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Precessing vortex breakdown mode in an enclosed cylinder flow
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The flow in a cylinder driven by the rotation of one endwall for height to radius ratios around three

is examined. Previous experimental observations suggest that the first mode of instability is a
precession of the central vortex core, whereas a recent linear stability analysis to general
three-dimensional perturbations suggests a Hopf bifurcation to a rotating wave at lower rotation
rates than those where the precession mode was first detected. Here, this apparent discrepancy is
resolved with the aid of fully nonlinear three-dimensional Navier—Stokes computation200®
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The flow in an enclosed right-circular cylinder of height so-called projection schent&®Here, we use a stiffly stable
H and radiusR, filled with an incompressible fluid of kine- semi-implicit (i.e., the linear terms are treated implicitly
matic viscosity», and driven by the constant rotatiofy, ~ while the nonlinear terms are explicéecond-order projec-
rad/s, of one of its endwalls has been widely studiddThe  tion schemé?® For the space variables, we use a Legendre—
main motivation for these studies has been that over a randeourier approximation. Specifically, the azimuthal direction
of the governing parameters, REOR?/v andA =H/R, there is discretized with a Fourier expansion with+ 1 modes
exist flow states with recirculation zones located on the cencorresponding to azimuthal wave numbens=0,1,2,. k/2,
tral vortex, Commomy referred to as vortex breakdOWnWh”e the axial and vertical directions are discretized with a
bubbles(Re is Reynolds numbgrin spite of the numerous Legendre expansion. One then only needs to solve, at each
numerical and experimental studies, there continues to béme step, a Poisson-like equation for each of the velocity
considerable controversy with fundamental aspects of thi§omponents and for pressure. These Poisson-like equations
flow, particularly with the question of if and how the basic ar¢ solved using an efficient spectral-Galerkin mettod. -
state (steady and axisymmetjidreaks symmetry and be- All the results presented here.have 64 Legendre ques in
comes time dependent. and z and 15 Fourier modes i, and the time step ist

The linear stability analysiof the basic state to axisym- ~ 0.05.

metric disturbances was performed over a large range of as_-3\(/)ve have colmFg)uted th_e floyvhatha Sxe_d aspeé:t I‘al.IO
pect ratioA. However, forA =2.8 it was not consistent with =™ at several Re, starting with the basic steady axisym-

Escudier's® experimental observation that “fdd/R>3.1, metric flow. The basic state in this problem, steady and axi-

the first sign of nonsteady motion is a precession of the Iowe?ymmem(.: for low Re numbers,_ is nontrivial, ha_vlng detailed
; . . structure in bothr andz The main features of this base flow
breakdown structure,” suggesting that the basic state, for

this larger A, loses stability to a nonaxisymmetric mode. consist of & thin Ekman-type boundary layer on the rotating

. ) . - disk whose thickness scales with R&; the presence of the
However, when nonaxisymmetric perturbations were in-

luded in the stabili Vs th tinued to be di stationary sidewall turns the Ekman layer into the interior
cluded in the stability analysrs, there continued to be dis- producing a swirling axisymmetric jet. At Re2730, there is

crepancies with Escudier’s observations. Escudier observed a

precession, by which he presumably meant a mode with azi-

muthal wave numbem=1, at Re=3.0x10* for A~3, (a) (b)
whereas the stability analysis far~ 3 showed that the basic
state loses stability via a supercritical Hopf bifurcation at
Re~2.7x 10° to anm=4 rotating wave state. Here, this ap-
parent disagreement is resolved by solving the Navier—
Stokes equations using a fully nonlinear three-dimensional
spectral-projection scheme.

The equations governing the flow are the Navier—Stokes
equations. The main difficulty in numerically solving these
equations is due to the fact that the velocity vector and the
pressure are coupled together through the continuity equa-

tion. An efficient way to overcome this difficulty is to use a FIG. 1. Contors az=0.8A of: (a) the axial velocityw and (b) its pertur-
bationw,, for the m=4 RW at Re=2850 andA =3.0. Contour levels are
+max(@)(i/20),i [1,20], for a=w andw,, respectively. Soliddasheg
3E|ectronic mail: lopez@math.la.asu.edu lines are positivénegative levels.
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Rotating wave m = 4 at Re = 2850

FIG. 2. Contours of the axial velocity
w of the m=4 RW at Re=2850 and
A=3.0 in meridional planes as indi-
cated. Contour levels are- max{w)
X(i/20), fori e[1,20]; solid (dashed
lines are positivénegative levels.

0=m/8 0=m/4 0 =3r/8

a supercritical Hopf bifurcation to a rotating watRW) with absent in the RW. The evolution of the MRW was monitored
azimuthal wave numbem=4, in good agreement with the through time series of energies in each azimuthal Fourier
linear stability analysid3 Figure 1 show contours of the axial modem
velocity and its perturbatiofobtained by subtracting the azi- 1 (2n H R
muthalm=0 modg. Them=4 mode is clearly visible, but En(r,z)= _f UpeUXr d 6, Em:j j Ey(r,z)dr dz,
the region close to the axis remains steady and axisymmetric. 2Jo 0.Jo
This is more apparent in Fig. 2, showing meridional sections 1)
of the flow at four different angles covering an azimuthalwhere&,(r,z) is the kinetic energy density if,z) andE,, is
period/2. Them=4 mode can only be observed inside andthe total kinetic energy of then azimuthal mode. Figure 3
around the strong jet close to the wall. The bifurcation to theshows the time evolution of the kinetic energigs, E,, and
m=4 RW corresponds to an instability of this jet. Escudier'sg, started with the RW at Re2850 as the initial condition.
experiments focused on the behavior of the vortex breakAfter ten revolutions of the rotating disk, the flow evolves to
down bubbles located in the central vortex. He introducedhe m=4 RW at Re=2900, but this state is unstable. Over
die on the axis through the top endwall, and visualized theeveral thousand endwall rotations, the azimuthal mmde
structures near the axis using a laser sheet. This explains why1 grows and eventually saturates, extracting energy from
he reported steady axisymmetric vortex breakdown structhe m=0 and 4 modes of the RW. The growth rate of the
tures at Re=2850. We have selected this value €RB850) m=21 mode is 9<10 %, this small value indicates that this
away from the bifurcation point (Re2730), in order to state is close to the bifurcation point.
have a well developed azimuthal mode. Figure 4 shows contours of the axial velocity and its
By increasing Re to 2900, a secondary bifurcation takegerturbation(obtained by subtracting the azimuthai=0
place. It is a supercritical Naimark—Sacker bifurcati@n  mode for the MRW at Re=2900. Them=4 mode is clearly
Hopf bifurcation of limit cycle. The RW bifurcates to a visible, and as in the lower Re case, is localized away from
two-torus, a modulated rotating wa#&@RW). A second fre-  the axial vortex. The nemn=1 mode manifests itself on and
quency appears, associated with the azimuthal nmoeel,  near the axis. In fact, we can analyze the spatial structure of
each mode separately. Figure 5 shows three-dimensional per-
spectives of the perturbation of the axial velocity for the two
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FIG. 4. Contours az=0.8A of: (a) the axial velocityw and(b) its pertur-
bation w,, for the MRW at Re=2900 andA=3.0. Contours levels are
FIG. 3. Time evolution of the kinetic energi&s, E,, andg, for the MRW +max(@)(i/20),i €[1,20] for a=w andw,, respectively. Soliddashed
at Re=2900 andA =3.0. lines are positivénegative levels.
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FIG. 5. Three-dimensional perspectives(af and (b) isosurfaces of then
=1 mode ofw, at 10% of maximum and close to zero, respectivatyof
the m=4 mode ofw close to zero, andd) the complete perturbation, at
20% of maximum showing the interplay of bati=1 and 4 modes, for the
MRW at Re=2900 andA =3.0.

azimuthal modes. Isosurfaces of tire=1 mode are shown
at 10% of maximum in(a) and close to zero irfb). The
maximum of them=1 mode is located close to the axis. The
m=4 isosurface close to zero is shown(@), and(d) shows
the isosurface of the perturbatigmcluding all azimuthal
modes other tham=0), at 20% of maximum, showing the
interplay between then=1 and 4 modes.

How would this MRW flow appear in Escudier’s experi-
ment? Figure 6 shows a meridional section of the flow at
four different angles covering an azimuthal period &nce
it involves m=1. The m=4 mode can only be observed
inside and around the outer jet, as in Fig. 5; in fact, taking
only four snapshots at multiples af/2, the modem=4 is
not seen in Fig. 6. However, for the MRW, time=1 azi- 0.2A
muthal mOde manifests itself at the axis in the form of s_tFIG. 7. Contours ofv corresponding t@a) the m=1 mode andb) them
precession of the vortex breakdown bubbles. If the experi—4 mode at levels as indicated for the MRW at R2900 andA =3.0.
ment focuses on the behavior of these bubbles at the axiSontour levels are8.5x 107 3(i/40), fori e[1,40]; solid (dashed lines
only the m=1 precessing mode will be observed, and itare positive(negative levels.
would appear as the first nonsteady manifestation when in-
creasing Re.

The apparent discrepancy between Escudiersion to anm=4RW at a lower value, Re2.7x10°. The
experiments and the linear stability analysisis now re-  spatial region affected by the bifurcating mode can only be
solved. Each one detected different aspects of the same flodetermined by looking at the eigenvectors, and finding the
that take place in different spatial domains. By looking onlysecondary bifurcation to them=1, m=4) MRW requires
near the axis in the experiment, the=4 jet mode is not the full nonlinear computation of the bifurcated flow, as done
noticed and only the processimg=1 mode is seen at Re here.
~3.0x 10°. However, the stability of the flow is a global In Fig. 7, contours of the axial velocity perturbations
property, and the linear stability analysis reports the bifurcacorresponding to théa) m=1 mode andb) m=4 mode at

Modulated rotating wave at Re = 2900

FIG. 6. Contours ofwn for the (m=1,
m=4) MRW at Re=2900 and A
=3.0, in meridional planes as indi-
cated. Contour levels are- max{w)
X(i/20), fori e[1,20]; solid (dashed
lines are positivénegative levels.

0=m/2 0= 0 =3m/2
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observed by Escudier, could be due to instabilities associated
with these undulations when Re becomes large enough. This
issue requires further investigation, but the present results do
provide one precise piece of information concerning the pre-
cessing mode: it is an instabilitysupercritical Naimark—
Sacker bifurcationof the m=4 RW state(as is manifested

by Fig. 3, and not an instability of the steady axisymmetric
basic state. This is further reinforced by the linear stability
analysig® that shows that forA~3, the basic state is not
unstable to moden=1 for Re<4000.
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