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This work is devoted to the study of transient growth of perturbations in the Taylor—Couette
problem due to linear mechanisms. The study is carried out for a particular small gap case and is
mostly focused on the linearly stable regime of counter-rotation. The exploration covers a wide
range of inner and outer angular speeds as well as axial and azimuthal modes. Significant transient
growth is found in the regime of stable counter-rotation. The numerical results are in agreement with
former analyses based on energy methods. Similarities with transient growth mechanisms in plane
Couette flow and in Hagen—Poiseuille flow are discussed. This is reflected in the modulation of the
basic circular Couette flow by the presence of azimuthal streaks as a result of the nonmodal growth
of initial axisymmetric perturbations. This study might shed some light on the subcritical transition
to turbulence which is found experimentally in Taylor—Couette flow when the cylinders rotate in
opposite directions. €2002 American Institute of Physic§DOI: 10.1063/1.1464851

I. INTRODUCTION the nonnormality of the linearized operator, i.e., nonorthogo-

. . i nality of its eigenvector$! It has long been known that non-
Taylor—Couette flow of a viscous fluid confined betwee”normality of linearized operators of pip8, plane

independently rotating coaxial cylinders has been one of th?’oiseuille}:g or plane Couette flow4 is responsible for the

most studied problems of fluid dynamics in the last 80 yearsqqsigerable nonmodal linear growth of small perturbations.
Starting with the celebrated work of Taylbthe Taylor—

; . Plane Couette or pipe Poiseuille flows are linearly stable for
Couette problem has been an experimental, theoretical, a

ical benchmark broblem for bifurcation th dah | Reynolds numbet3®although they actually become tur-
gun&enca. entc br.fl‘.‘;’“ _F;o :m or |utr)ca lon teol;y Iant by'bulent due to finite amplitude perturbations. The question
rodynamic stabiity. 1his flow may become turbulen yregarding the role of non-normality in subcritical transition
means of many different mechanisms which usually involve . .
. . : oo of shear flows has generated many controversies during the
successive steady or unsteady linear instabilities. The flow 718 . o
. . ) - past decad&’*®and the first attempt at clarification was pro-
may exhibit many different steady, time periodic, or almost

periodic patterns before an eventual transition to chaotié”de(j by Reddy and HenningsdhA comprehensive theo-

regimes>3 We refer the reader to standard monogréapltisr [)em;al sgudy 3: nonmo?lal an;!yils dfor this typehokf) flosvv hC an d
details. Below the critical values predicted by linear stability € found in the recently published monograph by schmi

; 0
theory, azimuthal Couette flow is stable with respect to in-and Her_mmgsoﬁ. . . .
A simultaneous nonmodal analysis of the linearized

finitesimal perturbations. Nevertheless, experiments formerl)ﬁ_ lor—C blem has b | ided by Hri
carried out by Coles and Van Atta in the 1980and later on ' 3Y'0"~ gluette problem has been recently provided by Hris-
tova et al.=* for axisymmetric perturbations with fixed axial

by Hegsethet al. in the 19808 reported striking new phe- = C )
eperlod|C|ty. Although the non-normality of the Taylor—

nomena of sudden transition to spiral turbulence in the r ; )
Louette problem was first pointed out by Gebhardt and

gion where the linear theory predicted stability of the basi 224 X .
azimuthal Couette flow. A comprehensive experimentafcrossmann; this feature has been studied by Hrist@taal.
f the computation of the pseudospétuéthe

analysis of the spiral turbulence has been recently providefy Mmeans o : _ \ _
by Prigent and Dauch®dand by Prigent® where remarkable linear operator. Their exploration was carried out for differ-

similarities of the spiral turbulent patterns between phas&nt values of the radius ratio of the cylinders and for a fixed

Couette and narrow gap Taylor—Couette flow have been re2ngular speed ratio so that the average angular speed elimi-
ported. nates the Coriolis effect in the narrow-gap limit. Their pur-

Subcritical transition to spiral turbulence, which ColesP0se was to recover the plane Couette behavior as a narrow

termed catastrophic transition, cannot be explained by mearg@p limit of the Taylor—Couette problem.

of eigenvalue analysis of the linearized Navier—Stokes op-  The experiments of Coles and Van Atta were carried out
erator. Instead, this subcritical transition may be associate¥ith a narrow gap apparatus and subcritical transition to tur-
with the considerable amplification or transient growth thatbulence was found in the regime of counter-rotation or when

even very small amplitude perturbations may suffer due tdhe inner cylinder was at rest. The purpose of this work is to
examine the transient energy growth of perturbations based

on the linear nonmodal analysis of the azimuthal Couette

3This paper is dedicated to the memory of Professor P. G. Dfd8i84—

2002, flow under those circumstances. The author does not claim
YElectronic mail: Alvaro.Meseguer@comlab.ox.ac.uk that this mechanism, on its own, is responsible for the even-
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tual transition to turbulence; nonlinear effects are also cruciaBy introducing the perturbed field$3) and (4) in the

for that transition.

Navier—Stokes equatiori¢) and neglecting nonlinear terms,

The article is structured as follows. In Sec. I, we formu- we obtain the solenoidal eigenvalue problem for thek}
late the stability problem and we define the quantities whichazimuthal-axial mode of the perturbation

measure the transient growth of the perturbations. In Sec. lll,
we provide a comprehensive exploration of the optimal tran-
sient growth in the counter-rotation regime for different azi-
muthal and axial modes, and we compare our numerical re-
sults with the experimental data available, with former
theoretical works based on energy methods, and with a
former nonmodal linear growth analysis. Finally, in Sec. IV,
we examine the presence of streaks as a result of axisymmet-

AU =Dg+

n?+1 in
D,D-— —k2— —vBu,

r2 r

2in

@)

ric toroidal perturbations and how this mechanism modulates

the basic azimuthal flow.

Il. MATHEMATICAL FORMULATION: LINEAR
STABILITY AND ENERGY NORM

n n
)\u0=Tq+ D.D—

2in

|7z~ (Dwg) |uy, ®

n? in
D+D—r—2—k2——u3 u,, 9)

Nu,=ikq+ ;

We consider an incompressible fluid of kinematic viscos-

ity » and densityp which is contained between two concen-
tric rotating cylinders whose inner and outer radii and angu-

lar velocities arer’, r3, and Q;, Q,, respectively.

Henceforth, all variables will be rendered dimensionless us

ingd=r¥=r*, d%v, v*/d? as units for space, time, and the
reduced pressurep(p), respectively. The independent di-

mensionless parameters appearing in this problem are t

radius ratiop=r{/rg , which fixes the geometry of the an-
nulus, and
=dr;Q;/v and Ro=dr,Q,/v of the rotating cylinders. The
Navier—Stokes equation and the incompressibility conditio
for this scaling take the form

v+ (v-V)v=—-Vp+Av, V-v=0. (1)

Letv=v,e+vetv,e,=(v,,v4,0,) be the velocity vector

v in cylindrical coordinates r(,6,z). The basic azimuthal

Couette flow®=(v2,05,0) is obtained by assuming inde-
pendence with respect to 6, andz

B
vE=0, 03=Ar+?, v2=0 (ri<r<r,), )

where A= (Ro— 7Ri)/(1+ ), B=n(Ri— 7R0)/(1— n)(1
— 7%, r;=7nl/(1- 1), andr,=1/(1- 7).

For our analysis, the basic flow is perturbed by a small

the Couette flow Reynolds numbers Ri

in )
+u,=—Tu(,—|kuZ, (10
whereD =d/dr andD . =D+ 1/r.
For a fixed 6,k)-mode, we discretize the boundary

value problem(5)—(10) by a solenoidal Petrov—Galerkin

r§Epectral methadd whose accuracy was confirmed by the

authof® for the stability analysis of the spiral Couette flow.
The discretization scheme leads to an eigenvalue problem for

the amplitudes=(ao, . . . ,ay)" of the spectral representa-

r{ion of the velocity field:

L(Ri,Ro,7,n,k)a=\a, (12

where the M +1) X (M + 1)-matrix L. implicitly depends on
the set of parameters of the boundary value problevhs,
being the order of the spectral Galerkin approximation. The
linear stability problem is then reduced to the computation of
the spectrum ofl, for each pair of (,k) azimuthal-axial
modes. If, for a fixed set of values Ri, Ro, ang the
(n,K)-spectra always lie on the left-hand side of the complex
plane, then the basic flow will be stable with respect to in-
finitesimal perturbations. On the other hand, if one of the
eigenvalues has positive real part, then the basic Couette
flow will be linearly unstable.

We focus our attention on the transient evolution of per-

disturbance which is assumed to be periodic in the azimuthdHroations in the regime of linear stability, following the

and axial coordinates:
v(r,0,z,t)=vB+u(r)e NIkt ©)
p(r,0,z,t)=pB+q(r)ei(”“kz)+“, (4)

whereneZ, ke R, andA € C. In addition, the perturbation
of the velocity field,u=(u, ,u,,u,), must vanish at the ra-
dial boundaries

r(ri)=u(rqy)=0, (5
and satisfy the solenoidal condition

V.[i(n0+kz)u(r)]:0. (6)

same methodology used in Ref. 26 for the study of non-
normal transient growth in Hagen—Poiseuille flow. For a
given (n,k) azimuthal-axial mode, consider the linear sub-
spaceSy spanned by the eigenvectors of thierightmost
eigenvalueg\{,\,, ... Ay} Of the spectrum of,,

Sy=(01.02, - - - An)- (12

Any perturbationg can be expressed as a linear combination
of the eigenvectors ,

N
q:nzl Knan:(Kllea EEEE) !KN)T: (13)

and its time evolution is dictated by the diagonal system
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a_ K, ( )
wherek=(kq1,k5, ...,kN)" and A=diag\;,\p, ... Ay}

We define the energy norm of the perturbatéphy means of
the inner product

1(r
s(q)=(q,q)E=§Jr_ q*-qrdr, (15

Energy transient growth 1657

lIl. PARAMETRIC STUDY OF G«

In this section we describe the global features of the
growth factorG,,, defined in Eq.(20). The exploration is
carried out for the particular casg=0.881 and for inner and
outer Reynolds numbers in the domaiRi,Ro) [0,90Q
X[ —4000,50Q, following the specifications of the experi-
mental data availabROur attention is mainly focused in the
counter-rotating regime, where the flow exhibited subcritical
transitions in the laboratory. Nevertheless, for completeness

where* stands for complex conjugation. We consider thewe enhanced our exploration to a small region in the co-

matrix of inner products between the eigenvectors

Mi;=(G;,0j)e- (16)

rotating regime. We take advantage of t©¢2)-symmetry
of the problem, i.e., invariance of the systeff)—(10)
under axial translations and axial reflections of the form

This matrix is positive definite and it admits a decompositiontZ— ~2W— —Wj}, with respect to orthogonal planes to the

of the formM=F"F, where t stands for the complex conju-
gate transpose. This decomposition can be accomplished BYMMety,
means of the standard QR factorization. The energy norm
the perturbatiory in (15) can be expressed in the standard®

two-norm inSy by means of the componenitsand '

e(q) == (F,F'k) = (16,0 e = |2 = Frd] 2.

We are interested in the measurement of the energy growth

of an initial conditionxy as a function of time. Following
Ref. 12, we define the energy amplification factft), as

common axis of the cylinders. The system also 8&8X2)-
i.e., invariance with respect to azimuthal rotations

(ﬂlround the center axfsTherefore, we have restricted our

omputations to the case when batfandk are positive or
zero. In this particular study, we have maximized the factor
G in (19 for positive times, for azimuthal modes in the
range O=n=<15, and for axial wave numbers in the range
0o<k=10.

In order to validate our numerical results, we have car-
ried out an analysis of the transient growth for axisymmetric
disturbances with a fixed axial periodicity. This has been

the ratio between the energy norm of the perturbation at tim@ione in order to compare our numerics with the results for-

t and its initial norm,

IR el

lrolle ol

g(t) (17

For a fixed timet, we want to maximizeg(t) in (17) over the
set of all possible initial conditions,. Maximization of the
ratio appearing in(17) leads to the quantitys(t), the opti-
mal energy amplification factor,

le woll2
G(t)= maxg(t)= max—————= max >
ol 0 Il 20 [molle  lglz0 [[Freoll2

FelMF—13. (18

[Fe a3

The quantityl|Fe'F~ 2|, is the principal singular value; of

merly provided?! In the study carried out by Hristowet al.,

the distances were nondimensionalized by the length scale
d/2 and the angular speed ratio was fixedatQ,/Q;
=—1. For this particular case, their Reynolds number Re
and our inner and outer Reynolds numbers Ri and Ro are
related by

Ri=2Re, Ro&— %Re. (21
By the same rule, their axial wave numbgris related to
ours by a factor of 2, i.e.k=28. In Fig. 1a), we have
represented the transient growth factor for=R#0, Ro
=-272.42,n=0, and k=, corresponding to the values
Re=120 andB=m/2 in Hristovaet al. The maximum tran-
sient growth in this case i6,,~16.62, being in very good

the operatotfe'"~* and its computation is straightforward agreement with Fig. 2 of Hristovat al** Nevertheless, the

via standard methods,

G(t)=o2(FeMF1). (19

This is equivalent to solving the variational problem of maxi-

mizing the factomg(t) for a prescribed timéand considering

the initial conditions as the degrees of freedom of th

problem!* The optimal growthG(t) in (19) has been ob-
tained from the linear operatoY associated with then(k)

azimuthal-axial mode and for a prescribed positive time

Therefore, for a fixed set of values Ri, Ro, apdthe maxi-
mum energy amplification factoG .y, is obtained by maxi-
mizing G(t) in (19) for all the pairs (1,k) e ZX R and fort
eR*

Gma{Ri,RO,7)= supG(t).
(n,k,t)

(20

€

circular Couette flow is linearly unstable in that case for
non-axisymmetric perturbations, as seen in Fig) or n
=1. In Fig. 1b), we observe a very similar transient growth
which attains a slightly higher maximum value &,
~16.66, although the basic flow eventually exhibits an ex-
ponential instability. This justifies a wider study of the tran-
sient growth for non-axisymmetric perturbations.

The results of our exploration are summarized in Fig. 2.
The shaded zone represents the region of(B®Ri)-plane
where the circular Couette flow is linearly unstable with re-
spect to axisymmetric or non-axisymmetric perturbations,
i.e., Ghax—°. This region has a lower boundary which is
the critical curve where the first linear instability appears.
This critical curve has been computed by solving the eigen-
value problem(11) and imposing the condition that the real
part of the rightmost eigenvalue df be zero. Below the
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FIG. 2. Maximum transient growth factd®,,, in the (Ro,Ri-plane. The
dashed line represents the rigid body rotation curve #Ro. The lines with
white triangles represent the experimental boundaries of transition to turbu-
lence provided by ColetRef. 6.

implying that nonmodal transient growth may still be found
slightly above the linear critical values, as reflected in Fig.
1(b). Finally, Fig. 2 includes the experimental data provided
by Coles® The lines with white triangles represent the ex-
perimental boundaries of transition to spiral turbulence re-
ported by Coles above which subcritical transition was
found. The two boundaries correspond to two independent
experiments carried out with different fluids. In this study,
' Coles could not provide an explanation for the discrepancy

(b) 0 0.05 0.1 t 015 02 025 between the two experimental boundaries. Nevertheless, the

upper experimental boundary from Fig. 2 is clearly aligned
FIG. 1. Comparison with simultaneous waiRef. 21): (a) Transient growth with the contour curves (ﬁ;max, revea”ng a correlation be-

factor G(t) for »=0.881, R=240, Re=—271.42,n=0, andk= 7, follow- i, e e
ing Hristovaet al. for Re=120 and— /2. (b) Same computation fon tween the transition phenomena and the energy amplification

-1 factor. We have carried out the computation@f,,, at the
four points of the upper experimental branch of Fig. 2. The
optimal values have been included in Table I. A remarkable

critical boundary prescribed by the modal analysis, the figuréaCt is that the experimental transition takes place within the

shows contours of the functioB,,,,(Ro,Ri). Different fea- ange
tures can be pointed out. First, at the bottom right of Fig. 2
we have represented the rigid rotation curvesBRo, by a

dashed line representing the region where both cylinders ro-. 0 . i .
tate with the same angular speefls=(),. We can observe with a 0.2% of relative deviation. This suggests that, al-

that, close to that region, the Couette flow does not exhibi{hough our anaIyS|s'|s only linear, 'the nonmoglgl tran5|e.nt
transient growth. This is clearly visualized in Fig. 2 by agrowth plays a very important role in the subcritical transi-

. . - ; ~7 . tion. However, this mechanism is not sufficient for the even-
narrow stripe containing the rigid rotation curve within

which G,=1. This result is in agreement with previous tual development of spiral turbulence.

analyses based on energy methods which concluded that near

the rigid rotation region, circular Couette flow is absolutely,

monotonically, and globally stabFé.Second, in the counter- TABLE I. Parameters for optimal transient growth at the experimental tran-
rotation region, we observe a monotonic growthCQJ;ax, sition points reported by Coles in the upper branch of Fig. 2.

which ranges between 1 and 100. This would imply that the.;

Gmax=71.58+0.16,

. . . RO n k Gmax
energy of any small perturbation would be transiently ampli-
fied by almost two orders of magnitude in the counter-291 —2588 10 1.994 71.36
rotation region explored in this case. Third, the contours o :;gig ﬁ 1‘322 ;i'gi
Gmax are not tangent to the shaded region over the lineagqg ~3510 11 1.839 7175

instability boundary. In fact, the intersection is transversal
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IV. GROWTH MECHANISM AND AZIMUTHAL 60 . ; .
STREAKS

In this section we study how the non-normal growth 50r
mechanism affects the basic azimuthal Couette flow. It has
long been known that shear flows such as plane Couette 0 4|
pipe Poiseuille flow exhibit transition to secondary transient
flows usually termed streaks. These flows are particularlyG
easy to trigger when perturbing the basic field by means of 30
streamwise vortices, i.e., vortical structures which are ap-
proximately uniform along the direction of the basic oq
flow.?=% Initially, the streamwise vortices only perturb the
spanwise and normal components of the flow. The lift-up
effect is eventually responsible for the formation of the
streaks by transferring the spanwise-normal contribution of
the energy to the streamwise directidrStreaks are regions 0
of the fluid where the modulated flow attains high and low
relative speeds. The modulated flow results in a profile which
is, in a transient sense, linearly unstable with respect to three4G. 3. Transient growth for different azimuthal modes for=Re4000,
dimensional perturbations. This last instability is usuallyRi=0, andk=1.
termed streak breakdown and is one possible route of transi-
tion to turbulence in shear flows.

In the Taylor—Couette narrow gap geometry, where the ~ Following Hristovaet al.** we have studied the effect of
curvature is considerably reduced, the azimuthal coordinatéireamwisetaxisymmetrig perturbations and its implications
plays the role of the streamwise direction and axisymmetridor the formation of streaks. Figure 4 shows theconst
toroidal vector fields are suitable candidates to be streamwisgection of the time evolution of an axisymmetric perturbation
vortices. Two factors are essential in order to study the timdor Ro=—4000, Ri=0, andt=0, 7,/10, 70/5, 27,. For this
evolution of the perturbations and the modulation of theCOmputation, we have considered the action of the exponen-
Couette flow. The first is the energy of the initial perturbationtial time mapping of the linearized Taylor—Couette operator

tity is given by the expression field with n=0, k=7/2, zero azimuthal component and ini-

tial energy 1.5% oEg [Fig. 4@)]. Fort=7,/10 [Fig. 4(b)],
we observe a decay of the radial-axial components of the
EB—EJrOvBNBr dr pertgrbation: Fot_= 7,/5 [Fig. 40)], a pair_of small counter-
r rotating vortices is formed, close to the inner and outer cyl-
inders. Fort= 27, [Fig. 4(d)], the energy of the radial-axial

10

2 2

_ A—(r4—r4)— B” n ot ﬁ(rz—r-z) 22 components has been transferred to the azimuthal direction
g ° ! 2 7 e i) of the flow by the lift-up mechanism. This phenomenon tran-
The second is the time scale during which the transient
streaks achieve their maximum amplitude. In our nondimen-, @ © @
sionalization, the time scale was given by the viscous time, :}H{H{:;H)“ﬁ ST IR
t=d?v. We are interested in the characteristic time that a  fwr/fflil i
perturbation needs to reach its maximum amplitude and how 'fffffiil?:::éjzf‘,: NN
this time is related to the driving dynamics of the cylinders. [~ SN0 IR SR
In counter-rotation situations, a suitable advective time scale 725w [
is given by the outer cylinder rotation periosg,, ﬁﬁjﬁﬁ;}‘ I 32522233:3;;};;;;:
i ‘fﬁciz‘;l\ N
2 L R
=gy RO<O. 3 R
Ro(7—1) RSN B
In Fig. 3, we have plotte@(t) for Ro= —4000, Ri=0, and P —
k=1. The plot provides the optimal growth for different azi- ;;;;;;;;;::QIIE;‘
muthal modes ranging from=0 ton=11. We observe that 3?{”’?5::;3331;;
the axisymmetric mode does not exhibit a substantial growth, f Ir’f'wfﬂﬂv
in comparison with other spiral non-axisymmettablique T o & T

mOd_eS' AnOther_ important f?ature from Fig. 3 is that theFIG. 4. Radial-axial components of the perturbation field for=Riand
maximum  transient growth is always reached before theo=—4000 at different timesta) t=0, (b) t=r,/10, (c) t=,/5, and(d) t
outer cylinder has completed half a cycle. =27,.
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