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Simulations of3He–4He mixtures with negative separation ratios in two-dimensional containers
with realistic boundary conditions and moderately large aspect ratioG are described. The system
exhibits a large variety of states with complex time dependence including intermittent wave
localization and chaotic “repeated transients.” Steady but localized states are also found. Particular
attention is paid to the transitions that occur forsR−Rcd /Rc<G−2, whereR is the Rayleigh number
andRc its critical value for the primary instability, in order to clarify the gradual transition from a
small number of active degrees of freedomfsR−Rcd /Rc!G−2g to many active degrees of freedom
fsR−Rcd /Rc@G−2g. © 2005 American Institute of Physics. fDOI: 10.1063/1.1920349g

I. INTRODUCTION

Binary fluid mixtures with a negative separation ratio
exhibit a wide variety of behavior when heated from below.
Of particular interest are the traveling-wave states with com-
plex time dependence present very close to the onset of the
primary instability.1–4 In rectangular containers these include
the so-calledblinking states2,3 and therepeated transients.4

In such containers translation invariance is absent, and the
eigenmodes of the linear stability problem are either odd or
even under left-right reflection.5 Recent work6–8 shows that a
description of the observed dynamics based on amplitude
equations for such modes succeeds in capturing the behavior
observed in both experiments and numerical simulations re-
markably well.

Although the original experiments on overstable convec-
tion driven by the Soret effect were performed in salt-water
mixtures,9 subsequent experiments focused on3He–4He
sRefs. 1 and 10–12d and water-ethanol mixtures.2–4 Of these
the latter readily permit flow visualization, a fact invaluable
for the interpretation of all measurements. However, the re-
cent development of visualization techniques at cryogenic
temperatures13 offers the possibility that comparable experi-
ments can now be performed on3He–4He mixtures.

Detailed simulations of two-dimensional binary fluid
convection in rectangular containers8 are restricted to a
water-ethanol mixture with separation ratioS=−0.021 in
containers of aspect ratio 16øGø17 and ueu;uR−Rcu /Rc

,10−3 or less, i.e.,ueu!G−2. HereR is the Rayleigh number
andRc is its critical value for the onset of overstability. The
simulations employ experimental parameter values and
boundary conditions, and reproduce much of the behavior
reported in experiments.4 In particular, they demonstrate the
following:

• The experiments can be understood on the basis of two-
dimensional simulations.

• In the regimeueu!G−2 the behavior exhibited by the partial
differential equationssand hence the experimentsd is fun-
damentally low dimensional even though the aspect ratioG
may be quite large.

• The primary instability takes the form of a subcritical bi-
furcation to an unstable time-periodicchevronstate, con-
sisting of traveling waves that propagate in opposite direc-
tions, usually outward from the center, in the two halves of
the container. Such states are either odd or even under
left-right reflection, and may acquire stability at finite am-
plitude via a saddle-node bifurcation.

• Stable blinking states are two-frequency states and set in
when stable chevrons lose stability at a secondary Hopf
bifurcation. The blinking amplitude increases withe, and
the blinking may become nonperiodic.

• In cases where the secondary Hopf bifurcation occurs on
the unstable chevron branch below the saddle-node bifur-
cation the first observed state is the repeated transient state.
This state is a three-frequency state, and may set in without
observable hysteresis atR=Rc.

• With increasinge the lowest frequency in the repeated
transient state increases but its contribution decreases, and
may disappear at astypically hystereticd Hopf bifurcation,
leaving a large amplitude blinking state.

• Regular blinking states are observed near onset only for
aspect ratios differing roughly byp /kc<1, corresponding
to mode interaction points. Herekc is the linear theory
wave number.

Reference 8 did not, however, examine how the above
results depend on the separation ratioS,0 of the mixture, or
what happens ase increases through the important regime
e,G−2, where additional spatial degrees of freedom become
dynamically important. In particular, the details of the tran-
sition from oscillatory to steady states with increasinge re-
main to be elucidated. We expect these to depend strongly on
both S and G. To shed light on these questions and at the
same time make specific predictions for a new physical sys-
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tem we choose parameter values corresponding to3He–4He
mixtures, focusing on aspect ratioG=10. This choice reduces
the extremely long transients that plagued the water-ethanol
simulations, and permits us to investigate in considerable
detail the sequence of transitions with increasinge for dif-
ferent values ofS. We show that a dramatic change in the
behavior of the system occurs when oscillations persist into
the regimee*G−2; in this regime front-like structures can
localize the oscillations, leading to new types of oscillatory
states and hence new mechanisms for the disappearance of
time dependence. For smalluSu the oscillations exist in only a
narrow interval ofe and remain spatially extended; we dem-
onstrate that such oscillations disappear via a global bifurca-
tion. For larger values ofuSu the small amplitude repeated
transients and blinking states give rise to various types of
traveling-wave pulses, typically localized in space and time.
The transition to this state occurs via a state that we identify
with the “fish state” observed in experiments on water-
ethanol mixtures. Of particular interest is the observation of
a novel state of spatially localizedsteadyconvection we call
a “convecton.” Some of our results are reported elsewhere.14

This paper is organized as follows. In Sec. II we sum-
marize the basic equations, followed in Sec. III by the results
of our numerical simulations. Section IV offers a theoretical
insight into the regimee!G−2 and, in particular, the origin
of chaotic repeated transients. The paper concludes with a
brief discussion.

II. THE GOVERNING EQUATIONS

Binary fluid mixtures are characterized by the presence
of cross-diffusion terms in the diffusion matrix. In liquids the
dominant cross-diffusion term is the Soret term, and the sign
of this term determines the behavior of the mixture in re-
sponse to an applied temperature gradient. For mixtures with
a negative Soret coefficient the heavier component migrates
towards the lowershotterd boundary, i.e., a concentration gra-
dient is set up that opposes the destabilizing temperature
gradient that produced it. Under these conditions the onset of
convection may take the form of growing oscillations. This
instability, sometimes referred to as “overstability,” may lead
to a variety of states with complex time dependence in the
nonlinear regime, as described elsewhere.15 Here we focus
on the corresponding behavior in3He–4He mixtures. These
differ from the water-ethanol mixtures studied elsewhere8

primarily in having a substantially smaller Prandtl number.
We consider a binary mixture in a two-dimensional rect-

angular containerD;hx,zu0øxøG ,−1
2 øzø

1
2
j heated uni-

formly from below, and nondimensionalize the equations us-
ing the depth of the layer as the unit of length andtd, the
thermal diffusion time in the vertical, as the unit of time. In
the Boussinesq approximation appropriate to the experiments
the resulting equations take the form16

ut + su · ¹ du = − ¹ P + sRfus1 + Sd − Shgẑ + s¹2u,

s1d

ut + su · ¹ du = w + ¹2u, s2d

ht + su · ¹ dh = t¹2h + ¹2u, s3d

together with the incompressibility condition

¹ ·u = 0. s4d

Hereu;su,wd is the velocity field insx,zd coordinates,P is
the pressure, andu denotes the departure of the temperature
from its conduction profile, in units of the imposed tempera-
ture differenceDT. The variableh is defined such that its
gradient represents the dimensionless mass flux. Thush
;u−C, where C denotes the concentration of the heavier
component relative to its conduction profile in units of the
concentration difference that develops across the layer as a
result of the Soret effect. The system is specified by four
dimensionless parameters: the Rayleigh numberR providing
a dimensionless measure of the imposed temperature differ-
enceDT, the separation ratioS that measures the resulting
concentration contribution to the buoyancy force due to the
Soret effect, and the Prandtl and Lewis numbers,s andt, in
addition to the aspect ratioG.

To model the experiments we take the boundaries to be
no-slip everywhere, with the temperature fixed at the top and
bottom and no sideways heat flux. The final set of boundary
conditions is provided by the requirement that there is no
mass flux through any of the boundaries. The boundary con-
ditions are thus

u = n · ¹ h = 0 on]D, s5d

and

u = 0 atz= ± 1/2, ux = 0 atx = 0,G. s6d

Here]D denotes the boundary ofD.
Equationss1d–s6d are equivariant with respect to the op-

erations

Rx: sx,zd → sG − x,zd, sc,u,Cd → s− c,u,Cd, s7d

k: sx,zd → sx,− zd, sc,u,Cd → s− c,− u,− Cd, s8d

where csx,z,td is the streamfunction, defined bysu,wd
=s−cz,cxd. These two operations generate the symmetry
group D2 of a rectangle. It follows that even solutions, i.e.,
solutions invariant underRx, satisfy fcsx,zd ,usx,zd ,Csx,zdg
=f−csG−x,zd ,usG−x,zd ,CsG−x,zdg at each instant in time,
while odd solutions are invariant underkRx and satisfy
fcsx,zd ,usx,zd ,Csx,zdg=fcsG−x,−zd , −usG−x,−zd , −CsG
−x,−zdg, again at each instant of time. At midlevel,z=0, the
latter therefore satisfy fcsx,0d ,usx,0d ,Csx,0dg=fcsG
−x,0d ,−usG−x,0d ,−CsG−x,0dg, and so are odd in the con-
ventional sense. It follows that the eigenfunctions of the con-
duction statec=u=C=0 are also even or odd; these, and the
corresponding values of the critical Rayleigh number and
frequency, are computed elsewhere7 as a function of the as-
pect ratioG for s=0.6 andt=0.03, and various values of the
separation ratioS appropriate for3He–4He experiments.1 In
the following we refer to the pure parity states as chevron
states since they consist of waves traveling outwards from
the center of the cell.

We solve Eqs.s1d–s6d in two dimensions using a time-
splitting method with an improved boundary condition for
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the pressure and a second-order accurate time integration
scheme based on a modified Adams–Bashforth formula.17

For the spatial discretization we use a Chebyshev collocation
pseudospectral method.18 In all cases the time step and the
number of collocation points used were adjusted until the
solutions converged. Typically we used 170 collocation
points in thex direction and 30 collocation points in thez
direction, with a time step of 10−3td. We use the vertical
velocity at the pointssx,zd=s0.13G ,0d snear the left side-
walld and s0.87G ,0d snear the right sidewalld as a proxy for
shadowgraph intensity measurements. Moreover, monitoring
point quantities at mirror locations suffices to determine the
spatial symmetry properties of the various possible time-
dependent states. All our results uses=0.06, t=0.03, and
G=10. Four values of the separation ratioS are discussed in
detail. In each case we describe the results of our simulations
for increasing values of the reduced Rayleigh numberueu,
and explore the transition from low-dimensional to high-
dimensional behavior.

III. RESULTS

A. S=−0.001: Global bifurcation of blinking states

For S=−0.001 simulations of the growing instability at
R=1785.Rc<1784.088 show that it saturates in an even-
parity standing wave with frequencyv1<0.25, near the criti-
cal frequencyvc<0.2675. Figure 1 shows the time series of
the saturated vertical velocitywsx=0.87G ,z=0,td, and indi-
cates that the primary bifurcation is a supercritical Hopf bi-
furcation; no evidence of hysteresis was found. This result is
consistent with available theory.16 With increasing Rayleigh
number this state undergoes asslightly subcriticald Hopf bi-
furcation that introduces a new frequencyv2 into the dynam-
ics. The solution branch that results is initially unstable but

acquires stability almost immediately at a saddle-node bifur-
cation. Figure 1 shows that stable single-frequency and two-
frequency states coexist atR=1785.5. Strictly speaking this
secondary Hopf bifurcation is a torus bifurcation. However,
in the following we do not distinguish between Hopf bifur-
cations of equilibria and of periodic orbitssor torid, since
resonance phenomena appear to play little role in the ob-
served dynamics.

The two-frequency state can be identified with the blink-
ing states predicted by abstract theory.5,19,20Figures 2scd and
2sdd show that this state has the required symmetry; if we
ignore for the moment the fast frequencyv1 the blinking
state has the spatiotemporal symmetryRxwsx,0 ,td=wsx,0 ,t
+T2/2d, whereT2;2p /v2 is the blinking period. In the fol-
lowing we refer to states of this type assymmetric periodic
blinking states. WhenR is increased toR=1786.2 this state
loses stability and the system jumps to a large amplitude
even-parity steady statesFig. 3d. The modulation periodT2

appears to diverge logarithmically as this transition is ap-
proachedsFig. 4d, suggesting that the oscillations disappear
when the two-torus collides with ansunstabled steady-state
branch. A fit to the theoretical prediction

T2 = − 2lu
−1 lnuR− Rhu + d s9d

leads to the estimatesRh<1786.112,lu<0.2452, andd

FIG. 1. Time serieswsx=0.87G ,z=0,td in a 3He–4He mixture with S
=−0.001,s=0.6, andt=0.03 for several different values of the Rayleigh
number.

FIG. 2. As for Fig. 1 but showing a symmetric periodic blinking state at
R=1786 se=1.1310−3d. sa,bd Contours of usx,z,td and Csx,z,td at t
=4000.sc,dd wsx=0.87G ,z=0,td andwsx=0.13G ,z=0,td.

FIG. 3. The large amplitude steady state reached whenR is increased from
R=1786 toR=1786.2 whenS=−0.001,s=0.6, andt=0.03.
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<8.1537. Herelu is to be identified with the leadingun-
stableeigenvalue of the steady state atR=Rh.

B. S=−0.021: The fish state

Figure 5 shows that whenS=−0.021 the transition to
steady convection is quite different. Although the primary
instability is still to an even modesRc=1855.75 andvc

=2.076d the bifurcation is now slightly hysteretic, so that
stable even chevrons are present even forR,Rc snot
shownd. As R is raised a second frequency appears in the
time series, corresponding to the onset of a symmetric blink-
ing state. This bifurcation is apparently also subcritical, but
once again the resulting blinking states acquire stability in a
saddle-node bifurcation. This behavior is qualitatively simi-
lar to that described forS=−0.001. However, with increasing

R the modulation periodT2 begins to increase but then ap-
parently saturates at a finite valuefFig. 5sddg. At the same
time the periodT1;2p /v1 appears to divergefFig. 5scdg.
These properties are reflected in the time series presented in
Fig. 5sad, which show that atR=1862.0 the blinking state
loses stability to steady convection from the lowest-
frequency portion of the wavetrain, and indicate that the
transition to steady convection now occurs via a radically
different mechanismssee belowd. In the following we refer
to the state just prior to this transition as thefish state. Simi-
lar states have been observed in water-ethanol mixtures.2

C. S=−0.1: From repeated transients to the fish
state

The caseS=−0.1 is even more interesting. HereRc

=1972.13 andvc=4.918. In this case the primary bifurcation
to the sevend chevron state is substantially subcritical,16 and
the first stable nonlinear state takes the form of a repeated
transientsFig. 6d. States of this type were studied in detail by
Kolodner in experiments on water-ethanol mixtures,4 and
their origin is discussed in Ref. 8. Figure 6 suggestssand the
theory of Sec. IV confirmsd that these states arethree-
frequencystates, in whichv1 is the fast chevron frequency,
v2 represents the blinking frequency, while the third fre-
quencyv3 represents the slow modulation frequency. De-
tailed study shows that the repeated transient consists of a
slowly growingsevend chevron state that eventually becomes
unstable to the onset of blinking, which leads to a collapse of
the state back to a small amplitudesevend chevron, followed
by a slow regrowth. In the time series shown these collapse
events are periodic with periodT3=2p /v3. Figure 7 shows
that asR decreases the periodT3=2p /v3 increases rapidly
and apparently diverges atR<1971.5. Such a divergence
suggests that the three-frequency states are created via a glo-
bal bifurcation. Since no stable nonzero solutions are present
for smaller values ofR for these parameter values the three-
frequency repeated transient state represents thefirst non-
trivial state of the system, much as occurs in water-ethanol
mixtures.4,8 This interesting property of the system is ex-
plained in Sec. IV.

FIG. 4. sad The blinking periodT2 in units of the Hopf periodTo;2p /vc as
a function ofR near the transition to steady convection whenS=−0.001,
s=0.6, andt=0.03. The solid line represents the fits9d. sbd The correspond-
ing Nusselt number.

FIG. 5. A 3He–4He mixture with S=−0.021,s=0.6, andt=0.03 in aG
=10 container.sad Time serieswsx=0.87G ,z=0,td for different values ofR
increasing upwardss1859.5,R,1862.0d, showing a hysteretic transition to
steady convection atR<1862.0se=3.4310−3d. sbd The corresponding Nus-
selt number as a function ofR. scd The chevron periodT1;2p /v1 as a
function of R. sdd The blinking periodT2;2p /v2 as a function ofR. The
state atR=1861.8 resembles thefish stateobserved in the experiments.

FIG. 6. The repeated transient state in a3He–4He mixture withS=−0.1,
s=0.6, t=0.03, andG=10 at several values ofR. The time serieswsx
=0.87G ,z=0,td suggest the presence of three frequencies, with the lowest-
frequencyv3 increasing from zero asR increases fromR<1971.5se=e*

<−3.2310−4d.
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In contrast, asR increases the modulation frequencyv3

increases but drops out from the time series betweenR
=1980.0 andR=1981.0sFig. 8d. We identify this transition
with a Hopf bifurcation,8 and note that Fig. 8 indicates that
this bifurcation issupercritical, i.e., viewed in the direction
of decreasingR this bifurcation creates astable three-
frequency state from a stable two-frequency state, with no
observable hysteresis. Figure 9 shows that this two-
frequency state is a symmetric blinking state, and traces the
evolution of this state towards larger values ofR. The figure
shows that atR=1995 the blinking has become asymmetric
and nonperiodic, while the time series forR=2000 andR
=2005 may be periodic, but are strongly asymmetric. In con-
trast, whenR=2010 the blinking becomes once again peri-
odic and symmetric. None of these transitions appears to be
hysteretic. At yet larger values ofR these states again evolve
into the fish state, followed by a transition to stationary con-
vection. Figure 10 shows an example of the fish state just
prior to this transition. An examination of the spatial struc-

ture of the wavessFig. 11d shows that there is a brief phase
of the oscillation during which small amplitude counter-
propagating waves fill the container. This state is highly un-
stable, however, with the waves at one end growing at the
expense of those at the other. Once the amplitude of the
growing state is large enough the system shifts into a new
and larger amplitude state in which the waves are spatially
confined towards one side, withno waves at the otherfsee
Figs. 11 and 12sadg. This transition is marked by a dramatic
drop in the frequencyv1 since the waves in this pulse-like
state travel much more slowly. We surmise that this is due to
the large amplitude of this state. This change in frequency in
turn increases the Nusselt number, and does so despite the
fact that the waves no longer fill the whole domain. As time
proceeds this confined state drifts in the direction of the
waves within it, and settles next to the boundary, forming a
wall-attached statefsee Figs. 11 and 12sbdg. During the at-
tachment process the localized state contracts and its ampli-
tude decreases, presumably due to increased dissipation. As a

FIG. 7. sad The modulation periodT3;2p /v3 of the repeated transients
whenS=−0.1,s=0.6,t=0.03, andG=10 in units ofTo;2p /vc as a func-
tion of the Rayleigh numberR. sbd The corresponding Nusselt number.

FIG. 8. The time serieswsx=0.87G ,z=0,td for a 3He–4He mixture with
S=−0.1, s=0.6, t=0.03, andG=10 at several values ofR showing the
transition from the repeated transient state in Fig. 6 to a symmetric periodic
blinking state atR=1981se=4.5310−3d.

FIG. 9. Time serieswsx=0.13G ,z=0,td sleft columnd and wsx=0.87G ,z
=0,td sright columnd for different values ofR increasing upwards, andS
=−0.1,s=0.6, t=0.03, andG=10.

FIG. 10. sad The Nusselt number Nustd, sbd wsx=0.87G ,z=0,td, scd wsx
=0.13G ,z=0,td for R=2018.5se=0.024d, andS=−0.1,s=0.6,t=0.03, and
G=10.

064102-5 Simulations of oscillatory convection Phys. Fluids 17, 064102 ~2005!

Downloaded 01 Jun 2005 to 147.83.27.122. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



resultv1 increases again. During this processwsx=0.87G ,z
=0,td actually increases as activity moves to the region
wherew is measured. However, integral quantities such as
the Nusselt number actually decrease, since the amplitude of
the state falls on contact with the wall. The appearance of the
prominent shoulder in the Nusselt number time seriesfFig.
10sadg coincides with the formation of the wall-attached
state. The wall-attached state is not stable, however, and con-
tinues to decrease in amplitude and contract until it becomes
so weak and confined that waves start to regrow at the other
sidewall. At this point the wall-attached state disintegrates,
and the small amplitude extended chevron-like state is re-
stored. All these transitions are quite easily distinguished in
the time trace shown in Fig. 10 and in the space-time plot
shown in Fig. 11, and suggest that the formation of the initial
pulse-like state is triggered by a nonlinear focusing effect
reminiscent of the nonlinear Schrödinger equation.

Many of the above details resemble behavior observed in
experiments on water-ethanol mixtures21 ssee Fig. 1 of Ref.
21d, although in some cases22 the frequencyv1 dropsas the
confined state settles near the lateral wall. It is possible that
this is because in this experiment the pulse drifts in a direc-
tion oppositeto the waves within itsanomalous nonlinear
dispersiond. Experiments suggest that this occurs whene
,0,23 while in our simulationse.0.

D. S=−0.5: Convective bursts, spatially localized
traveling waves, and convectons

The final case we have considered isS=−0.5. HereRc

=2643.43 andvc=12.836. The primary instability is again to
an even chevron, but this time we find strongly irregular
dynamics already quite close to onsetsFig. 13d. The time
series in Fig. 13 is best described as an intermittent repeated
transient, in which the final collapse event may be preceded
by several spatially symmetric bounces before the onset of
the symmetry-breaking instability that disrupts the state and
leads to the temporary formation of a confined state towards
one side, much as already described forS=−0.1. This state
then drifts towards the nearest wall and shrinks in lateral
extent, until it triggers another collapse event that permits
waves to grow at the other sidewall. The decaying symmetric
blinking state that results reestablishes a small amplitude
chevron state which then regrows on a much longer time–
scale. The spatially symmetric bounces are associated with
relatively sharp peaks in the Nusselt number, while the
symmetry-breaking collapse events produce bursts in the
Nusselt number that are markedly asymmetric, much as in
the fish state discussed above.

The frequency of the burst-like events in the Nusselt
number increases withR sFig. 14d. A periodic sequence of
bursts, produced by a symmetric albeit complex state, is
shown in Fig. 15. Perhaps the most remarkable time series of
all is shown in Fig. 16 forR=2750ssee also the correspond-
ing space-time diagram in Fig. 17d. The time series appar-
ently shows an irregular switching between two states, a
large amplitude state with a relatively lowv1, and a small
amplitude state with a largev1. The former is a spatially
confined slowly drifting wave, while the latter is an extended

FIG. 11. Space-time plot of the fish state in Fig. 10 with time increasing
upwards. The state is periodic in time with periodT, and is invariant under
the spatial reflectionRx followed by evolution for a timeT/2.

FIG. 12. Concentration contours duringsad the low-frequency part of the
fish state in Fig. 10, andsbd during the high-frequency phase that follows it.
The localized state insad settles against the left sidewall forming temporarily
the wall-attached left-traveling wave shown insbd.

FIG. 13. sad The Nusselt number Nustd, sbd wsx=0.87G ,z=0,td, scd wsx
=0.13G ,z=0,td for R=2644 se=2.1310−4d, and S=−0.5, s=0.6, t=0.03,
andG=10, showing irregular bursts.
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more-or-less symmetric pulsating chevron-like state. The lat-
ter is unstable to a symmetry-breaking blinking instability
which amplifies the waves near one of the sidewalls at the
expense of those near the opposite wall. The amplified waves
are then reflected from the wall but continue to grow, slow-
ing down markedly. This asymmetric state then abruptly col-
lapsessby a mechanism that remains uncleard into a highly
nonlinear spatially confined state consisting of slowly travel-
ing waves. These waves propagate in the direction of the
original reflected wave, and speed up as they approach the
opposite wall. The whole pulse gradually retracts towards
that wall, ultimately leaving much of the cell free of convec-
tion. Once the peak of the pulse reaches the wall its ampli-
tude drops dramatically and it disintegrates into smaller am-
plitude counterpropagating waves that invade the
convection-free part of the container, permitting the regrowth
of the original higher-frequency small amplitude chevron-
like state filling the domainsFig. 17d. Overall this behavior
resembles that observed forS=−0.1ssee Figs. 11 and 12d but
here it is much more dramatic, and we may think of it as
back-and-forth “sloshing.” The resulting state is reminiscent
of a state found in doubly diffusive convection.24,25

In Fig. 18 we show a stable wall-attached traveling wave
found atR=2900. A wave of this type evolves from the fish
state when the localized low-frequency state comes to rest
against a sidewall, but does not collapse. The resulting state

should be interpreted in terms of a stationaryfront separating
an exponentially small wave throughout most of the domain
from a finite amplitude wavetrain next to the left sidewall.
This interpretation of Fig. 18 is supported by the spectrum of
the vertical velocityw near the left and right sidewallsfFig.
18scdg: both spectra have thesamedominant frequencyv1,
with prominent harmonics near the left sidewall where the
wave is localized, and much weaker harmonics near the right
sidewall where it is exponentially small. Note, in particular,
the absence of a right-traveling wave in any part of the con-
tainer except perhaps right next to theleft sidewall where a
right-traveling component is required to set up a standing
oscillation. Thus Fig. 18 represents a stable dynamically lo-
calized state, in contrast to both the kinematically localized

FIG. 15. As for Fig. 13 but showing periodic bursts atR=2665 se=8.2
310−3d.

FIG. 16. Irregular switching between the fish state and a blinking state at
R=2750se=0.040d.

FIG. 17. Space-time plot of the state in Fig. 16 with time increasing
upwards.

FIG. 14. As for Fig. 13 but showing the time series corresponding toR
=2655se=4.4310−3d.
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state present whene!G−2, and the unstable dynamically lo-
calized waves that briefly form for smaller values
of R sbut satisfying e*G−2d. Similar states have been
observed in water-ethanol experiments26–28 and related
simulations.29,30 States of this type are described well by a
singlecomplex Ginzburg–Landau equation with a drift, and
become possible only onceueu@G−2. Theory based on this
equation predicts31–33 that with increasingR the front gradu-
ally moves towards the right, but in the present case the
strong nonlinear dispersion forces the frequency towards
zero; once this occurs the resulting nonoscillatory state be-
gins to expand towards the right by addingssteadyd rolls and
thereby expelling the lateral concentration gradient set up by
the confined traveling wave. The process of adding rolls ter-
minates once this lateral gradient is sufficiently strong, and
results in the formation of a spatially confined butsteady
state ssee Fig. 19d. Such confined steady states have also
been found for other values ofR sFig. 20d, indicating that the
confined states created by this process are in general non–
unique. All of these states are numerically stable. Continua-
tion methods indicate that these confined steady states retain
their character with varying Rayleigh number, and lie on
disconnected solution branchesscf. Fig. 21d. In particular,
the localized traveling wave in Fig. 18 is located on adiffer-
entbranch of solutions than the states shown in Figs. 19 and
20. Unfortunately, the origin of the confined steady states
and their fate at larger Rayleigh numbers remain unknown.
To our knowledge no comparable states have been observed
in any experiment.

These confined steady states and their nonuniqueness are
reminiscent of the slowly drifting pulses that form in binary
fluid mixtures as a result of an interaction between the waves
and a slowly evolving mean concentration mode;34,35 near
onset spontaneously developing inhomogeneities in the mean
concentration field can trap pulses of traveling waves by de-
creasing the growth rate of the waves in front of the pulse,
thereby braking its drift. However, in the absence of lateral
boundaries the pulses always drift, albeit slowly, and only in
exceptional cases is a stationary pulse possible. In systems
with lateral boundaries such pulses come to rest at the lateral
walls forming a wall-attached state, but in general the trav-
eling waves within them will continue to propagate, much as
in Fig. 18. In contrast, the localized steady states found here
are present far from the onset of the primary oscillatory in-
stability, and resemble instead theconvectonspresent in
strongly nonlinear magnetoconvection.36 In our system these
localized steady states are also confined by horizontal gradi-
ents in the concentration fieldfsee Fig. 19sbdg stabilized by
incident small amplitude traveling waves,37 or a weak but
steady large scale recirculation on either side. As a result the
essence of the nonuniqueness is also different. In the theory35

short and long pulses of a definite size can coexist stably; in
our system the lateral boundaries may well support whatever

FIG. 18. sad A left-traveling wave con-
fined to the left sidewall whenR
=2900 se=0.097d, and S=−0.5, s
=0.6, t=0.03, andG=10, shown in
terms of the total concentration con-
tours, with time increasing upwards.
sbd The corresponding vertical veloc-
ity wsx=0.87G ,z=0,td and wsx
=0.13G ,z=0,td, and scd their Fourier
transforms. The frequenciesv1 in the
two panels are identical. Note the dif-
ferent vertical scales insbd.

FIG. 19. A stable spatially confined steady state atR=3050se=0.154d when
S=−0.5,s=0.6, t=0.03, andG=10.

FIG. 20. Additional stable spatially confined steady states whenS=−0.5,
s=0.6,t=0.03, andG=10, shown in terms of the contours of the fluctuating
temperatureusx,zd. The corresponding value ofR is indicated at the right of
each panel.
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concentration gradient is required to confine a particular
state, suggesting that a large number of states, containing
different numbers of roll pairs, may be stable simultaneously.

Figures 22 and 23 suggest that there is a wide variety of
coexisting time-dependent states as well. The former shows a
stableodd-parity chevron state with a superposed small am-
plitude temporal modulation that coexists with the state
shown in Fig. 13 that is based on an even chevron. Figure 22
shows that the modulation is exactly out of phase in the two
halves of the domain, and although it has a complex wave-
form it appears to be periodic in time. This state is therefore
a symmetric blinking state, and indeed with decreasingR one
finds that the modulation disappears andsat R=2606d a
stable odd-parity chevron is recovered. Likewise, Fig. 23
shows a chaotic blinking state atR=2665 that is also based
on an odd-parity chevron and coexists stably with the bursts
shown in Fig. 15 that are based on an even chevron. This
multistability greatly complicates the behavior of the system,
and appears to be a consequence of increasing subcriticality
of the primary bifurcations with decreasing separation
ratio.16

IV. ORIGIN OF THE BLINKING STATES
AND REPEATED TRANSIENTS

In this section we summarize the properties of a simple
model system, based on normal form theory for the interac-
tion of two Hopf modes with opposite parity, that accounts
for essentially all the properties revealed in our simulations
whene!G−2. We do not have a corresponding understanding
of the dynamics observed at larger Rayleigh numbers. The
model is based on the observation that, at specific aspect
ratios Gc, the odd and even chevrons bifurcate simulta-
neously, albeit with different frequencies.7 For nearby aspect
ratios they come in, in close succession. Under these condi-
tions we may expect the chevrons to interact in the nonlinear
regime, and to do so already at small amplitude. We write
each of the fieldsc, u, andC in the form

usx,z,td = Rehz+stdeiv+t f+sx,zd + z−stdeiv−t f−sx,zdj + ¯ ,

s10d

where f±sx,zd are thescomplexd eigenfunctions of the even
and odd chevrons,7 and z±std are their amplitudes. Standard
normal form theory now yields the following equations for
the sreald amplitudesr± ;uz±u:

ṙ+ = sm + a+r+
2 + b+r−

2 − r+
4 + c+r+

2r−
2 + d+r−

4dr+ + ¯ , s11d

ṙ− = sm − d + a−r−
2 + b−r+

2 − r−
4 + c−r+

2r−
2 + d−r+

4dr− + ¯ ,

s12d

with a pair of decoupled equations for the associatedsnon-
lineard frequenciesv±. Here the coefficients are all real, and
we takea± .0 so that both chevrons bifurcate subcritically,
the even onesfgiven bysz+,z−d=sr+,0dexpiv+tg at m=0 and
the odd onesfgiven bysz+,z−d=s0,r−dexpiv−tg at m=d.0.
It is now a simple matter to show that the two chevrons
undergo saddle-node bifurcations atm=−a±

2 /4,0, and
steady-state bifurcations to a mixed parity statesz+,z−d,
r+r−.0, at m=d−b−r+

2−d−r+
4 seven chevronsd and m

=−b+r−
2−d+r−

4 sodd chevronsd. The bifurcations to the mixed
parity states are to be identified with Hopfsmore precisely
torusd bifurcations from the chevron states to blinking states.
This is because near this bifurcation on the even chevron
branch the dynamics takes the form

FIG. 21. The branch of confined steady states corresponding to the state
shown in Fig. 20sad. The upper contour plot ofusx,zd corresponds to the
upper endpoint on the curve; the lower contour plot corresponds to the lower
endpoint. The upper convecton is stable between the turning point and
R<2800; the lower is unstable.

FIG. 22. Odd-parity chevron state with a superposed small amplitude tem-
poral modulation forR=2644se=2.1310−4d. sa,bd Contours ofusx,z,td and
Csx,z,td at t=200. sc,dd wsx=0.87G ,z=0,td and wsx=0.13G ,z=0,td. This
state coexists with the state in Fig. 13.

FIG. 23. A stable chaotic blinking state atR=2665se=8.2310−3d based on
an odd-parity chevron that coexists with the bursts shown in Fig. 15.
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usx,z,td = Rer+eiv+thf+sx,zd + sr−/r+deisv−−v+dt f−sx,zdj

+ ¯ , s13d

describing an even chevron with a periodically oscillating
odd-parity contribution. The second term amplifiessreducesd
waves in the left half of the container at the same time as it
reducessamplifiesd waves in the right half, and shows that
the blinking frequency at leading order is simply the beat
frequencyv2=v+−v−. We emphasize that these frequencies
are thenonlinear frequencies, not the onset frequencies pre-
dicted by linear theory.

When this bifurcation occurs below the saddle-node bi-
furcation on the chevron branch the blinking states are ini-
tially unstable but acquire stability with increasing amplitude
at atertiary Hopf bifurcation.38,39This bifurcation introduces
a third frequencyv3 into the dynamics of the system; the
resulting three-frequency states can be identified with the
repeated transients.8

The key transitions involving the one-, two-, and three-
frequency states are captured by a simplified model system
obtained from the above equations by dropping inessential
terms. In particular, we drop the term −r−

5 and mimic its
effect by takinga−,0. The resulting model8

ṙ+ = sm + a+r+
2 − r+

4 − r−
2dr+, s14d

ṙ− = s− n + a−r−
2 + b−r+

2dr−, s15d

with a+.0, b−.0, is the simplest set of equations capable
of describing correctly the stability properties of the even
chevrons and the mixed parity states observed in the partial
differential equations for moderate values ofuSu. The model
removes the primary bifurcation to the odd chevrons but
leaves the secondary bifurcations from the even chevrons
fundamentally unchanged. In the following we think ofm
andn as proportional toR−RcsGd andG−GcsRd, respectively.

Figure 24 summarizes the properties of the model in the
case in which the three-frequency state created from the
blinking state branch is stable. This is always the case when
b−=1, a−=0, and a+.0, and hence for sufficiently small
negative values ofa− as well. The figure shows the loci of
the primary sH1d, secondarysH2d, and tertiarysH3d Hopf
bifurcations, as well as the locus of the saddle-nodesSNd
bifurcations on the chevron branch. It should be remembered
that in thesr+,r−d variables only the bifurcationH3 remains a
Hopf bifurcation, withH1 and H2 represented by pitchfork
bifurcations. In addition the figure shows the curveg :m
=m*snd of global bifurcations at which the limit cyclescor-
responding to the three-frequency statesd created atH3 dis-
appears by simultaneous collision with small and large am-
plitude chevron states. The location of this line must be
determined numerically. An asymptotic calculation of this
curve near the codimension-two point at whichH2 and SN
coincide yields the heavy broken line; this line is tangent to
g at the codimension-two point, as it must.

Figure 25sad shows the bifurcation diagram obtained by
traversing thesm ,nd plane in Fig. 24 along the linen=1.6.
The figure shows a small interval of subcritical but stable
chevrons, followed by a supercritical pitchfork bifurcation to

a state withr−Þ0 that represents a blinking state in the
physical variables. In the example shown this bifurcation oc-
curs atm,0 so that the first stable state just above the onset
sm=0d is a finite amplitude blinking state. This case is typi-
cal of the behavior of the partial differential equations for
S=−0.01 in appropriate ranges ofG snot shownd. The behav-
ior shown in Fig. 1 forS=−0.001 is also of this type except

FIG. 24. Codimension-one bifurcation surfaces in thesm ,nd plane for Eqs.
s14d and s15d with a+=2.0, a−=−0.1, andb−=1.0. H1: primary sHopfd bi-
furcation to the chevron statesr+,0d, SN: saddle-node bifurcation on the
chevron branch,H2: ssecondaryd Hopf bifurcation to blinking statessr+,r−d,
H3: stertiaryd Hopf bifurcation fromsr+,r−d responsible for the appearance
of the three-frequency states, andg: global bifurcation at which these states
disappear. The heavy broken line represents the asymptote tog.

FIG. 25. Bifurcation diagrams alongsad the line n=1.6 whena+=2.0, a−

=−0.1, andb−=1.0, andsbd the line n=0.15 whena+=2.0, a−=−0.2, and
b−=1.0. The open circles indicate the global bifurcation; this bifurcation
occurs very close tom=0 for a large range of values ofn. scd The time series
r+std sthick lined and r−std sthin lined corresponding to casesbd with m
=0.02. sdd The quantityfr+std+r−stdcossv2tdgsinsv1td corresponding toscd
whenv1=20.0 andv2=0.8 for comparison with Fig. 6. Note the exponential
growth during the chevron phase, followed by an overshoot when the blink-
ing instability sets in, and the ringing down during the subsequent collapse
phase.
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that a+,0 and the saddle-node bifurcation is therefore ab-
sent. As a result the chevrons are initially stable, and the
bifurcation to the blinking states occurs form.0. In con-
trast, whenn,a+b−/2=1 thefirst stable state encountered as
m increases is a periodic statefr+std ,r−stdg corresponding to
the three-frequency repeated transient state with the frequen-
ciesv1 andv2 filtered outfFig. 25sbdg. This state appears in
a global bifurcation atm=m* ,0, at which v3=0. Figure
25scd shows the time series corresponding to this state when
m=0.02, n=0.15, a+=2.0, a−=−0.2, andb−=1.0. For these
parameter valuesm* <0 fopen circles in Fig. 25sbdg, and Fig.
24 shows that this situation persists for a large range of val-
ues ofn. In this case the chevron state regrows from a very
small amplitude, and the resulting oscillation resembles
closely the state shown in Fig. 6. In particular, there is almost
no hysteresis between this state and the conduction state, and
the system behaves as if the primary instability atm=0 were
directly responsible for generating repeated transients. Ob-
serve that during the growth phase of the variabler+ the
variable r− vanishes, indicating that the growing state is a
pure chevron;r− becomes nonzero only during the collapse
phase, indicating that the collapse is triggered by a
symmetry-breaking instability of the growing even chevron.
The amplitude and the period 2p /v3 of the limit cycle in
Fig. 25scd decrease with increasingm, with the oscillations
disappearing atH3. As already mentioned we interpret this
transition as the transition from the repeated transient state to
the ssymmetricd periodic blinking state with increasing Ray-
leigh number seen in Fig. 8. For the model parameterssand
in contrast to the corresponding transition in water-ethanol
mixtures8d this transition issupercritical, indicating absence
of hysteresis, as in the figure.

Within the model the repeated transient statefr+std ,r−stdg
has all the properties of this state observed in the simula-
tions, except for thesapparentd absence of oscillations during
the collapse phase. In fact, if the frequenciesv1 andv2 are
restored, and the pointwise quantity fr+std
+r−stdcosv2tgsinv1t, cf. Eq. s13d, plotted instead ofr+std or
r−std, these oscillations are presentfFig. 25sddg, and their
amplitude depends on the chevron amplituder+ in the man-
ner observed in the simulations. In fact, the time series
shown in Fig. 25sdd bears a number of qualitative features,
including the pointed overshoot at maximum as the moder−

begins to grow and the “ringing down” due to the fact that
the variabler+ decays more rapidly thanr−, that are docu-
mented in experiments as wellfFig. 6sad of Ref. 4g.

Despite its remarkable simplicity the modelfs14d – s15dg
captures completely the two scenarios for generating blink-
ing states identified in the simulations of both3He–4He and
water-ethanol mixtures, and the origin and properties of the
repeated transients. Extensions of the model8 indicate the
possibility that repeated transients may, under appropriate
circumstances, be chaotic. In Fig. 26 we show an example of
such a chaotic repeated transient state. We believe that this
state is associated with the global bifurcation in which the
repeated transients first appear, cf. Fig. 25sbd. As already
noted the frequencyv3 decreases to zero asm↓m* ,0, i.e.,
as e↓e* ,0 in the partial differential equations. As this oc-
curs the three-frequency states approach simultaneously the

unstable large and small amplitude chevron states, hereafter
A and B, respectivelyssee Fig. 25d. The character of the
repeated transient whene<e* is determined by the leading
eigenvalues ofA and B in the sr+,0d direction, hereafter
−lA,0 andlB.0, and the leading eigenvalues in thes0,r−d
direction. If the latter are real,aA.0 and −aB,0, say, and
r;aBlA/aAlB.1, the repeated transients will remain peri-
odic and stable all the way toe* , where the periodT3 di-
verges and the global bifurcation takes place.8 In contrast,
when 0,r,1, the periodic oscillations necessarily lose sta-
bility before the global bifurcation ate* . Similar results ob-
tain in the case where the leading stable symmetry-breaking
eigenvalue atB is complex, viz., −aB+ ivB, aB.0, as sug-
gested by the simulations. In this case stable periodic oscil-
lations will persist down toe* if r.1, but if 0,r,1 com-
plex dynamics of Shil’nikov type will be present. In fact, the
leading unstable eigenvaluesaA andlB are also expected to
be complex, since in the partial differential equations the
bifurcations atH1 andH2 are both Hopf bifurcations.

When lB is real a trajectory escaping fromB describes
an exponentially growing chevron state. This growth phase,
including the statesA and B, is clearly visible in the time
series in Fig. 6. When the growing chevron reaches the vi-
cinity of A it becomes unstable to symmetry-breaking oscil-
lations which take it back nearB. This is the collapse phase
of the repeated transient statefcompare Fig. 25sdd with Fig.
6g. The frequency of the decaying oscillations observed in
the time series in Figs. 25sdd is given byvB. This frequency
will in general be of the same order as the blinking frequency
associated with the branch of blinking states when these bi-
furcate from the small amplitude chevronB, but quite differ-
ent from sand in general larger thand the blinking frequency
of the stableblinking states beyondH3, cf. Ref. 4. This ob-
servation explains the coincidence of the period of the blink-
ing states and of the oscillations during the collapse phase of
the repeated transient noted by Kolodner. Note also that
sinceaB decreases ase decreasessit passes through zero at
H2, i.e., ate=e2d the collapse becomes slower and slower, cf.
Fig. 6, although the collapse rate is still finite when the three-
frequency states disappear in the global bifurcation ate*

ssincee2,e* ,0d and the system makes a hysteretic transi-
tion back to the conduction state. The fact thataB decreases
with e makes it likely that the Shil’nikov condition 0,r
,1 holds ate* , resulting inchaoticrepeated transients prior
to their disappearance. However, despite this suggestion we

FIG. 26. A chaotic repeated transient in a3He–4He mixture with stress-free
and fixed temperature boundary conditions atx=0,G and R=2025, S
=−0.1,s=0.6, t=0.03, andG=10.
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have only succeeded in locating such chaotic repeated tran-
sients withstress-freeboundary conditionssFig. 26d.

V. DISCUSSION

In this article we have described the results of direct
numerical simulations of oscillatory convection in binary
mixtures in two-dimensional moderately large domains with
experimentally relevant boundary conditions, exploring in
detail the parameter values characteristic of3He–4He mix-
tures. We have chosen3He–4He parameters partly because
of a number of experiments on this system in the 1980s
sRefs. 1 and 10–12d and partly to make predictions for future
experiments now that flow visualization at cryogenic tem-
peratures has become possible.13 We have also used smaller
domains in order to reduce the length of the immensely long
transients encountered in our simulations of water-ethanol
mixtures.8 As a result we have been able to explore a larger
range of values of the Rayleigh number, reaching values at
which the low-dimensional description of this system valid
near threshold begins to breakdown. We have argued that this
transition occurs onceueu,G−2 and provided numerical evi-
dence in support of this claim. Among the new phenomena
that occur onceueu*G−2 are thefish statesoriginally ob-
served by Kolodner, Surko, and Williams in water-ethanol
mixtures2 and various types of dynamically localized
traveling-wave states also seen in experiments.26–28

For ueu&G−2 the dynamics of the system can be under-
stood in detail using a low-dimensional description based on
the interaction of adjacent pure parity chevron states whose
structure is known from linear theory, as summarized in Sec.
IV. These states interact strongly at small amplitude in the
vicinity of mode interaction points, i.e., specific values of the
aspect ratioG at which both modes bifurcate from the con-
duction state simultaneously.7 These mode interaction points
correspond to a double Hopf bifurcation with generically
nonresonant frequencies. Unfolding of the normal form for
this bifurcation to take into account the splitting of the mode
interaction leads to a pair of simple equations for the ampli-
tudes of the two competing modes. It is a remarkable fact
that these equations describe all the qualitative behavior of
the system forueu&G−2, including the blinking and repeated
transient states and the transitions between them, provided
only that one takes into account the fact that the primary
instability to the chevron state is generally subcritical. In
particular, the model constructed in Sec. IV shows that the
repeated transients are a three-frequency state, and explains
why it is so often the first nontrivial state observed in the
simulations once the conduction state loses stability, and why
it often appears without observable hysteresis. The model
also shows that with increasing Rayleigh number the lowest
of the three frequencies in the repeated transient state disap-
pears in a tertiary Hopf bifurcation, leaving behind a stable
large amplitude blinking state. In the model, as in the simu-
lations, this bifurcation is supercritical and hence is nonhys-
teretic. In contrast, the corresponding bifurcation in water-
ethanol mixtures was found to be always subcritical and
hence hysteretic.8 Finally, the model also suggests the possi-
bility of chaotic repeated transients, and we were able to find

such states in3He–4He mixtures, although only with stress-
free boundary conditions. In principle the coefficients in the
model can be calculated from Eqs.s1d–s6d in terms of the
physical parameters of the system. This is a major undertak-
ing, however, and is beyond the scope of this paper. Conse-
quently our interpretation of the simulations remains qualita-
tive.

When uSu is sufficiently small the dynamics remains low
dimensional through the transition from the blinking states to
steady convection. The nature of this transition can be under-
stood on the basis of existing theory for the Hopf bifurcation
with brokenOs2d symmetry.5,16,19,20In this theory the loss of
translation invariance due to the presence of sidewalls is
treated as a perturbation of the unbounded system with peri-
odic boundary conditions. This approach is appropriate at
largere since the effect of sidewallsweakenswith increasing
e. With periodic boundary conditions Eqs.s1d–s6d possess
Os2d symmetry, and both standing wavessSWd and traveling
waves sTWd bifurcate from the conduction statesimulta-
neously. Weakly nonlinear theory shows that for typical pa-
rameter values both bifurcate subcritically, with the TW
more subcritical than the SW.16 The presence of distant
boundaries splits apart this multiple bifurcation but does not
change the direction of the branching. Odd and even SW, to
be identified with the odd- and even-parity chevrons, are
now the only states that bifurcate from the conduction state;
the analog of the traveling waves bifurcates from one or
other chevron branch in a secondary steady-state bifurcation,
and takes the form of a single frequency state that is neither
odd nor even under left-right reflection. These states, hereaf-
ter TW8, resemble asymmetric chevrons near the secondary
bifurcation, but pure traveling waves at large enough
amplitude.5,19,20 This bifurcation is present even when the
chevrons are subcritical, and in smaller domains will occur
beyond the saddle-node bifurcation that stabilizes them.
Since the TW are generally more subcritical than the SWs it
is likely that this steady-state bifurcation will remain sub-
critical; the resulting TW8 will therefore remain unstable.
However, as shown elsewhere,15,19,20 for appropriate aspect
ratios this steady bifurcation may be preceded by a Hopf
bifurcation producing blinking states, which in turn termi-
nate in a globalsheteroclinicd bifurcation connecting the two
symmetry-related TW8. The behavior of the blinking fre-
quencyv2 provides the signature of this bifurcation: as this
bifurcation is approachedv2 vanisheslogarithmically, cf.
Eq. s9d, while v1 remains finite. Since the TW8 are unstable
the solution then jumps to the only other stable state avail-
able, steady overturning convection. This scenario is entirely
consistent with the results obtained numerically forS
=−0.001 in Figs. 1–4. A similar transition has also been seen
in experiments on water-ethanol mixtures.2 Note that this
scenario applies for relatively small values ofuSu, for which
the Takens–BogdanovsTBd point S=STB is not far, and a
low-dimensional description is therefore appropriate.

Onceueu*G−2 the above scenario may continue to hold,
but only if the separation ratioS is tuned at the same time.
Our simulations reveal that for genericOs1d values ofS the
behavior becomes dramatically different. This regime is
characterized by the so-called fish state, first observed in
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water-ethanol mixtures,2 and it is the vanishing of the chev-
ron frequencyv1, instead ofv2, that now appears to be re-
sponsible for the cessation of the blinking state ase in-
creases. We surmise that, in this regime, ase increases the
amplitude of the chevron becomes large enough that nonlin-
ear corrections reduce the frequencyv1 locally to zero. In
this region the state ceases to propagate and resemblesslo-
callyd steady overturning convection. Flows of this type ho-
mogenize the mixture, and permit the formation of an inclu-
sion of steady overturning convection of substantially larger
amplitude, cf. Fig. 5. Such inclusions are not stable, how-
ever, and the steady state expands, invading the rest of the
domain, and replacing the time-dependent state by a time-
independent localized or extended state. A transition of this
type correspondsslocallyd to a jump from an unstablesteady
convection state to a larger amplitude stable steady state, as
seen in Fig. 5. However, from a global perspective the details
of this transition remain unclear.

The fish statesFig. 10d is the first manifestation of the
transition to a large number of degrees of freedomse
*G−2d, the fish phase corresponding to temporary but dy-
namic confinement of the traveling-wave state. The hallmark
of dynamic confinement is the essentially complete absence
of counterpropagating waves. This is seen not only in the
wall-attached state in Fig. 18 but also in the space-time plots
in Figs. 11 and 17. In a dynamically confined state the finite
amplitude traveling waves are separated from the
convection-free regionsi.e., a region of exponentially small
wavesd by a sharp front ofOse−1/2d width; the transition be-
tween this regime and the low-dimensional regime domi-
nated by chevron-like states occurs when the width of the
front becomes comparable to the size of the domain, i.e.,
ueuG2,1. The latter regime is dominated by sidewalls and
any localization can be at most kinematic.20 In the kinematic
regime the amplitude of the counterpropagating wave is
never zero, and a kinematically localized state near the left
sidewall always shows a small amplitude right-traveling
wave near the right sidewall, i.e., such a localized state is
nothing but a strongly asymmetric chevron.20,40 Our simula-
tions are broadly consistent with these ideas.

For example, in Fig. 10G=10 ande=2.35310−2 so that
ueuG2=2.35, while in Ref. 2, where the fish state was first
observed,G=16.75 ande=0.0103, givingueuG2=2.89. Both
of these examples represent marginal cases just outside of
the low-dimensional description. The experiment in Ref. 21
on water-ethanol mixtures is further in the high-dimensional
regime. HereG=40.6 ande=0.0094, givingueuG2=15.49. In-
deed the authors argue21 that for sufficiently largee the dy-
namics of the system resembles more and more the collapse
events described by a single subcritical Ginzburg–Landau
equation on anunboundeddomain. In fact, the experiments
of Ref. 21 suggest that this is so onceueuG2*10, while those
of Ref. 23, performed for slightly largeruSu and subcritical
values ofe, suggest the requirementueuG2*5. Our simula-
tions indicate that the location of the transition to high-
dimensional behavior depends quite sensitively on the value
of uSu, although in all casesueuG2 remains of order one. For
example, our results forS=−0.021 yield ueuG2,0.3; for S
=−0.5 the transition to the fish state and subsequent transi-

tions probably all take place at negative values ofe, not
considered here.

The temporarily localized traveling-wave states shown
in Fig. 12 resemble in structure the so-called localized
traveling-wavesLTWd states found in Ref. 41 in extensive
simulations of binary mixtures with laterally periodic bound-
ary conditions and water-ethanol parameters. However, in
our case these states have a lower frequency than the corre-
sponding chevrons, in contrast to the LTW of Ref. 41 which
have a substantially higher frequency than the spatially uni-
form TW at the same parameters.41,42 Of course, our local-
ized states are unstable and may not be related to those of
Ref. 41 which are unaffected by lateral walls. In addition our
states are present at substantially positive values ofe. It is
noteworthy that with our boundary conditions we have been
unable to find stable finite amplitude traveling waves that fill
the entire domain. All our solutions always eventually break
up into the type of states described in Sec. III. Although there
is no evidence that3He–4He mixtures support spatially ho-
mogeneous traveling wavessmodulo end effectsd waves of
this type have been observed in rectangular containers filled
with water-alcohol mixtures. This unexpected observation
may be related to the fact that traveling waves in3He–4He
mixtures are typically more subcritical than in water-ethanol
mixtures,16 while the opposite is the case for standing waves
si.e., chevrons, in finite domainsd.
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