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Simulations of oscillatory convection in 3He—“*He mixtures in moderate
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Simulations of*He—*He mixtures with negative separation ratios in two-dimensional containers
with realistic boundary conditions and moderately large aspect Fatice described. The system
exhibits a large variety of states with complex time dependence including intermittent wave
localization and chaotic “repeated transients.” Steady but localized states are also found. Particular
attention is paid to the transitions that occur (B~R.)/R.~I""2, whereR is the Rayleigh number
andR; its critical value for the primary instability, in order to clarify the gradual transition from a
small number of active degrees of freedpfR—R.)/R.<I'"?] to many active degrees of freedom
[(R-Ry)/R,>T"2]. © 2005 American Institute of Physid9OI: 10.1063/1.1920349

I. INTRODUCTION » The experiments can be understood on the basis of two-
dimensional simulations.

Binary fluid mixtures with a negative separation ratio « In the regimee| <I'~2 the behavior exhibited by the partial
exhibit a wide variety of behavior when heated from below. differential equationgand hence the experimejis fun-
Of particular interest are the traveling-wave states with com- damentally low dimensional even though the aspect fatio
plex time dependence present very close to the onset of themay be quite large.
primary instability*~* In rectangular containers these include * The primary instability takes the form of a subcritical bi-
the so-callecblinking state® and therepeated transients furcation to an unstable time-periodihevronstate, con-
In such containers translation invariance is absent, and the Sisting of traveling waves that propagate in opposite direc-
eigenmodes of the linear stability problem are either odd or tions, usually outward from the center, in the two halves of
even under left-right reflectiohRecent work ® shows thata ~ the container. Such states are either odd or even under
description of the observed dynamics based on amplitude '€ft-right reflection, and may acquire stability at finite am-
equations for such modes succeeds in capturing the behaviorpIItUde via a saddle-node bifurcation.

observed in both experiments and numerical simulations re- Stable blinking states are two-frequency states and set in

markably well.

Although the original experiments on overstable convec-
tion driven by the Soret effect were performed in salt-water,
mixtures? subsequent experiments focused tiHe—*He
(Refs. 1 and 10-)2and water-ethanol mixturés? Of these
the latter readily permit flow visualization, a fact invaluable
for the interpretation of all measurements. However, the re-
cent development of visualization techniques at cryogenic
temperaturé§ offers the possibility that comparable experi-
ments can now be performed dHe—*He mixtures.

Detailed simulations of two-dimensional binary fluid
convection in rectangular containBrare restricted to a o
water-ethanol mixture with separation rat®=-0.021 in
containers of aspect ratio ¥6'<17 and|e|=|R-RJ/R;
~1073 or less, i.e.|ef<I'2. HereR is the Rayleigh number
andR; is its critical value for the onset of overstability. The
simulations employ experimental parameter values and
boundary conditions, and reproduce much of the behavior
reported in experimenfsln particular, they demonstrate the
following:
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when stable chevrons lose stability at a secondary Hopf
bifurcation. The blinking amplitude increases wihand

the blinking may become nonperiodic.

In cases where the secondary Hopf bifurcation occurs on
the unstable chevron branch below the saddle-node bifur-
cation the first observed state is the repeated transient state.
This state is a three-frequency state, and may set in without
observable hysteresis BRER..

With increasinge the lowest frequency in the repeated
transient state increases but its contribution decreases, and
may disappear at @ypically hystereti¢ Hopf bifurcation,
leaving a large amplitude blinking state.

Regular blinking states are observed near onset only for
aspect ratios differing roughly by/k.~ 1, corresponding

to mode interaction points. Here, is the linear theory
wave number.

Reference 8 did not, however, examine how the above

results depend on the separation r&#00 of the mixture, or

hat happens as increases through the important regime
~T72, where additional spatial degrees of freedom become
dynamically important. In particular, the details of the tran-
sition from oscillatory to steady states with increasinge-
main to be elucidated. We expect these to depend strongly on
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same time make specific predictions for a new physical sys-
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tem we choose parameter values correspondirf@-lm—"'He nt+(U- V)p=1V29+ V20, 3)
mixtures, focusing on aspect rafic= 10. This choice reduces . i o .

the extremely long transients that plagued the water-ethandPgether with the incompressibility condition

simulations, and permits us to investigate in considerable v .,=0. (4)
detail the sequence of transitions with increasenfpr dif-

ferent values ofS. We show that a dramatic change in the Hereu=(u,w) is the velocity field in(x,z) coordinatesp is
behavior of the system occurs when oscillations persist intéh€ pressure, and denotes the departure of the temperature
the regimee=T"2 in this regime front-like structures can from its conduction profile, in units of the imposed tempera-
localize the oscillations, leading to new types of oscillatoryture differenceAT. The variables is defined such that its
states and hence new mechanisms for the disappearance®fdient represents the dimensionless mass flux. Thus
time dependence. For smiff the oscillations exist in only a = 6~C, whereC denotes the concentration of the heavier
narrow interval ofe and remain spatially extended; we dem- cOmponent relative to its conduction profile in units of the
onstrate that such oscillations disappear via a global bifurcaoncentration difference that develops across the layer as a
tion. For larger values ofS the small amplitude repeated result of the Soret effect. The system is specified by four
transients and blinking states give rise to various types oflimensionless parameters: the Rayleigh nunibproviding
traveling-wave pulses, typically localized in space and time@ dimensionless measure of the imposed temperature differ-
The transition to this state occurs via a state that we identifigNCeAT, the separation rati& that measures the resulting
with the “fish state” observed in experiments on water-concentration contribution to the buoyancy force due to the
ethanol mixtures. Of particular interest is the observation ofSoret effect, and the Prandtl and Lewis numberand 7, in

a novel state of spatially localizesleadyconvection we call ~addition to the aspect ratib. .
a “convecton.” Some of our results are reported elsewlfere. ~ To model the experiments we take the boundaries to be

This paper is organized as follows. In Sec. Il we sum-ho-slip everywhere, with the temperature fixed at the top and
marize the basic equations, followed in Sec. Il by the resultPottom and no sideways heat flux. The final set of boundary

of our numerical simulations. Section IV offers a theoreticalconditions is provided by the requirement that there is no
insight into the regimee<I""2 and, in particular, the origin Mass flux through any of the boundaries. The boundary con-

of chaotic repeated transients. The paper concludes with &itions are thus
brief discussion. u=n-Vy»=0 ondD, 5

and

Il. THE GOVERNING EQUATIONS 0=0 atz==x1/2, 6,=0 atx=0,[I. (6)

Binary fluid mixtures are characterized by the presencéieredD denotes the boundary &f.
of cross-diffusion terms in the diffusion matrix. In liquids the ~ Equations(1)—(6) are equivariant with respect to the op-

dominant cross-diffusion term is the Soret term, and the sig§rations

of this term deter_mines the behavior pf the mixt_ure in re- Re (%2 — (T=x2, (6C)— (-,60C), 7)
sponse to an applied temperature gradient. For mixtures with
a negative Soret coefficient the heavier component migrates K (%2 — (-2, (1,6,C)— (-i-6,-C) ®)

towards the lowethottep boundary, i.e., a concentration gra-

dient is set up that opposes the destabilizing temperaturehere ¥(x,z,t) is the streamfunction, defined bgu,w)
gradient that produced it. Under these conditions the onset 6f(—¢,, ). These two operations generate the symmetry
convection may take the form of growing oscillations. Thisgroup D, of a rectangle. It follows that even solutions, i.e.,
instability, sometimes referred to as “overstability,” may leadsolutions invariant undeR,, satisfy[#(x,2), 6(x,2),C(x,2)]

to a variety of states with complex time dependence in thee[-¢(I"-x,2), 6(I'-x,2),C(I"-x,2)] at each instant in time,
nonlinear regime, as described elsewh@relere we focus while odd solutions are invariant underR, and satisfy
on the corresponding behavior fhle—*He mixtures. These [(x,2),6(x,2),C(x,2)]=[¢(I'-x,-2), -6('-x,-2), -C(T
differ from the water-ethanol mixtures studied elsewfiere —x,-2)], again at each instant of time. At midlevek 0, the
primarily in having a substantially smaller Prandtl number. latter therefore satisfy [¢(x,0), 8(x,0),C(x,0)]=[(I"

We consider a binary mixture in a two-dimensional rect-—x,0),—&(I'-x,0),—C(I'-x,0)], and so are odd in the con-
angular containeIDE{x,z| Osxsr,—%szs %} heated uni- ventional sense. It follows that the eigenfunctions of the con-
formly from below, and nondimensionalize the equations usduction statg/=6=C=0 are also even or odd; these, and the
ing the depth of the layer as the unit of length agdthe  corresponding values of the critical Rayleigh number and
thermal diffusion time in the vertical, as the unit of time. In frequency, are computed elsewheas a function of the as-
the Boussinesq approximation appropriate to the experimentgect ratiol” for o=0.6 andr=0.03, and various values of the
the resulting equations take the fdfim separation ratics appropriate forHe—*He experimenté.ln

B N the following we refer to the pure parity states as chevron

Ui+ (u- V)u=-VP+oRA1+S - Syl2+ oV, states since they consist of waves traveling outwards from
(1)  the center of the cell.

We solve Egs(1)—(6) in two dimensions using a time-
6+ (u- V)o=w+ V34, (2 splitting method with an improved boundary condition for
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FIG. 2. As for Fig. 1 but showing a symmetric periodic blinking state at
R=1786 (¢=1.1x1079). (a,b Contours of d(x,z,t) and C(x,z,t) at t
0 i 4000 =4000.(c,d) w(x=0.871",z=0,t) andw(x=0.13",z=0,t).

FIG. 1. Time seriesw(x=0.87",z=0,t) in a *He—*He mixture with S
=-0.001,0=0.6, and7=0.03 for several different values of the Rayleigh acquires stability almost immediately at a saddle-node bifur-

number. cation. Figure 1 shows that stable single-frequency and two-
frequency states coexist R=1785.5. Strictly speaking this

secondary Hopf bifurcation is a torus bifurcation. However,

the pressure and a second-order accurate time integratigq the following we do not distinguish between Hopf bifur-
scheme based on a modified Adams-Bashforth forrtfula. cations of equilibria and of periodic orbit®r tori), since

For the spatial discretization we use a Chebyshev collocatiopygonance phenomena appear to play little role in the ob-
pseudospectral methdflin all cases the time step and the ggpved dynamics.

number of collocation points used were adjusted until the 1o two-frequency state can be identified with the blink-
solutions converged. Typically we used 170 coIIocationing states predicted by abstract the%}ff.ZOFigures 2c) and
points in thex direction and 30 collocation points in & »q) show that this state has the required symmetry; if we
direction, with a time step of &, We use the vertical jgnore for the moment the fast frequeney the blinking
velocity at the points(x,2)=(0.13",0) (near the left side- giate has the spatiotemporal symmeRyv(x, 0,t)=w(x, 0t
wall) and (0.87",0) (near the right sidewallas a proxy for . /2 \vhereT,= 2/ w, is the blinking period. In the fol-
shadowgraph intensity measurements. Moreover, monitoring)wing we refer to states of this type agmmetric periodic
point quantities at mirror locations suffices to determine theolinking statesWhenR is increased tdR=1786.2 this state
spatial symmetry properties of the various possible timejygag stability and the system jumps to a large amplitude
dependent states. All our results_ use 0.06, r:_0.03, an(_j even-parity steady stat&ig. 3. The modulation period,
'=10. Four values of the separation raBare discussed in - ghhears 1o diverge logarithmically as this transition is ap-
detail. In each case we describe the results of our S'mU""‘t'OrEroached(Fig. 4), suggesting that the oscillations disappear

for increasing values of the reduced Rayleigh numlaer \yhen the two-torus collides with afunstable steady-state
and explore the transition from low-dimensional to high-anch. A fit to the theoretical prediction

dimensional behavior.

T,=—2;'In|R-R,+d (9)
Ill. RESULTS leads to the estimateR,~1786.112,A,~0.2452, andd
A. S=-0.001: Global bifurcation of blinking states
For S=-0.001 simulations of the growing instability at (a) Temperature

R=1785>R.~1784.088 show that it saturates in an even-
parity standing wave with frequeney, = 0.25, near the criti-

cal frequencyw,~0.2675. Figure 1 shows the time series of
the saturated vertical velocity(x=0.871",z=0,t), and indi- (b) Goncenifation

cates that the primary bifurcation is a supercritical Hopf bi- (’ N5 Y Y Y j\y

furcation; no evidence of hysteresis was found. This result ig
consistent with available theo?@.With increasing Rayleigh
number this state undergoegslightly subcritica] Hopf bi-

furcation that ?mmduces anew frequelnﬁlé'ilnlto the dynam- g, 3. The large amplitude steady state reached vibhinincreased from
ics. The solution branch that results is initially unstable butR=1786 toR=1786.2 wher5=-0.001,5=0.6, andr=0.03.
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FIG. 4. (a) The blinking periodT, in units of the Hopf period ,= 27/ w. as
a function of R near the transition to steady convection wh&n—0.001,
0=0.6, andr=0.03. The solid line represents the(®. (b) The correspond-
ing Nusselt number.

~8.1537. Here\, is to be identified with the leadingn-
stableeigenvalue of the steady stateRtR,,

B. S=-0.021: The fish state
Figure 5 shows that wheB8=-0.021 the transition to

Phys. Fluids 17, 064102 (2005)

Repeated transients
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FIG. 6. The repeated transient state ifHe—*He mixture withS=-0.1,
0=0.6, 7=0.03, andI'=10 at several values dR. The time seriesw(x
=0.87",z=0,t) suggest the presence of three frequencies, with the lowest-
frequencyws increasing from zero aR increases fronR~=~1971.5(e=¢"
~-3.2X107%.

R the modulation period’, begins to increase but then ap-

steady convection is quite different. Although the primaryparently saturates at a finite val{igig. 5(d)]. At the same

instability is still to an even modé€R.=1855.75 andw,

time the periodT,; =27/, appears to diverggFig. 5c)].

=2.076 the bifurcation is now slightly hysteretic, so that These properties are reflected in the time series presented in

stable even chevrons are present even ForKR. (not

Fig. 5@), which show that aR=1862.0 the blinking state

shown. As R is raised a second frequency appears in thegoses stability to steady convection from the lowest-
time series, corresponding to the onset of a symmetric blinkfrequency portion of the wavetrain, and indicate that the
ing state. This bifurcation is apparently also subcritical, butransition to steady convection now occurs via a radically
once again the resulting blinking states acquire stability in alifferent mechanisntsee below. In the following we refer
saddle-node bifurcation. This behavior is qualitatively simi-to the state just prior to this transition as figh state Simi-

lar to that described fa8=-0.001. However, with increasing |ar states have been observed in water-ethanol mixfures.

(a) S=-0.021 x10™

4
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4

e .
|__2 K (c)
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¢« o °*
1
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80
..o’o
L]
60
& * @
o
Tal . °
T 1 20
0 ) 500 1859 1860 1861 1862
time Rayleigh number

FIG. 5. A®He—"He mixture withS=-0.021,5=0.6, and7=0.03 in al’
=10 container(a) Time seriesn(x=0.87",z=0,t) for different values oR
increasing upwardel859.5< R<1862.0, showing a hysteretic transition to
steady convection &=~ 1862.0(e=3.4x 1073). (b) The corresponding Nus-
selt number as a function d®. (c) The chevron period;=27/w, as a
function of R. (d) The blinking periodT,=27/w, as a function oR. The
state atR=1861.8 resembles tHesh stateobserved in the experiments.

C. S=-0.1: From repeated transients to the fish
state

The caseS=-0.1 is even more interesting. HeiR.
=1972.13 andv.=4.918. In this case the primary bifurcation
to the (even chevron state is substantially subcriti¢hand
the first stable nonlinear state takes the form of a repeated
transient(Fig. 6). States of this type were studied in detail by
Kolodner in experiments on water-ethanol mixtuteand
their origin is discussed in Ref. 8. Figure 6 suggéatsl the
theory of Sec. IV confirmsthat these states aréhree-
frequencystates, in whichw, is the fast chevron frequency,
w, represents the blinking frequency, while the third fre-
quency wy represents the slow modulation frequency. De-
tailed study shows that the repeated transient consists of a
slowly growing(ever chevron state that eventually becomes
unstable to the onset of blinking, which leads to a collapse of
the state back to a small amplitu@®ven chevron, followed
by a slow regrowth. In the time series shown these collapse
events are periodic with periot;=27/w3. Figure 7 shows
that asR decreases the perioth=27/ w3 increases rapidly
and apparently diverges &~1971.5. Such a divergence
suggests that the three-frequency states are created via a glo-
bal bifurcation. Since no stable nonzero solutions are present
for smaller values oR for these parameter values the three-
frequency repeated transient state representdirtstenon-
trivial state of the system, much as occurs in water-ethanol
mixtures*® This interesting property of the system is ex-
plained in Sec. IV.
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FIG. 7. (a) The modulation period’;=27/w; of the repeated transients

whenS=-0.1,0=0.6, 7=0.03, and’=10 in units of T,= 27/ w. as a func- m

tion of the Rayleigh numbeR. (b) The corresponding Nusselt number. R=1984

R=1985

R=1983

In contrast, aRR increases the modulation frequenoy Reior M
increases but drops out from the time series betwRen
=1980.0 andr=1981.0(Fig. 8). We identify this transition R=1981 MO0 000004044004444
with a Hopf bifurcatior? and note that Fig. 8 indicates that | 00 . o0
this bifurcation issupercritical i.e., viewed in the direction fime fime
of decreasingR this bifurcation creates atable three- FiG. 9. Time seriesn(x=0.13",2=0,1) (left column and w(x=0.8T,z
frequency state from a stable two-frequency state, with na0.t) (right column for different values ofR increasing upwards, ang
observable hysteresis. Figure 9 shows that this two=~0-1,¢=0.6,7=0.03, and’=10.
frequency state is a symmetric blinking state, and traces the
evolution of this state towards larger valuesRofThe figure

shows that aR=1995 the blinking has become asymmetricture of the yvaye$F|g. .1]) ShO.WS that there 'S a brief phase
of the oscillation during which small amplitude counter-

and nonperiodic, while the time series fB=2000 andR ) . . ) L
—2005 may be periodic, but are strongly asymmetric. In Con_propagatlng waves fill the container. This state is highly un-

trast, whenR=2010 the blinking becomes once again peri_stable, however, with the waves at one end growing at the

odic and symmetric. None of these transitions appears to be Pense of those at the other. Once the amplitude of the

hysteretic. At yet larger values & these states again evolve growing state 'S large enou_gh th_e system shifts into a new
and larger amplitude state in which the waves are spatially

into the fish state, followed by a transition to stationary con- onfined towards one side, witio waves at the otheisee

vection. Figure 10 shows an example of the fish state jusf. . e .
prior to this transition. An examination of the spatial struc—sli'gs' 11 and 1@)]. This transition is marked by a dramatic

drop in the frequencyw, since the waves in this pulse-like
state travel much more slowly. We surmise that this is due to
$=-0.1 the large amplitude of this state. This change in frequency in

turn increases the Nusselt number, and does so despite the
R=1981.0 ) ) :
fact that the waves no longer fill the whole domain. As time
proceeds this confined state drifts in the direction of the
R=1980.0 L )
waves within it, and settles next to the boundary, forming a
1000 0:0000040000044060004404 15750 wall-attached statgsee Figs. 11 and 18)]. During the at-
tachment process the localized state contracts and its ampli-
R_1978.0 tude decreases, presumably due to increased dissipation. As a
R=1977.0
-3 o=0.6 1=0.03 S=-0.1 R=2018.5 I'=10
5x 10
R=1976.5 -
S (a)
b=
R=1976.0 0
2
R=1975.5 E
2 o—ﬁ l% MH WH m ®
2
R=1975.0 -2
2
R=1974.5 %
) (©
b | 2
0 _ 500 > s . . .
time 500 600 700 800 900 1000

time
FIG. 8. The time seriesv(x=0.87",z=0,t) for a *He—*He mixture with
S=-0.1, 0=0.6, 7=0.03, andl'=10 at several values dR showing the FIG. 10. (@) The Nusselt number Nt), (b) w(x=0.871",z=0,t), (c) w(x
transition from the repeated transient state in Fig. 6 to a symmetric periodie0.13",z=0,t) for R=2018.5(¢=0.029, andS=-0.1,0=0.6,7=0.03, and
blinking state alR=1981(e=4.5X 1079). r=1o0.
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FIG. 13. (@) The Nusselt number Nt), (b) w(x=0.87",z=0,t), (c) w(x
=0.13",z=0,t) for R=2644(e=2.1X 104, andS=-0.5, 0=0.6, 7=0.03,
andI'=10, showing irregular bursts.
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Many of the above details resemble behavior observed in
experiments on water-ethanol mixtutkésee Fig. 1 of Ref.
21), although in some caséshe frequencyw, dropsas the
confined state settles near the lateral wall. It is possible that
this is because in this experiment the pulse drifts in a direc-
tion oppositeto the waves within it(fanomalous nonlinear

FIG. 11. Space-time plot of the fish state in Fig. 10 with time increasingdispersion. Experiments suggest that this occurs when

upwards. The state is periodic in time with peribdand is invariant under < 0,23 while in our simulations> 0.
the spatial reflectioiR, followed by evolution for a timel/2.

880 %

D. S=-0.5: Convective bursts, spatially localized
traveling waves, and convectons

r_esultwl Increases again. Durlng_ t.h'S procest=0.87",2 . The final case we have consideredSs-0.5. HereR,
=0,t) actually increases as activity moves to the region_

=2643.43 andv.=12.836. The primary instability is again to

wherew is measured. However, integral quantities such asap even chevron, but this time we find strongly irregular

the Nusselt number actually decrease, since the amplitude %ynamics already quite close to ong@ig. 13. The time

the state falls on contact with the wall. The appearance of the” .~ .~ _. ; . . .
. . X ) Series in Fig. 13 is best described as an intermittent repeated
prominent shoulder in the Nusselt number time selfég.

10(8)] coincides with the formation of the wall-attached transient, in which the final collapse event may be preceded

state. The wall-attached state is not stable, however, and coby several spatially symmetric bounces before the onset of

. X . o the symmetry-breaking instability that disrupts the state and
tinues to decrease in amplitude and contract until it become, . )

. eads to the temporary formation of a confined state towards
so weak and confined that waves start to regrow at the other

sidewall. At this point the wall-attached state dlsmtegratesOrle Sld.e’ much as already described $o 0'1'. Th|s_ state
. . . “then drifts towards the nearest wall and shrinks in lateral
and the small amplitude extended chevron-like state is re- S .
~extent, until it triggers another collapse event that permits

stored. All these transitions are quite easily distinguished in . . .
: - . . aves to grow at the other sidewall. The decaying symmetric
the time trace shown in Fig. 10 and in the space-time plo{ ,. . .
- ) - .~ blinking state that results reestablishes a small amplitude
shown in Fig. 11, and suggest that the formation of the initial . )
. L . . chevron state which then regrows on a much longer time—
pulse-like state is triggered by a nonlinear focusing effect . 7 ; .
g . . ; scale. The spatially symmetric bounces are associated with
reminiscent of the nonlinear Schrédinger equation.

relatively sharp peaks in the Nusselt number, while the
symmetry-breaking collapse events produce bursts in the
Nusselt number that are markedly asymmetric, much as in
the fish state discussed above.
The frequency of the burst-like events in the Nusselt
A g —— number increases witR (Fig. 14). A periodic sequence of
bursts, produced by a symmetric albeit complex state, is
shown in Fig. 15. Perhaps the most remarkable time series of
(b) all is shown in Fig. 16 foR=2750(see also the correspond-
g —————————————————| ing space-time diagram in Fig. L7The time series appar-
fe 12 © at . durife the o ot th ently shows an irregular switching between two states, a
fish .staté inogi(;(.aq.(r)?;%rzb;:?izr(i)r?;theugimg]gr)1—freequt)emc;egﬁggg)tlhg?:‘olcl)owseit. Iarge_ amplitude Stfite with a relatively low, .and a Sma”
amplitude state with a large,. The former is a spatially

The localized state ife) settles against the left sidewall forming temporarily k o ) -
the wall-attached left-traveling wave shown(in). confined slowly drifting wave, while the latter is an extended

%

%@

Downloaded 01 Jun 2005 to 147.83.27.122. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



064102-7 Simulations of oscillatory convection Phys. Fluids 17, 064102 (2005)
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time time

FIG. 14. As for Fig. 13 but showing the time series correspondin® to FIG. 16. Irregular switching between the fish state and a blinking state at
=2655(e=4.4x107%). R=2750(€=0.040.

more-or-less symmetric pulsating chevron-like state. The latshould be interpreted in terms of a stationfront separating
ter is unstable to a symmetry-breaking blinking instability an exponentially small wave throughout most of the domain
which amplifies the waves near one of the sidewalls at thérom a finite amplitude wavetrain next to the left sidewall.
expense of those near the opposite wall. The amplified wavephis interpretation of Fig. 18 is supported by the spectrum of
are then reflected from the wall but continue to grow, slow-the vertical velocityw near the left and right sidewal[Fig.

ing down markedly. This asymmetric state then abruptly col-18(c)]: both spectra have theamedominant frequencyo,,
lapses(by a mechanism that remains unclesato a highly  with prominent harmonics near the left sidewall where the
nonlinear spatially confined state consisting of slowly travel-\wave is localized, and much weaker harmonics near the right
ing waves. These waves propagate in the direction of theidewall where it is exponentially small. Note, in particular,
original reflected wave, and speed up as they approach thfie absence of a right-traveling wave in any part of the con-
opposite wall. The whole pulse gradually retracts towardsainer except perhaps right next to tiedt sidewall where a
that wall, ultimately leaving much of the cell free of convec- right-traveling component is required to set up a standing
tion. Once the peak of the pulse reaches the wall its ampligscillation. Thus Fig. 18 represents a stable dynamically lo-

tude drops dramatically and it disintegrates into smaller amealized state, in contrast to both the kinematically localized
plitude counterpropagating waves that invade the

convection-free part of the container, permitting the regrowth
of the original higher-frequency small amplitude chevron- 300
like state filling the domairfFig. 17). Overall this behavior
resembles that observed 8+ -0.1(see Figs. 11 and 1but
here it is much more dramatic, and we may think of it as
back-and-forth “sloshing.” The resulting state is reminiscent
of a state found in doubly diffusive convecti6h®

In Fig. 18 we show a stable wall-attached traveling wave
found atR=2900. A wave of this type evolves from the fish
state when the localized low-frequency state comes to rest
against a sidewall, but does not collapse. The resulting state

time

6=0.6 1=0.03 S=-0.5 R=2665 I'=10

0 50 100 150 200 250 300 350 400

mﬁw

(b)

)

¥

.

P

0 50 100 150 200 250 300 350 400

©

200 250 300 350 400
time

0 50 100 150

FIG. 15. As for Fig. 13 but showing periodic bursts Rt 2665 (e=8.2 FIG. 17. Space-time plot of the state in Fig. 16 with time increasing
X 1079). upwards.
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= 0.02F '
3 0,02 ‘ 1
ERiee—— 2 ()
% T o \ FIG. 18. (a) A left-traveling wave con-
% fined to the left sidewall wherR
A———= % 0 20 =2900 (e=0.099, and S=-0.5, o
time =0.6, 7=0.03, andI'=10, shown in

% (@) terms of the total concentration con-
% tours, with time increasing upwards.
5 w right wleft (b) The corresponding vertical veloc-

@ﬁ L B — ity w(x=0.87,z=0,t) and w(x
=0.13",z=0,t), and (c) their Fourier

% 8 10° 3 transforms. The frequencies, in the

= = two panels are identical. Note the dif-
% & s © ferent vertical scales ifb).
107 10
0 10 20 30 40 50 0 10 20 30 40 50
[} [}
state present whea<I"2, and the unstable dynamically lo- These confined steady states and their nonuniqueness are

calized waves that briefly form for smaller values reminiscent of the slowly drifting pulses that form in binary
of R (but satisfying e=I""?). Similar states have been fluid mixtures as a result of an interaction between the waves
observed in water-ethanol experiméfité® and related and a slowly evolving mean concentration mddé> near
simulations?®>*° States of this type are described well by aonset spontaneously developing inhomogeneities in the mean
single complex Ginzburg—Landau equation with a drift, and concentration field can trap pulses of traveling waves by de-
become possible only onde|>1""2 Theory based on this creasing the growth rate of the waves in front of the pulse,
equation predic?é‘”that with increasingR the front gradu-  thereby braking its drift. However, in the absence of lateral
ally moves towards the right, but in the present case théoundaries the pulses always drift, albeit slowly, and only in
strong nonlinear dispersion forces the frequency towardexceptional cases is a stationary pulse possible. In systems
zero; once this occurs the resulting nonoscillatory state bewith lateral boundaries such pulses come to rest at the lateral
gins to expand towards the right by addifsgeady rolls and  walls forming a wall-attached state, but in general the trav-
thereby expelling the lateral concentration gradient set up bgling waves within them will continue to propagate, much as
the confined traveling wave. The process of adding rolls terin Fig. 18. In contrast, the localized steady states found here
minates once this lateral gradient is sufficiently strong, andare present far from the onset of the primary oscillatory in-
results in the formation of a spatially confined tateady stability, and resemble instead tlmnvectonspresent in
state (see Fig. 19 Such confined steady states have alscstrongly nonlinear magnetoconvectif‘)erin our system these
been found for other values & (Fig. 20, indicating that the localized steady states are also confined by horizontal gradi-
confined states created by this process are in general nomats in the concentration fieldee Fig. 16b)] stabilized by
unique. All of these states are numerically stable. Continuaincident small amplitude traveling wavésor a weak but

tion methods indicate that these confined steady states retasteady large scale recirculation on either side. As a result the
their character with varying Rayleigh number, and lie onessence of the nonuniqueness is also different. In the tfreory
disconnected solution branchésf. Fig. 21). In particular, short and long pulses of a definite size can coexist stably; in
the localized traveling wave in Fig. 18 is located odifier-  our system the lateral boundaries may well support whatever
entbranch of solutions than the states shown in Figs. 19 and
20. Unfortunately, the origin of the confined steady states
and their fate at larger Rayleigh numbers remain unknown._

i'l;]oaonl.;r :Qszvrliﬁ?gr:no comparable states have been 0bserve§ §©®
3666
i

H FIG. 20. Additional stable spatially confined steady states w&en0.5,

0=0.6,7=0.03, and"=10, shown in terms of the contours of the fluctuating
FIG. 19. A stable spatially confined steady statRaB050(e=0.154 when temperatured(x,z). The corresponding value & is indicated at the right of
S=-0.5,0=0.6, 7=0.03, andl'=10. each panel.

(a) Temperature

(b) Concentration

R=2800

3000

R=
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FIG. 21. The branch of confined steady states corresponding to the stat £ o (©)
shown in Fig. 20a). The upper contour plot of(x,z) corresponds to the =
upper endpoint on the curve; the lower contour plot corresponds to the lower =53, 20 10 0 %0 100
endpoint. The upper convecton is stable between the turning point anc time

R=2800; the lower is unstable.
FIG. 23. A stable chaotic blinking state Rt 2665(e=8.2x 10°%) based on
an odd-parity chevron that coexists with the bursts shown in Fig. 15.

concentration gradient is required to confine a particular
s'Fate, suggesting that a Ia_lrge number of stqtes, containing oRIGIN OF THE BLINKING STATES
different numbers of roll pairs, may be stable simultaneouslyanD REPEATED TRANSIENTS
Figures 22 and 23 suggest that there is a wide variety of
coexisting time-dependent states as well. The former shows a In this section we summarize the properties of a simple
stableodd-parity chevron state with a superposed small am-model system, based on normal form theory for the interac-
plitude temporal modulation that coexists with the statetion of two Hopf modes with opposite parity, that accounts
shown in Fig. 13 that is based on an even chevron. Figure 2for essentially all the properties revealed in our simulations
shows that the modulation is exactly out of phase in the twavhene<I'"2. We do not have a corresponding understanding
halves of the domain, and although it has a complex waveof the dynamics observed at larger Rayleigh numbers. The
form it appears to be periodic in time. This state is thereforénodel is based on the observation that, at specific aspect
a symmetric blinking state, and indeed with decreafirpe  ratios I'c, the odd and even chevrons bifurcate simulta-
finds that the modulation disappears afat R=2606 a  nheously, albeit with different frequencié$or nearby aspect
stable odd-parity chevron is recovered. Likewise, Fig. 23atios they come in, in close succession. Under these condi-
shows a chaotic blinking state R=2665 that is also based tions we may expect the chevrons to interact in the nonlinear
on an odd-parity chevron and coexists stably with the burst§egime, and to do so already at small amplitude. We write
shown in Fig. 15 that are based on an even chevron. Thigach of the fieldsj, 6, andC in the form
multistability greatly complicates the bghavior_of the sygt_em_, 0(x,2,t) = REZ, (), (x,2) + 2 ()@ F_(x,2)} + -+,
and appears to be a consequence of increasing subcriticality
of the primary bifurcations with decreasing separation (10
ratio *° wheref.(x,z) are the(complex eigenfunctions of the even
and odd chevronSandz,(t) are their amplitudes. Standard
normal form theory now yields the following equations for
6=06 1=0.03 S=-0.5 R=2644 I'=10 the (rea) amplitudesr.=|z.:

O @ ()@@ :0?3) i‘+:(:U~'|'a+r?r+b+rg_rir‘"'C+r3rg+d+r1—1)r++ e, (1)

Po=(u-d+ari+bri-rt+crir?+dorhr_+ -+,

(12)
° (b)

Temp.

Conc.

with a pair of decoupled equations for the associdtezh-
linean frequenciesw,. Here the coefficients are all real, and

-0.2

- ' ' ' we takea, >0 so that both chevrons bifurcate subcritically,
@ OM ©  the even onefgiven by(z,,z.)=(r,,0)expiw,t] at x=0 and
¥ . , , , the odd oneggiven by(z.,z)=(0,r_)expio_t] at u=5>0.

_50 A0 L 120 200 It is now a simple matter to show that the two chevrons
& undergo saddle-node bifurcations aiz—a§/4< 0, and
30 @ steady-state bifurcations to a mixed parity staie,z),

5 . . . r.f_>0, at w=6-b_r’-d_r? (even chevrons and u

¢ = ] 120 = =-b,r2-d,r* (odd chevrons The bifurcations to the mixed

dd h h d small amplitud parity states are to be identified with Hoghore precisely
FIG. 22. Odd-parity chevron state with a superposed small amplitude te : . L
poral modulation foR=2644(e=2.1x 10°%). (a,b) Contours ofé(x,z,t) and Mforug bifurcations from the chevron states to blinking states.

C(x,2,1) att=200. (c,d) w(x=0.87T",2z=0 ) andw(x=0.13",z=0,t). This T hiS is because near this bifurcation on the even chevron
state coexists with the state in Fig. 13. branch the dynamics takes the form
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6(x,z,t) = Rer,&Yf,(x,2) + (r_/r,)e@-—=%_(x,2)} a=2a=-01b=1
3

+ - (13)

T
I
| H1 H2
|
1

describing an even chevron with a periodically oscillating
odd-parity contribution. The second term amplifiesduce$ 2r
waves in the left half of the container at the same time as it
reduces(amplifies waves in the right half, and shows that
the blinking frequency at leading order is simply the beat
frequencyw,=w,—w_. We emphasize that these frequencies
are thenonlinearfrequencies, not the onset frequencies pre-
dicted by linear theory.

When this bifurcation occurs below the saddle-node bi- of
furcation on the chevron branch the blinking states are ini-
tially unstable but acquire stability with increasing amplitude
at atertiary Hopf bifurcation®®**This bifurcation introduces ~ _,
a third frequencyws into the dynamics of the system; the -2 -
resulting three-frequency states can be identified with the
repeated transienfs. FIG. 24. Codimension-one bifurcation surfaces in thev) plane for Egs.

The key transitions involving the one-, _tvvo-, and three-(14) and (15 r\:vith ?=2.0,t;—0$, asr:\ﬁb;;jld?é T}gdzrig?zjrryc g?igﬁf)ogi-the
freql.jency states are captured py a S|mpI|f|ed_ mo_del SySteﬁilrg\?rtgonnbt;rgcﬁHz: ((a:e:(égn?:iaryﬁop{‘ bifu.rcation to blinking state§,,r_),
obtained from the above equations by dropping messent”:}c—t: (tertiary) Hopf bifurcation from(r,,r_) responsible for the appearance
terms. In particular, we drop the ternmr>-and mimic its  of the three-frequency states, apdglobal bifurcation at which these states
effect by takinga_< 0. The resu|ting modé| disappear. The heavy broken line represents the asymptate to

1F

T OopF—==-
-
N

o= (u+ari-ri-rdr,, (14)
a state withr_#0 that represents a blinking state in the
P=(-v+arZ+brdr, (15) physical variables. In the example shown this bifurcation oc-
curs atu <0 so that the first stable state just above the onset
with a,>0, b_>0, is the simplest set of equations capable(x=0) is a finite amplitude blinking state. This case is typi-
of describing correctly the stability properties of the evencal of the behavior of the partial differential equations for
chevrons and the mixed parity states observed in the parti&=—0.01 in appropriate ranges Bf(not shown. The behav-
differential equations for moderate values|8f The model ior shown in Fig. 1 forS=—-0.001 is also of this type except
removes the primary bifurcation to the odd chevrons but
leaves the secondary bifurcations from the even chevrons
fundamentally unchanged. In the following we think af
andv as proportional t&R—R,(I") andI"-T".(R), respectively. A
Figure 24 summarizes the properties of the model in the -

(@) v=1.6 a =2a =-0.1 b =1 () v=0.15 a =22 =-0.2 b =1

case in which the three-frequency state created from the , //—_”/ -
blinking state branch is stable. This is always the case wher N

b_=1, a =0, anda, >0, and hence for sufficiently small 5

negative values oh_ as well. The figure shows the loci of ‘\ o

2 _

Jk i °
I 0 2;)0

T
00 150 201 301
T

the primary (H;), secondary(H,), and tertiary(Hs) Hopf
bifurcations, as well as the locus of the saddle-n¢8i) 15 J

1
n

bifurcations on the chevron branch. It should be rememberec' 'f
that in the(r,,r_) variables only the bifurcatiorl; remainsa =95}
Hopf bifurcation, withH; and H, represented by pitchfork
bifurcations. In addition the figure shows the curyeu ' '
=u’ (v) of global bifurcations at which the limit cycléor- ,_+__+__+__+__+_ @
responding to the three-frequency stateeated aH; dis-
appears by simultaneous collision with small and large am-bf30
plitude chevron states. The location of this line must be
determined numerically. An asymptotic calculation of thisFIG. 25. Bifurcation diagrams alon@) the line »=1.6 whena,=2.0,a

curve near the codimension-two point at whigh and SN~ =~0.1, andb_=1.0, and(b) the line »=0.15 whena,=2.0,a.=-0.2, and
incid ields the heavy broken line: this line is tangent tc)b_=1.0. The open circles indicate the global bifurcation; this bifurcation
coincide yie vy ! g occurs very close ta=0 for a large range of values of (c) The time series

v at the codimension-two point, as it must. r.(t) (thick line) and r_(t) (thin line) corresponding to casé) with u
Figure 25%a) shows the bifurcation diagram obtained by =0.02.(d) The quantity[r.(t)+r_(t)codw,t)Isin(wt) corresponding tdc)

; ; ; N e— whenw;=20.0 andw,=0.8 for comparison with Fig. 6. Note the exponential
traver_smg thd,u,v) plane m. Fig. 24 along the line=1.6. growth during the chevron phase, followed by an overshoot when the blink-
The figure shows a small interval of subcritical but stablejng instaility sets in, and the ringing down during the subsequent collapse

chevrons, followed by a supercritical pitchfork bifurcation to phase.
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that a, <0 and the saddle-node bifurcation is therefore ab- ) o 06 1=003 S=|‘°-1 R=2025 F=1|°

sent. As a result the chevrons are initially stable, and the,

bifurcation to the blinking states occurs fgr>0. In con- g OMM«
trast, wherw<a,b_/2=1 thefirst stable state encountered as ~ _, . . .

u increases is a periodic stdte.(t),r_(t)] corresponding to 2 500 1000 1500 2000
the three-frequency repeated transient state with the frequerﬁ

ciesw; and w, filtered out[Fig. 25b)]. This state appears in = °

a global bifurcation atu=u" <0, at which w3=0. Figure -2, o~ <555 5 5500
25(c) shows the time series corresponding to this state wher time

©=0.02,v=0.15,a,=2.0,a.=-0.2, andb_=1.0. For these ) o ) )
FIG. 26. A chaotic repeated transient iftde—*He mixture with stress-free

parameter Valueﬁi z,o [Ope” CIrCI,eS in Fig. 2(%)]’ and Fig. and fixed temperature boundary conditions xat0,I" and R=2025, S
24 shows that this situation persists for a large range of val=—0.1, +=0.6, 7=0.03, and"=10.

ues ofv. In this case the chevron state regrows from a very
small amplitude, and the resulting oscillation resembles
closely the state shown in Fig. 6. In particular, there is almostinstable large and small amplitude chevron states, hereafter
no hysteresis between this state and the conduction state, aAdand B, respectively(see Fig. 2 The character of the
the system behaves as if the primary instability.at0 were  repeated transient whesr € is determined by the leading
directly responsible for generating repeated transients. Oleigenvalues ofA and B in the (r,,0) direction, hereafter
serve that during the growth phase of the variahlethe -\, <<0 andAg>0, and the leading eigenvalues in itgr_)
variabler_ vanishes, indicating that the growing state is adirection. If the latter are realyy,>0 and wz<0, say, and
pure chevrony_ becomes nonzero only during the collapse p= agha/ aps\g> 1, the repeated transients will remain peri-
phase, indicating that the collapse is triggered by aodic and stable all the way te’, where the period; di-
symmetry-breaking instability of the growing even chevron.verges and the global bifurcation takes plﬁde. contrast,
The amplitude and the periodm2w; of the limit cycle in when 0<p<1, the periodic oscillations necessarily lose sta-
Fig. 25c) decrease with increasing, with the oscillations  bility before the global bifurcation a¢". Similar results ob-
disappearing aHj. As already mentioned we interpret this tain in the case where the leading stable symmetry-breaking
transition as the transition from the repeated transient state wigenvalue aB is complex, viz., wg+iwg, ag>0, as sug-
the (symmetrig¢ periodic blinking state with increasing Ray- gested by the simulations. In this case stable periodic oscil-
leigh number seen in Fig. 8. For the model parametangl  lations will persist down ta" if p>1, but if 0<p<1 com-
in contrast to the corresponding transition in water-ethanoplex dynamics of Shil'nikov type will be present. In fact, the
mixture$) this transition issupercritical indicating absence leading unstable eigenvalues and\g are also expected to
of hysteresis, as in the figure. be complex, since in the partial differential equations the
Within the model the repeated transient sfatét),r_(t)]  bifurcations atH,; andH, are both Hopf bifurcations.
has all the properties of this state observed in the simula- When\g is real a trajectory escaping froB describes
tions, except for théapparentabsence of oscillations during an exponentially growing chevron state. This growth phase,
the collapse phase. In fact, if the frequencigsand w, are  including the state\ and B, is clearly visible in the time
restored, and the pointwise  quantity [r,(t)  series in Fig. 6. When the growing chevron reaches the vi-
+r_(t)cosw,t]sin wqt, cf. Eq.(13), plotted instead of ,(t) or  cinity of A it becomes unstable to symmetry-breaking oscil-
r_(t), these oscillations are presefftig. 25d)], and their lations which take it back ned. This is the collapse phase
amplitude depends on the chevron amplitugdén the man-  of the repeated transient stdmpare Fig. 2&l) with Fig.
ner observed in the simulations. In fact, the time series]. The frequency of the decaying oscillations observed in
shown in Fig. 2%d) bears a number of qualitative features, the time series in Figs. 28) is given bywg. This frequency
including the pointed overshoot at maximum as the made will in general be of the same order as the blinking frequency
begins to grow and the “ringing down” due to the fact thatassociated with the branch of blinking states when these bi-
the variabler, decays more rapidly than, that are docu- furcate from the small amplitude chevr@& but quite differ-
mented in experiments as w¢Rig. 6(a) of Ref. 4]. ent from(and in general larger thathe blinking frequency
Despite its remarkable simplicity the modél4) — (15)]  of the stableblinking states beyoné#i;, cf. Ref. 4. This ob-
captures completely the two scenarios for generating blinkservation explains the coincidence of the period of the blink-
ing states identified in the simulations of botde—*He and  ing states and of the oscillations during the collapse phase of
water-ethanol mixtures, and the origin and properties of thehe repeated transient noted by Kolodner. Note also that
repeated transients. Extensions of the mbdetlicate the sinceag decreases as decreasesit passes through zero at
possibility that repeated transients may, under appropriatél,, i.e., ate=¢,) the collapse becomes slower and slower, cf.
circumstances, be chaotic. In Fig. 26 we show an example dfig. 6, although the collapse rate is still finite when the three-
such a chaotic repeated transient state. We believe that thirequency states disappear in the global bifurcatiore at
state is associated with the global bifurcation in which the(sincee,< € <0) and the system makes a hysteretic transi-
repeated transients first appear, cf. Fig(25As already tion back to the conduction state. The fact thgtdecreases
noted the frequencw; decreases to zero as| u” <0, i.e., with e makes it likely that the Shil'nikov condition € p
ase| € <0 in the partial differential equations. As this oc- <1 holds ate’, resulting inchaoticrepeated transients prior
curs the three-frequency states approach simultaneously the their disappearance. However, despite this suggestion we
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have only succeeded in locating such chaotic repeated trasuch states ifHe—*He mixtures, although only with stress-
sients withstress-freeboundary conditionsFig. 26). free boundary conditions. In principle the coefficients in the
model can be calculated from Eq4d)—(6) in terms of the
physical parameters of the system. This is a major undertak-
ing, however, and is beyond the scope of this paper. Conse-
In this article we have described the results of directquently our interpretation of the simulations remains qualita-
numerical simulations of oscillatory convection in binary tive.
mixtures in two-dimensional moderately large domains with ~ When|§ is sufficiently small the dynamics remains low
experimentally relevant boundary conditions, exploring indimensional through the transition from the blinking states to
detail the parameter values characteristicide—*He mix-  Steady convection. The nature of this transition can be under-
tures. We have chosetHe—*He parameters partly because stood on the basis of existing theory for the Hopf bifurcation
of a number of experiments on this system in the 1980avith brokenO(2) symmetry’*®**?n this theory the loss of
(Refs. 1 and 10-12and partly to make predictions for future translation invariance due to the presence of sidewalls is
experiments now that flow visualization at cryogenic tem-treated as a perturbation of the unbounded system with peri-
peratures has become possibiaVe have also used smaller odic boundary conditions. This approach is appropriate at
domains in order to reduce the length of the immensely londarger e since the effect of sidewallseakenavith increasing
transients encountered in our simulations of water-ethanod. With periodic boundary conditions Eq§l)—(6) possess
mixtures® As a result we have been able to explore a largefO(2) symmetry, and both standing wavé®/) and traveling
range of values of the Rayleigh number, reaching values avaves (TW) bifurcate from the conduction sta@multa-
which the low-dimensional description of this system valid neously Weakly nonlinear theory shows that for typical pa-
near threshold begins to breakdown. We have argued that thiameter values both bifurcate subcritically, with the TwW
transition occurs oncge| ~T"~2 and provided numerical evi- more subcritical than the SW. The presence of distant
dence in support of this claim. Among the new phenomendoundaries splits apart this multiple bifurcation but does not
that occur oncgde|=I""2 are thefish statesoriginally ob-  change the direction of the branching. Odd and even SW, to
served by Kolodner, Surko, and Williams in water-ethanolbe identified with the odd- and even-parity chevrons, are
mixture¢ and various types of dynamically localized now the only states that bifurcate from the conduction state;
traveling-wave states also seen in experimé‘?ﬁ%ﬁ. the analog of the traveling waves bifurcates from one or
For | <I""? the dynamics of the system can be under-other chevron branch in a secondary steady-state bifurcation,
stood in detail using a low-dimensional description based omnd takes the form of a single frequency state that is neither
the interaction of adjacent pure parity chevron states whosedd nor even under left-right reflection. These states, hereaf-
structure is known from linear theory, as summarized in Secter TW’, resemble asymmetric chevrons near the secondary
IV. These states interact strongly at small amplitude in thebifurcation, but pure traveling waves at large enough
vicinity of mode interaction points, i.e., specific values of theamplitude>'®?° This bifurcation is present even when the
aspect ratid™ at which both modes bifurcate from the con- chevrons are subcritical, and in smaller domains will occur
duction state simultaneousiyThese mode interaction points beyond the saddle-node bifurcation that stabilizes them.
correspond to a double Hopf bifurcation with generically Since the TW are generally more subcritical than the SWs it
nonresonant frequencies. Unfolding of the normal form foris likely that this steady-state bifurcation will remain sub-
this bifurcation to take into account the splitting of the modecritical; the resulting TW will therefore remain unstable.
interaction leads to a pair of simple equations for the ampliHowever, as shown elsewhéret®? for appropriate aspect
tudes of the two competing modes. It is a remarkable factatios this steady bifurcation may be preceded by a Hopf
that these equations describe all the qualitative behavior difurcation producing blinking states, which in turn termi-
the system fote| <I""2, including the blinking and repeated nate in a globa(heteroclini¢ bifurcation connecting the two
transient states and the transitions between them, providesymmetry-related TW The behavior of the blinking fre-
only that one takes into account the fact that the primaryquencyw, provides the signature of this bifurcation: as this
instability to the chevron state is generally subcritical. Inbifurcation is approached, vanisheslogarithmically, cf.
particular, the model constructed in Sec. IV shows that thé=g. (9), while v, remains finite. Since the T¥\are unstable
repeated transients are a three-frequency state, and explaithe solution then jumps to the only other stable state avail-
why it is so often the first nontrivial state observed in theable, steady overturning convection. This scenario is entirely
simulations once the conduction state loses stability, and whgonsistent with the results obtained numerically fSr
it often appears without observable hysteresis. The modet—0.001 in Figs. 1-4. A similar transition has also been seen
also shows that with increasing Rayleigh number the lowesin experiments on water-ethanol mixtufedNote that this
of the three frequencies in the repeated transient state disapeenario applies for relatively small values|8f, for which
pears in a tertiary Hopf bifurcation, leaving behind a stablethe Takens—Bogdano{¢TB) point S=S;g is not far, and a
large amplitude blinking state. In the model, as in the simuiow-dimensional description is therefore appropriate.
lations, this bifurcation is supercritical and hence is nonhys-  Once|e/ =12 the above scenario may continue to hold,
teretic. In contrast, the corresponding bifurcation in waterbut only if the separation rati§ is tuned at the same time.
ethanol mixtures was found to be always subcritical andOur simulations reveal that for genef@(1) values ofS the
hence hysteretit Finally, the model also suggests the possi-behavior becomes dramatically different. This regime is
bility of chaotic repeated transients, and we were able to fingharacterized by the so-called fish state, first observed in

V. DISCUSSION
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water-ethanol mixtureSand it is the vanishing of the chev- tions probably all take place at negative valuesepfnot
ron frequencyw,, instead ofw,, that now appears to be re- considered here.
sponsible for the cessation of the blinking state eag- The temporarily localized traveling-wave states shown
creases. We surmise that, in this regime,edncreases the in Fig. 12 resemble in structure the so-called localized
amplitude of the chevron becomes large enough that nonlirtraveling-wave(LTW) states found in Ref. 41 in extensive
ear corrections reduce the frequensy locally to zero. In  simulations of binary mixtures with laterally periodic bound-
this region the state ceases to propagate and reseithidles ary conditions and water-ethanol parameters. However, in
cally) steady overturning convection. Flows of this type ho-our case these states have a lower frequency than the corre-
mogenize the mixture, and permit the formation of an inclu-sponding chevrons, in contrast to the LTW of Ref. 41 which
sion of steady overturning convection of substantially largethave a substantially higher frequency than the spatially uni-
amplitude, cf. Fig. 5. Such inclusions are not stable, howform TW at the same parametérs!? Of course, our local-
ever, and the steady state expands, invading the rest of tfized states are unstable and may not be related to those of
domain, and replacing the time-dependent state by a timeRef. 41 which are unaffected by lateral walls. In addition our
independent localized or extended state. A transition of thistates are present at substantially positive values. dff is
type corresponddocally) to a jump from an unstablsteady  noteworthy that with our boundary conditions we have been
convection state to a larger amplitude stable steady state, agable to find stable finite amplitude traveling waves that fill
seen in Fig. 5. However, from a global perspective the detailghe entire domain. All our solutions always eventually break
of this transition remain unclear. up into the type of states described in Sec. IIl. Although there
The fish state(Fig. 10 is the first manifestation of the is no evidence thatHe—*He mixtures support spatially ho-
transition to a large number of degrees of freedgen Mogeneous traveling wavemodulo end effectswaves of
=TI"?), the fish phase corresponding to temporary but dythis type have been observed in rectangular containers filled
namic confinement of the traveling-wave state. The hallmarkvith water-alcohol mixtures. This unexpected observation
of dynamic confinement is the essentially complete absenc@ay be related to the fact that traveling waves'tite—*He
of counterpropagating waves. This is seen not only in thénixtures are typically more subcritical than in water-ethanol
wall-attached state in Fig. 18 but also in the space-time plot&lixtures,® while the opposite is the case for standing waves
in Figs. 11 and 17. In a dynamically confined state the finiteli-€., chevrons, in finite domains
amplitude traveling waves are separated from the
convection-free regioffi.e., a region of exponentially small ACKNOWLEDGMENTS
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