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Transitions from Taylor vortex flow in a co-rotating Taylor—Couette system
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The stability of the Taylor vortex flow in the periodic Taylor—Couette problem with co-rotating
cylinders is examined. Transitions to twisted and wavy twisted vortices and wavy inflow and
outflow boundary flows are considered. Marginal stability curves for the transition from Taylor to
twisted and wavy twisted vortices have been calculated. The azimuthal wave number and the phase
velocity at their onset have also been obtained. To compare with experiments and previous
numerical works for the narrow gap approximation, the case of radius ratio 0.883 is analyzed in
detail. An explanation for the increase in the azimuthal wave number of the twisted vortices as the
Reynolds number of the inner cylinder is increased is provided. The velocity fields of twisted
vortices, wavy twisted vortices, wavy inflow, and wavy outflow boundary flows at their onset are
also shown. ©2000 American Institute of Physids$$1070-663(100)50312-2

I. INTRODUCTION Ref. 12, the transition to twisted vortices was studied; they
were calculated and their stability boundaries established.

Transitions from Taylor vortices in the Taylor—Couette The critical Revnolds numbers were compared with An-
problem have been well studied since the first contributions y P

of some authors at the end of the 1960s. The bifurcations tgiriﬁtemﬁﬁgrgigtihz?regzl\gjz&ﬁ;naxhsiggtvtv)zzNaet?r?b-
axisymmetric solutions have been studied in ddisdle the ute? d to the narmow gap aporoximation ’use d It was also
review article(Ref. 1)]. Daveyet al? and Eagle$considered gap app :

nonaxisymmeric perturbations to the basic Couette flow an hOWU that the preferred trans_mon was to_V\_/avy tW'.Sted vor-
used weakly nonlinear theories, expanding the solutions i Ices instead of to twisted vortices for sufficiently high axial
. wavelength. We show here that similar results are also ob-

powers of the distance from the inner critical Reynolds num- " 7 N
ber to obtain wavy solutions tained without the narrow gap approximation, so all these

In the early 1980s, Mullin and Benjanfipointed out the discrepancies must be due to end wall effects, and not to the

strong dependence of the critical Reynolds number for the!gdd't'on"’II symmetry gained in the narrow gap case.

appearance of wavy vortices with the axial wavelength Ofces-Iv—\::rnes:‘tilrc;?s(;l})(;;lj/zzat:mgg?;iﬂu&igi;gﬁ ;—I?X[I(?II“]Q/OI’U-
Taylor vortices, and Jone8 published his numerical calcu- y ) y

lations on these transitions showing also the strong deper%{sed the term jet mode to describe these solutions, due to the

dence with the radius ratio. The discrepancies between t reater _amplitude of the velocity “?'d hear th_e 0“”!0‘”
experiments and the theoretical calculations on the selecteaounda”es' In Ref. 9 two subharmonic kinds Of_ bifurcations
azimuthal wave number at the onset of the wavy vortex flow Vere reported. The first one Corresponds to the jet modes and
and on the Reynolds numbers at which the bifurcation occurg'as named wavy OUtﬂOW. bound_anes flaw/OB), because
were explained as end wall effects by Walgraegl,” using only the outflqw boundarles.oscnlate. The second_one. was
named wavy inflow boundaries flo@VIB) because in this

amplitude equations, and later by Edwamtsal® using a . . . )
P d y g case only the inflow boundaries oscillate. We have obtained

Ginzburg—Landau equation. In most of these works, only th . .
case where the outer cylinder is at rest was considered. ?he flow patterns of thg_se two kinds of solutions and some
results about the transition curves.

After the publication of the works of Andereeik al® on Th neral formulation of the problem is provided in
new flows on the Taylor—Couette apparatus, the interest i € general formulation ot the probiem 1S provide
the system with co-rotating cylinders increased. This cas%ec' I, its particular form used for the calculation of Taylor
. . . . ) tices in Sec. Il A, their stability in Sec. Il B, the numerical
was considered in the theoretical studies of Nalddfeand V%" o : o
ad methods used in Sec. lll, and the results for the stability

Weisshaaet al!? They used the narrow gap and almost co- . . .
rotating cylinders approximation. With this simplification, boundaries a}nd flow patterns are given in Secs. VA and
n4v B, respectively.

the problem becomes mathematically similar to the proble

of Rayleigh—Beard convection of a Boussinesq fluid. In
Il. FORMULATION OF THE PROBLEM

3Electronic mail: fina@fa.upc.es We consider the flow of an incompressible fluid confined
YElectronic mail: sanchez@fa.upc.es between two coaxial cylinders, of inner and outer ragii
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rs and gap widthd=r} —rj, which can rotate indepen- P,h=P,4y=P,p=P,=0. (1)
dently with angular velocitie§);, {),. The nondimensional
parameters for the problem are the radius ragier;/r} ,

and the Reynolds numbers associated with the tangential ve- v=fe&,+he&,+VX(g&,+ 4&,) + VXVX(4&,),
locity of the cylindersRi=dr; Q;/v, R,=dr} Q,/v, where

v is the kinematic viscosity. We usg as length scale and
d?/v as time scale. The dimensionless Navier—Stokes equa- Uy boz

tions and the incompressibility condition are then V=9t T+ brzy =9t T’h+ D.ig—Ane).

dVv+v-Vv=—-Vp+Av, V-v=0. @
From this latter expression of it can be seen that the new
potentialf is the #-averaged azimuthal velocit) , g is the
¢-averaged vertical velocity, and is the z average ofv,

The velocity field can now be written as

or, in components

Using the identityv-Vv=wXv+ V(v?/2), wherew=V Xv
is the vorticity field, and includingV(v?/2) into P, the
Navier—Stokes equations can be written as

—-D.g.
(di—A)v+ @Xv=—-Vp, V-v=0. The equations for these potentials are
We will assume infinite cylinders and solutions periodic in (9,—A)f=—P,&,u, (3)
the axial direction, of spatial periad=27/k. Details on the o
range ofk studied will be given later. (d;—A)Ag=P &, VXu, 4
To eliminate the continuity equation and the pressure _ . oA
from the formulation, we use a representation of the velocity (9= Anh==Py(1=-Py&ru, ®)
field using scalar toroidal and poloidal potentials: (dy— M) A= (1—P,)&, VXu, (6)
v=VX(1g&,) + VXVX(hg&,). (dy—A)AALdp=—(1—P,)(1—P,)&,VXVXu, (7)

This formulation has also been used in the study of the spira)ih, ;= wxv andA =DD . + g2
flow.'® The details of the formulation can be seen in Ref. 16. il
Here we will only sketch the main lines.

The equations for the potentialg and ¢g are obtained f(r)=Ri, f(ro)=Ro,
as thez component of the curl and double curl of the original 5,
momentum conservation equation:

&, VX((dy—A)v+ wXv)=0,

The boundary conditions for this system of equations are

9,=D,g=D.DD,(P.,9)=0,

h=0,
&, VXVX((d;—A)v+ wXv)=0.
Diy=¢d=App=0,
A lengthy but straightforward computation gives Y=¢=A8nd
yytrD¢,=0,

(= A)ALg—&,VX(wXVv)=0,
AAh(ﬁg_rDAhlﬂzz O,

(0;—A)AALPg— &, VXVX(wXV)=0,
on both cylinders. They are obtained from the physical

: _ 2.2 _ _ )
\(/leth At,r]]—D+dD+1{cr tﬁ”’ D_f_f and D+_D+1,[/;' Tore boundary conditions on the cylinders, and from an integral

uce the order of the equations governing the zero-wave,,qiion needed to make this formulation equivalent to the
number modes, the following average operators will be used;:

riginal Navier—Stokes equations.

2
PaF:fo F(r,0,z,t)do, A. Equations for the Taylor vortices

The above-mentioned formulation is general for three-
2mlk . . . . .
PzF:f F(r,6,z,t)dz dimensional flows and will be used later to find the eigen-
value problem needed to study the stability of Taylor vorti-
ces. To calculate these, the formulation can be greatly

We definef, g, , and ¢ as N . . :
9. h ¢ ¢ simplified by using the fact that Taylor vortices are station-

f=—DPyys, ary and axisymmetric and that the boundaries that separate
_ two of them are flat. It follows from these last two conditions
9=-DPyds, that
y=(1=Py) s, The velocity field depends only onandz and can be ex-
pressed as

$=(1-Py(1-P,)dg.
The dependence of these potentials fisf(t,r,z), g
=g(t,r,z), h=h(t,r,0), ¢=uy(tr,0,z), and ¢  Thisis equivalent to using a streamfunction for the projec-
= ¢(t,r,0,z) and the following relations hold: tion of the velocity field onto the—z plane(g in our casg

v(r,z)=1&,+VX(g&)=(-9,.f.D,9).
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plus a function describing the azimuthal velodify, as was  with u=w,Xv+ wXv, .
used in Ref. 5. Now only the first two equations from system  Taylor vortex flow is axisymmetric, and thddyv,=v,
(3)—(7) have to be solved. If andg are separated into their and (1-P,)v,=0. Using this fact, the definitions ¢fandg,
even and odd parts in the periodic directigrthe equations the properties of the operatér, acting on the potentialgl)
can be also separated, and it is easy to sed thast be even and the linearity of the operatd?, it is easy to prove the
and g must be odd. After expanding the right-hand side offollowing:
the equations and drgppmg the depend_ence. on time, the sy(sl—) The termsP,&,-u and P ,&,VXu, from Egs.(9) and
tem to be solved to find the Taylor vortices is .

(10), only depend on the potentiaisandg.

Af=—g,D, f+f,D.,qg, (2) The terms P,(1-Py&,-u from Eg. (11, (1
—Pye,VXu from Eq. (12, and (1-Py(1
—P,)&,-VXVXu from Eqg.(13), only depend on the po-
tentialsh, ¢, and ¢.

>t

-1 - -
Ag=—d,f*+D.gAg,~g,D_Ag,

where D_=D—1/r, with boundary conditions(r))=R;,  Then the eigenvalue problem can be split into two parts. The
f(ro)=R,, andg,=D,g=0 on both cylinders. We have first two equationg9) and (10) correspond to axisymmetric
not written the conditionD DD, (P,g)=0 because it is (m=0) perturbations of Taylor vortices that can be detected

identically satisfied ifg is odd. while they are being calculated. As we are interested in azi-
3 . muthal dependencer(#0) we will not consider this kind of
B. The stability of Taylor vortices transition and we will puf =g=0 for the perturbation.
To analyze the stability of Taylor vortices, we will con- Another splitting of the eigenvalue problem can be ob-

sider only the kinds of perturbations observed in the experifained by separating the potentials into their even and odd
ments. So we will restrict our analysis to perturbations with@xial components:
the same qul perloda?/k as'the pgrturbed vortices, or to =gy, b= s+ ¢°.
subharmonic perturbations with periodr&.

If v,(r,z) and w,(r,z) are the velocity and vorticity After substituting this potential decomposition in E¢k1)—
fields corresponding to Taylor vortices, we will consider per-(13), @ detailed study of the parity of the terms that appear in

turbations of the form each of the equations shows that the system can be separated
. into two kinds of eigenvalue problems.
Vp(r,0,2,t)=V,(r,2) +Vv(r,z)e*e'™, (8) Type t
me Z being the 'c_lzimuthal wave numbt_er of the _perturbation. wh=Ah—P,(1—P,)(&:u)®, (14)
In order to obtain subharmonic transitions using perturba-
tions of the same forni8), the basic Taylor vortex flow, HARYC=AA P+ (1—Py)(8,-VXU)®, (15

with axial periodicity 2r/k has been extended to an axial

e_ e_(1_ _ a. €
period 4m/k. Thus both types of perturbations have been HAAKG"=AAAKG"= (1= Py)(1=P,) (& VXVXU)",

treated in the same way, the only difference being the com- (16)
putational cost. andtype II:
The perturbations have been written in terms of the sca- 1A= AN e+ (1— P ) (8,VXU)E, (17)

lar potentials for the velocity:
UAALPP=AAALP°—(1—Py)(1—P,) (& VXVXU)°.

(18)
9p(r,2)=0,(r,2)+9(r,2)e", In Appendix A, we show the dependence of each right-hand
ho(r,0)=h(r)emiest side term of the above equatiofish)—(18) on the potentials,

LN ' once they are separated into their even and odd parts.

fo(r.2)=1,(r,z)+f(r,z)e*,

(1, 0,2)=g(r,z)€MoeH, The set of boundary conditions for each of the eigen-
ot value problems are, for case I,
r,0,z)=¢(r,z)emeH,

(1. 0.2)=(1,2) ho 9
By substituting these expressions in E@—(7), the follow-
ing family of eigenvalue problems depending onis ob- 9 y°= p°=A,¢°=0, (20
tained: imyo+r4,,4°=0, (22)
pt=Af—Pg@yu, ©) imAALGe—rD And,y°=0, (22)
nAg=AAg+ P48y VXu, (100 and for case Il
wh=Ash=P,(1-Py&,u, 13 9 )°=°=NAp¢°=0, (23)
A= AA i+ (1—Py)e, - VXu, (12 imyC+ra,,¢°=0, (24)
HAALP=AAAP—(1—Py)(1-P,)e, VXVXu, (13 imAALp°—rDALd,%=0, (25
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atr=r;,ry. Let p be the continuation parametéR;, R,, 7, or k),

The perturbationy, of the Taylor vorticesy,, , is and letX be the vector formed with the amplitudés, and

N N " . Then the discretized steady Navier—Stokes equations
=he,+ VX(4°8) + VXVX( $® 9in | fhe. > eau

V=he+VX(y7e) T VXVX(47°8) can be written in the fornf (X,p)=0. These equations im-
in case |, and plicitly define a curve of solutionsX=X(p) wherever

V=VX(4°8,) + VXVX( 4%, detDy F(X,p))_;&o. At each stgge of the continuation process,
_ _ _ from the previous known points on the curve of solutions, a
in case Il. In the latter, the boundaries between vortices argredictor step provides the initial guess from which a correc-
not perturbed and transitions to twisted vortices will be ob-tor step, based on a modified Newton—Raphson iteration,
tained[see thez component of in (2)]. In case |, because of converges to a new point on the curve. For the first two
the azimuthal oscillations of the boundaries, and fO”OWingstepS, the prediction is made using the tangent to the curve;
Weisshaaet al,'” we will name the solutions wavy vortices and after, polynomial extrapolation is used based on the last
or wavy twisted vortices, depending on their appearance anghree points on the curve.
azimuthal wave number. Both have oscillatory boundaries,  The stability of each Taylor vortex solution is obtained
but, as we will show later, the wavy twisted vortices corre-during the continuation process. The code that we have de-
spond to higher azimuthal wave numbers. When the axialeloped follows a curve of solutions and stops when a user
wavelength of the pattern is twice that of Taylor vortices, wedefined conditionG(X,p)=0 holds. This procedure has
will obtain WOB solutions in case |, since all inflow bound- been used withG defined as the real part of the leading
aries remain flat while the outflow boundaries of Taylor vor-eigenvalue of one of the eigenvalue problems already stated
tex flow become wavy. In case I, all the outflow boundaries(14)—(18).
are flat and inflow boundaries become wavy. As a conse-  The eigenvalue problems have also been solved using a
quence, we will obtain WIB solutions. collocation method on the same mesh used to obtain Taylor

vortices. The expansions for the potentialsy®, ¥°, @,
and ¢° are analogous to those féandg:

I1l. NUMERICAL METHODS

L
- h
To examine the stability of the Taylor vortex flow, the h(X)—;Z hiH(x),
first step is to calculate it efficiently. In order to solve the

equations for the potentials for the Taylor vortex flow, we . ) N Tt o L - — =0 )
have used spectral methot3anutoet al'’). The potentials ¥ (Xyz)zlgl Zﬁ 'r’fl,n|‘||,n(><)+|=26 iy nH{n(X) [sinnkz,
f, andg, have been expanded as
N L L
LN e _ e ot e 1y¢°
f(x2)=fc0+ 2, 3 1 Hi(x)cosnkz P2 = 2 | &, HH00 T 24 R0 [cosnkz
= =
L N N L L
e _ e 1yt e 4t
9,(x,2)= 2 2, 9i,,HI(x)sinnkz, V2= 24 | 2 VIO + 24 UHiA() | cosnic
=4 n=
N L L
wherefc is the Couette flowf-=Ar+B/r, which verifies o . o T7¢° 0 1yd° .
fo(r))=R; and f(r,)=R,. The polynomials of degree ¢ (X’Z)"n; .:E4 ¢'v”H'v”(X)+|:26 1,nHin(X) |sinnkz,

I H,f andH?, are linear combinations of Chebyshev poly- h 0 — 0 —.e e o

nomials that verify the boundary conditioktl =0 andH¢ ~ Where H'\H{",H/,H/  H{,, etc., are combinations of

=D, H?=0 on both cylinders. Their expressions can beChebyshfe_v polynomials that _verlfy one of the sets of bound-

found in Appendix B. The coordinate=2r — (r;+r,) with ary conditions for the potentiald9)—(22) or (23)—(25). In

x e[ —1,1] has been introduced because of the domain of thé\ppendix B the details about the construction of these basis

Chebyshev functions. The axial wave numbehas been Of functions can be found.

included and the axial period ¥s=2r/k. To solve the two generalized eigenvalue problems de-
The equations for the amplitudés, andg, , have been ~Pending on the azimuthal wave numbyer

obtained by a collocation method in the two coordinates. We A x =, B X,

have used a Gauss—Lobatto mesh for the radial coordinate ] ] ]

and equally spaced points in the axial direction. This allowsVe have used theapack library. The eigenvectors contain

an efficient evaluation of the equations foy and g, by  the coefficientsX=(hy, 4,47, &, ¢7n) in case |, and

using fast trigonometric transforms in both coordinates. ~ X= (¢, ¢, # . ¢ry) in case Il, andh, By, are complex
Taylor vortex flows are stationary. Therefore, they canmatrices.

be computed using continuation methods varying different ~ Some tests have been made to ensure that the results are

parameters. These techniques are described in detail in Re&ufficiently accurate. They have been summarized in Tables |

18-20. They have been previously applied in the Taylor-and Il. With the first we justify why the lower values ofdo

Couette problem to calculate the bifurcation diagrams for thenot appear in any of the subsequent figures. The second

Taylor vortices(see the reference list in the review article shows the degree of accuracy achieved in our calculations

Ref. 1), to compute wavy vortex flovés and spiral flows®  for the higher azimuthal wave numbers. In both cases we
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TABLE |. Dependence of the inner critical Reynolds number on the trun-TABLE Il. Dependence of the critical wavelength, on the truncation
cation parameters andN for different values of the azimuthal wave num- parameterd and N for m=16 andm=28 and for a fixed value of the
ber (m=1,2,12,13) and of the axial wavelength£1.8,2.1,2.5) and for = Reynolds numberR;= 1400 andR,= 1060.

R,=1060.

L N A
L N R (=18 R (A=21) R (A=25)
c ° © 24 12 1.868
24 12 1275.38 1276.47 1285.53 24 16 1.879
24 16 1275.38 1276.46 1286.21 24 24 1.880
m=1 32 12 1365.09 1365.63 1382.86 32 12 2.410
32 16 1365.13 1365.66 1369.18 m=16 32 16 2411
36 12 1474.65 1476.47 1463.90 32 24 2.411
36 16 1475.43 1476.49 1479.07 36 12 2.457
48 12 1882.29 1880.17 1837.74 36 16 2.456
48 16 1877.07 1873.79 1895.81 48 12 2.448
48 16 2.447
24 12 1289.93 1290.15 1297.84
24 16 1289.93 1290.12 1299.19 24 12 1.956
m=2 32 12 1400.02 1394.14 1380.36 24 16 1.947
32 16 1399.61 1393.34 1393.59 24 24 1.948
36 12 1497.48 1500.53 1505.12 32 12 1.845
36 16 1497.92 1500.84 1506.81  m=28 32 16 1.845
48 12 2010.49 1957.45 1890.57 32 24 1.845
48 16 1982.74 1972.42 1978.97 36 12 1.821
36 16 1.820
24 12 1364.58 1360.12 1385.81 48 12 1823
24 16 1364.82 1360.12 1383.30 48 16 1824
m=12 32 12 1491.07 1504.59 1645.98
32 16 1491.45 1504.04 1644.04
36 12 1612.64 1689.52 1647.29
36 16 1594.57 1687.56 1689.82
48 12 2293.31 2210.43 2064.15  corresponding curves may have folds, asmfor 12, and they
48 16 2030.41 2209.99 2096.94  may be at the right of the range af considered (1.8\
0 12 1369.89 1363.29 135458  <2.5), as the sequence of curves in Figs. 1 and 2 seems to
24 16 1369.76 1363.44 1356.31 indicate. Another possibility is that Taylor vortices are stable
m=13 32 12 1487.18 1505.07 124043 to some of these kinds of perturbations in the range of values
32 16 1487.93 1505.48 124064 of )\ for which they exist.
36 12 1610.92 1661.41 1240.36 The casem=13 andA=2.5 is the only exception in
36 16 1598.69 1679.88 1240.63 : o y P
48 12 1866.06 1857.17 124063  Table | because this curve is the next one to appear at the
48 16 1843.15 1828.08 1240.66 right in Fig. 2 afterm=14. The convergence is now quite

good showing five stable significant digits.

have solved stability problems of the type II, corresponding
to twisted vortices, withR,=1060, the highest outer Rey- 1200
nolds number considered in this study, and for a fixed radiu:
ratio »=0.883.

In Table I, the values of the inner critical Reynolds num- 1150
ber at which Taylor vortices lose stability are shown as &
function of the truncation parametdrsandN, for azimuthal
wave numbersn=1,2,12,13 and for three values of the axial 1100
wavelengthh =1.8,2.1,2.5. They have been obtained by in-
creasing the inner Reynolds numk®r because, as can be Ri
seen in Table |, the critical inner Reynolds number is not 1950
very sensitive to the value of for a fixed resolution, in
contrast with the results for higher values mf shown in
Figs. 1 and 2. In this latter case the curves have been ot 1000
tained by increasing. because of the appearance of folds.
All the remaining parameters have been kept fixed.

The critical values oR;, for the azimuthal wave num- 950 , . , . I . | .
bers in the rangen=1 to m=12, do not converge with the 2 2.2 24 2.6
resolutions we are able to use. They grow as the radial resc A
lution L is increased and seems to be, in general, InsenSItIVEIG. 1. Marginal stability curves for the onset of twisted vortices of differ-

to changes in the axial truncation paramd‘bﬂ_hey could  ent azimuthal wave numbers. The values of the parameters held constant are
be even greater than the values we have obtained or ttee =815 and;=0.883.
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Although transitions to time-dependent axisymmetric
flows are known to exist in the finite length case with the
outer cylinder at reéf we have focused our attention on
nonaxisymmetric bifurcations because we are interested in
comparing with experiments performed in co-rotation with a
large aspect ratio.

In Figs. 1 and 2 we show the marginal stability curves
for the onset of twisted vortices of azimuthal wave number
m. For a direct comparison with previous experimental and
numerical results, we have taken a fixed ggp 0.883, and
outer Reynolds numbeR,=815 andR,=1060 in Figs. 1
and 2, respectively. Beside each neutral curve we have indi-
cated its corresponding azimuthal wave number, ranging
from m=13 to m=34. As stated before, the curves faor
: <13 are all outside the limits of the plots. Negative values of
1250~ — Envelope ; m correspond to conjugate eigenvalues and eigenfunctions,
so only positive values have been considered. We have ob-
1 ' T ' T ' T T served no qualitative difference in the shape of these transi-

1450

1.8 2 22 24 tion curves by changing the parity of. Therefore, we have
A only plotted half of the azimuthal wave numbers in the afore-
mentioned range.
FIG. 2. Marginal stability curves for the onset of twisted vortices of differ- In all the curves the criticaR; number depends strongly
ent azimuthal wave numbers. The values of the parameters held constant asg) the axial wavelength, and turning points appear. The same
R,=1060 andy=0.883. behavior has been previously observed in the transition to

wavy vortices! The envelope curve of this set of neutral
- . , curves has been plotted with solid lines in both Figs. 1 and 2.
In Table Il a similar study is shown for azimuthal wave The intersections of the neutral curves for numbers
rlumbersm: 16_andm=23. 'Ir'lhe R,?anOIdS, nurr]nbeLs are b and m+1 correspond to bicritical points. At these points,
i . e ) . " Taylor vortices become unstable and twisted vortices wi
1400 andR,=1060 and the critical point has been ob- + vl t b tabl d twisted t th
tained by increasing as explained previously. The value of ¢ gome ayiql wavelength but different azimuthal wave

R; in the upper region of Fig. 2 has been selected because ﬂLmber can appear. Furthermore, complicated dynamics

the special sensitivity to the truncation parameters. At lowel. ) 14 be observed around these points due to their higher
values ofR; the dependence with and N is not so pro-

q codimension. The nonlinear interaction between these differ-

noun(r:]e ) | h hat th itical point i ) hent modes could be the reason why, in the experiments,

The results show that the crmcg point Is again muc twisted vortices of different azimuthal wave number can co-
more dependent oh than onN. DoublingN from 12 to 24

~ ST exist. Bicritical points have also been obtained for the tran-
(for L=24 andL =32) only changes, at most, the third sig- sition to spiral vortices form Couette flot#:2*

nificant digit of A. In contrast, to have the same accuracy, i jnteresting to notice that as the inner Reynolds num-
at leastl. =36 is needed_. The same §|tuat|on was reported "her is increased with a fixed axial wavelength, transition
Ref. 15 for the calculation of the spiral flow. __curves to higher azimuthal wave numbers are crossed. This is

The “_ESOH_J“‘)n u;ed to calculate the curves shown in al!:onsistent with the experiments of Andereekal® They
the following figures id. =36 andN =12. Additional check- 14 that, after the onset of the twisted vorti¢edth wave
ings of accuracy have beeq made in some selected points R[meers ranging from 14 to 16 for~2.4), there was a
the curves changing the axial resolutionNe- 16. transition in the number of twists to a range of 17 to 20 if the

Reynolds number was increased. For other axial wave-
IV. RESULTS AND DISCUSSION lengths, they found values of up to 30. Our results are in
good accordance with these experimental results in the val-
ues ofm and in the order in which they appear.

If pandq are two parameters on which Taylor vortices If only the envelope is considered, as the axial wave-
depend(R;, R,, 7 or k), the neutral curves Rgf)(p,q) length is increased the first transition occurs at lower inner
=0 are the boundaries for the onset of tertiary flows withReynolds and azimuthal wave numbers. In Ref. 9 it was
azimuthal wave numbean. These curves have been obtainedsuggested that this could be the reason why in the experi-
by slicing the parameter plane-q. For a fixedp, the sta- ments the end vortices are the first to bifurcate to twisted
bility of Taylor vortices parametrized by has been studied ones due to their larger size, when the rest of the Taylor
to find a point on the neutral curve. This process is repeatedortices in the core of the fluid are still stable.
for different values of. In the presence of turning points of In Figs. 3a) and 3b), the solid lines are the envelope
Re(umw(p,g)=0, the role ofp andg can be interchanged. We curves plotted in Figs. 1 and 2, the dashed lines correspond
will now present the results forp(q)=(\,R;), where\ to the calculations of Weisshaat al,'? and the triangles to
=2m/k is the axial wavelength of Taylor vortices. Anderecket al® experiments. Our envelopes agree with the

A. Stability boundaries
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FIG. 3. Comparison of our results with previous ones. The solid lines aré=IG. 4. Boundaries for the onset of twistésblid line) and wavy twisted
the envelopes of the curves of Figs. 1 and 2. The dashed lines correspond \@rtices (dashed ling (8 R,=815 and»=0.883. (b) R,=1060 andzn
the calculations of Weisshaat al. (Ref. 12, and the triangles are taken =0.883. The symbols iitb) indicate the position of the eigenfunctions in
from Anderecket al. (Ref. 9 experiments(a) R,=815 andy=0.883,(b) Figs. qb) and 10).

R,=1060 andzy=0.883.

eters. We have also found the neutral curves for the transi-
stability boundaries obtained in Ref. 12, where narrow gagions to wavy twisted vortices in order to contrast the nu-
and almost co-rotating cylinders is assumed, for the highemerical results with this experimental evidence. These
values of the axial wavelength. There are many possible exaeutral curves for a fixedh are similar to those previously
planations for the discrepancies for the lower values\of plotted. In Figs. 4a) and 4b), the envelopes have been plot-
They could be due to numerical inaccuraciathough we ted in dashed lines for the same two aforementioned values
have shown in Table Il that increasing the resolution in ourof R,. As before, they match, for the higher valuesof

calculations does not change the critical valuea aignifi-  with the transition curves calculated in Ref. 12. The solid
cantly) or simply to the fact that the two calculations are notlines are the envelopes corresponding to twisted vortices pre-
for the same value of the radius ratio. viously shown. The two symbols, one on each curve in Fig.

In the case ofR,= 1060, there is a gap between both 4(b), indicate the position at which the eigenfunctions have
numerical results and the experimental ones. Therefore, theeen plotted in Figs.(B) and 7c).
assumption of narrow gap and almost co-rotating cylindersis  In both our calculations and those of Weisshetal?
not responsible for this disagreement, which could be due tthe first instability is, above a certain value »f to wavy
the effect of the approximation of cylinders of infinite length twisted vortices. In Figs. @) and 4b) this is true for\
used in both numerical calculations. >2.07 if R,= 815 and forA >1.83 if R,= 1060. This behav-
Only twisted vortices seem to have been observed in ther differs from the experimental results obtained by An-
experiments of Andereckt al® in these regions of param- derecket al® In Ref. 12, it is suggested that this is due to the
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small gap approximation they used, but as we have shown, 1250
both calculations give the same results. We think that this
could also be related to the finite length of the cylinders. The
effects of the end walls on the two kinds of solutions could
be different. The vertical oscillation of wavy twisted vortices
would be damped by the end walls, delaying their onset. The
twisted vortices would be less affected due to their flat non-
oscillatory separation surfaces.

In a recent work? it has been proved that, by periodi-
cally forcing the Taylor—Couette system, it is possible to
interchange the marginal stability boundaries for the transi-
tions to Taylor vortices and nonaxisymmetric modes. When
the outer cylinder is at rest, the first unstable mode is that
corresponding to Taylor vortices, but by superposing a ver-
tical periodic oscillation of the inner cylinder it is possible to
obtain nonaxisymmetric modes. This has also been repro-
duced experimentall§f It would be interesting to see if by @ ' ' iy
some kind of periodic forcingvertical oscillations or peri-
odic modulations of the velocity of any of the cylindpthe 13
boundaries for the transitions to twisted and wavy twisted 1=0.85 :
vortices are interchanged. This would provide an experimen- ) .
tal way to observe the latter. .

We have also made a brief study of the dependence of .
the onset of twisted vortices with the radius ragioTransi- 129 n=08 o
tions to any other kind of solutions previously mentioned ' Y
have only been studied foy=0.883. The results are sum- 1 Y y
marized in Figs. 5 and 6. Ri/Riv '

Because it is computationally expensive to calculate the n=0;75 ' ‘
envelope curves including all the azimuthal wave numbers, L9 e )
we have only computed the transitions to even values.of
Although this has the consequence that some curves are not .
smooth, they are informative of the critical Reynolds num-
bers and of the range of azimuthal wave numbers that could
be expected in these cases. 16 18 5 22 24 26

In Fig. 5a), the even envelopes of the neutral curves  (p) A

corresponding top=0.7, 0.75, 0.8, 0.85, 0.883 have been G, 5. Boundaries for th . — cor twisied
_ ; P . 5. Boundaries for the onset of even azimuthal wave number twiste
plotted for Ro_ 815. The labels beside each point IndICmevortices for different radius ratio$a) Inner critical Reynolds number vs

the corresponding azimuthal wave numbirs (b) Inner critical Reynolds number over inner Reynolds number for the
It can be observed that agis decreased, the rangemf transition to Taylor vortices va. The dominant azimuthal wave numbers

decreases from the range 14—33 #pr0.883 to 2—6 fory  2are labeled ir(a).

=0.7. High azimuthal wave number flows are only observed

in the case of radius ratios near one. As far as we knoWeven envelopes with the mean angular velocity of the cylin-

twisted vortices of lowm have not been observed in experi- 4o« pboth scaled witR. . for different values ofy. From the
’ ] .

ments with a wide gap, perhaps because in most cases thgye ious even envelope curves shown in Fig. 5, we have
have been performed with the outer cylinder at rest, or bebbtained the scaled phase velocity: o/mR , o being the
cause the first transition is to wavy vortex flows. _ imaginary part of the eigenvalue that crosses the imaginary

For the smaller radius ratios, the transitions to twistedyis at the bifurcation, an; the corresponding critical inner
vortices occurs at a higher inner Reynolds numbers, but ikeynolds number. The phase velocity is shown in solid lines
the ratioR; /Riv (critical inner Reynolds number for the onset 54 the mean angular velocity with dotted lines. The phase
of twisted vortices over inner Reynolds number for the tran-velocity of twisted vortices is almost independent of the axial
sition to Taylor vorticesis plotted as a function of the axial wavelength. Moreover, as the radius ratio tends to one, this
wavelength\ [Fig. 5b)], it can be seen that the region of constant is close to the mean angular velocity. An explana-
stable Taylor vortices becomes relatively narrower. It is alsaion of this behavior was given by Jore®r the case of
clear from this figure that for any value of the radius ratio,transition to wavy vortices. He suggested that the good
the Taylor vortices with higher axial wavelength are the firstagreement he obtained with experiments was due to the fact
to bifurcate to this kind of solution and that the slope of thethat the azimuthal velocity of the inviscid core between the
curves increases with. cylinders principally determines the phase velocity.

In Fig. 6, we have compared the phase velocity on the We have not made a detailed study of the subharmonic

2 2
3
1]
L
o0
0
@
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TABLE lIl. Value of the parameters for the eigenfunctions shown in this
section. In all of themy=0.883.

03 n=0.7 Tertiary flows m A R, R;
| T Wavy vortices 6 2.00 100. 470.
______________________ Twisted vortices 24 2.02 1060. 1290.
0.25 -~ n=0.75 Wavy twisted vortices 14 2.01 1060. 1260.
e wiB 12 2.00 1100. 1401.
oO/mR;| WOB 8 2.00 700. 1051.

radius. In order to obtain a better visualization, we show two
vertical periods, and the phase velocity of the whole struc-
ture has been subtracted. Then the view would correspond to
the rotating frame of reference at which the solutions are
stationary. Below each perspective view, we have plotted
projections of each velocity field onto five different vertical
FIG. 6. Relative phase velocities of the twisted vortices at the marginaplanes qua"y spaced in an azimuthal period/12. .The
stability boundariegsolid line and mean angular velocitdotted lines,  |€ft-hand side of each rectangle corresponds to the inner cyl-
for different values ofy. inder, and the right-hand side to the outer one. The angular
positions of the vertical sections have been indicated in the

- ) . _ perspective view.
transitions because of the high computational cost of solving  The symmetry properties of each of these tertiary flows

the eigenvalue problems with twice the vertical resolution of-gn pe seen in the plots. Twisted vortices keep the reflexion
the previous case. Nevertheless, we have computed somgmmetry of Taylor vortices about a horizontal plane be-
critical points to check if they match the experlm'entall re-cause they are solutions of the eigenproblem of type.7)

sults. For WIB flows, the Reynolds numbers at which bifur-anq (18), so the flat boundaries between them do not suffer
cations occur are in good agreement with data from Anyny distortion. Wavy and wavy twisted vortices break this
derecket al, b_u_t for WOB flows we have always obtained symmetry. Both are solutions of the eigenproblem of type |
much lower critical Reynolds numbers. We do not have &14)—(16), but the latter have higher azimuthal wave number
good explanation for this fact. It could be due to numericalyng are found for higher outer cylinder velocities.
inaccuracies, which are difficult to check due to the high Although the perspective view of twisted and wavy
resolution needed, or to the periodic approximation. In anyisted vortices have some similarities, the inclined rope-like
case, in the following we will show the patterns obtained instryctures are quite different. In the first case, the bands with
both cases. They reproduce the qualitative behavior of thesﬁositive and negative slopes are symmetric about the separa-
solutions quite well. tion plane between vortices and they appear because the per-
turbation of the Taylor vortex flow moves the center of the
vortices from their original position, with a vertical displace-

In order to obtain a picture of the flow patterns near thement that depends on the azimuthal coordinate. This can be
bifurcation boundaries, we have added some small multipl€learly seen in the sequence of vertical plots. In the case of
of the velocity perturbation field to the axisymmetric veloc- wavy twisted vortices, however, the bands of positive slope
ity field of Taylor vortices. Then the perturbed velocity field are shifted, in the azimuthal direction, from those of negative
is written slope. The bands appear, again, as a consequence of a verti-
cal shift of the vortices. Due to the reflexion symmetry
breaking, the two eddies represented in the verticals cuts are
wherev, is the velocity field of Taylor vortices, ang, and  not of the same size, as in the case of wavy vortices.

V,, are the conjugate eigenfunctions with eigenvaliuesand Figures 8a) and &b) show the global structure of sub-
—iw corresponding to the bifurcations with azimuthal waveharmonic flows WIB and WOB, respectively. As in previous
numberm and —m, respectively. In all the plots we have figures, on top there are perspective views of the velocity
fixed the azimuthal phase by settihg 0, i.e., fields at radiusr=0.9(r;—r,)+r; in Fig. 8a), and r
=0.2(r;—r,) +r; in Fig. 8b). Different radii have been cho-
sen to make the patterns more evident. The cylinder height is
The parameters of the flows plotted in all subsequent figurethe axial periodicity of the solutions, which is twice that of
can be seen in Table III. Taylor vortices. Again, the velocity field at five vertical sec-

In Figs. 7a), 7(b), and 7c), we show the velocity fields tions equidistant in an azimuthal periodr2m have been
of wavy vortices, twisted vortices, and wavy twisted vorticesplotted below.
respectively. The top plot on each group is a perspective The symmetry properties of both subharmonic solutions
view of the projection of each velocity field at radius are clear in the plots. For each of them, one of the two kinds
=0.9(r;—r,) +r; onto the cylindrical surface of the same of boundaries between vortices remain flat, the outflow for

B. Flow patterns

V= Vv+ 6(Vpei“’t+im0+%e_i‘”t_im9),

v=V,+2¢e(Rev,)cosmo—Im(vp)sinmeo).
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FIG. 8. Velocity fields of(a) WIB and (b) WOB flows of azimuthal wave
numbers 12 and 8, respectively. The top plot on each group is a perspective
view for radiusr=0.9(r;—r,)+r; in (@, andr=0.2(r;—r,) +r; in (b).
Below each one are the projections of each velocity field onto five different
vertical planes.

FIG. 7. Velocity fields of(a) wavy vortices,(b) twisted vortices, andc)
wavy twisted vortices of azimuthal wave numbers 6, 24, and 14, respec-
tively. The top plot on each group is a perspective view for radius

=0.9(r;—r,) +r; . Below each one are the projections of each velocity field V. CONCLUSIONS AND PERSPECTIVES
onto five different vertical planes.

The transitions from Taylor vortices have been studied.
We have compared our results for the transition to twisted
vortices with the previous ones from Weisshasral,?

. . ) showing that their discrepancies with the experiments of An-
WIB and the inflow for WOB, while the other is wavy. The yerecket al® are not due to the narrow gap approximation

maxima of the velocity are achieved on the wavy boundariespyt to the infinite length approximation. If only the first tran-
This was the reason why experimental researchers used tRgion is considered both numerical calculations give very
term jet modes. Another well-known characteristic is that thesimilar results. A possible mechanism for the changes in the
oscillatory boundaries move in antiphase, as can be seen azimuthal wave numbers when the inner Reynolds number is
the perspective views. increased has been provided. It has also been shown that this
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kind of solution with high azimuthal wave numbers is related 1

to narrow gaps. For any value of the radius ratio, the vorticedl = ( Yo, +DAP°
with higher axial wavelength are the first to bifurcate to
twisted vortices.

Transition to wavy inflow and outflow boundaries flows
have been studied, although in much less detail mainly be- L
cause of the numerical cost of the computations. For thiso_ | =0 e 0 ofe
reason and to start the study of the finite length caséeast % het o+ DAS )D+g AR
for moderate aspect ratip;new numerical methods are 1
needed. We are developing numerical continuation and lin- —ZgO(h—Ah¢e)—D+fe( — YO+ _¢32),
ear stability analysis techniques based on Arnoldi metHods r
to cope with this and other problems in fluid mechanics.
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APPENDIX A: DEPENDENCE OF THE EQUATIONS r r
ON THE POTENTIALS 1
o|se — e o|~O
In this Appendix we study the dependence on the poten- Up=| v~ A¢" [ r Vot DAG )gz
tials h, ¢°, ¢° ¢° ¢° of the odd terms &-VXu)°, 1 1
a. o al. e X
(?Z V><V><u)e a.nd the ~even terms &{VXu)®, +18 - = ¢S, +Ag°(—<ﬂ3+ 42|,
(&,VXVXu)€, which are defined as r r
1 1 where all @ derivatives should be substituted by the product
éZ-VXu=Fu0+ﬁ,u(,—F(70ur, by im.

From these expressions for the velocity components, it

. 1 1 1, can be seen thdu?,ug,ud}t and{u?,uy,us} only depend on
€ VXVXU= = dpUr = — Uzt drgly = drr Uz~ 72 dggll; the set of potential§y®, ¢° and {h,y° ¢, respectively.
Then @,-VXu)® and @,-VXVXu)® only depend on
{4%,¢°}, and €,- VXu)® and €,- VXVXu)® only depend on
{h,y°,%.

So it has been shown that in the eigenvalue problem of
type | only the potentialgh, °, $®} are involved, and that
type Il only involves{#®, ¢°}.

1 2
+ F(?ZQUQ.

From these expressions, it is clear thdt-YXu)¢,
(&,VXU)°, (&,VXVXu)® and €,VXVXu)° only depend
on the velocities componengs; ,u$}, {u?,ud}, {uy,uf,us},
and{uf,uj,u?} respectively.

Let us now split the odd and even partwés a function APPENDIX B: CONSTRUCTION OF BASIS

of the potentials, bearing in mind that= w, Xv+ wXv,, FUNCTIONS
where the velocity and vorticity of the Taylor vortices are In this Appendix we show how to obtain the different
_ o re o B e < o . basis of functions used to expand the potentials.
=(=9:,1%D+9"), @,=(—-f;,—Ag"D.f%), The potentlals‘ h, andg have been expressed in terms
and the nonaxisymmetric perturbed velocity and vorticityof the functionsH{=H' andH, respectively, which verify
fields are the boundary conditionsl{=0 andH?=D_H{=0:
1 1 " T =Ty if | even
V= F¢H+¢r21_¢r+r¢f)z:h_Ah¢)r [ TI_Tl if 1 odd

for =2 and
o |T—1PIAT+(1%14-1)To if | even
Hr= T,—(1—-12)/8T3—(9—1?)/8T, if | odd

1 1 1
w:(Fho'l' Yoy — FA¢91_hr+ F¢HZ+DA¢1_Ah¢)-
Then we have
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for I=4, T, being the Chebyshev polynomial of degree 5
They can be obtained by the same procedure that is detailed Hﬁﬁ(x)=T,(x)+ E bL’nTk(x), =6,
next for the more complicated case of the potentjaisd ¢. k=0

The basis fory and ¢ cannot be obtained separately dué 5y gptained by setting all the independent coefficients to
to the coupled boundary conditions. Only the set of boundary, except that o, in the expansion o€ which is set to

conditions corresponding to the type | eigenvalue problemy verify the set of boundary conditions.
described in Sec. Il will be considered in detail. The other i:inally the expansions used fgr, ¢ are

type has been treated in a very similar way. Therefore a basis

for the pair (4°, #¢) verifying the set of boundary conditions NoTL . L
9 lﬂ0= ¢e:Ah¢e:O (Bl) lpo(xvz)zlnzl |Z4 lﬂﬁnle’n(X)_FhEG lpﬁnH;{/n(X) S|nnkz,
r ) = = —
imy°+rd,,$*=0, (B2) N L L
e — e ot e 14¢°
iMAA, G¢— DA d,°=0 (B3) ¢°(x,2) n§=:l {24 ¢'~nH'v“(X)+2‘6 & H{ (X) [cosnkz
on both cylinders will be found.
#° and ¢° are first expanded in the form 1s. J. Tavener and K. A. Cliffe, “Primary flow exchange mechanisms in
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