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We analyse the incompressible flow past a square cylinder immersed in the wake of an upstream splitter plate
which separates two streams of different velocities, UT (top) and UB (bottom). The Reynolds number associ-
ated to the flow below the plate is kept constant at ReB = DUB/ν = 56, based on the square cylinder side D as
characteristic length. The top-to-bottom flow dissymmetry is measured by the ratio R ≡ ReT /ReB ∈ [1, 5.3]
between the Reynolds numbers above and below the plate. The equivalent bulk Reynolds, taken as the mean
between top and bottom changes with R in the range Re ≡ (ReT + ReB)/2 ∈ [56, 178]. A Hopf bifurcation
occurs at R = 2.1± 0.1 (Re = 86.8± 2.8), which results in an asymmetric Kármán vortex street with vortices
only showing on the high-velocity side of the wake. A spanwise modulational instability is responsible for the
three-dimensionalisation of the flow at R ' 3.1 (Re ' 115) with associated wavelength λz ' 2.4. For velocity
ratios R ≥ 4, the flow becomes spatio-temporally chaotic. The migration of the mean stagnation and base
pressure points on the front and rear surfaces of the cylinder as R is increased determine the boundary layer
properties on the top and bottom surfaces and, with them, the shear layers that roll up into the formation of
Kármán vortices, which in turn help clarify the evolution of the lift and drag coefficients. The symmetries of
the different solutions across the flow transition regime are imprinted on the top and bottom boundary layers
and can therefore be analysed from the time evolution and spanwise distribution of trailing edge boundary
layer displacement thickness at the top and bottom rear corners.

I. INTRODUCTION

In many applications, bluff bodies are placed inside
boundary layers or wakes and the flow around them is de-
cisively modified by the inhomogeneous velocity profiles
of the incoming upstream flow. Some examples include
long-span bridges immersed in an atmospheric boundary
layer (BL), underwater pipes near the seabed or subject
to strong currents, bridge pillars that are close to the
river shore, or buildings in the wake of other upstream
buildings in urban areas.

Perhaps the simplest model characterising this situa-
tion is the uniform planar shear flow past a circular1–3

or square4,5 cylinder, where the streamwise incoming ve-
locity profile is linear. In these conditions, the shear pa-
rameter is defined as K ≡ DG/Uc, where D is the char-
acteristic length, Uc the upstream streamwise velocity at
cylinder mid-height and G = (∂u/∂y)y=yc the dimen-
sional cross-stream gradient of streamwise velocity.

Sometimes the body under scrutiny is placed in the
way of a thin shear layer rather than a smooth shear
profile. This is the case of objects cast in the near wake
of lift-producing devices such as airfoils, stator vanes or
rotor blades of compressors, turbines or fans. The rods
supporting structural casings of some of these devices
are examples of objects subject to this type of incoming
flows. It is situations of this kind that we intend to model
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here by placing a square cylinder in the interface of two
streams of different velocities. In fact, the configuration
in which a bluff body is placed in the wake of a stream-
lined body has very seldom been considered in the litera-
ture, notable exceptions being the analysis of cylinders in
the wake of airfoils6,7. Although this problem is different
than that of homogeneous upstream shear, the effects of
the different velocities seen by the upper and lower sides
of the bluff body are still analogous to some extent. The
problem at hand falls within the wider class of wake-
body interaction8–12, which deals with objects placed in
the usually unsteady though statisticaly symmetric wake
of some bluff body. Another fitting problem category,
perhaps even more relevant, is the flow past bodies in
tandem arrangement13,14, the one upstream being typi-
cally blunt and often also the one downstream, frequently
both cylinders. The particular case of an upstream body
inducing an asymmetric steady wake on the downstream
body as we have here has rarely been addressed despite
its intrinsic interest.

The transitions among the various flow regimes past
bluff bodies are often characterised through irregulari-
ties in the trends that some aerodynamic performance
indicators follow upon varying the governing parameters.
The recirculation bubble length (lr) in the square cylin-
der wake increases fast with Re . 50 while the flow re-
mains steady, reaches a maximum at the onset of vortex-
shedding and then quickly recedes (on average) in the
interval Re ∈ [50, 160] until three-dimensionality kicks
in15,16. The decrease of lr briefly stagnates for a while
across the wake-transition regime for Re ∈ [160, 220] and
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it is finally resumed at a slowing pace that asymptot-
ically approaches a terminal value for Re > 100017,18.
Meanwhile, the wake width (W ), which is large at the
onset of time-dependence, decreases fast while the solu-
tion remains 2D, reaches a minimum within the wake
transition regime and then gradually recovers to asymp-
totically stagnate as Re is further increased. The evo-
lution of the drag coefficient (Cd) positively correlates
with W , with a minimum precisely located within the
wake transition regime15–17,19–21. A fair indicator for the
expected base pressure coefficient (Cbp), which decisively
influences Cd, is provided by the length of the vortex for-
mation region (lf )22,23. Short formation lengths gener-
ate greater suction on the back surface of the object and
consequently higher drag is to be expected. Nonethe-
less, a thorough understanding of Cd trends must neces-
sarily couple the dependence of Cbp (or lf ) on Re with
that of W , which in turn depends on the location where
boundary layers separate. Unsteady two-dimensional cir-
cular cylinder wakes exhibit a shrinking vortex forma-
tion region as Re is increased, but lf starts growing past
the wake transition regime as three-dimensionality de-
velops fully24. The increasing trend is however reversed
anew as the shear layers become prone to the Kelvin-
Helmholtz instability that ends up triggering transition
to turbulence25. In contrast, lf (Cbp) follows a decreas-
ing (increasing) trend over the full Re range for the
square cylinder, with an interim vacillation only across
the wake transition regime15,16,18. Cd decreases with Re
for the two-dimensional vortex-shedding solution as W
gets smaller, despite the declining trend of lf . Once the
flow has become three-dimensional, the increase in Cd
can be ascribed to the fast shortening of the vortex for-
mation region, which now acts concurrently with the slow
widening of the wake18.

The Strouhal number for the time-dependent flow
around square and circular cylinders grows steadily as
Reynolds number is increased while vortex shedding re-
mains 2D16. In the wake transition regime, St experi-
ences a sudden discontinuous drop15,16 that is later over-
come in a second discontinuity26,27, a feature that passed
unnoticed in early square cylinder experiments19,28. As
for the circular cylinder, the first and second disconti-
nuities are associated to the inception of modes A (with
dislocations) and B, respectively18,26,29. The analogy in
the evolution of St with Re between circular and square
cylinders ends at the wake transition regime. While St
keeps asymptotically increasing for the circular cylinder
until the detached shear layers become unstable to a
Kelvin-Helmholtz-type instability at Re ∼ O(103)25,30,
the square cylinder St undergoes a slow decline imme-
diately after the wake transition regime has been over-
come and mode-B-type structures pervade the wake18,20.
The differences are mainly attributable to the effect that
the presence of sharp corners has on the location where
boundary layers separate to form shear layers. Separa-
tion points can freely loiter on the surface of a circu-
lar cylinder, both instantaneously or as a consequence of

changing parameters such as Re, free-stream turbulence
intensity (Tu), aspect ratio (Γ ≡ Lz/D), blockage ratio
(B ≡ Ly/D) or end conditions. For a square cylinder,
boundary layers are bound to separate at the leading
edge corners and are only seen to reattach for very low
Re < 155, and then only to separate again from the trail-
ing edge corners. Beyond this point, separation seems to
invariably occur at the front corners17 and a saddle point
emerges and floats above the rear corners16,31. As a mat-
ter of fact, the separation bubble debuts at Re ' 100 (for
the average flow fields, slightly earlier if instantaneous
fields are considered) at about a third chord distance
from the leading edge, such that separation is not ini-
tially located at the front corners, but approaches them
fast as Re is increased31. At very low Re, before the in-
ception of the separation bubble, the flow separates at
the trailing edge corners. The relation between the flow
topologies past square and circular cylinders has recently
been elucidated by the numerical smooth transformation
of the former into the latter by gradual rounding of the
corners32.

Upon introducing upstream shear, there is general con-
sensus that the stagnation point on a circular cylinder mi-
grates towards the high-velocity side as the shear param-
eter K is increased, and this independently of Re33–42.
The drift induces an acceleration of the flow along the
front part on the low-velocity side, which generates a
cross-stream pressure force towards it39. At the same
time, the increase in K delays the separation of the BL
on the high-velocity side and advances it on the low-
velocity side33,37. This has the antagonistic effect of in-
creasing (reducing) the pressure on the low- (high-) ve-
locity side, between the suction peak and the separation
point, thus producing a cross-stream pressure force from
low- to high-velocity side39. At the rearmost portion
of the cylinder, the pressure distribution on both sides
is approximately flat and dictated by the base point.
The net effect, resulting from the addition of the two
opposed cross-stream forces at the front and mid chord
of the cylinder, is a lift force from high- to low-velocity
side that increases linearly with K40, in accordance with
most previous studies33,36,37,43,44, with some unexplained
numerically computed exceptions that produced oppo-
site lift2,45. Besides generating the aforementioned lift
force, the pressure distribution due to the competing ef-
fects of separation and stagnation point locations is such
that net torque is generated46. The torque acts on the
cylinder counter-intuitively with sign opposite to that of
the free-stream vorticity, as has been observed in actual
experiments1,3,33.

There is some controversy as to the dependence of Cd
of the circular cylinder on the shear parameter. Sev-
eral experimental3,37,39,47 and numerical36,38,48–50 stud-
ies have shown a decreasing trend, in some cases
marginal, with K. Others2,43,45 show the exact reverse
trend. Free-stream turbulence levels, which are often de-
pendent on the prescribed shear parameter, might be
playing an important role in experimental results39,43.
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The drag coefficient has been shown to clearly correlate
with the base pressure coefficient at the back of the cylin-
der also in the presence of upstream shear36,37,39,40. The
relative contribution of pressure forces to total drag has
been found fairly independent of K at any given subcrit-
ical Re in the few studies that report it2,36.

Root mean square of lift fluctuations (C ′l) have been
reported to slowly increase with K in some cases36,38,50,
decrease in others33, or even sharply increase to fi-
nally decay and disappear altogether at very low Re
following the suppression of vortex shedding2. Mean-
while, drag fluctuations (C ′d) have been shown to either
increase38,50 or to be nearly imperceptible throughout2.
Base pressure coefficient fluctuations (C ′pb) apparently

decrease with K39. There is also disagreement as
to whether St increases with K45, sometimes after a
slight decline at low K < 0.11,3, clearly decreases51,
marginally decreases36,38, marginally increases34, or re-
mains unaffected39,40.

Upstream shear has been shown in experiments to de-
lay the onset of periodic vortex shedding, the Reynolds
number at which the Hopf bifurcation occurs ReH in-
creasing with K to the point that shedding can be com-
pletely suppressed all the way up to Re < 2201. This
effect has also been observed in numerical simulation2,50.
Other computational studies, however, did not detect
the phenomenon despite exploring similar values of the
parameters36,40.

While most two-dimensional studies agree that St de-
creases for increasing K ≤ 0.2 for Reynolds numbers
Re ∈ [ReH , 250]52,53 and even beyond5,54, experiments
and three-dimensional numerical simulation seem to in-
dicate that this trend is overcome for higher values of
Re ∈ [500 − 1000], for which St is unaffected by K4

or marginally increases55. Meanwhile, both 〈Cl〉 and
〈Cd〉 decrease at low Re . 100 (the former pointing to-
wards the low-velocity side) and increases instead at high
Re & 10056, a behaviour that seems to persist at much
higher Re for Cl but not for Cd

4, even in two-dimensional
simulations for Re ≤ 15005. There exist however notable
two- and three-dimensional numerical studies that have
reported positive growing Cl for increasing K at moder-
ate Re41,56. The rate of increase of 〈Cl〉 with K sharpens
as Re gets larger, while 〈Cd〉 becomes quite independent
of K for Re > 2004,55. C ′l and C ′d fluctuations increase
both with Re and with K at low Re ≤ 15056 and even
beyond41, but are mostly insensitive toK at higherRe4,5.

A unique secondary three-dimensionalising instability
characterised by a single mode41 is observed in the wake
behind a square cylinder subject to upstream shear. This
mode arises at Re ' 140 ∼ 150 when K = 0.2 and it
was initially mistaken for mode B41 due to its similar
wavelength. Its three-dimensional flow structure, how-
ever, experiences a half wavelength shift every vortex-
shedding cycle, a symmetry which plausibly relates it to
a mode C originally found for the uniform flow past a
toroidal cylinder57 and later also past square cylinders
at incidence58, and circular cylinders immersed in homo-

geneous upstream shear59. It seems that the disruption
of the top-bottom spatial Z2 symmetry, favours mode C,
which takes precedence over modes A and B.

In the present manuscript, we have chosen to place
the square cylinder in a thin shear layer created by a
piecewise-constant velocity profile with the discontinuity
separating the top and bottom homogeneous streamwise
velocities precisely located at cylinder mid-height. The
same configuration was previously used by Mushyam and
Bergada 60 , An et al. 61 , although the flow was intention-
ally kept two-dimensional. This kind of upstream condi-
tions may be obtained experimentally in a wind or water
tunnel62, and the development of the shear layers thus
generated have been thoroughly investigated63–65. The
plate length, the gap between its trailing edge and the
cylinder and the bottom stream Reynolds number are
kept constant, while the top stream Reynolds number,
and with it the top-to-bottom Reynolds number ratio
R ≡ ReT /ReB , has been gradually increased. The lin-
ear stability analysis of the asymmetric two-dimensional
Kármán vortex flow, the temporal characterisation of the
resulting nonlinear solutions and the spanwise-symmetry
implications across the wake transition regime were all
discussed in detail in a separate study66. Here we exploit
the same simulation results and place the focus instead on
the aerodynamic performances, and their relations with
wake topology and statistics.

The paper is structured as follows. The mathemati-
cal model is briefly presented in section §II alongside the
numerical approach undertaken. Section §III discusses
the main aerodynamic performance parameters of the
flow. The spatial and temporal characterisation of the
flow past the cylinder is then tackled in section §IV, fol-
lowed by a detailed analysis of the boundary layers on
the top and bottom surfaces in section §V. Finally, the
main results are summarised and conclusions drawn in
section §VI.

II. MATHEMATICAL MODELLING

The geometry consists of a square cylinder of side D
placed at zero incidence in the wake of a horizontal split-
ter plate of negligible thickness that separates two incom-
ing streams with velocities UT and UB , above and below,
respectively. The flow is governed by the Navier-Stokes
equations, which after suitable non-dimensionalisation
with length D, the kinematic viscosity of the fluid ν,
and the upstream mean/bulk velocity U = (UT +UB)/2,
read

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u,

∇ · u = 0,
(1)

where u(r; t) = (u, v, w) is the non-dimensional veloc-
ity and p(r; t) the non-dimensional pressure, at a non-
dimensional location r = (x, y, z) and time t. The scalar
quantities x (u), y (v) and z (w) are the streamwise,
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cross-stream and spanwise coordinates (velocity compo-
nents).

Figure 1 represents the computational domain with
the centre of the square cylinder located at the ori-
gin. The domain extends Lux = 9D, Ldx = 25.5D and
±Ly/2 = ±8D from the origin in the upstream, down-
stream and cross-stream directions, respectively. The
horizontal splitter plate, of chord-length L = 6.5D, starts
at the inlet boundary and stretches at mid height leav-
ing a gap of 2D with the front surface of the cylinder.
The spanwise extent of the domain has been varied in
the range Lz ∈ [2.5, 10].

A piece-wise constant velocity profile has been pre-
scribed at the Dirichlet inlet boundary with u = UT ı̂ =
2UR/(R + 1) ı̂ above the splitter plate and u = UB ı̂ =
2U/(R + 1) ı̂ below it, alongside homogeneous Neumann
conditions for pressure. The top and bottom bound-
aries have been treated as slip walls, i.e. ∂yu(x,±8, z) =
v(x,±8, z) = ∂yw(x,±8, z) = p∞ = 0, while no-slip
boundary conditions have been used for the splitter plate
and cylinder walls. For the outlet boundary, homoge-
neous Neumann velocity (∇u · n̂)(25.5, y, z) = 0 and
homogeneous Dirichlet pressure p(25.5, y, z) = 0 have
been specified. The incompressible viscous flow has been
evolved in time with the Incompressible Navier-Stokes
solver implemented in Nektar++, an open source code
based on the spectral/hp element method67. The veloc-
ity correction scheme has been applied for the time evo-
lution, which is made consistent with the second-order
temporal accuracy of the numerical scheme by increas-
ing the order of the pressure boundary condition67,68.

In the streamwise-crossflow plane, a spatial discretisa-
tion of 14426 2nd-order quadrilateral elements has been
deployed, and a few selected cases run with 3rd order
polynomial expansions in order to asses grid indepen-
dence. Errors in performance monitors are estimated at
below 1% (see appendix A). A particularly refined mesh
has been setup in the vicinity of the shear layers, bound-
ary layers and the wake to capture the complex dynamics
expected there. Along the span of the cylinder, Fourier
expansions of 28 to 80 modes have been deployed to
fully resolve the three-dimensional features of the flow,
by always guaranteeing six orders of magnitude decay in
modal energy.

The time step has been set to ∆t = 3 × 10−3 for
two-dimensional cases, and then gradually decreased to
1.2 × 10−3 at the highest-R explored to meet the CFL
condition and guarantee sufficient accuracy. Simulations
have been ran for over 500 advective time units past
all transients before starting collecting data and then
evolved for an additional minimum of 40 to 60 vortex
shedding cycles (often more) to obtain sufficiently con-
verged statistics.

The method, domain and mesh have been validated
against benchmark computations of the homogeneous
flow past a square cylinder at comparable values of the
Reynolds number, and test runs independently doubling
Ldx and Ly have been performed to quantify the degree to

which results are independent of domain dimensions (see
appendix A). Aerodynamic performances monitors devi-
ate by less than 0.7% upon doubling Lx, while blockage-
induced errors are estimated at less than 2.5% for three-
dimensional simulations. Force coefficients r.m.s. values
have been found particularly sensitive to blockage effects
in two-dimensional computations (∼10% error), but the
sequence of bifurcations and the type of solutions found
along the way are not qualitatively affected. Convective-
type conditions of the Robin type have also been pre-
scribed at the outlet boundary for some test cases but
produced no perceptible alteration to any of the aerody-
namic performance quantities, thus confirming that the
downstream extent of the domain is already sufficiently
long to have no impact on the flow field around the cylin-
der.

The main flow parameters governing the dynamics are
the Reynolds number (Re ≡ UD/ν), and the top-to-
bottom streamwise velocity ratio (R ≡ UT /UB). Al-
ternatively, two independent Reynolds numbers, for the
top and bottom streams, might as well be defined and
used as an alternative set of parameters. In the present
study, the bottom Reynolds number is kept constant
i.e. ReB = 56 while the top Reynolds number is var-
ied in the range ReT ∈ [56, 301]. This corresponds
to the simultaneous variation of the top-to-bottom ve-
locity ratio R ∈ [1, 5.375] and bulk Reynolds number
Re ∈ [56, 178.5].

The stability analysis performed by El Mansy et al. 66

revealed that the flow remains two-dimensional for R .
3.1, and that the fastest growing three-dimensional mode
in the range 3.2 . R . 4.0 has a characteristic spanwise
wavelength λz ' 2.4. Further increase in R shifts the
preferred wavelength of the instability towards λz ' 2.1.
Consequently, a spanwise domain of Lz = 5 seems a fair
choice to capture the dominant mode and allow compu-
tation of nonlinear solutions that yield sufficiently accu-
rate first and second order statistics. Nevertheless, a few
simulations with Lz = 10 have been run to confirm the
appropriateness of the spanwise extent.

The lift (Fl) and drag (Fd) aerodynamic forces per
unit span are nondimensionalised into force coefficients
following Cl = 2Fl/(ρU

2D) and Cd = 2Fd/(ρU
2D), re-

spectively, while pressure (Cp) and skin friction (Cf )
coefficients are derived from the dimensional pressure
p and wall shear stress τw = (∇u · n̂)w according to
Cp = 2(p − p∞)/(ρU2) and Cf = 2τw/(ρU

2). Super-
scripts Cpx and Cfx on the lift and drag coefficients denote
the pressure and friction (viscous) components, respec-
tively.

III. AERODYNAMIC PERFORMANCES

As is the case for any bluff body, the aerodynamic
forces acting on the square cylinder are dominated by
pressure rather than friction. This is mainly true for
drag, as its decomposition into pressure (dotted line)
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FIG. 1: Sketch of the computational domain and mesh. The square cylinder, of side D, is centred at the origin. The
splitter plate (Red), of length L and negligible thickness, starts at the upstream boundary, located at y = −Lux, and

extends horizontally at mid-height. The downstream boundary is located at y = Ldx and the top and bottom
boundaries at y = ±Ly/2. Homogeneous (UT ) and (UB) velocities are prescribed on the top and bottom portions of

the inlet boundary. The domain is periodic along the span for three-dimensional simulations. The mesh is
particularly refined in the vicinity of the cylinder where complex phenomena are taking place, and left to relax away

from it. The inset shows a detail of the mesh around the cylinder and in the near wake.

and friction (dashed) components clearly shows in fig-
ure 2a, but not quite so when assessing lift at low veloc-
ity ratios R (figure 2b). The evolution of Cd can there-
fore be explained mostly in terms of pressure distribu-
tion on the cylinder surfaces, while that of Cl requires
the combined analysis of pressure and friction. After
an initial, barely perceptible decline, Cd starts growing
with R, which implicitly involves the increase of both Re
and an equivalent shear parameter purposely defined as
K ≡ 2(UT − UB)/(UT + UB). For cylinders subject to
homogeneous shear, Cd tends to reduce with K36,49 and
increase with Re69,70. Here it seems that the latter ef-
fect dominates over the former. The initial decline of Cl
with R is sharper than that of Cd, as the friction compo-

nent Cfl , which dominates at low R, decreases fast. The
net effect is a downforce that is only reversed for higher
R, when pressure lift Cpl starts growing fast and friction
lift Cpl stagnates. This occurs as the flow becomes time-
periodic, but the downforce is not overcome, and average
positive lift obtained, until after the flow has become
three-dimensional for R > 3.1. The net downforce has
also been reported for square cylinders in homogeneous
upstream shear49,71 for Re ≤ 100 and K ≤ 0.5, while
for Re ≥ 150, positive lift has been observed41,56. Both
observations are perfectly compatible with our results.
For completeness, the data of figure 2 is given in table V
of appendix B. Once the flow becomes time-dependent,
both the lift and drag coefficient start fluctuating. The
oscillation amplitudes, denoted with error bars, come
mainly from pressure force fluctuation for both Cl and

(a)

(b)

FIG. 2: Averaged Lift and Drag coefficients as a
function of the velocity ratio R. (a) Drag coefficient Cd.
(b) Lift coefficient Cl. Different symbols denote steady
(cross signs) and unsteady (circles) solutions. Colour
coding separates 2D (black), 3D periodic (red), 3D
period-doubled (blue) and chaotic (green) solutions.

Total force coefficient trends (solid lines) are split into
their pressure (dotted) and friction (dashed)

components.
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Cd, with friction force fluctuation barely perceptible.

Figure 3 shows the spanwise- and time-averaged pres-
sure coefficient 〈Cp〉z,t distribution on all four cylinder
surfaces for a selection of velocity ratios. The graph
above the cylinder sketch depicts the 〈Cp〉z,t distribution
along the top (solid line) and bottom (dashed) surfaces,
while that to the right shows the distributions for the
front (solid) and rear (dashed) surfaces. The pressure
lift (Cpl ) and drag (Cpd ) force coefficients may be read-
ily obtained from assessing the areas enclosed between
the lines for bottom and top and for front and rear sur-
faces, respectively. The 〈Cp〉z,t distributions on the top
and bottom surfaces are mutually identical for R = 1
(yellow), while those for the front and rear surfaces are
even-symmetric about the y = 0 plane, on account of
the reflection symmetry of the problem. As a result, the
pressure lift cancels exactly (Cpl = 0), as also does the
pitching moment about the centre of the cylinder due to
pressure forces (Cpm(O) = 0). The pressure drag coeffi-
cient Cpd ' 0.684, which is the main contributor to total
aerodynamic drag, is already quite important at R = 1.

As the symmetry is broken by setting R > 1, the
〈Cp〉z,t distribution on the top and bottom surfaces be-
come increasingly dissimilar. The evolution for small in-
creasing R is that of generating a positive pressure dif-
ference between top and bottom on the back half of the
cylinder and a negative one on the front, such that the
downforce produced by the front half of the cylinder is
just overcome by the net lift generated by the rear half
at R = 2. At R = 3, the whole chord of the cylinder
is already producing pressure lift, and the top-to-bottom
pressure difference grows fast as R is further increased.
The effect on the rear surface of increasing R is, beyond
gradually reducing the average 〈Cp〉z,t, that of slightly
dissymmetrising its distribution towards lower (higher)
pressures on the TR (BR) corner. The dissymmetry is
more prominent on the front side, with a remarkable pres-
sure surge in proximity of the TF corner and a moderate
pressure drop at the BF corner. The average 〈Cp〉z,t in-
creases sharply on the front surface and, in combination
with the slight but steady decrease on the rear surface,
accounts for the fast increase of the pressure drag co-
efficient 〈Cpd 〉z,t, and, with it, the total 〈Cd〉z,t. This
increasing trend has been observed to persist at much
larger Reynolds numbers up to Re < 15005. The bulk
of 〈Cpl 〉z,t is produced on the front half of the cylinder
and 〈Cpd 〉z,t is strongly biased towards the upper half,
an observation already reported in the literature49,55,56.
Both effects combined result in a strong nose-up (nega-
tive) pressure pitching moment 〈Cpm〉z,t < 0.

The spanwise- and time-averaged friction coefficient
〈Cf 〉z,t distributions on all four cylinder walls are shown
in figure 4. As was the case for pressure forces, friction
forces may also be assessed from areas in these graphs,
but now it is the area between each individual curve and
the 〈Cf 〉z,t = 0 line that matters. The symmetry of case
R = 1 has the exact same effects on the 〈Cf 〉z,t distribu-
tions as discussed above for 〈Cp〉z,t. The friction on the

top and bottom surfaces generates a friction drag Cfd that
contributes its share to total drag Cd, while on the front
and rear surfaces the upward-pointing friction above the
mid plane y = 0 compensates exactly the downward-
pointing friction below the mid plane, producing no net

Cfl . Friction values are higher on the front surface than
on the rear surface. As R is increased in the steady
regime, velocities above the cylinder grow and produce
higher friction on the top wall, while friction is reduced on
the bottom wall. So much so, that at R = 2 a separation
bubble has appeared on the bottom wall and, with it, a
region of forward-pointing friction. The separation point
is initially a third chord downstream from the BF corner,
but it moves fast towards it as R is increased, an effect
that has also been observed for the classic square cylin-
der configuration as Re is increased beyond the value for
which the separation bubble first develops31. The fric-
tion on the top surface has increased from the symmetric
case, but is nonetheless outweighed by the friction drop
on the bottom surface. The net effect is a slow decrease in
net friction drag Cfd that is sustained over the full range
of R explored. Although the bottom wall friction stag-
nates at negative values beyond R = 2, that on the top
wall starts decreasing, and the net effect remains a slow

decrease of Cfd . The magnitude of Cfd is however much
lower than that of Cpd , which clearly dominates, already
at R = 1, and the prevalence of the latter intensifies as R
is increased. The separation point on the bottom surface
moves fast to the BF corner and the reattachment point
quickly recedes and disappears, such that the boundary
layer is fully detached. This explains why R = 2 features
about the highest pressures on the bottom surface of all
cases considered. The friction forces on the rear surface
remain quite low over the full range of R explored, and,
though the top-bottom odd-symmetry is broken as the
base point moves, some compensation remains between
the top and bottom halves. The situation is very differ-
ent on the front surface. Here the down-pointing fric-
tion grows large as the stagnation point moves towards
the TF corner, in agreement with all published literature
on both square49,55 and circular33–36,38,40 cylinders sub-

ject to upstream shear. The ensuing net Cfl is negative
and corresponds to a strong downforce. This downforce
grows fast at low R, while the net pressure lift Cpl re-
mains rather low, which results in the initial decline of
total lift Cl towards a net downforce. As the velocity
ratio is increased beyond R > 3, the 〈Cf 〉z,t distribution
on the front face stagnates, while the 〈Cp〉z,t distribution
difference between bottom and top surfaces grows fast.

As a result, Cpl takes the lead over Cfl , and the total Cl
reverses its trend. Net lift is already being produced by
the time R = 3.4 is reached.

Performance parameters are strongly linked to a few
singular points (lines in 3D) on the object surface, which
are in turn related to flow topology. One such class of
points is the so-called separation point where the bound-
ary layer developing on a wall detaches from it in the
presence of an adverse pressure gradient, thus contribut-
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FIG. 3: Spanwise- and time-averaged pressure coefficient 〈Cp〉z,t distribution on the front (solid) and rear (dashed)
walls (right panel) and on the top (solid) and bottom (dashed) surfaces (top panel).

FIG. 4: Spanwise- and time-averaged friction coefficient 〈Cf 〉z,t distribution on the front (solid) and rear (dashed)
walls (both to the right of the square) and on the top (solid) and bottom (dashed) surfaces (top panel). The regions
indicated with dashed circles are zoomed in to better identify stagnation, base, separation and reattachment points.
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ing to the enlargement of the wake. In the case of the
symmetric flow past a square cylinder at sufficiently low
Re, the downstream corners, TR and BR, constitute sep-
aration points for the boundary layers developing on the
top and bottom walls, respectively19. The increase of Cp
at the BR corner upon increasing R, generates an ad-
verse pressure gradient along the bottom wall that may
result in an early separation. Separation points may be
detected by the cancellation of wall shear stress and one
can be clearly spotted in figure 4 for R = 2 (orange cross).
In this case, however, the detached boundary layer reat-
taches shortly after (orange plus sign) leaving behind a
small separation bubble. Reattachment points are also
identified by a change of sign of friction. Beyond this
value of R, reattachment rapidly moves to the BR cor-
ner and disappears, while separation migrates to the BF
corner and leaves the full bottom wall in detached con-
ditions. At the largest R = 5.357, however, the detached
flow at BF gets reattached briefly in the rear half of the
bottom surface before detaching again slightly upstream
from the BR corner.

Two other singular points are the stagnation and base
points on the front and rear faces, respectively. A stream-
line impinges on the former and another one, running up-
stream, on the latter. A characteristic property shared
by both points is that the wall-normal gradient of wall-
parallel velocity cancels exactly, and wall shear stress
with it. They can therefore be readily identified by look-
ing for zeroes along the Cf distributions on the front and
rear surfaces. The spanwise- and time-averaged stagna-
tion point location for the several R inspected in figure 4
have been duly marked in the graph to the right of the
cylinder sketch (circles). The impinging streamline hits
the front face at ys = 0 for the symmetric case R = 1
but rapidly climbs to about ys ' 0.4 for R = 3, close to
the TF corner, and remains pretty much unaltered there-
after. Meanwhile, the base point (squares) also starts ex-
actly at the mid plane yb = 0 on the rear face for R = 1,
but moves steadily down as the velocity ratio is increased
to moderate values. The highest case R = 5.375, how-
ever, has the base point relocated back close to the mid
plane.

So far we have discussed separation, reattachment,
stagnation and base points from the point of view of
average flow fields, but they will of course evolve dy-
namically for time-dependent solutions. Separation bub-
bles, when present, fluctuate in size and may occasion-
ally form and disappear as a matter of course. Three-
dimensionality renders the situation even more complex,
and friction cancellation may occur without separation.
Here three-dimensionality is only mild, as the base flow
is two-dimensional and spanwise-dependence is only trig-
gered by instability of an already time-dependent solu-
tion. The effect is that of introducing an undulation
along the span of separation, reattachment, stagnation
and base lines rather than modifying their topology al-
together.

Figure 5 illustrates the time dependence of the stag-

FIG. 5: Friction coefficient Cf distribution on the
square cylinder walls for a two-dimensional periodic
solution at R = 3. Shown are the time average (solid
black line) and the time-fluctuation amplitude (gray

shading). Symbols indicate the average location of the
stagnation (circle) and base (square) points, while error

bars delimit fluctuation.

nation and base point locations on the square cylinder
front and rear walls for a two-dimensional periodic so-
lution at R = 3. The Cf distribution on the front wall
appears rather steady, as clear from the sharp solid line
that represents it. No time fluctuation (gray shading) is
apparent to the naked eye. The stagnation point (circle)
is biased toward the TF corner and fluctuates impercepti-
bly. Some time dependence is instead already discernible
on the top and bottom wall distributions of Cf , but it
is on the rear wall that unsteadiness presents itself at its
wildest. The base point (square) is, on average, slightly
below the mid plane, but its location fluctuates from very
close to the BR corner to slightly above the mid plane.

The time- and spanwise-averaged location of stag-
nation (plus signs and circles) and base (crosses and
squares) points has been plotted in figure 6a. The
thick error bars denote time-fluctuation amplitude of
the spanwise-averaged instantaneous location. Spanwise
modulation is further indicated by the lighter-colour thin
error bars for instantaneous three-dimensional solutions
with maximum, minimum and mean spanwise-average.
The stagnation line is fairly straight and steady, while the
base pressure line oscillates with rapidly increasing am-
plitude once time-dependence sets in. Its spanwise mod-
ulation, however, is only mild for the three-dimensional
periodic and early chaotic solutions, but becomes clearly
commensurate with time-amplitude as chaos develops for
high values of R. Both the stagnation and the base
points start at the mid plane for R = 1 on account of the
problem symmetry. The stagnation point climbs fast to-
wards the TF corner as R is increased, saturates at about
ys ' 0.39 across the onset of time-dependence, and then
very slowly recedes with the advent and development of
three-dimensionality. Fluctuations, when present, are al-
ways nearly imperceptible. Meanwhile, the base point
steadily drifts towards the BR corner and reaches a min-
imum, on average, at about R ' 2.8, from which point
gradually recovers and has already crossed to above the
mid plane for R & 5.3. With the onset of time depen-
dence, the spanwise-averaged time-fluctuation amplitude
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(a)

(b)

(c)

FIG. 6: (a) Stagnation (ys, plus signs and circles) and
base (yb, crosses and squares) point location as a

function of R. (b) Corresponding pressure coefficient
values (Csp , Cbp). (c) Recirculation bubble length lr.

Colours as for figure 2 (Base point data replaces crosses
and squares with plus signs and circles, respectively).

The thick error bars denote time amplitude of the
spanwise-average value, while the thin error bars in

panel (a) convey spanwise modulation at three
particular instants corresponding to maximum,

minimum and an mean value of the spanwise average.

grows fast, reaches a maximum once three-dimensionality
kicks in and then starts declining, albeit only slowly. At
its most unsteady, the spanwise-averaged base point me-
andering covers over half the rear wall surface along a
full solution period. Taking spanwise dependence into
consideration it becomes however apparent that the base
line locally reaches far beyond the spanwise-averaged lo-
cation amplitude, and fairly close to the TR and BR
corners at certain spanwise locations and time instants
along its evolution. While the spanwise-averaged base
point location reverses its increasing amplitude trend be-
yond the onset of chaotic dynamics, the base line sweeps
over an ever increasing extension of the rear cylinder sur-
face. The pressure coefficients at the spanwise-averaged
stagnation Csp and base Cbp points, shown in figure 6b pro-
vide a fair indicator of pressure -and total- drag trends.
Csp starts at a fairly low value for R = 1 and escalates
monotonically to increasingly large values as R is raised.
Cbp debuts with a similar but negative magnitude that
increases rather slowly while the solution is steady. The

onset of time dependence brings a slow decline with it
that settles at a nearly constant value for large R. De-
spite the wild meandering of the base line, the base pres-
sure fluctuation amplitude remains moderate. The raw
data used in producing figure 6 has also been reported in
table V of appendix B.

IV. WAKE TOPOLOGY AND DYNAMICS

The spanwise- and time-averaged flow fields for a few
selected values of R are shown in figure 7. Both the
pressure coefficient (Cp, left) and the spanwise vorticity
(ωz, right, along with streamlines) are steady, spanwise-
independent and retain the symmetry of the problem for
R = 1. While the former is even-symmetric about the
mid plane, the latter is odd-symmetric. The highest Cp
is recorded at the TF and BF corners and maximum |ωz|
occurs in their close neighbourhood. Away from these
corners, Cp is positive ahead from the front wall and neg-
ative on all other three walls and into the wake. Stream-
lines, which are also symmetric, unveil the existence of a
large recirculation bubble in the near wake of the cylin-
der. The streamlines issued from the TR and BR corners
meet at a point along the wake centreline whence the
streamline that impinges on the base point at the back
of the cylinder is issued, along with another streamline
leaving downstream to infinity. Velocity necessarily van-
ishes at the intersection of streamlines, such that the flow
at this point is quiescent. The three streamlines connect-
ing this quiescent flow point with points TR, BR and base
at the back of the cylinder, together with the rear wall,
delimit two mutually symmetric enclosed regions or lobes
that do not exchange mass with each other or with the
outer flow field. Within these two lobes, fluid particles
are trapped and recirculate. The symmetric two-lobed
recirculation region is typical of the wake past circular
and square cylinders in homogeneous flow at all Re, pro-
vided that sufficiently long runs are averaged in the case
of time-dependent and chaotic solutions.

A very mild increase to R = 1.2 already dissym-
metrises the flow field, particularly so the streamlines
arrangement. The lower enclosure, which is bound by
the streamline now uneventfully connecting the BR cor-
ner with the base point, remains attached to the rear
wall and shrinks. The upper enclosure detaches instead
but remains an enclosed region containing the quiescent
flow point at the most downstream location on its bound-
ary. The streamline issued from the TR corner extends
now indefinitely downstream, as does the one issued from
the quiescent flow point. The streamline that arrives to
this point from below does no longer come from the BR
corner but from the upstream flow, barely avoiding the
cylinder bottom wall. The upstream fluid particles en-
closed between this streamline and the one impinging
on the stagnation point fly below the cylinder, surround
the lower lobe in an anti-clockwise fashion, approach the
rear wall above the base point, and then turn clockwise
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〈Cp〉z,t 〈ωz〉z,t

R = 1.0

R = 1.2

R = 2.0

R = 2.4

R = 3.0

R = 5.357

FIG. 7: Spanwise- and time-averaged flow fields. Shown are the pressure coefficient 〈Cp〉z,t (left) and spanwise
vorticity 〈ωz〉z,t (right, along with a few streamlines) fields for increasing velocity ratio R (top-to-bottom).
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to overfly the upper lobe before being released into the
far wake free to travel downstream.

The detached upper lobe shrinks fast and has utterly
disappeared by the time R = 2 is reached. The implosion
of the recirculation enclosure occurs for R ∈ (1.4, 1.6) and
thereafter only the fluid particles within the attached
lower lobe remain trapped in the near-wake flow field.
The pressure on the rear surface remains negative but
the suction is milder. The stagnation point has clearly
climbed on the front wall and a pressure surge becomes
plainly visible. The negative spanwise vorticity of the up-
per wall BL has intensified and extends along the shear
layer detached from the TR corner. Positive vorticity
informs of a strong BL developing from the stagnation
point downwards along the front surface and of its de-
tachment, if only partially, on the bottom wall. Here, a
small separation bubble is barely perceptible.

The lower lobe grows, now on average, given the time-
dependent nature of the solutions, as the velocity ratio
is increased beyond R > 2. The streamline impinging at
the base, which has moved below the mid plane, is no
longer issued from the BR corner but from a point that
has drifted upstream on the bottom wall until reaching
the BF corner. Meanwhile, the rightmost point where the
streamlines reaching the wake from the upstream region
bend upward and circulate upstream approaches the rear
wall of the cylinder. At R = 5.357, well into the time-
dependent three-dimensional regime, the only remaining
time- and spanwise-averaged enclosed recirculation re-
gion has grown large in the cross-stream direction and
a strong shear layer has developed on its lower bound-
ary. Partial reattachment occurs on the bottom wall.

Bluff bodies present a well defined (statistically aver-
aged) recirculation bubble provided a specular symme-
try about the mid plane exists. Defining a recirculation
bubble length (lr) for the upstream-sheared-flow past a
square cylinder is therefore not straightforward, because
most reversed flow occurs indeed outside of any recircula-
tion bubble. We have chosen to do so by measuring the
horizontal distance from the cylinder to the rightmost
point in the average flow field where streamwise velocity
vanishes, i.e. the rightmost inflection point on a stream-
line presenting purely cross-stream velocity. Thus mea-
sured, lr is seen to increase fast while the solution remains
steady two-dimensional (see figure 6c) and then 〈lr〉t de-
creases sharply, on average, as time dependence sets in.
This sharp crest of lr at the onset of time-dependence
has also been observed upon increasing Re for the homo-
geneous flow past a square cylinder17 and has been as-
cribed to the enhancement of momentum transport into
the wake by the unsteady flapping of the shear layers is-
sued from either side of the cylinder72. The fast decline is
dampened by the inception of three-dimensionality, and
〈lr〉z,t recedes very slowly as R is further increased.

Figure 8 shows instantaneous flow fields at 8 equis-
paced time-instants along a full vortex-shedding cycle for
R = 2.2, 2.4 and 3.0, the time origin having been set at
the crossing of the Poincaré section defined by Cl = 〈Cl〉t,

Ċl > 0. For R = 2.2, just after the onset of time period-
icity, the dynamics seem to consist of a mere fluctuation
about the mean flow fields depicted in figure 7. The
upper lobe of recirculated flow, which has disappeared
on average, exists however instantaneously as the closed
streamlines indicate. It is periodically created just down-
stream from the upper half of the rear wall (t = 0), grows
there for about half a period (until about t = T/2),
and then shrinks and disappears when advected down-
stream by the forming Kármán vortex (t = 7T/8). In
the mean time, the lower lobe remains attached to the
rear wall of the cylinder with its size pulsating period-
ically. If anything, it may seem to periodically merge
with and split from the small recirculation bubble left on
the bottom wall by the early detachment of the bound-
ary layer developing on it. The clockwise vortices shed
downstream along the wake form in the oscillating mo-
tion of the top shear layer. As vorticity concentrates
in the vortex-formation region towards the downstream
end of the shear layer, the immediately upstream region
is depleted, the shear layer conspicuously thinned, and
the formed vortex finally left free to tear apart. Un-
like what happens in the classic space-time symmetric
vortex-shedding regime, no synchronous anti-clockwise
vortices are formed here in the bottom shear layer that
can pair up with those shed form the top. While clock-
wise vorticity concentrates in strong monopolar vortices,
anti-clockwise vorticity remains stretched along an elon-
gated thin layer that surfs below the top vortex street
for some distance (the lower the R, the longer the dis-
tance) before either dissipating or being swallowed into
one of the clockwise vortex cores. This street of merely
negative vortices issued from the TR corner, which be-
come rounded in shape as R increases, has been consis-
tently observed to occur behind both circular38,40,51 and
square41,49,54,55 cylinders immersed in upstream shear.

At the slightly higher R = 2.4, vortex shedding pro-
ceeds much in the same way as for R = 2.2, but the in-
stantaneous recirculation lobes exchange their roles for a
brief period between t = T/8 and 3T/8, during which
the upper lobe is the one attached to the rear wall
of the cylinder and the lower lobe separates. Separa-
tion is always followed by downstream advection, ensu-
ing shrinkage and eventual disappearance. The snapshot
at t = T/8 is very closely taken at one of these peri-
odic events of role-exchange, while the other takes place
some time in between t = 3T/8 and T/2. The former is
very clear as to the underlying mechanism: a quiescent
flow point forms instantly to redistribute the streamlines
bounding the upper and lower lobes. The streamline im-
pinging on the base point is thereby disconnected from
the streamline issued from the TR corner and spliced to
that impinging on the separation point on the bottom
wall (the lower lobe comprises also the separated region
on the bottom wall in this regime).

At R = 3, the dynamics does not change qualitatively,
but the vortices are stronger and shed earlier and closer
to the rear wall of the cylinder. Although the upper
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FIG. 8: Wake vortex dynamics. Instantaneous streamlines and spanwise vorticity contours (ωz ∈ [−3, 3], blue to
red) over a complete vortex-shedding cycle for velocity ratios R = 2.2, R = 2.4 and R = 3.0. The time origin is set

by the crossing of the Poincaré section defined by Cl = 〈Cl〉t, Ċl > 0.

lobe remains attached for about half a cycle, its active
dynamics, which consist of rapid nucleation, explosive
growth and violent pull by the vortex shedding mecha-
nism, leaves no trace of it upon time-averaging of velocity
fields. Spanwise-averaging of three-dimensional cases be-
yond R > 3 does not add new time-dynamics features
that are worthy of notice. The period-doubling that re-
sults from the spanwise-invariance disruption at R = 3.4
is suppressed by averaging, the instantaneous spanwise-
averaged fields repeating every vortex-shedding cycle ex-
actly as for R = 3. Meanwhile, the second (legitimate)
period doubling at R = 3.8, although introducing a dy-
namically relevant subharmonic frequency to the flow, is
barely identifiable to the naked eye by mere inspection
of pressure, velocity or vorticity spanwise-averaged fields.
For a detailed account of the bifurcation sequence leading
to chaotic dynamics, including all symmetry considera-
tions, see El Mansy et al. 66 .

Reynolds stresses provide the means to further char-
acterise the velocity fluctuations of time-dependent solu-
tions and better understand vortex formation and mix-
ing processes in the wake. Figure 9 depicts correlations
of in-plane velocity fluctuations, suitably averaged in the
spanwise direction for three-dimensional solutions. The
streamwise velocity fluctuations self-correlation 〈u′u′〉 is
employed in the definition of vortex formation length.

Pressure drag Cpd -and therefore also drag Cd- of bluff
bodies is tightly coupled to the pressure coefficient 〈Cp〉z,t
at the base point, which is in turn intimately related to
the vortex formation length lf . Long vortex formation
regions are associated with a base pressure increase on
the rear wall of the bluff body and thus contribute to
drag reduction22,23. In top-down symmetric problems,
the symmetry is statistically preserved in a time-averaged
sense and a unique vortex formation length might be de-
fined in the wake25,73,74. The symmetry disruption intro-
duced by R 6= 1 dissymmetrises the spanwise- and time-
averaged fields both of mean and second moments. Ac-
cordingly, the top (lTf ) and bottom (lBf ) vortex formation
lengths are independently defined as the horizontal dis-
tances from the centre of the object (the square cylinder
in our case) and the streamwise location with maximum
〈u′u′〉 above and below the horizontal mid plane, respec-
tively. Additionally, vertical distances for top (hTf ) and

bottom (hBf ) peaks might be defined in order to gauge
the interaction between top and bottom forming vortices
in the near wake.

Thus defined, vortex formation length is always
slightly shorter on the top shear layer as compared to
bottom (lTf < lBf ), which, in addition with the higher

〈u′u′〉 peak level, is an indication that the top shear layer
has a larger share in driving the wake instability. As R
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FIG. 9: Near-wake Reynolds stresses 〈u′u′〉 ∈ [0.0, 0.2] (top) in steps ∆〈u′u′〉 = 0.01, 〈v′v′〉 ∈ [0.0, 0.4] (middle) in
steps ∆〈v′v′〉 = 0.02 and 〈u′v′〉 ∈ [−0.15, 0.15] (bottom) in steps ∆〈u′v′〉 = 0.015 for (a) R = 2.4, (b) R = 3.0, (c)

R = 3.4 and (d) R = 5.357.

is increased, the peak 〈u′u′〉 Reynolds stresses intensify
and move gradually upstream on both shear layers. The
wake centre line remains fairly insensitive to streamwise
velocity fluctuations until sufficiently large values of R,
but the advent of chaotic dynamics boosts mixing across
the wake width and rather large 〈u′u′〉 occurs around
the horizontal mid plane. The double peak in the cross-
stream profiles in the near wake develops into a single,
fairly symmetric peak in the mid to far wake.

Cross-stream velocity fluctuations self-correlation
〈v′v′〉 peak some distance downstream from the vortex
formation region. It is here that vortices acquire their
maximum strength driving fluid upwards and then down-
wards upon passing. This enhances the mixing that re-
sults in the symmetrisation of the 〈u′u′〉 cross-stream
profiles somewhat downstream on the wake and at suffi-
ciently high values of R. Streamwise-cross-stream veloc-
ity cross-correlations 〈u′v′〉 remain low and mainly neg-
ative for moderate values of R, with a peak halfway be-
tween the upper maximum for 〈u′u′〉 and that for 〈v′v′〉.
The sign responds to the fact that a negative cross-stream
velocity fluctuation brings high velocity fluid from above
the wake into the wake, which accounts for a positive

streamwise velocity fluctuation. The product of the two
fluctuations produces 〈u′v′〉 < 0. In the chaotic regime, a
second peak, this time positive, appears below the nega-
tive one. In this case, it is a positive cross-stream velocity
fluctuation that brings low velocity fluid from below the
wake into a region where the streamwise velocity is on
average negative. The ensuing streamwise velocity fluc-
tuation is therefore also positive and so is 〈u′v′〉 > 0.

Figure 10 shows the dependence of the vortex forma-
tion region size on the velocity ratio R. It becomes clear
how the vortex formation region is very large and very
asymmetric for top and bottom shear layers upon the
onset of time-dependence but quickly shrinks as R is in-
creased. The contraction soon saturates and the forma-
tion region length remains fairly constant at lTf . lBf ' 4.
This behaviour is analogous to that observed for a square
cylinder with symmetric inflow conditions upon increas-
ing the Reynolds number18. In any case the inverse cor-

relation of the vortex formation length lT,Bf with the base

suction coefficient −〈Cbp〉z,t (see figure 6b) is obvious, so
that upstream shear does not seem to interfere with the
physical mechanism that links both variables in the wake
of other bluff bodies.
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(a)

(b)

FIG. 10: (a) Top (lTf , circles) and bottom (lBf , squares)
vortex formation lengths as a function of velocity ratio
R. (b) Cross-stream distances to mid plane of top (hTf )

and bottom (hBf ) Reynolds stress 〈u′u′〉 peaks. Colour
coding as for figure 2.

The top vortex formation vertical location with re-
spect to the mid plane hTf remains rather aligned with
the top surface for all R, perhaps with a slight trend of
approaching alignment from above. Meanwhile, the bot-
tom vortex formation location hBf debuts far away from
the mid plane at the onset of time dependence and then
approaches it as R is increased. For a short range around
R ' 3, the vortex formation region gets in the shadow
of the cylinder with hBf < 0.5, but the advent of chaotic

dynamics pushes it back into exposure at hBf ' 0.6.
Table VI in appendix B lists the peak values and cor-

responding location of the Reynolds stress fields 〈u′u′〉,
〈v′v′〉, 〈u′v′〉 and 〈w′w′〉 of figure 9.

V. BOUNDARY LAYERS ON THE CYLINDER
SURFACES

The instantaneous displacement thickness, which
quantifies viscous blockage in terms of massflow reduc-
tion of the boundary layers developing on the top and
bottom surfaces are computed as

δT,B1 (x, z; t) =

∫ ±0.5(1+2δT,B)

yT,B=±0.5
1− u(x, y, z; t)

uT,Be (x, z; t)
dy (2)

and shown in figure 11 for a range of velocity ra-
tios. The maximum streamwise velocity uT,Be (x, z; t) =
maxy u(x, y±, z; t) is used as the inviscid outer flow ve-
locity at location (x, z), and the boundary layer thick-
ness δT,B is interpreted as the cross-stream distance from
the wall to the point where this maximum velocity is

(a)

(b)

FIG. 11: Time- and streamwise-averaged (for
three-dimensional solutions) displacement thickness

〈δT,B1 〉z along (a) top and (b) bottom walls for velocity
ratios R = 1 (light gray), 2 (dark gray), 3 (black), 3.4

(red), 3.8 (blue) and 5.357 (green). Lines indicate
average, while shaded regions denote time-fluctuations.

reached. For R = 1 (light gray), the boundary layers on
the top and bottom surfaces are symmetric and rather
thick. Thickness is not negligible at the leading edge.
The boundary layers developing on the front wall at ei-
ther side of the stagnation point make their presence con-
spicuous as they turn around the TF and BF corners and
initiate the top and bottom boundary layers with finite
thickness. An increase of the velocity ratio to R = 2
(dark gray), thins the top boundary layer on account
of the higher local Reynolds number ReT and thickens
the bottom one. This trend persists for increasing veloc-
ity ratios and is particularly remarkable on the bottom
boundary layer as separation boosts the viscous blockage
effect and near-wall massflow is not only reduced but re-
versed. At R = 3 (black), time dependence ensuing from
the wake instability starts making its effects visible on
both top and bottom boundary layers. Time fluctuations
are discernible (shaded region) but not prominent. Oscil-
lation amplitude grows with R but remains rather small
up to fairly large values, which suggests that the bound-
ary layers are quite stable and their flapping is driven
by a foreign instability mechanism inherent to the wake,
further downstream. The bottom boundary layer is the
thickest and features the largest oscillation amplitude of
the two across the full exploration. As a matter of fact,
the boundary layers thickness positively correlates with
the base point position and intensity at the back of the
cylinder, the stagnation point comfortably established in
the vicinity of the TF corner for velocity ratios as low
as R > 1.5. The pressurisation of the BR corner as the
base point moves down for increasing R thus induces an
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FIG. 12: Dynamic evolution of the lift Cl (Black solid)
and drag Cd (Black dashed) coefficients, alongside that
of the displacement thickness at the trailing corners for
both the top δTR

1 (Blue solid) and bottom δBR
1 (Blue

dashed) boundary layers developing on the top and
bottom square cylinder walls. Times series correspond

to the two-dimensional solution at R = 3, with
corresponding T = 6.47.

adverse pressure gradient along the bottom wall that ac-
counts for the thickening of the boundary layer and its
eventual separation. Conversely, the pressure reduces on
the TR corner, thus contributing to a more favourable
pressure gradient and the thinning of the boundary layer
on the top wall. Furthermore, both boundary layers flap
synchronously with the meandering of the base point
once the flow has become time-dependent.

The time evolution of the top (δTR
1 (z, t) = δT1 (0.5, z; t),

solid blue line) and bottom (δBR
1 (z; t) = δB1 (0.5, z; t),

dashed blue) boundary layer displacement thicknesses at
the respective trailing edge corners are presented in fig-
ure 12 for the two-dimensional solution with R = 3. The
dynamic lift (Cl, solid black) and drag (Cd, dashed black)
coefficients are also shown along the same two complete
vortex-shedding cycles for reference. The bottom bound-
ary layer thickness has a delay of about ∆φ ' 20◦ with
respect to the top, their evolution being close to but
not quite synchronous. This is very different from the
usual space-time symmetric Kármán vortex street, for
which the respective displacement thicknesses are in ex-
act phase opposition, with ∆φ = π, as the shear layers
flap synchronously. The force coefficient signals are prac-
tically in opposition of phase with the boundary layer dis-
placement thicknesses. Cd is nearly maximum for mini-
mum δTR

1 , and Cl peaks when δBR
1 is at its valley. The

Cl signal follows behind Cd with a phase lag ∆φ ' 22◦.
Counter-intuitively, Cd is lowest when δTR

1 and δBR
1 are

both close to their respective peaks, which would seem
to misleadingly indicate that the wake width should be
largest. In reality, a large boundary layer thickness, par-
ticularly that on the top surface, is an indication of a
milder favourable pressure gradient, meaning that the
base pressure is comparatively large and, therefore, wake
drag accordingly low. Regarding Cl, it must be borne
in mind that time oscillations are pressure dominated,
while cross-stream shear forces remain very stable in time
(see figure 2). Fluctuations are therefore almost exclu-

sively the result of top-bottom surface pressure differ-
ences. The mean 〈Cl〉 is in fact a net downforce be-

cause down-pointing friction dominates, particularly so
on the front surface, but the maximum instantaneous
value periodically crosses into slightly positive Cl. It
would therefore seem that the drop in base pressure that
boosts drag and thins the top and bottom boundary lay-
ers has a larger impact on increasing suction on the top
surface than on the bottom, thus generating a larger pos-
itive pressure difference. The reason for this is that the
vortices shed from the top are way stronger than those
forming at the bottom, which, as already pointed out
upon inspection of figure 8, dissipate fast once freed into
the wake. As it happens, Cd grows while the strong vor-
tex forming from the top shear layer remains attached
to the rear wall, and peaks at about T/4 as it becomes
strongest. The resulting lowest base pressure that gener-
ates maximum Cd is therefore confined to the top half of
the rear wall (actually the portion bounded between the
TR corner and the base point) and therefore induces a
larger pressure reduction on the top surface than it does
on the bottom. Consequently, a net positive pressure lift
occurs that brings Cl to its maximum. Minimum Cl cor-
respondingly occurs at around 3T/4, when the bottom
vortex is strongest while still attached, but the associ-
ated pressure is comparatively high with respect to the
lowest pressure induced by the top vortex, the bottom
vortex being weaker, and the Cd happens to be close to
its minimum. For space-time symmetric Kármán vortex
shedding, the top and bottom vortices induce the ex-
act same peak suction pressure on the top and bottom
rear halves of the rear wall, respectively, as they reach
their strongest attached stages, such that minimum and
maximum Cl are related by a mere change of sign and
the same exact value of Cd results in both cases. Conse-
quently, while Cl oscillates with the same frequency of the
actual solution, Cd has double the frequency. At R = 3
the asymmetry is large enough that there is no trace left
of the original double frequency on the Cd signal.

In order to correlate the space-time evolution of the
boundary layers with wake structures and force co-
efficients, the instantaneous displacement thickness of
Eq. (2) is computed at the TR and BR corners and addi-
tively decomposed into their spanwise average 〈δ1〉z and

spanwise modulation δ̂1 components as

δTR,BR
1 (z; t) = δT,B1 (0.5, z; t) =

= 〈δTR,BR
1 〉z(t) + δ̂TR,BR

1 (z; t),
(3)

with

〈δTR,BR
1 〉z(t) =

1

Lz

∫ Lz

0

δTR,BR
1 (z; t) dz. (4)

Figure 13 contains space-time diagrams for δ̂TR
1 (panel

b) and δ̂BR
1 (d) alongside corresponding time series of

Cl and Cd (a) and of spanwise-averaged 〈δTR
1 〉z and

〈δBR
1 〉z (c), for the three-dimensional periodic solution
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FIG. 13: Space-time properties of the R = 3.4 solution. Space-time diagrams for the spanwise modulation

component of the displacement thickness at the trailing edge of the top δ̂TR
1 (b) and bottom δ̂BR

1 (d) cylinder walls.
(a) Dynamic evolution of the lift Cl (solid) and drag Cd (dashed) coefficients. (c) Dynamic evolution of the

spanwise-averaged component of the displacement thickness at the trailing edge of both the top 〈δTR
1 〉z (solid) and

bottom 〈δBR
1 〉z (dashed) walls.

at R = 3.4. The space-time diagrams correspond to 8
complete vortex-shedding cycles, as clear from the Cl,
Cd, 〈δTR

1 〉z and 〈δBR
1 〉z time series, and their periodicity

follows exactly that of vortex shedding. The actual pe-
riodicity of the solution is however twice that of vortex
shedding. The nature of the period doubling, which does
not affect aggregate quantities, was thoroughly discussed
by El Mansy et al. 66 . The only remaining symmetry once
R 6= 1 has broken the top-bottom Z2 symmetry, i.e. the
spanwise invariance (involving arbitrary spanwise shifts,
SO(2), and mirror reflections about all planes orthogonal
to the spanwise direction, Z2), is disrupted upon three-
dimensionalisation of the flow, such that the continuous
SO(2) turns into invariance with respect to discrete shifts
by multiples of the wavelength λz, and the spanwise Z2

reflection symmetry is only preserved at all times about
planes located at z = z0 + (2j)λz/4 (dash-dotted lines),
where the origin for the spanwise coordinate has been
chosen to enforce z0 = 0, λz = 2.5 here and j ∈ Z.
Additionally, a space-time symmetry operation consist-
ing in the evolution by half a period T/2, where T is

the actual period of the solution corresponding to two
vortex-shedding cycles, followed by reflection about any
plane located at z = z0 + (2j + 1)λz/4 (dashed lines),
also leaves the solution invariant. The appropriate com-
position of the two symmetries shows that the solution is
also invariant to evolution by half a period T/2, followed
by a spanwise shift by a half wavelength λz/2.

As clear from figure 13a, the Cl (solid) and Cd (dashed)
signals are nearly in phase, with the former trailing
slightly behind the latter with a lag (∆φ ' π/9). The
spanwise-averaged top boundary layer thickness 〈δTR

1 〉z
(figure 13c, solid) evolves in phase opposition with aero-
dynamic forces, while the bottom boundary layer thick-
ness 〈δBR

1 〉z flaps with about four times the amplitude
and roughly one-quarter-cycle phase advance (∆φ '
π/4). The aerodynamic forces peak when the top bound-
ary layer is at its thinnest and the bottom boundary layer
growing fastest. The spanwise modulational component
of the top and bottom boundary layers is illustrated by
the space-time diagrams of figures 13b and d, respec-
tively. The spanwise modulation amplitude is small for
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the bottom boundary layer (∼ 5.6%) and tiny for the
top (∼ 1.4%), and seems to be dictated by the span-
wise average of the top boundary layer. As it happens,
the modulation amplitude is highest for the top bound-
ary layer when 〈δTR

1 〉z is maximum, and highest for the
bottom boundary layer when 〈δTR

1 〉z is at its minimum.
Three-dimensionality in the wake is therefore closest to
the cylinder back when the top boundary layer has its
maximum thickness, which indicates that the modula-
tional instability develops on the top shear layer and is
promoted when it is thicker.

At the slightly higher value R = 3.8, figure 14 shows
how the aerodynamic force coefficients Cl and Cd (panel
a), and 〈δTR

1 〉z and 〈δBR
1 〉z (panel c) time series have a

period that is about twice that for R = 3.4. The period-
doubling bifurcation is however of an altogether differ-
ent nature. While aggregate quantities repeat every two
vortex-shedding cycles, the solution at R = 3.8 is in fact

period four. The space-time diagrams for δ̂TR
1 (b) and

δ̂BR
1 (d) provide the full picture. As minutely reported by

El Mansy et al. 66 , the bifurcation that is responsible for
the emergence of the period-doubled solution is spatially
subharmonic, the spanwise wavelength doubling that of
the solution at R = 3.4. This breaks the mirror sym-
metry and the only remaining symmetry leaves the solu-
tion invariant to evolution for half a period (two vortex-
shedding cycles) followed by reflection about planes lo-
cated at z = z0+jλz/2 (dashed lines), where now λz = 5.
Everything discussed for R = 3.4 as to synchronicity
of force coefficients and top and bottom boundary layer
spanwise-averaged thickness holds for R = 3.8. Cd lags
slightly behind Cl, and the top boundary layer is thickest
and the bottom boundary layer grows fastest when Cd is
at its lowest. The modulational amplitude of the top
and bottom boundary layer thicknesses is however quite
different from one vortex-shedding cycle to the next, and
alternates two low peaks with one large peak. The largest
modulational amplitude is synchronised between the top
and bottom boundary layers and occurs once every two
Cd valleys.

VI. CONCLUSIONS

We have analysed the aerodynamic performances and
statistical wake topology of the flow past a square cylin-
der immersed in the near wake of a flat plate separating
two homogeneous streams of different velocities. This
flow configuration, though relevant to situations where
structural struts or rods are placed in close proximity of
upstream lift-producing devices, has rarely been consid-
ered in the literature. The Reynolds number associated
to the bottom incoming stream ReB has been kept fixed,
such that changes in the top-to-bottom stream velocity
ratio R modify simultaneously the bulk Reynolds number
Re and a shear parameter K purposely defined in anal-
ogy to the homogeneous upstream shear case to charac-
terise the incoming velocity difference across the cylinder

height. Our results, though still incomplete, conclusively
suggest that the parallel with the problem of bluff bodies
in upstream shear broadly holds, and that most findings
here can be related to the competing effects of Re and K
there.

The recirculation bubble length lr grows with R while
the wake remains steady and recedes thereafter. This is
the same trend reported for the classic square cylinder
configuration upong increasing Re, the shear parameter
playing no noticeable role41. Also, the vortex formation
region lf shrinks all along, analogously to what happens
for the circular cylinder case. It would seem that the Re
increase rather than that of K dictates the evolution of
both. The drag coefficient Cd is pressure-dominated and
increases with R, while the lift coefficient Cl is initially
driven by friction on the front surface generating a net
downforce, but later recovers into positive as pressure
forces on the top and bottom surfaces take the lead. The
slight initial decline of Cd follows from the paradoxical
effects of increasing Re and K simultaneously. Both Re
and K tend to reduce Cd at low Re . 100 and K . 0.2,
but the trend is reversed thereafter55,56 and Cd increases
fast41. Meanwhile. the initial descent of Cl into negative
values is driven by the increase of K at low Re55,56, while
the recovery that follows the advent of time dependence
results from the concurrent effect of K and Re when both
are sufficiently large41,55,56.

The effect of the combined migration of the stagnation
and base pressure points and the respective values of the
pressure coefficient correlates well with the drag coeffi-
cient and, at the same time, satisfactorily explains the
evolution of the boundary layer thickness distribution on
the top and bottom surfaces as R is varied.

A close analysis of the downstream vortical struc-
tures as the flow evolves from steady to time-periodic,
shows that just after the Hopf bifurcation vortex shed-
ding consists already of a single vortical structure is-
sued from the cylinder top rear corner, much as observed
for homogeneous-shear incoming flow. The recirculation
lobe on the lower mid wake simply expands and shrinks
without ever separating from the cylinder. As the veloc-
ity ratio is increased, both the upper (negative) and lower
(positive) lobes start detaching alternately, but vortices
are only shed on the top half of the wake. The vortic-
ity layer issued along the bottom-half of the wake does
not roll up into forming vortices and quickly dissipates.
The fact that the length of the vortex formation region is
consistently shorter (lTf < lBf ) and the normal Reynolds

stress field 〈u′u′〉 peaks higher along the top shear layer
than along the bottom, suggests that the former has a
larger share in driving the wake instability.

The displacement thickness of the boundary layers de-
veloping on the top and bottom cylinder surfaces serve as
an aerodynamic performance diagnosis tool and, at the
same time, provide the means to relate the instantaneous
evolution of the aerodynamic coefficients to the base pres-
sure location and intensity. While the top boundary layer
remains attached all along, the bottom boundary layer is



18

(a)

(b)

δ̂T
R

1

(c)

(d)

δ̂B
R

1

FIG. 14: Space-time properties of the R = 3.8 solution. Space-time diagrams for the spanwise modulation

component of the displacement thickness at the trailing edge of the top δ̂TR
1 (b) and bottom δ̂BR

1 (d) cylinder walls.
(a) Dynamic evolution of the lift Cl (solid) and drag Cd (dashed) coefficients. (c) Dynamic evolution of the

spanwise-averaged component of the displacement thickness at the trailing edge of both the top 〈δTR
1 〉z (solid) and

bottom 〈δBR
1 〉z (dashed) walls.

mostly detached although some reattachment occurs for
large R during some phases of the vortex-shedding cycle.
Attached or not, top and bottom boundary layers flap al-
most synchronously, in contrast to usual space-time sym-
metric Kármán vortex shedding, for which the flapping
is in exact phase opposition. The lift force coefficient
evolves with a small delay behind drag, and both are
nearly in opposition of phase with respect to bottom and
top boundary layer thicknesses, respectively. Minimum
instantaneous Cd corresponds to highest base pressure,
which results in a stronger adverse (or milder favourable)
pressure gradient and thicker boundary layers along both
the top and bottom surfaces. This maximum base pres-
sure occurs precisely at the phase of vortex-shedding for
which the base point is at its highest location. This con-
tributes to boosting the pressure further on the top sur-
face than on the bottom, which results in a downforce
differential that brings Cl also to its minimum. Besides
responding to aerodynamics performances in an intelli-
gible way, boundary layer thicknesses help characterise
the flow fields in terms of their spatio-temporal symme-

tries. The symmetries of the various solutions, which
were minutely analysed by El Mansy et al. 66 , are clearly
imprinted in the time evolution of the spanswise distribu-
tion of the top and bottom boundary layers displacement
thickness.

More detailed explorations in two-dimensional param-
eter space will be required in the future to decouple the
independent effects of the bulk Reynolds number Re and
the velocity ratio R. Besides, incoming velocity profiles
other than homogeneous or linear (and this latter sub-
ject to the eventual subcritical instability of the Couette
flow profile) are not self-sustained. The quasi-step pro-
file intended here, although reproducible in actual exper-
iments, is to some extent dependent on plate length and
gap with the cylinder front face. A thorough parametric
study would be required to assess the scope of validity of
the result presented here. Such undertaking is underway
and will be considered elsewhere.
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Appendix A: Method validation and domain size and grid
resolution analyses

The spectral element space discretisation and the ve-
locity correction time-stepping scheme used here for the
flow past a square cylinder immersed in the wake of an
upstream splitter plate separating two streams with dif-
ferent velocities have been validated against literature
results using as benchmark the closely related problem
of the flow past a stand-alone square cylinder in homo-
geneous flow at zero angle of attack and at comparable
Reynolds numbers.

In the present study, the bottom stream Reynolds
number has been kept fixed to ReB = 56 throughout,
while the top-to-bottom velocity ratio has been varied
in the range R ∈ [1, 5.357]. The corresponding top
stream Reynolds number is then ReT = RReB ≤ 300,
and it would therefore make sense to use benchmark
results for the classical square-cylinder-flow configura-
tion at Re = 300 for mesh validation. The flow re-
mains nevertheless two-dimensional for R . 3.1, so that
the in-plane mesh for two-dimensional simulations might
be safely based on comparison against two-dimensional
square cylinder results anywhere below Re . 175.

The in-plane mesh has been designed according to the
sketch shown in figure 15. The full domain has been
partitioned in 10 subdomains for better local refinement
of the structured quad mesh in critical regions such as
close to the walls and along the wake. In particular, the
near field (NF) and near wake (NW) regions have been
singled out by devising a square around the cylinder of
dimensions hMT = hMB = lUM = lDM = 1.5. The re-
lation between domain partitioning and computational
domain dimensions are lU = Lux − lUM, lD = Ldx − lDM,
hU = hD = Ly/2 − hMT = Ly/2 − hMB. The num-
ber of linear elements distributed along each one of
the master sides of the various subdomain regions are
NLU = 22, NLMT = NLMB = NHDM = 49, NLD = 49,
NHT = NHB = 29, NHUM = 46 and NX = 21. The pro-
gression and bump features of gmesh have been used to
ensure a maximum first cell layer thickness dw < 0.005

and a growth rate below kw < 1.2 away from the walls,
including the splitter plate.

The stand-alone square cylinder at Re = 150, just
short of entering the wake transition regime, has been
selected as the benchmark for the design of the in-
plane two-dimensional mesh described above for all two-
dimensional cases. Aerodynamic performances aggregate
quantites, collected over Tstats = 500 advective time units
(about 80 complete vortex-shedding cycles) after hav-
ing let the solution evolve for Ttrans = 600 to overcome
all transients, are presented in table I alongside liter-
ature results. Some details of the method (computa-
tional or experimental), domain dimensions, and space
and time resolution and discretisation order are also pro-
vided for completeness. Our baseline combination of do-
main and mesh produces results in good agreement with
a wide range of published data obtained using compa-
rable numerical parameters. In particular, the down-
stream and cross-stream sizes of the domain, which fol-
low the recommendations of Sohankar et al. 83,84 and
Sharma and Eswaran 85 , are clearly sufficient for accu-
rate two-dimensional simulations at Re = 150. The
vortex-shedding frequency (Strouhal number St) com-
pares favourably with literature results, with deviations
within 1% in most of the cases. The same goes for the
mean drag coefficient Cd and the r.m.s. of the drag C ′d
and lift C ′l coefficient signals, although published values
spread over somewhat wider ranges. The maximum wall
distance of the first layer of cells, measured in wall units
(y+ ≡ yuτ/ν, with uτ ≡

√
τw/ρ the friction velocity) re-

sulted in d+w < 0.5, well inside the viscous sublayer of an
eventual turbulent boundary layer. Besides, it must be
borne in mind that the actual d+w is in fact half that value
for a second order mesh and around 21.1% for a Lagrange
polynomial expansion of order three due to the non eq-
uispaced distribution of the Gauss-Legendre collocation
points. In combination with a very slow progression of
cell thickness away from the wall kw < 1.2, this is a good
indication that boundary layers are well resolved.

In order to verify mesh resolution, we have increased
the spectral element order, originally employing second
order polynomial expansions, to three. The results, also
presented in table I, quantify the degree to which the
solution is grid-independent. All St, Cd, C

′
d and C ′l

parameters are accurate well within 1%. Downstream
boundary location and blockage effects have also been as-
sessed by doubling the downstream length of the domain
to Ldz = 51 (and increasing to NLD = 68) and by doubling
the cross-stream height to Ly = 32 (NHT = NHB = 33).
Doubling Ldz produced no noticeable alteration of any
of the aerodynamic performances indicators considered,
while doubling Ly resulted in deviations well under 1%.

Since the flow remains two-dimensional up to R = 3.1,
corresponding to ReT ' 175, it is advisable to validate
the method, domain and mesh against two-dimensional
simulations past a square cylinder at the somewhat larger
Re = 200. The results are given in table II. While St
aligns still well with reported values in the literature, the



20

NF

DFFT

DFFB

UFFT

UFFB

NW WUF

MFFT

MFFB

LU LMT LD

HT

HDM

HB

LMB

HUM

X

hT

hB

hMT

hMB

hM

lUM lDM

lU lM lD

FIG. 15: Domain partitioning. The acronyms are as follows: U for upstream, D for downstream, N for near, F for
field, FF for far field, T for top, B for bottom, M for mid, W for wake and X for wall-normal. Red text denotes

subdomain regions, blue subdomain sides.

Re = 150 Method Lu
x Ld

x Ly Lz Nx ×Ny Np dw Nz ∆t St Cd C′d C′l
Baseline SEM 9 25.5 16 - 120×1072 193 0.0045 - 0.00182 0.160 1.510 0.0163 0.300
3rd order SEM 9 25.5 16 - 120×1073 193 0.0045 - 0.00082 0.160 1.505 0.0162 0.299
Double downstream SEM 9 51 16 - 139×1072 193 0.0045 - 0.00182 0.160 1.510 0.0163 0.300
Double cross-stream SEM 9 25.5 32 - 120×1152 193 0.0045 - 0.00182 0.159 1.497 0.0163 0.300
Sen et al. 75 FEM 80 100 100 - 1571081 664 0.005 - 0.032 0.159 1.508 0.017 0.303
Singh et al. 76 FVM 8.5 24.5C 18 - 250×1502 320 0.007 - 0.012 0.159 1.516 - 0.287
Sharma and Eswaran 21 FVM 9 17C 20 - 323×2643 - 0.01 - 0.0011 0.160 1.465 0.0157 0.292
Wang et al. 77 ??? 10.5 30.5 20 - ??×??? - ????? - ?????? 0.160 1.474 - 0.285
Ali et al. 78 FVM 10 20C 20 - 520×4403 400 0.01 - 0.0051 0.160 1.470 - 0.285
Alam et al. 32 FVM 11.5 38.5 20 - 1120002 320 0.01 - 0.0172 0.155 1.492 0.0155 0.272

FVM 11.5 38.5 20 - 770002 320 0.01 - 0.0152 0.155 1.493 0.0157 0.277
Zheng and Alam 79 FVM 13.5 29.5 19 - 4509642 280 0.0033 - 0.00242 0.159 1.476 0.0163 0.273

FVM 13.5 29.5 27 - 1546502 280 0.0033 - 0.00972 0.157 1.468 0.0165 0.275
Saha et al. 69 FDM 6 18C 10 - 178×802 - - - 0.0152 0.163 1.541 0.017 0.274
Mashhadi et al. 16 FVM 9.5 20.5 18 - 288×1892 124 0.01 - 0.012 0.162 1.466 0.0136 0.269
Zhang et al. 80 SEM 6 23 18 - 36×515 - - - 0.002932 0.163 1.558 - -
Doolan 81 FVM 10 20 20 - 250×1802 - 0.0167 - 0.0025? 0.156 1.44 - 0.293
Sohankar et al. 20 FVM 8.5 12.5C 18 - 169×1212 100 0.004 - 0.0252 0.165 1.44 - 0.23
Jiang and Cheng 15 FVM 30 30 60 15 439222 196 0.005 1202 0.0152 0.155 1.417 - 0.269
Franke et al. 82 FVM 5 15 12 - 88×763 - 0.0038 - 0.0251 0.165 1.56 - 0.269∗

Okajima 19 Exp 37.5 Water tank, towing type 0.139-44 1.4 - -
Luo et al. 28 Exp Tu < 0.35% 225 Wind tunnel, open-loop 0.16 - - -
Luo et al. 26 Exp Tu ∼ 1% 54 Water channel, recirculating 0.163 - - -

TABLE I: Validation against benchmark data and domain and grid independence study for the flow past a
stand-alone square cylinder at Re = 150. Listed are the methods used (FDM: Finite Differences Method; FVM:
Finite Volumes Method; FEM: Finite Elements Method; SEM: Spectral Elements Method; Exp: experimental),
domain dimensions (the C superscript for Ldx indicates that convective-type conditions are applied to the outlet

boundary), mesh resolution (Superscripts denote order of the discretisation method -F for Fourier-, Np indicates the
number of divisions over the full cylinder perimeter, and dw is the first cell layer thickness away from the walls), and
a bunch of aerodynamic performance parameters (a star superscript in rms values indicates approximate estimation

from time-series oscillation amplitude).
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Re = 200 (2D) Method Lu
x Ld

x Ly Lz Nx ×Ny Np dw Nz ∆t St Cd C′d C′l
Baseline SEM 9 25.5 16 - 120×1072 193 0.0045 - 0.00182 0.153 1.541 0.0338 0.488
3rd order SEM 9 25.5 16 - 120×1073 193 0.0045 - 0.00062 0.153 1.535 0.0333 0.485
Double downstream SEM 9 51 16 - 139×1072 193 0.0045 - 0.00182 0.153 1.541 0.0338 0.488
Double cross-stream SEM 9 25.5 32 - 120×1152 193 0.0045 - 0.00182 0.152 1.537 0.0336 0.485
Zhang et al. 80 SEM 6 23 18 - 44×665 - - - 0.001952 0.155 1.583 0.0355 0.488
Franke et al. 82 FVM 5 15 12 - 88×763 - 0.0013 - 0.0251 0.157 1.60 - 0.438∗

Mashhadi et al. 16 FVM 9.5 20.5 18 - 288×1892 124 0.01 - 0.012 0.156 1.480 0.0300 0.410
Sohankar et al. 84 FVM 10 10C 20 - 284×2742 160 0.004 - 0.0252 0.15 1.462 - 0.377
Sohankar et al. 83 FVM 10 26 20 - 348×2242 120 0.004 - 0.0252 0.149 1.445 - 0.36
Sohankar et al. 20 FVM 8.5 12.5C 18 - 169×1212 100 0.004 - 0.0252 0.170 1.46 - 0.32
Saha et al. 69 FDM 6 18C 10 - 178×802 - - - 0.0152 0.162 1.657 - -
Davis and Moore 86 FDM 5.5 10C 12 - 51×622 44 - - 0.052 0.165 1.710 - -

TABLE II: Validation against benchmark data and domain and grid independence study for the two-dimensional
flow past a stand-alone square cylinder at Re = 200. Columns and annotations as for table I.

spread of Cd and C ′l data is remarkable. We can however
still claim fair agreement with a number of works by other
authors.

Increasing the spatial discretisation order to three for
the two-dimensional simulation at Re = 200 produced er-
rors below 1% for all considered performance indicators
except C ′d, which incurred a still fairly acceptable 1.5%
deviation. As for Re = 150, two-dimensional computa-
tions at Re = 200 did not modify results upon doubling
Ldx, while deviations below 1% were obtained upon dou-
bling Ly/2, the blockage effect tending to reduce as Re
increases.

Finally, available three-dimensional data for the flow
past a square cylinder at Re = 200 has been used to
validate the method and our domain and mesh for three-
dimensional computations. The data is provided in ta-
ble III. We have used a periodic spanwise length Lz = 10,
discretised with Nz = 48 Fourier modes, not quite suf-
ficient to achieve the desirable standard of 6 orders of
magnitude decay in modal energy but still sufficient to
produce results that compare favourably with published
data. St and Cd fall comfortably within ranges as re-
ported in the literature. The same applies to C ′l , while
our C ′d results appear rather small in comparison to the
few studies that report them. In any case, C ′l and C ′d
are known to be particularly prone to inaccuracies83,84,
especially across the wake transition regime, where force
coefficients have been shown to incorporate a very small
frequency modulation that requires extraordinarily long
runs to collect meaningful averages and second moment
statistics20.

All results presented and discussed throughout this pa-
per, two-dimensional and three-dimensional, have been
extracted from computations based on the baseline do-
main and mesh described above, with Lagrange polyno-
mial expansions of order two. The mesh was purposely
refined in the cross-stream direction at the location where
the splitter plate is placed. For three-dimensional com-
putations, the periodic spanwise extent of the domain
has been generally chosen so as to fit an integer num-

ber of times (commonly 2, sometimes 4) the most unsta-
ble wavelength as obtained from stability analysis of the
underlying two-dimensional time-periodic solution. The
spanwise resolution has been chosen in each case to en-
sure a modal energy decay of about 6 orders of magnitude
from the largest non-zero spanwise mode.

It might however be argued that the presence of the
splitter plate and the introduction of a top-bottom asym-
metry through the prescription of different inlet veloci-
ties above and below the plate undermines the validity of
the domain size and grid convergence studies discussed
above. The cross-stream blockage and the location of
the downstream boundary may indeed play a different
role when the cylinder is subject to inhomogeneous in-
coming flow, as could also the mesh topology and local
properties. In order to assess these effects in a situation
that is meaningful to the flow configuration adressed in
this study, a bunch of tests has been run for a steady
(R = 2), a two-dimensional periodic (R = 3), and a
three-dimensional solution (R = 3.4). Results are sum-
marised in table IV. Doubling the downstream extent of
the domain does not have a significant impact on results
at any of the three values of R checked. The blockage
efects are contained concerning St and Cd (less than
2%), and also Cl for R = 2 (3%). The R = 3 and
R = 3.4 cases, however, show rather large deviations
in Cl in relative terms, but the absolute deviation is in
fact rather small. Relative errors are misleadingly large
because lift is small and indeed vanishes somewhere in
between the two regimes. Force coefficient fluctuation de-
viations seem to peak in the late two-dimensional vortex-
shedding regime, with deviations of around 10% with re-
spect to baseline. It appears, however, that the advent
of three-dimensionality effectively downplays blockage ef-
fects, with C ′d and C ′l again within acceptable 2.5% and
1.5%, respectively. Doubling the spanwise extent of the
domain for the three-dimensional solution at R = 3.4
does not modify the performance monitors, as the solu-
tion preserves the exact same spanwise wavelength and
simply fits twice in the domain instead of just once. Fi-
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Re = 200 (3D) Method Lu
x Ld

x Ly Lz Nx ×Ny Np dw Nz ∆t St Cd C′d C′l
Baseline SEM 9 25.5 16 10 120×1072 193 0.0045 48F 0.00182 0.154 1.495 0.0180 0.289

Mahir 70 FDM 7.5 20C 15 6 177×1272 - 0.01 252 0.012 0.154 1.518 - 0.305
Mashhadi et al. 16 FVM 9.5 20.5 18 7 288×1892 204 0.01 702 0.012 0.151 1.440 0.0258 0.320
Saha et al. 69 FDM 6 18C 10 10 178×802 - - 222 0.0152 0.161 1.600 0.026 0.305
Visakh et al. 87 FDM 7.5 20C 20 6 274×2002 - 0.005 302 ?2 0.158 1.43 0.026 0.29
Sohankar et al. 20 FVM 8.5 12.5C 18 10 169×1212 100 0.004 412 0.0252 0.160 1.41 - 0.22

FVM 8.5 12.5C 18 6 169×1212 100 0.004 252 0.0252 0.157 1.39 - 0.21
Jiang and Cheng 15 FVM 30 30 60 15 439222 196 0.005 1202 0.0152 0.149 1.394 - 0.25
Okajima 19 Exp 37.5 Water tank, towing type 0.148-55 1.4 - -
Luo et al. 28 Exp Tu < 0.35% 225 Wind tunnel, open-loop 0.159 - - -
Luo et al. 26 Exp Tu ∼ 1% 54 Water channel, recirculating 0.160 - - -

TABLE III: Validation against benchmark data and domain and grid independence study for three-dimensional flow
past a stand-alone square cylinder at Re = 200. Columns and annotations as for table I.

Case Test St Cd C′d Cl C′l
R = 2 (Steady) Baseline 0 0.972 0 -0.1087 0

Third order 0 0.969 0 -0.1100 0
Double downstream 0 0.989 0 -0.1107 0
Double cross-stream 0 0.974 0 -0.1055 0

R = 3 (2D periodic) Baseline 0.155 1.245 0.0336 -0.0450 0.0589
Third order 0.155 1.258 0.0336 -0.0445 0.0597
Double downstream 0.156 1.244 0.0336 -0.0450 0.0588
Double cross-stream 0.155 1.224 0.0308 -0.0374 0.0533

R = 3.4 (3D periodic) Baseline (Lz = 2.5) 0.160 1.436 0.0658 0.0279 0.1065
Third order 0.159 1.444 0.0656 0.0310 0.1055
Double spanwise 0.160 1.436 0.0658 0.0287 0.1065
Double downstream 0.160 1.436 0.0659 0.0279 0.1066
Double cross-stream 0.160 1.414 0.0643 0.0241 0.1081

TABLE IV: Domain and mesh validation tests for the flow past a square cylinder immersed in the interface of two
different-velocity streams.

nally, increasing the polynomial expansions order to three
kept deviations of all parameters below 1% except for Cl
at R = 3.4, again due to the deceitful artifact of compar-
ing relative errors for a vanishing quantity.

Although not specifically shown here, the bifurcation
sequence, solution types and flow fields were not qual-
itatively affected by either increasing resolution or do-
main dimensions from baseline. In particular, stagna-
tion, base, separation and reattachment points location
on the cylinder surface, wake topology and vortex shed-
ding characteristics where indistinguishable to the naked
eye.

Appendix B: Aerodynamic performances and peak Reynolds
stresses

The aerodynamic performances data that has been
used in producing figures 2 and 6 is given in table V for
completeness. Peak values and location of the Reynolds
stresses are presented in table VI.
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TABLE V: Aerodynamic performances data at the various values of R explored in the paper.
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TABLE VI: Peak values of the Reynolds stresses and location as a function of R.
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