating reference system. Figure 4~c!
shows the net azimuthal flux in the rotating reference syst
It is small and increases withRi until saturation near the
spiral flow labeled 2. Figure 4~b! shows that there are non
zero mean axial flows with opposite signs near each cylind
This gives a large scale motion on thez axis. Moreover,
these mean axial flows do not compensate each other: a
mass flux appears in the axial direction, as shown in F
4~d!. This net flux changes sign when the Reynolds num
is increased.

The presence of a weak but not zero axial mass flow
been pointed out by Edwardset al.6 This is a purely non-
linear effect; it can easily be seen~Sánchez, Crespo, and
Marquès16! that the linear eigenfunction that appears in t
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bifurcation has zero mean flowsv̄u , v̄z , and therefore zero
axial mass flow. This feature is not present in the Tay
vortex flow, but appears in the spiral flow in an axially p
riodic domain as a result of the reflexional (z→2z) symme-
try breaking bifurcation from which the SF emerges. Spir
with opposite values ofb are symmetric with each other an
have opposite axial mass flow.

In Fig. 5 the global structure of the flow can be seen.
top of Fig. 5 a perspective view of the velocity field for th
mean radius is shown. The flow looks sinusoidal near
transition, but for high Reynolds number the center of
vortices is almost at rest, as the mean flows also show.
suggests that the core of the vortices tends to move lik
rigid body, and in the rotating reference frame they are v
tually at rest. This rigid body rotation is confirmed by the la
line of plots~isolines of vertical vorticity!, which shows that
the vertical vorticity in the center is almost constant~in fact
nearly zero!. These results support the theoretical model p
posed by Batchelor,31 which is based on the assumption th
for Ri→`, the secondary flow in the axial plane consists
an inviscid core surrounded by boundary layers.

Figure 5~b! shows the velocity field in au constant sec-
tion. When the Reynolds number increases, we see the
mation of an outgoing jet. Figure 5~c! shows the isolines o
the azimuthal velocity, confirming the formation of th
aforementioned jet, which keeps the angular momentum
to collide with the outer wall. Boundary layers appear ne
the walls and between the vortices.

These results are similar in many aspects to those
tained by Fasel and Booz,13 for the Taylor Vortex Flow
~TVF! at high Reynolds numbers. The evolution of a jetli
or shocklike flow structures, boundary layers develop
near the walls, and the nearly inviscid behavior of the c
region for large Reynolds numbers, are very similar in b
SF and TVF. The differences are due to the lack of the

FIG. 4. ~a!, ~b! mean flows in the azimuthal and axial directions.~c!, ~d! the
corresponding net flux normalized with the net azimuthal flux of the ba
Couette flow.
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flexional (z→2z) symmetry: the vortices come in pairs of
different size, and a net axial mass flow appears.

VI. STREAM FUNCTION AND TRAJECTORIES

To describe the trajectories of the velocity field of th
spirals, we find a first integral of the field from the incom
pressibility condition. In the case of Taylor vortices, the tra
jectories are easy to describe. The projections of the strea
lines in an r 2z plane are closed curves, so the ful
streamlines lie on toroidal surfaces and almost all are den
and describe a quasiperiodic motion~see Ashwin and
King32!. The situation in the case of the spirals is differen
because the stream function depends on the three coo
nates. If expressed in terms of ther coordinate it is possible
to describe completely the set of trajectories.

The incompressibility condition written in the (r , r) co-
ordinates for the spiral flow is

1

r
] r~rv r !1]rS vz

b
2

vu

r D50. ~21!

The boundary conditions say that the radial flux is zero, an
this condition guarantees the existence of a stream funct
x(r ,r,t) such that

c

FIG. 5. ~a! Perspective of the velocity field for the mean radius.~b! Velocity
field at a vertical plane.~c! Isolines of azimuthal velocity.~d! Isolines of
vertical vorticity. The four plots in each case correspond to the spirals 1,
3, and 4 along theRi continuation curve of Fig. 1.
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v r52
1

r
]rx, vr5

vz

b
2

vu

r
5

1

r
] rx⇒ dx

dt
5] tx. ~22!

However, in the rotating frame the velocity field i
steady, and therefore the stream function does not dep
explicitly on time. In this casedx/dt50 and the particle
trajectories lie on the surfacesx5constant. These integra
surfaces are invariant by a helical symmetry, and can
obtained from the curvesx5constant in the (r , z) plane by
a helical movement. Figure 6 shows thex5constant curves
at the 1, 2, 3, and 4 aforementioned points. Notice tha
vertical plane (r ,z) defined byu5constant, is the same as
plane in the (r ,r) coordinates, due tor5z/b2u. In the
initial non-rotating reference frame these integral surfac
also exist, but they are not steady and they rotate around
z-axis with the angular velocityV of the spiral pattern.

The stream function has a very simple expression
terms of the velocity potentials;

x~r ,r!5c2
r

b
f r1H~r !, H~r !5E

r i

r S r

b
v̄z2 v̄uDdr,

~23!

where the contribution of the mean flows is in theH term.
A detailed description of the particle trajectories can

obtained from the stream function. Looking at Fig. 6, we s
that the (r ,r) coordinates of a particle trajectory are period
in time, except for the fixed points and homoclinic traject
ries described below. The period is the time taken to go o
a x-constant curve; notice thatr being periodic, we may
identify the top (r52p) and bottom (r50) of the plots in
Fig. 6. In a period, however, thez coordinate may not re-
cover its initial value, and undergoes a shift both in the ax
and azimuthal directions. When the particle comes back
the starting pointDr50 but, asr5z/b2u ~3!, Dz5bDu
Þ0 in general. Both the axial shiftDz(x) and the period
T(x) depend on the value ofx on thex-constant curve con-
sidered.

There are four fixed points in the plot of the level curve
of x5constant~Fig. 6!, defined byv r5vr50: two centers
in the middle of the vortices, and two saddle points on t
sides of the small vortex~see Fig. 8!. Joining the saddle
points to themselves there are four homoclinic loops, d
picted in Fig. 8. For the fixed points, the period is zero, b

FIG. 6. Intersection of the integral surfacesx5const, with a vertical plane
u5const.~a!, ~b!, ~c! correspond to the spirals 1, 2, 3 along theRi continu-
ation curve of Fig. 1.
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vzÞ0 in general, so the particles in these points can have a
axial motion. On the homoclinic loops, the period goes to
infinity, as the particle tends to the saddle points; the axia
motion of a particle in one of this homoclinic trajectories
tend to be the same as the saddle points for large times.

The axial shift per unit timeDz(x)/T(x) is shown in
Fig. 7 as a function of (r ,r). We notice that the center of the
vortices is at rest and that the axial motion takes place in th
boundary layers near the walls and between the vortice
inside the jetlike structures described in Sec. V. As we hav
already mentioned, the stream function has two saddle poin
near the walls. Surprisingly, the axial motion is confined
mainly near and between the homoclinic curves joining th
saddle points. The shape of these curves can be seen in F
8 for the 1, 2, 3 cases.

Another striking fact is that these curves tend to merg
when the Reynolds numberRi increases. In fact, for the spi-
ral labeled 3 in Fig. 1~a!, they are almost identical, and the
same happens for the spiral labeled 4~not depicted!. There-
fore the axial motion is concentrated in an internal boundar
layer that becomes very narrow at high Reynolds number.
any case, this axial motion is very small compared with th
azimuthal velocities of the flow, as Fig. 4 shows.

Figures 9, 10 and 11 show different views of the particle
paths in case 1, corresponding to three of the five regions

FIG. 7. Axial shift per unit time corresponding to the spiral number 1. The
horizontal coordinates are (r ,r).

FIG. 8. Homoclinic trajectories of the stream function in au5const plane.
~a!, ~b!, ~c! correspond to the spirals 1, 2, 3 along theRi continuation curve
of Fig. 1.
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which the homoclinic curves separate anr 2z period. Plot
~a! in each figure corresponds to particles near the outer c
inder; the corresponding integral surfaces are nearly cyl
ders parallel to the walls. Plot~b! corresponds to a particle
path confined between the homoclinic curves, and plot~c! to
trajectories inside the bigger spiral vortex. In this last ca
the integral surfaces are spiral tubular surfaces@see Fig.
9~c!#. Other trajectories, near the inner cylinder or inside t
smallest vortex, look similar to plots~a! and ~b!, respec-
tively.

Figure 10 shows the axial displacement of the particle
It is clear that for trajectories between the homoclinic curv
of the stream function, the vertical displacement is grea
than for any other: in a few periods they escape from t
depicted region. The axial drift of the trajectories in the fir
and third cases decreases if the particle is closer to the w
or to the center of the vortices. Figure 11 shows the rad
displacement of the particles: If a particle is near any of t
cylindrical surfaces it remains there. The others travel fro
cylinder to cylinder. The time a particle remains near one
the two walls before leaving it is greater for the second kin
of paths, corresponding to trajectories confined between
homoclinic trajectories.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper we have computed the spiral flow by intr
ducing two space coordinates adapted to the symmetry of
flow, and using continuation methods in the rotating refe
ence system where the SF is steady. So we have obtain
highly efficient computation scheme, reducing the 3D tim
dependent flow to the computation of a steady 2D one. T
continuation method allows us to compute this flow eve
though it is unstable. We have found that the SF exists in

FIG. 10. Trajectories; frontal view.~a!, ~b!, ~c! are the same as in Fig. 9.

FIG. 9. Trajectories; perspective view.~a! Initial point near the inner cylin-
der.~b! Initial point between the homoclinic curves.~c! Initial point near the
center of a vortex.
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much wider parameter range than experiments suggest
particular, it also exists in the corotating case. We have ma
a limited linear stability analysis of the spiral flow, restricte
to perturbations with helical symmetry. Even in this case, t
spirals are only stable in a small range of the inner Reyno
numberRi .

The analysis of the flow properties shows some featu
very close to the ones corresponding to TVF, such as
formation of jetlike structures and the appearance of an
viscid core for high Reynolds numberRi , in agreement with
Batchelor’s theory. The main differences are due to t
breaking of the reflexional symmetryz→2z. As a result the
SF is made of couples of unequal vortices, and an axial me
flow giving a net axial mass flux appears.

As a result of the helical symmetry of the flow, we hav
found a first integral of the velocity field, which provides u
with a detailed description of the particle trajectories in th
flow. This description shows that the axial motion is main
confined in a region near and between two homoclinic int
gral surfaces, which coincide with the boundaries of the s
ral vortices and contain the inflow and outflow radial jet
This region, where the axial motion takes place, shrinks
zero for high Reynolds number. This internal boundary lay
concentrates most of the axial and radial motions of the p
ticles.

Instabilities of this boundary layer~like jet instabilities!
can be one of the instability mechanisms of the spiral flo
Other forms of instability, such as competition between d
ferent modes, have also been suggested by Sa´nchez, Crespo,
and Marque`s.16 In future work we need to address the que
tion of the stability of the spiral flow, the mechanisms o
instability that appear, and their relationship with the S
properties displayed in this work. This linear stability analy
sis will greatly benefit from the highly efficient SF compu
tational methods introduced in this paper.
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