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Convection in a rotating annulus with no-slip sidewalls, stress-free ends, radial gravity, and 
sideways heating is considered. The transition from fully three-dimensional convection cells to 
Taylor columns with increasing rotation rate is studied and its dependence on the annulus 
parameters is established. 0 1995 American Institute of Physics. 

1. INTRODUCTION 

Convection in a rotating right circular cylinder has a 
number of geophysical and astrophysical applications. For 
example, when the fluid is heated from below and gravity 
acts downwards, the resulting system serves as a model of 
convection in the polar regions. This system has recently 
been the subject of detailed laboratory experiments,t as well 
as careful linear stability analysis.‘Z3 In the present note we 
consider a model of convection in the equatorial regions con- 
sisting of a rotating annulus with gravity radially inwards 
and outwards heating. This case, like the case considered by 
Zhong et al., ’ is relatively simple in that it remains barotro- 
pit. We do not consider the baroclinic case, i.e., the case in 
which gravity and the applied temperature gradient are in 
different directions. 

The system considered here is the simplest possible. We 
choose no-slip fixed temperature boundary conditions at 
r=rl and r= r2, and adopt free-slip thermally insulating 
boundary conditions at the top and bottom. Systems of this 
type have been studied by several authors, notably Busse,4 
who pointed out that the resulting equations admit solutions 
in the form of Taylor columns, i.e., solutions that are inde- 
pendent of the axial coordinate, and have no axial velocity. 
Since such solutions are in any case expected for large rota- 
tion rates for which the Taylor-Proudman theorem applies, 
subsequent studies have focused on this two-dimensional re- 
gime. Busse4 has shown that the resulting two-dimensional 
steady convection columns undergo precession once slanted 
ends are introduced in order to model effects due to curva- 
ture of a sphere. Precession occurs because the slanted ends 
break the Taylor-Proudman constraint. 

In this note we consider the case of horizontal ends, but 
consider low enough rotation rates that the mode that first 
sets in does not take the form of a Taylor column. That this 
should occur is intuitively clear: when the angular velocity fi 
of the system vanishes the system is essentially Rayleigh- 
Bdnard convection. The resulting system admits two kinds of 
modes, axisymmetric and columnar (or more generally a su- 
perposition of the two), whose wavelength is determined by 
the annulus width. By analogy with Rayleigh-Bknard con- 
vection in a rectangular container the rolls try to align them- 
selves along the shorter direction. Owing to the curvature of 
the annulus one expects columns if RZL, and axisymmetric 
rolls if RsL. Here L is the height of the annulus and R is its 

mean radius. In particular one expects, under appropriate 
conditions, to find a critical mode with nonzero axial wave 
number. We show below that this is indeed the case, and 
determine the location in parameter space of the transition 
from cells to columns. It should be noted that when the cells 
have a nonzero azimuthal as well as axial wave number they 
precess in the rotating frame, even though the ends of the 
annulus are horizontal. This is in contrast to the columns. 
Consequently precessing cells are expected at most for 
RSL, at least for small rotation rates, and the precession rate 
is then expected to be of order the rotation rate. 

In the basic state heat is transported radially by thermal 
conduction. The resulting temperature distribution is given 
by T(r)=AT lnr/ln 77, where AT=TT,-Tz and v(O<v<l) 
is the radius ratio r1/r2. The stability of this state is de- 
scribed by the following linearized equations, nondimension- 
alized relative to the thermal diffusion time across the gap: 

1 du 
--~+2dLxu=-Vp+RaOi+V’u, 

a@ u -=- 
at -+v20, 

r In 17 (lb) 

v-u=o, (14 
where u=(u,u,w) is the velocity field in (r, 4,~) coordinates 
and 0 denotes the departure of temperature from the (dimen- 
sionless) conduction profile T(r)/AT. The parameters Ra 
and (+ denote, respectively, the Rayleigh and Prandtl num- 
bers. The dimensionless angular velocity a=(Q,r,,,d2/v)% 
where d= r2- rl is the gap width. The boundary conditions 
are given by 

u=O=O on r=rl,r2, (2) 

au au a@ -=-~w=z=o 
a.2 a2 on z=O,p. (3) 

Here /3=L/d denotes the inverse aspect ratio of the annulus. 
Equations (l)-(3) are solved numerically using an ex- 

pansion of the form 

mfrrz 
O(r,c$,z,t)=esf c Tt,,(r)e”@  cos p, 

Imn 
(4) 

where s is the (possibly complex) growth rate. Each mode is 
specified by a pair of integers (m,n) indicating its structure 
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FIG. 1. The critical Rayleigh number RaL”‘*“) as a function of the dimen- 
sionless rotation rate n for 17=0.5 and (a) p=O.SO, (b) p=O.75. 

in the axial and azimuthal directions. The index 1 specifies 
the structure of the radial eigenfunction; in our calculations 
this structure is always the simplest possible, i.e., there are 
no nodes in the radial direction. The numerical code is re- 
lated to that developed by Marques et al.’ and used by Gold- 
stein et a1.53 

Equations (l)-(3) admit an exact solution of the form 
u=u(r,qS,t), u=u(r,c$,t), w=O, henceforth referred to as 
the Taylor column solution. In this case the incompressibility 
condition can be satisfied by introducing a streamfunction 
fir, +,t> such that 

1 w a* 
u=---9 

r a4 v=dP- (5) 

Equation (la) can now be written in the form of a two- 
dimensional Rayleigh-Benard problem 

2 *8 U f830 c CJ 

Rotation rate 

FIG. 2. As for Fig. 1 but showing RaimS”) for p= 1.0 and several values of 
17. 

1 au aP --=- 
CT at s+Ra O+V2uSi, 

1 a0 1 ap --=--- 
(7 at r w 

+v2u.& W 

where PEP--wZ+. In this regime the Coriolis force can 
therefore be balanced entirely by an appropriate pressure gra- 
dient and the rotation 0 drops out. Consequently the bif$- 
cation to Taylor columns will be a steady-state one. In the 
following we show that this m =0 solution is the first one that 
sets in if the rotation rate is sufficiently large; for smaller 
rotation m #O solutions are preferred. 

2500 n ,  ,  ,  ,  ,  \  I  ,  ,  I  ,  ,  I  I  ,  I  ,  ,  ,  ,  ,  ,  ,  

-I 

1 
\ I \ I \ #?=I. cl=0 1 \ 1 

\ 
\ ------ m=f, n=O 
\ - m=l, n=I 
\ 

--- m=f, n-2 
--m=l, n=3 

\ - m=O, n minimum i 

it \ 
it \ 
;., \ 
I ‘\ \ ‘. \ 

77fJfJ i 6 I I I , , I , , , , , , , , , , , 
0. I 0.3 0.5 

1 
0.7 

Radius ratio 

FIG. 3. The critical Rayleigh number Rdrns”) as a function of the radius 
ratio T.I for /3=1.0 and n=O. 
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FIG. 4. The critical Rayleigh number Rai”‘,“) as a function of n for ~=0.5 
and several values of /3>1. 

2400 IIIIII,IIIIIII 
\ m-P,n=4 9=0.5, f-l=0 

4 2000 
.g 

3 
E1: 

1800 

1600Lwv~ 1 2 4 6 
(4 1nver.Z aspect ratio 

2400 ,,,I,I,,,,I,,,I,,,,,,,,,,1,,,rrrrmr,,,I,,,,I,,, 
I I-. __D r)=o.5, n=5 

i h/ 

, , .-, , , .-a 

b 2200 

\ 

m-.9,n=9 

2 \ 

1800 

II. RESULTS 
All the results reported below use (r=6.7, the Prandtl 

number of water. Results for infinite Prandtl numbers are 
expected to be nearly the same. As argued in the Introduction 
we expect to find Taylor columns even in the nonrotating 
system provided LIRSl, i.e., when @Z&(1+ v)/(l- v)]. 
Support for this argument is provided in Fig. 1 which shows 
the critical Rayleigh numbers Ra, as a function of n for 
m=0,1,2 and /3=0.50, 0.75. The radius ratio 7=0.5. The 
different sets of curves correspond to different values of the 
azimuthal wave number n. The situation becomes more com- 
plicated when p=l.O. In Fig. 2 we show Ra,@) for several 
different radius ratios. In each case only the lowest lying 
mode is shown. Observe that for some radius ratios (e.g., 
17=0.2, 0.3, 0.5) only Taylor columns are selected. As al- 
ready explained the critical Rayleigh numbers for these 
modes are independent of CL. For other radius ratios (v=O.l, 
0.4) there is an interval of rotation rates in which the selected 
mode is an m#O mode. The origin of this behavior is ex- 
plored in Fig. 3 which shows Ra, as a function of 7 for 
/?=l.O and CI=O. 

1.6 8 I 8 I t 8 8, 8 t 8 3, a,, , r,, a,, , , , , , , 
r]=o.5, R=5 

g 0.8 
3 
2 
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$0.4 
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(c) Inverse aspect ratio 

FIG. 5. The critical Rayleigh number Raim*“) as a function of p for 77=0.5 
and (a) n=O, (b) CL=5 The dashed lines represent the marginal curves for 
m=O. Panel (c) shows the precession frequencies corresponding to (b). 
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Axial velocity 
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(b) (a) 

FIG. 6. The temperature (at z=O) and vertical velocity (at z=/3/2) eigenfunctions for the mode (m,n)=(1,4) with /?=2.5, ?,1=0.5 and (a) C2=0, (b) n=.5. 

The threshold for Taylor columns with different values of p1 
is shown by the heavy line. This line oscillates as a function 
of v, much as in the usual Rayleigh-Binard problem, and 
for certain radius ratios crosses the locus of m =l modes, 
either with IZ = 1 or n =2. This trend continues and becomes 
more pronounced for larger p, as shown in Fig. 4. Note that 
for sufficiently low rotation rates the critical Rayleigh num- 
bers for the m #0 states are lower than that for the corre- 
sponding Taylor columns, and approach closely the usual 
Rayleigh-Benard value. In contrast the lowest columnar 
mode has a somewhat higher Rayleigh number, as argued in 
the Introduction. 

Finally, in Fig. 5 we show the dependence of Ra, on /3 
for 3=0.5, and {a) fi=O, and (b) fi=5. Figure 5(c) shows 
the precession frequencies corresponding to Fig. S(b). The 
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corresponding eigenfunctions are shown in Fig. 6 for @=2.5, 
17=0.5, a=6.7, m=l, n=4 and (a) Ck=O, (b) Cl=5. Both 
temperature and axial velocity eigenfunctions are shown; the 
latter illustrates dramatically the difference between the 
m #0 and the m =0 solutions for which ~50. The parameter 
dependence of the transition from (m,n) = (1,4) to (0,5) is 
summarized in Fig. 7 which shows (a) the (a,~) plane for 
p=2.5, and (b) the (f&p) for 17=0.5. 

Ill. DlSCUSSlON 

In this note we have shown that in a rotating annulus 
with radial gravity and sideways heating the dominant mode 
can be a precessing mode even though the boundary condi- 
tions assumed admit solutions in the form of nonprecessing 
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(W 

FIG. 7. The loci of the transition from (m,nj=(1,4) to (0,s) in (a) the (a,~) 
plane for p=2.5, and (b) the (Qp) plane for 77=0.5. 

Taylor columns. We have examined the parameter depen- 
dence of the transition between these two types of modes and 
shown that it depends sensitively on both the annulus aspect 
ratio and its radius ratio. It is a simple matter to write down 
the form of the amplitude equations describing this transition 
in the nonlinear regime. In the following we write 

x cos(m7rz/p) + c.c+ * * * (7) 

so that A is the (complex) amplitude of the Taylor columns 
and B is the amplitude of the ceils, while f1,2 are their radial 
eigenfunctions. In norm’al form”the equations for these am- 
plitudes take the form 

(8b) 

where p,c~,,P are real and X, y,S are complex. The quantities 
p,X are unfolding parameters describing the location of the 
system in the parameter plane relative to the transition point 
(cf. Fig. 7), and are assumed to be small; the coefficients of 
the nonlinear terms can be computed at this point, provided 
certain nondegeneracy conditions hold, and depend on inte- 
grals over the radial and ‘vertical eigenfunctions of the two 
competing modes. The resulting equations arise in a number 
of situations and their solutions are well known.6Z7 It follows 
that the transition from cells to columns in the nonlinear 
regime can take one of two forms: it can be hysteretic, or 
take place via a stable branch of mixed modes. By analogy 
with the Rayleigh-Benard problem this transition is ex- 
pected to depend sensitively on the Prandtl number, with 
high Prandtl numbers favoring the hysteretic transition (cf. 
Ref. 6). In a somewhat different context similar transitions 
have been studied in Refs. 8-11. Such nonlinear computa- 
tions will be pursued elsewhere. 

From the point of view of bifurcation theory the present 
problem is somewhat special. This is because one knows that 
generically in rotating systems a bifurcation that breaks the 
SO(2) symmetry of the system (i.e., has a nonzero azimuthal 
wave number) will take the form of a rotating wave.12 This 
theorem fails for the Taylor columns because for these the 
Coriolis force has the form of a gradient; i.e., it is a nonge- 
neric force. The argument suggests, however, that any physi- 
cal effect that destroys the curl-free nature of the Coriolis 
force will lead to the appearance of precessmg patterns. As 
shown by Busse4 this can be accomplished by sloping ends; 
it can also be accomplished, perhaps more simply, by taking 
the boundary conditions at the top and bottom as rigid in- 
stead of stress-free. Such boundary conditions prevent the 
Taylor columns from being an exact solution of the govern- 
ing equations and so will lead to patterns that ‘precess at 
onset. 
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