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Imperfect gluing bifurcation in a temporal glide-reflection symmetric
Taylor–Couette flow
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The unfolding due to imperfections of a gluing bifurcation occurring in a periodically forced
Taylor–Couette system is numerically analyzed. In the absence of imperfections, a temporal
glide-reflectionZ2 symmetry exists, and two global bifurcations occur within a small parameter
region: a heteroclinic bifurcation between two saddle two-tori and a gluing bifurcation of three-tori.
Due to the presence of imperfections, these two global bifurcations collide, strongly reducing the
range of validity of the generic unfolding of the gluing bifurcation. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1476915#
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Global bifurcations play a key role as organizing cent
in fluid dynamics, especially where multiple states coex
Their systematic study has generally been limited to theo
ical analysis of normal forms and other low-dimensional
nonical models, and to experimental investigations. A cl
of global bifurcations that has been receiving much atten
of late is the gluing bifurcation.1–5 This is a global bifurca-
tion where two symmetrically related time-periodic states
multaneously become homoclinic to an~unstable! saddle
state and result in a single symmetric time-periodic state
a parameter is varied.

In this Letter, we explore the unfolding, due to imperfe
symmetry, of a gluing bifurcation in a system withZ2 sym-
metry generated by a space-time gliding symmetry, i.e
half period time translation plus a space reflection. This sy
metry has received much attention of late,6,7 and it is becom-
ing more and more apparent that even systems that do
have this symmetry~in a nontrivial way! in their basic state,
have states invariant to it after some local bifurcations h
occurred. Many periodically forced systems have aZ2 space-
time symmetry; systems with a space-reflection symme
which bifurcate to a traveling wave also exhibit this symm
try ~e.g., the von Karman wake behind a cylinder, Taylo
Couette flow, and Rayleigh–Be´nard convection!. The pres-
ence of a temporal glide-reflection symmetry strongly affe
the dynamics of the system. It may inhibit some bifurcatio
typically period doubling;8 and in many cases rich dynamic
associated with homoclinic/heteroclinic behavior is prese

Recent experimental investigations of Taylor–Coue
flow in annuli with height-to-gap ratios of order 10 hav
identified the presence of an imperfect gluing bifurcation9,5

The imperfection in the physical experiment is difficult
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quantify, and is expected to be high-dimensional. Nevert
less, the abstract dynamical systems theory is not conce
with the precise details of the imperfection, a measure of
magnitude suffices. Recently, we have also found a glu
bifurcation in computed solutions of a temporally force
Taylor–Couette system with aspect ratio 10.3,4 The temporal
forcing aids in the analysis of the problem in that theZ2

spatial reflection symmetry of the unforced system is
placed by a spatio-temporal glide reflection symmetry wh
can be broken in a very controlled and simple manner,
by adding a small multiple of the first temporal harmonic
the forcing, this multiple being the small imperfection p
rameter. Analysis of the experimental results9,5 indicate that
the dynamics associated with the gluing bifurcation are t
ing place in an axisymmetric@SO(2) invariant# subspace,
even though the observations of these dynamics are f
solutions with brokenSO(2) symmetry. Our computationa
investigation allows us to trivially isolate the gluing bifurca
tion from anySO(2) symmetry breaking related dynamic
by simply restricting the computations to the axisymmet
subspace. Furthermore, with accurate numerics, we are
to take into account the precise details of theZ2 symmetry
breaking and give quantitative measures of the invariant
moclinic curves in the two parameter bifurcation diagram,
well as estimates of the saddle index and the extent in
rameter space~including the symmetry-breaking paramete!
over which the gluing dynamics are robust. This level
contact with the abstract dynamical systems theory is p
sible due to the control that the numerics allows. What is a
unique and novel to our study is that in our problem, the
are two global bifurcations occurring within a small param
eter region, a heteroclinic bifurcation between two sad
two-tori leading to the birth of a symmetric three-torus th
undergoes the gluing bifurcation giving two branches
symmetrically related three-tori. The symmetry breaking i
© 2002 American Institute of Physics
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perfection provides a strong interaction between these
global bifurcations, altering the canonical unfolding of t
gluing bifurcation.

A classification of the possible gluing bifurcation sc
narios was obtained and analyzed in Refs. 10–12, and a
cent discussion of the unfolding due to imperfections is p
sented in Ref. 13. The unfolding of the bifurcation
described by two parameters,m ~related to the Reynolds
number in our problem! ande, the imperfection parameter. A
schematic of the bifurcation diagram is displayed in Fig.
The horizontal axis (e50) corresponds to perfectZ2 sym-
metry; for m,0 a symmetric limit cycle labeled 10 collide
with the saddle atm50, forming a homoclinic curve with
two closed loops, and form.0 splits into two asymmetric
limit cycles, labeled 0 and 1 which are related by the sy
metry. Fore5” 0, the gluing bifurcation splits into two sepa
rate single loop homoclinic bifurcations, corresponding
the solid straight lines in Fig. 1. These lines delimit fo
regions. Two of them are extensions of the symmetric ca
and contain the single limit cycle 10 or the two limit cycle
1 and 0 which are no longer symmetrically related. In t
two additional regions only one limit cycle exists, 1 and
respectively. There exist two additional cusp-shaped regi
where two limit cycles coexist, 1 and 10, and 0 and 1
respectively. The three limit cycles~0,1,10! involved in the
gluing bifurcation in the symmetric case give rise to thr
branches of limit cycles that disappear in generic homocl
bifurcations~collision of the limit cycle with a saddle! when
eÞ0, corresponding to the solid lines in Fig. 1. The dott
line in the figure corresponds to a typical path in the prese
of a fixed imperfection (eÞ0).

Other gluing bifurcation scenarios are possible; th
were obtained and analyzed in Refs. 10–12. They diffe
the size of and the dynamics in the cusp regions. Above
described the simplest scenario that happens to correspo
our problem. This same scenario has been recently obse
experimentally in a similar unforced Taylor–Couette flow5

The model problem we consider is the flow between t
coaxial finite cylinders with stationary top and bottom en
walls. The outer cylinder is also stationary while the inn
cylinder rotates at constant angular velocityV i and oscillates
in the axial direction with velocityW sinVft. Its radius isr i ,
the radius of the outer cylinder isr o , and their length isL;

FIG. 1. Bifurcation diagram for the unfolding of the gluing bifurcation.
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the annular gap between the cylinders isd5r o2r i ~see Fig.
2!. These parameters are combined to give the follow
nondimensional governing parameters: the radius ratioe
5r i /r o , the length to gap ratioL5L/d, the Couette flow
Reynolds numberRi5driV i /n, the axial Reynolds numbe
Ra5dW/n, and the nondimensional forcing frequencyv f

5d2V f /n, wheren is the kinematic viscosity of the fluid
The basic flow is time-periodic with periodTf52p/v f and
synchronous with the forcing, and it is independent of t
azimuthal coordinate.

The incompressible Navier–Stokes equations govern
this problem are invariant to two symmetry groups. One c
responds to rotations around the common axis of the cy
ders,SO(2). The other, a temporal glide-reflectionZ2 , is
generated by the discrete symmetryS, involving time and the
axial coordinate; it is a reflection about the midplane
thogonal to the axis with a simultaneous time translation o
half forcing period, satisfyingS25I . In this study we solve
the system in an axisymmetric subspace invariant toSO(2),
and therefore the only relevant symmetry group isZ2 . The
symmetriesSO(2) andZ2 for this problem commute.

The temporal glide reflection produces a convoluted
furcation scenario in this flow, comprising of a gluing o
three-tori (T3) and homoclinic and heteroclinic dynamics.3,4

This gluing bifurcation is the organizing center of the d
namics and is responsible for spontaneous symmetry br
ing in this problem.

We consider an imperfection of the harmonic charac
of the oscillation of the inner cylinder. It is very difficult to
obtain a pure harmonic oscillation in an experiment, a
with any deviation from harmonicity,S ceases to be a sym
metry of the system. The nonharmonic axial oscillatio
have the formW(sinVft1e sin 2Vft), wheree is a measure
of the imperfection.

The axisymmetric Navier–Stokes equations have b
solved with the spectral scheme described in Ref. 4. By va
ing only Ri and e and keeping all other parameters fixe
(L510, e50.905, Ra580, v f530), we located a range
(RiP@280.89,281.26# for e50) where stableT3 solutions
exist. The identification of such solutions was significan

FIG. 2. Schematic of the flow configuration.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L35Phys. Fluids, Vol. 14, No. 6, June 2002 Imperfect gluing bifurcation
helped by the use of a global Poincare´ map for the system
~i.e., strobing at the forcing frequencyv f). The three tori
solutions have three incommensurate frequencies: the f
ing frequency,v f530, a second frequency atvs'5.2, and a
very low frequencyvVLF which is three orders of magnitud
smaller thanvs .

Over the range ofRi and e where T3 solutions exist,
TVLF52p/vVLF experiences dramatic changes, as shown
Fig. 3 for e50. This figure indicates that there are twoRi
values whereTVLF becomes unbounded. The solid curves
best fits of the formTVLF;l21 ln(1/uRi2Ricrit u)1a, the
asymptotic behavior of the period close to a homocli
connection.14 The logarithmic fits give the criticalRi for the
two infinite-period bifurcations ate50, Rihe5280.88736
andRigl5281.00885. The factorsl are the eigenvalues cor
responding to the unstable direction of the hyperbolic fix
points ~saddle T2). The values obtained arelhe52.43

FIG. 3. Variation ofTVLF52p/vVLF with Ri for e as indicated. Symbols
correspond to computed cases and lines are logarithmic fits.
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31023 and lgl51.04731022. For eÞ50, the TVLF→`

gluing bifurcation splits into three distinct homoclinic bifu
cations as shown in Fig. 3. Note that the range inRi where
the 1 and 10T3 branches coexist~i.e., the width of the cus
region in Fig. 1! is very narrow for the imperfections co
sidered and so the two distinct homoclinic bifurcations
pear to coincide on the scale of the graphics in Fig. 3. S
cifically, for e51026, the width in Ri of the cusp
coexistence region is 5.4431025 and for e5331026 it is
2.4031024. This behavior agrees with the unfolding o
gluing bifurcation, depicted in Fig. 1. The periods of theT3

follow the same asymptotic logarithmic expression as foe
50, showing that theT3 for eÞ0 disappear in a collisio
with a saddleT2 ~a generic homoclinic bifurcation!.

Figure 4 illustrates schematically the sequence of b
cations on theT3 branches;T3 are depicted as limit cycle
and T2 as fixed points. This analogy works since the
suppressed frequencies,v f and vs , are almost constant~in
fact, v f is constant!, over the range ofRi ande of interest,
and they do not play an essential role in the dynamics
the bifurcation points. The first column in the figure cor
sponds to theZ2-symmetric case (e50), reported in Refs.
and 4. The infinite-period bifurcation atRihe corresponds t
a heteroclinic loop connecting two saddleT2 that are relate
to each other via the temporal glide-reflection symmetry.
T3 that emerges for higherRi values~labeled 10! is invari-
ant, and undergoes a gluing bifurcation atRigl . For largerRi
values two asymmetricT3 exist, 1 and 0. TheseT3 solutions
become unstable beyondRi5281.26, and the syste
evolves towards aT2 branch described in Refs. 3 and 4. T
second column in Fig. 4 is a schematic of the imperfece
50) case. Both the gluing and the heteroclinic bifurcati
become standard homoclinic bifurcations, and we have
different branches~10, 0, 1! that overlap for different value
of Ri in agreement with the theoretical description in Fig
The equations of the straight lines and the cusp curve in

FIG. 4. Schematic of the bifurcation sequence for theT3 solutions. In this
schematic,T2 are represented as fixed points andT3 as cycles.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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figure can be obtained from the numerical simulations.
a result we have accurately obtained the location of the
ing bifurcation, Rgl5281.01, the unstable eigenvalue
the saddle at the gluing point,l151.04731022 and the
saddle index~the ratio between the real part of the leadi
negative eigenvalue and the positive eigenvaluel1),
d52Real(l2)/l151.083.1.

For e sufficiently small, our numerical simulations pro
duce dynamics precisely in accord with the dynamical s
tems theory for the unfolding of a gluing bifurcation: thre
different branches ofT3 exist, and they appear in homoclin
bifurcations close to the gluing point. But, for our particul
problem, the branch of symmetricT3 ~10! undergoes a
closeby~at lower Reynolds number! heteroclinic global bi-
furcation, and whene increases, the two global bifurcation
at either end of this branch collide and theT3 branch labeled
10 disappears~at e'531026 and Ri'280.93). This colli-
sion of global bifurcations~in this case a collision of two
homoclinic bifurcations! alters the bifurcation diagram, dra
matically reducing the parameter range of validity of t
standard unfolding of the gluing bifurcation. The two r
maining T3 branches, labeled 0 and 1, become unstable
higherRi; and with increasinge, the homoclinic bifurcation
points where they are born move apart, one to smaller
the other to largerRi, as shown in Fig. 3. Therefore, th
parameter range of existence of the asymmetricT3 labeled 0
shrinks until it disappears at aboute'1025. Only one of the
T3 branches (1) is robust enough to be observable in a
nificant window of parameter space.

The periodically forced annular flow has revealed so
very interesting and novel dynamics associated with glo
bifurcations ofT3. Apart from the unfolding of a gluing bi-
furcation, which is an area that is just being explored
several different extended systems, we have also identifi
nearby heteroclinic bifurcation, that in the presence of i
perfectZ2 symmetry, acts to limit the range of validity of th
generic unfolding of the gluing by a collision of homoclin
bifurcations. Although in our system the associated dynam
take place over a quite small range of Reynolds numbers
expect based on trends with others features in Tayl
Couette flow, that in annuli with wider gaps and smal
aspect ratios, the global bifurcations should occur ove
more extensive range of Reynolds numbers. Neverthe
this particular system has presented a new nonlinear dyn
ics, the interaction and collision between global bifurcatio
To our understanding, this has not been previously stud
and warrants further experimental, numerical, and theore
investigations. An implication of the presence of nearby g
Downloaded 19 Apr 2002 to 129.219.51.200. Redistribution subject to A
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bal dynamics interacting with the imperfect gluing bifurc
tion is that the theoretical picture of the unfolding is com
pletely changed. So, in an experiment with even extrem
small levels of imperfection, complex spatio-temporal d
namics can be present that are not obviously associated
the underlying gluing bifurcation~e.g., in our example prob
lem for e51024 there is only one branch ofT3, the 1
branch, that is not symmetric and does not undergo any
moclinic bifurcation at thise), and their origin would be
difficult to reconcile.
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