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The representation of solenoidal fields by means of two scalar potentials can be a very useful
method for a wide range of problems, in particular for the incompressible Navier—Stokes
equations, though in finite containers boundary conditions may not be easily handled. The
differential equations for the potentials are of an order higher than the original Navier-Stokes
ones. As a consequence additional boundary conditions are needed to solve them. These
differential equations and the corresponding boundary conditions for any geometry have been
derived and the equivalence with the original problem has been proved. Special emphasis has
been laid on domains with nontrivial geometry in which integral boundary conditions appear.

nfined flows: Application

As an example, the results have been applied to the periodic Couette flow. In this case the
integral boundary conditions can be avoided by an appropriate change of variables, hence

reducing the order of the equations obtained.

I. INTRODUCTION

The aim of the present paper is to implement the use of
velocity potentials for the evolution equations of an incom-
pressible viscous fluid in any geometry, for computing.
These equations are the following:

v+ vVv= —Vp+F+vAy, Vw=0, (1)

where, if the force per unit of mass F depends on other vari-
ables such as temperature, magnetic fields, etc.,..., we must
add the corresponding evolution equations. However, this
will not alter the present analysis, which will be independent
of the explicit form of F; for example, in convection prob-
lems the Boussinesq approximation leads to these types of
equations. For convenience, we shall write Eqgs. (1) in the
form

(0, —vA)YVW+b= —Vp, b=vwVv—F, Vw=0.

(2)

These equations must be complemented with initial and
boundary conditions for v. The boundary conditions for rig-
id walls are of the form v = U, where U is the velocity of the
boundary. We shall not treat the case where some of the
boundary conditions are imposed on the pressure. In some
cases these conditions can be transformed into conditions for
the velocity (see Joseph,' p. 67). In this paper we shall only
consider the case of three boundary conditions on v.

So as to eliminate both the pressure and the incompress-
ibility condition V-v = 0, several methods have been used. In
Sec. II we discuss the toroidal and poloidal potentials:

v=VX(¥e) + VXV X (de), (3)

where e is a vector field given beforchand. The Navier-
Stokes equations are then replaced by the e components of
their curl and double-curl and the pressure is hence eliminat-
ed. This method has been extensively used in thermal con-
vection®? and recently in Couette flow.*

In Sec. III we discuss the potential vector method
v = VX B, with one of the components of B equal to zero:
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v=VX (P, ) + VX (¥?,), (4)

where €, and &, are orthogonal unit vectors; we take it in the
x and y axis directions, respectively. Equations (1) are then
replaced by the é, and €, components of the z derivative of
their double-curl and the pressure is hence eliminated. This
method has been used in thermal convection in a rectangular
box.>¢

Both methods use two scalar potentials and give two
equations of higher order (fourth or sixth depending on the
variables considered). To solve these equations additional
boundary conditions are needed. In the literature, explicit
boundary conditions for the potentials have only been im-
posed partially, or in very simple situations. In many cases
the additional boundary conditions needed are not explicitly
stated and are hidden in the form chosen for the spectral
expansions of the numerical methods used; and the authors
do not prove in any circumstance the equivalence between
the potential’s equations (with the boundary conditions they
use) and the initial Navier-Stokes problem (1). In the pres-
ent paper we obtain these additional boundary conditions,
proving the equivalence with the original problem; unfortu-
nately for some of these conditions the potentials cannot be
uncoupled. This is the price to be paid for using potentials.
And this is probably the reason why some papers become
unclear when displaying the boundary conditions.

When the fluid domain has a nontrivial geometry, i.e.,
when its homology groups are not trivial, integral boundary
conditions appear. They are necessary to ensure that some
differential closed forms are exact, allowing us to recover the
Navier-Stokes equations from the ones written in terms of
potentials. For that purpose we shall use the classical meth-
ods of differential geometry: the theory of homology, the
deRahm theorem, and their applications to potential theo-
ry.”°

In Sec. IV we apply the results obtained to the periodic
Couette flow, which has a nontrivial geometry. Next we de-
velop a reduction in the order of the equations obtained. This
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reduction makes clear the role of the integral conditions
mentioned above, and gives a system of generalized parabol-
icequations [ (41) and (44) ], which are well suited for stan-
dard numerical integration techniques.

A different possibility for eliminating the pressure term
is to apply the integral condition of the Galerkin method,'
by using for the velocity vector a set of zero divergence basis
functions. This is the equivalent of using two components of
the curl of the Navier—Stokes equations. These methods, all
of which use scalar potentials instead of the velocity itself,
lead to equations of lower-order, coupling the two scalar
potentials in the linear part of equations.

Another method for eliminating the pressure is the inte-
grodifferential formulation of Achard and Canot.'" They
use potentials as intermediary tools in order to find a set of
integrodifferential equations for the vorticity VX v. This set
is coupled to some Fredholm equations introducing four
auxiliary variables defined in the boundary of the fluid do-
main.

The Clebsch potential method has also been used in flu-
id problems'*~'* and specifically in plasma physics.'>'” The
velocity field v is expressed via three potentials A, ¢, and ¢ in
the following way:

v=AVu + Vg, (5

A and g are taken such that the families of surfaces A = const
and u = const stratify the space, and the vortex lines coin-
cide with these surface intersections. This formulation is use-
ful in the Hamiltonian formulation of fluid and plasma sys-
tems. It has also been used to study turbulence and soliton
structures. The three potentials A, u, and ¢ are coupled by
the incompressibility condition V-v = 0, and the u potential
is usually a multiple-valued function. The Clebsch potentials
are rarely used in numerical calculations because of these
facts, and we shall not deal with them in this paper.

1. TOROIDAL AND POLOIDAL POTENTIALS

In this formulation the velocity field v is expressed via
the potentials ¢ and ¢ as v = VX (¢e) + VXV X (de) [Eq.
(3)], where e is a vector given beforehand. When the fluid is
confined between two parallel planes as in the Bénard prob-
lem, or when the approximation of narrow gap in Couette
flow is used (changing two concentric cylinders into two
parallel planes), e is constant, orthogonal to the aforemen-
tioned planes. In problems concerning spherical symmetry
(stellar convection'®), one assumes e =r, the vector posi-
tion. Both options lead to reasonably simple equations, and
the potentials ¢ and ¢ are associated, respectively, with the e
components of vorticity and velocity.

In problems of cylindrical symmetry we could be in-
duced by analogy to take e = (x,p,0), the radial vector.
However, this gives rise to more complicated equations than
in the previous cases. Furthermore, the association of the
potentials with the vorticity and velocity is lost. Finally, in
that case one cannot even assume the existence of the poten-
tials ¥ and ¢. In such a simple case as that of the basic
Couette flow they do not exist. See the particulars concern-
ing these affirmations in Appendix A.

In the literature, explicit boundary conditions for the

730 Phys. Fluids A, Vol. 2, No. 5, May 1990

potentials"'* have only been imposed on surfaces orthogonal
to e, in which case they are very simple: ¥ = ¢ = e'V¢ = 0.
When the surfaces are not orthogonal to e the situation be-
comes more complicated, as we shall see. Thus potentials
have often been avoided in closed containers.

We shall take e to be constant and unitary, although
arbitrary geometries will be considered. We discuss first the
existence and uniqueness of the potentials. Their conditions
of existence in domains enclosed between parallel planes
have been given by Joseph'; we shall show the existence of ¥/
and ¢ when the homology groups for the domain being con-
sidered are not trivial. Then we discuss in detail the bound-
ary conditions for the potentials and the equivalence of both
formulations (potentials versus primitive Navier-Stokes
equations). The central result is a theorem, which gives us
the additional boundary conditions (15) for the potentials.
These conditions depend on the geometry of the fluid do-
main and include integral boundary conditions if the homol-
ogy groups of the domain are not trivial.

Homology theory will be used at large in this paper, so
we feel it may be wise to recall some definitions and examples
for readers who are not familiar with them. Let £ be an open
domain of R®. The homology group H,(€) is made of all
classes of closed curves that are not boundaries. The closed
curves that are boundaries of surfaces contained in 2 consti-
tute the zero class. Two curves belong to the same class if
both of them together define the boundary of a surface con-
tained in ). For example, a connected domain DeR? with k
holes has H,(D) = R*; i.e., there are k nontrivial classes of
closed curves, each of them constituted by curves surround-
ing one of the holes. The homology group H,(Q) is formed
analogously by classes of closed surfaces. Two closed sur-
faces belong to the same class if both of them together are the
boundary of a three-dimensional domain in Q.

We list some useful properties and examples of the ho-
mology groups. If € is contractible to a point, all homology
groups are trivial. If Q0 is simply connected, H, (1) = {0} is
trivial. If € is a spherical shell, H,(Q) = {0} and
H,(Q)=R. If O is a cylindrical shell or the interior of a
torus, H, () = Rand H,(Q) = {0}. If Q is a toroidal shell,
H,(Q) = R? and H,(Q) = R. Periodic conditions identify
different parts of d} giving rise to more complex geometries.
Thus a rectangular box periodic in one direction gives rise to
a cylindrical shell and double periodicity gives rise to a toroi-
dal shell (see Fig. 1).

Let us first introduce the notations to be used. Let 2 be
an open domain of R* with a piecewise smooth boundary 9.
We shall take the Cartesian z axis in direction e, D, as the
intersection of { with the plane orthogonal to e at point z,
and we shall call the unitary vectors tangent and normal to
aD,, respectively, t and & (see Fig. 2).

Classical potential theory tells us that a solenoidal vec-
tor field v derives from a potential vector B(v = VX B)iff

fv-dS:O YSeH,(Q), (6)
S

where H,({}) is the second homology group of £} previously
mentioned. The following proposition tells us that the condi-
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FIG. 1. Sketch of the Couette flow domain. By identifying the top and
bottom of the cylinder, we obtain a toroidal shell.

tion of existence for the potentials ¥ and ¢ coincides with
(6).

Proposition 1: Let v be a continuous field of solenoidal
vectors in {} that verifies (6). Then there exist functions ¥
and ¢ defined in ) such that

v=VX(e) + VXV X (de). (N

Proof: The conditions (6) guarantee the existence of a
vector potential B:v = VX B. Let us consider the following
Neumann problem in D, :

A,f= —-3,B,—3d,B, in D, (8a)

if——- —iB on dD,,
dn

where the subscript / (horizontal) refers to the Laplace op-

erator in the plane domain D, with respect to coordinates

(x,9). If fis the solution to the Neumann problem (8),

then the differential form

(8b)

FIG. 2. Domains under consideration and notation.
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a= —(B,+d,f)dx+ (B, + 3, f)dy 9
is exact because of (8), as can be seen by direct calculation,
da= (A, f+0.B, +3,B)dxNdy=0, (10a)

Ja:f(ﬁ'B—l—%) dl=0, VC€H1(Dz)’ (IOb)
[ [ n

since ¢ always amounts to no more than a combination of the
circuits that form dD,. Now, there exists a function ¢ such
that d¢ = a. Coordinate z plays the role of a parameter in
dD,;if Bis differentiable in z the solution to (8) and ¢ can be
taken to be differentiable in z. An elementary calculation
tells us that VX (de) = B + Vf— ye, where ¥y = B, + 3, f.
Finally,

v=VXB=VX(¢e) + VXVX(de),

and the proof is complete.

This result might seem trivial but there is no reason why
it must be satisfied for a different choice of e (see Appendix
A for a counterexample). We ourselves suppose that condi-
tion (6) is a consequence of the boundary conditions of v on
d), as in fact happens in many specific cases. In fact, (6)
guarantees that the potential vector B is single valued. If (6)
is not satisfied, 1 and ¢ may still exist, but they will be multi-
valued functions. This is not a big deal because v remains
single valued, but can make more difficult any numerical
approach to the problem. If (6) is not satisfied, we can take
v=v,+ v, where v, is a known velocity field satisfying
Vv, =0, fv'«d S = 0. Then we can reformulate the problem
in terms of the shifted velocity v, which now satisfies (6).
See Appendix A for an example.

We may now examine the freedom in the choice of po-
tentials (gauge freedom). An elementary calculation shows
the following proposition.

Proposition 2: The solution to the homogeneous prob-
lem VX () + VXV X (de) = 0is given by

(11)

A, ¢ =0, fff’ di=0, YceH,(D,), (12a)
c n
Viy= —exVg,, (12b)

where H,(D,) is the homology group for closed curves on
D, defined as usual. So, therefore ¢ is determined up to a
horizontal harmonic function [that is to say, harmonic in
(x,y) and arbitrary in z]; and if H, (D, ) is not trivial the said
function will have additional restrictions. With regard to
we can add only an arbitrary function of z to it (1 is deter-
mined by ¢ in D, up to an additive constant).

We shall now study the differential equations for 1 and
¢. Given that the z components of the successive curls of v
have a very simple expression,
ev= —A,d, eVXv= —A,Y, eVXVXv=AA,d,

(13)

we take the z components of the curl and double-curl of the
Navier-Stokes equations (2), which gives

(3, — vA)A, ¥ = eV XD,
(3, — vA)AA,d = — VXV XD,

(14a)
(14b)

so we have eliminated both the pressure and the Vv =0
condition, which is identically satisfied by (7). Since the
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equations obtained are of higher order than the initial ones,
we must add additional boundary conditions so that prob-
lems (2) and (14) become equivalent. These additional con-
ditions are given by the following theorem.

Theorem 1: Equations (2) and (14) are equivalent if we
add the following boundary conditions to (14):

VX [(d, —vA)v+b] =0 on an, (15a)

f [(3, —vA)V+b]d1=0, VceH,(Q),  (15b)

JVX[(B, —vA)v+b]dl=0, VeeH(D,). (15¢)

Equivalence means that each solution to (14) and (15)
defines a velocity v = VX (¢e) + VXV X (¢e) such that
(8, — vA)v + b is a gradient; thus it defines the pressure p
up to an additive constant and (2) can be recovered. Recip-
rocally, each smooth enough solution v of (2) defines some
potentials 1 and ¢, which satisfy (14) and (15). Obviously,
if (2) is to be a well-posed problem, it is essential to give
some boundary conditions for v on df, plus some initial
conditions for v in ¢ = 0 over (). The smoothness of solution
v will depend upon the regularity of () and on the boundary
and initial conditions.?’ We ourselves shall assume that v
solutions are sufficiently smooth (at least C*, in order to be
able to take the curl twice). The initial and boundary condi-
tions for v ought to be considered as part of the problem
(14). We shall now proceed to prove the theorem.

First, we shall demonstrate the equivalence between (2)
and

(3, —vA)VXv+VXb=0, Vv=0 in Q, (16a)

f [(3, —vA)V+b]-d1=0, VeeH,(Q),  (16b)

which is an immediate consequence of the following well-
known property in potential theory:

VXA =0, fA-a’l:O VYeeH (Q)A = — Vp.

(17)

Therefore it only remains to prove that (16) is equivalent to
(14) and (15). This is a consequence of the following
lemma.

Lemma I: If A is a solenoid vector field of vectors in Q,
then A = 0 in ) is equivalent to

eA=0, eVXA=0 in £, (18a)

i*tA=0 on 49, fA-dl:O, VeeH (D,). (18b)

The direct implication is immediate. To prove the converse,
we define the one-form in D, as a =4, dx + A, dy. The
conditions

eVXA=0=>da =0,
(19)
JA-dl =O¢J.a =0, VceH,(D,),

tell us that a is exact; hence there exists a function £ such
that @ =dB. We can see that 8 is constant in D,.

From (18) and the solenoidal character of A,
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A,f=VA=0 in Q, (20a)

—d-ﬁ—=ﬁ—A=0 on 9.

dn
Then B is the solution to the homogeneous Neumann prob-
lem in D, and is therefore constant. As a consequence
a = dp = 0; hence A = 0, which proves Lemma 1.

We are now able to complete the proof of Theorem 1. It
is enough to apply Lemma 1 to A = VX [ (d, — vA)v + b].

The integral boundary conditions [ (15b) and (15¢)]
appear only if the homology groups H,(Q) and H,(D,) are
not trivial. If ) and D, are simply connected, only (15a) will
remain as an additional boundary condition.

In order to integrate (14) we need five boundary condi-
tions on d). We already have four, the three resulting from
the boundary conditions of v plus (15a); the fifth one corre-
sponds to the gauge freedom in the choice of potentials. We
will choose ¢ or its normal derivative to be zero on d€2. If we
solve (14) with additional boundary conditions different
from (15) we must explicitly show that with these new con-
ditions we can recover the Navier-Stokes equations (2). If
some of the conditions (15) are lost, we may obtain as a
solution of (14) velocity fields that satisfy the Navier—
Stokes equations with additional terms. Their effect is the
same as applying external forces, therefore modifying the
dynamics of the fluid. See an example in Sec. IV.

(20b)

iii. THE POTENTIAL VECTOR METHOD

In this formulation the velocity field v is expressed as
v = VX B, taking one of the components of vector B equal to
zero: v= VX (¥"V8,) + VX (¥?&,) [Eq. (4)]. We have
chosen the z component of B equal to zero. Different au-
thors>® take these or other components to be zero. The re-
sults obtained in this paper work in both cases. The notations
of this section are the same as in Sec. II, but we restrict
ourselves to the case 2 = D X (z,,z,), where DCR? is a do-
main, with coordinates (x,y). In the notation of Sec. II,
D= D,Vze(z,,z,). We shall also consider a case such that
the problem has periodicity in the z direction.

As in Sec. 11, we first discuss the existence and unique-
ness of the potentials. Then we shall obtain the boundary
conditions for the potentials, proving the equivalence
between this formulation and the initial Navier—Stokes
problem (2). Some of the new boundary conditions are of
the integral type, depending on the homology of the domain
) considered. Because of the particular geometry we have
chosen, we obtain, in general, less conditions than in Sec. II.

Proposition 3: Let v be a continuous field of solenoidal
vectors in {) that verifies (6). If the domain is not periodic in
the z direction then it is possible to write

v=VX(¥"8,) + VX (¥%%). (21)

If the domain is periodic in z, v must verify an additional
condition in order to ensure the existence of the potentials
\P(l),\p(z):

f vXdl=0. (22)

In this integral we take (x,y) constant, z extending over a
period.
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Proof: The existence of a vector potential B such that
v = VX Bis guaranteed by (6) as in Proposition 1. If we add
a gradient to B we obtain the same velocity field. Using that
freedom we can take the z component of B to be zero:

B+v)e, =00d = _p.
oz

If Q1 is not periodic in z, then there always exists a solution f.
If Q is z periodic, it is necessary that {B-d 1 = 0 over a period
inorder toobtain f. But fvXdl= — V(§B«d1) = Oimplies
§Bdl=a constant. If A is the length of the z period,
f(a/A — B,)dz=0, which guarantees the existence
of f such that 4f/dz= —B,+a/A. Taking
v=VX[B— (a/A)&, + Vf ] we obtain the desired result.

We ourselves suppose that conditions (6) and (22) are
a consequence of the boundary conditions of v on df, as in
fact occurs in many specific cases. For example, in convec-
tion in a rectangular box™® both conditions are trivially satis-
fied because the homology groups of €2 are trivial. However,
in Couette flow it is not possible to use these potentials be-
cause (22) is not satisfied. We may now examine the free-
dom in the choice of potentials (gauge freedom). An ele-
mentary calculation shows the following.

Proposition 4: The solution of the homogeneous prob-
lem VX (W"8,) + VX (¥?8,) = Ois given by

V=9, fxy), ¥?=9,flxy), VfeD,. (24)

So, therefore, we can add to W', W@ the gradient of a
horizontal function [depending only of (x,y) coordinates].
If H,(D) is not trivial, some other terms can be added to the
potentials.

We now study the differential equations for ¥, ¥®,
Taking the curl twice of Navier-Stokes equations we obtain

(4, ~ vA)A(VXB) = VYXVXb. (25)
But the x,y components of VX B have a very simple form:

v, =& -VXB= —3,¥?, v =& -VxB=2,¥".

(26)

To obtain equations of even order for the potentials, one
takes usually an additional z derivative in (25), obtaining

(8, —vA) ALY = &,-3, (VX VXD), (27a)
(3, —vA)AIZL WP = — ¢ -3,(VXVXb), (27b)

and we have eliminated both the pressure and the condition
Vev =0, which is identically satisfied by (21). Since the
equations obtained are of order higher than the initial ones,
we must add additional boundary conditions so that (2) and
(27) become equivalent problems. These additional condi-
tions are given by the following theorem.

Theorem 2: Equations (2) and (27) are equivalent if we
add the following boundary conditions to (27):

VX[ (3, —vA)v +b]=0 on dQ, (28a)
&, XVX[(d, —vA)v+b] =0 on z=2z,2, (28b)

(23)

J[(a, —vA)V+b]-dl1=0, VeeH,(D).  (28¢)

Proof: Exactly as in Theorem 1, problem (2) is equiva-

lent to (16). This gives the condition (29¢). We have used
the property H, () = H,(D) because of the fact that any
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closed curve in 2 is homotopically equivalent to a curve in
D. Therefore it only remains to prove that (16) is equivalent
to (27) and (28). This is a consequence of the following
lemma.

Lemma 2: If A is a solenoidal vector field of vectors in
Q1 =D X (z,,2,), then A =0 in Q is equivalent to

d,6, VXA=0, 3,,VXA=0 in Q, (29a)
A =0 ond, &XA=0 onz=z,, (29b)

The direct implication is immediate. To prove the opposite
we proceed in several steps. First, we show that
€,°VXX A = 0. From the identity V+(d,VXA) = 0 we obtain

3% (8,VXA) = —3,(3,8,"-VXA) — 9,(3,8,,VXA) =0
(30)

as a result of (29a). Condition &, X A = 0 in (29b) implies
A, =A, =0 on z=2z,z,. Then the tangential derivatives
d,4,, d.A, are also zero, in which case &,-VXA =0 on
z=z,z,. This last condition and Eq. (30) give rise to
€,°VXA=0in Q.

Second, we show that d,A = 0 in . By the first step,

VXA =VX(J,A) =0=33,A=Vf in Q. (31)

In fact, we need some integral conditions, {,A«d1=0
VceH,(D), if H,(D) is not trivial. But §_ A-d1is identically
zero because ¢ always amounts to no more than a combina-
tion of the circuits that form AdD X{z,}, and there
A, =4, =0. We need to show that f is constant in £,
but this is a consequence of the Neumann problem satisfied
by f
Af=Vd,A=3,V:A=0

in Q, (32a)

gf_ =#Vf=3,(f*A) =0 on JN. (32b)
n

The equation d, (i-A) = 0 on 9€} is a consequence of (29b)
and V-A =0.

Third, we show that A =0 in Q. By the (29b) condi-
tion, A = 0 on z = z,, 2,. By the second step, ,A =0 in Q.
Integrating with respect to z, considering (x,y) as param-
eters, and using (29b) we finally obtain the desired result,
proving Lemma 2.

We are now able to complete the demonstration of
Theorem 2. It suffices to apply Lemma 2 to
A =VX[(d, — vA)v +b]. Then (29a) changes into (27)
and (29b) gives (28a) and (28b).

The integral boundary condition (28c) appears only if
the homology group H, (D) is not trivial. If D is simply con-
nected, only (28a) and (28b) will remain as additional
boundary conditions. In order to integrate (27) we need six
boundary conditions on z = z,, z, and four on dD. Equations
(28a) and (28b) give three of them on z = z,, z, and one on
dD. The remaining three conditions are the original Navier—
Stokes boundary conditions on v. Boundary conditions oth-
er than (28) can be used to solve (27). In any case it is
necessary to show that these conditions permit us to recover
Navier-Stokes equations without additional terms (external
forces). The boundary conditions (28), as (15), are stated in
terms of velocity field, therefore being independent of the
gauge freedom in the potentials. This gauge freedom is
usually fixed by the initial conditions.
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IV. APPLICATION TO THE PERIODIC COUETTE FLOW

The Couette flow is the motion of a fluid confined
between two coaxial cylinders that can rotate independently.
We suppose the cylinders to be infinite and the usual hypoth-
esis is to consider the flow periodic in z with a wavelength 4.
In cylindrical coordinates the domain Q will be
(r,6,2)€[R,;,R,] X [0,27] X [0,4 ] and on identifying 8 =0
with 6 = 27, z = 0 with z = A, we obtain a domain that is
geometrically equivalent to a toroidal shell (see Fig. 1). The
corresponding homology groups are H,(Q)~R? H,(D,)
~R, and H,(Q) =~R. That is to say, in Q there exist two
closed curves that are neither homotopic to a point nor ho-
motopic to each other, and that correspond to the closed,
nonexact forms d6, dz. There also exists a closed surface that
is nonhomotopic to a point, corresponding to the two-form
dO A dz. Similarly, in D, there exists a circuit that is nonho-
motopic to a point corresponding to d6.

Since H,({1) is not trivial the potentials 1, ¢ might not
exist. In that case condition (6) is written as

fv-dS= v,dS =0, (33)

S r=R,
which is automatically satisfied since radial velocity cancels
out at the cylinder walls. In fact, the boundary conditions for
varev = R,Q,&,onr = R;,v= RQ&, or r = R, which, if
written in terms of potentials, give

A/NYs +6¢,,=0, —o,+ (1/r)ds, = R},
Ah¢=0 on r=R,~,R0-

For the Couette flow there is no problem regarding exis-
tence, uniqueness, and regularity of v. In fact (see Temam?*°
p. 303), if the initial conditions v(z = 0) are C* then v ex-
ists, is unique, and veC* [OX(0,00)].

The additional boundary conditions (15) can be calcu-
lated easily and give

(34)

A’p, =rDAyY, on r=R,R, (35a)
f" [(3, — vA)V + b]8, dO

_ _f” [(3, — vB)DY — &b ]d8 =0, (35b)
f [(3, — vA)V + b]4, dz

= _f [(3, —vA,)A,4 —&,b]dz=0, (35¢)
f”vx [(3, — vA)v +b]4, d6

- :" [(3, — vB) Dg + &,-Vxb]d8 =0,

(35d)

where we have used the symbols D=4d,, D, =D+ 1/r,
and A = DD, + d2,. Integrals in (35) are calculated on
r=R;, R,. In fact, as a consequence of (34), time deriva-
tives disappear in (35b) and (35c). We keep them in order
to simplify some calculations in Appendix B. Equations
(35b) and (35c) ensure that pressure is periodic in 8 and z
directions. If Eq. (35d) is not imposed, an easy calculation
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following Lemma 1 gives
(3, —vA)v+b+ ClIn(r/R,)é, =0. (36)

Those are the Navier-Stokes equations with an additional
external force CIn(r/R;)é,. This force field is variable in
space, and it is not a gradient, giving as a consequence a
different fluid motion than the original one. The constant C
that appears in (36) depends on the initial and boundary
conditions used to solve (14). If Eq. (35a) is not imposed,
we obtain analogously

(8, —vA)v+b+ yé, =0, (37)

where y is a harmonic horizontal function A,y =0. If y
depends explicitly on » or & then it is not a gradient, giving
rise to a fluid motion different than the original Navier—
Stokes problem.

Equations (34) and (35) are the boundary conditions
for (14). As we have three integrals plus time derivatives in
the boundary conditions, we might believe that this formula-
tion is not really suitable for solving the Couette problem.
We shall see below that all these drawbacks disappear, bring-
ing about a reduction in the order of Egs. (14). The key idea
is that in a Fourier development of #, ¢ in 6, z directions,
Egs. (35b)-(35d) give ordinary boundary conditions above
the zero mode. And the zero mode of Egs. (14a) and (14b)
has the form of a total derivative. Combining these facts we
can reduce the order of the zero mode for ¢, ¢ and the inte-
gral boundary conditions disappear. The details can be seen
in Appendix B. We extract the zero mode using projection
operators P,, P, and writing ¢, ¢ as

V=Pyp+ 1, ¢=Pydp+P,(1—Py)p+¢ (38)
where 17/, gZ are zero-mode-free,
Pe{b=0» Pa;b:Pza:O; (39)

Pyip, Py, and P, (1 — P, )¢ always appear in the combina-
tions

f= —'DP0¢’ g= _DP0¢’

h= —A,P,(1—P,)¢;
/, &, and A are the averages of the potentials ¥, ¢ with respect
to z, 0 and therefore f(r,z), g(rz), and h(r,0); also,
P gh = 0.

In terms of those new variables we obtain

(40)

(8, — vA)f= — P,éyb, (41a)
(8, —vA,)h= — P,(1 — P,)é,, (41b)
(8, — vA)Ag = P,&,°V Xb, (41c)
(8, — vAYA, P = (1 — P,)&,VXb, (41d)

(8, — vA)AA,$ = — (1 — Py)(1 — P,)&, VXV XD,
(41e)
which corresponds to the following decomposition for the
velocity:
V=F8 + hé, + VX (g8 + ¥8,) + VXVX(8,).
(42)
The boundary conditions for these potentials are (34)

and (35a), written in terms of ( £,g,5,1,4), to which we must
add those originating from the choice of gauge freedom. We
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write (12a) in terms of the new potentials,

A$=0=48,4=D, g+h (43a)
d .

f d¢’ dl= —2mrg,=0 on r=R,R, (43b)

c n

By taking g = 0in R,, R, automatically satisfies the second
condition and since now there are no restrictions regarding
$, we can take é=0 on R,, R, By using the conditions
g=¢=0o0nR,, R, and writing the boundary conditions
(34) and (35a) in terms of the new potentials, we have

f= Rij’ h= 01 £=8 = 0, (443)
¥, =0, $=4,4=0, (44b)
'Zo + rfh =0, AAh‘Ze = "DAHZ'z (44c)

onr=R;, j=1,0. Equations (41) and (44) are equivalent
to the Navier—Stokes equations for the Couette flow. They
have been written in terms of the potentials of velocity and
contain neither the pressure nor the condition Vev = 0.
Moreover, the boundary conditions (44) are reasonably
simple as they contain neither derivatives regarding ¢ nor
integral conditions.

As an immediate application we are able to obtain the
equations for the Taylor vortex flow that correspond to the
axisymmetric Couette problem. Once the dependence on @ is
eliminated, we can put 4 =13 = ¢ =0 (because do F=0
and P, F = 0 implies F = 0) and we are left with

(8, — vA)f= — &,D,
(8, — vA)Ag = &,V XD, (45b)

with boundary conditions f=R;, Q;,,g =g, =0onr = R;,
J=1i, 0and velocity givenby v = f&, + VX (gé,). Thatis to
say, f is the azimuthal component of velocity and g is the
velocity potential, which gives us the current lines in the
plane (,z). These equations coincide (up to notation) with
those given by other authors.?! We note that (45) are the
components of the Navier—Stokes equations and their curl.

(45a)

V. CONCLUSION

The techniques developed in this work can be applied to
any incompressible fluid flow problem. In particular, the
formulation obtained [ (42) and (45) ] for the Couette prob-
lem in terms of potentials is completely general; it is not
submitted to the restrictions of other formulations found in
the literature, which are valid only in the axisymmetrical
problem?’ or in the narrow gap approximation.* It is worth
mentioning that the set of equations [ (41) and (44)] is very
well suited for standard numerical integration techniques, as
they are a system of generalized quasilinear parabolic equa-
tions.

We have studied in this paper two potential methods
well suited to solve the Navier-Stokes equations for incom-
pressible fluids. There are two major advantages in these
methods. First of all, they eliminate the pressure and the
incompressibility condition V-v = 0, giving two scalar equa-
tions for the potentials. Second, a necessary and sufficient set
of boundary conditions has been derived that guarantees the
equivalence with the original Navier—Stokes problem,; this is
the main contribution of this paper. However, the boundary
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conditions obtained couple both potentials and, depending
on the geometry of the fluid domain, they may become inte-
gral boundary conditions. We think these integral boundary
conditions can be circumvented in most cases, as in the
Couette flow discussed in Sec. IV, by using similar tricks. In
numerical applications, by using spectral methods, these in-
tegral conditions give algebraic linear equations between the
spectral coefficients of the potentials.

Recent developments on spectral methods together with
the use of supercomputers make it possible to calculate flows
in complex geometries®? as well as to simulate three-dimen-
sional flows.® Potential methods have been used by several
authors,>>%'® but the advantages and disadvantages of the
methods discussed in this paper cannot be made apparent
unless more numerical work and a detailed comparative nu-
merical analysis are undertaken.
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APPENDIX A: OTHER CHOICES FOR e

We shall now give the e components of velocity and its
curl, as well as the curl and double-curl of the Navier-Stokes
equations for different choices of e.

Case 1. e = (0,0,1):

ev= —A,d, eVXv= —A,¥, (Ala)
(8, —vA)A, ¥ = eV Xb, (Alb)
(4, —vA)AA, ¢ = — e VXV XD. (Alc)
Case2. e =r= (x,p,2):
ev= —Asd, eVXv= —Agy, (A2a)
(0, — vA)As¢ = eV Xb, (A2b)
(9, — vA)AAsp = — eV XV XD, (A2¢)
where
= (1/sin 8)d, (sin 63) + (1/sin* 6)dZ,  (A3)

is the angular part of the Laplace operator in spherical co-
ordinates.
Case 3. e = (x, ,0):

ev= —rAch, eVXv= —PA Y +24,, (A4)
and so the association of ¥ with e*V X v is lost;
— 2
(8, —vA)AcY — 7 (d, — 2vA) ¢y, — > Y00
1 e~V Xb, (AS5a)
(39, — VA) (AAC¢ + = ¢ree) r2 (3, — 2vA) ¢,
2 2 1
- _r’l (DA¢99 - 7¢6922) = — 2 eVXVXb,
(AS5b)
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where we have used cylindrical coordinates and A,
= (1/r*)d%, + 3% is the cylindrical part of the Laplacian
operator. These equations may seem more complicated than
those of the two preceding cases, because their linear part
(the left-hand sides) couples the potentials ¥ and ¢. The
reader can readily grasp that no such difficulty exists either
in the axisymmetric case or in the narrow gap approximation
for the Couette flow. Nevertheless, Eqs. (AS5) have several
good properties. They are of second and fourth order in r,
respectively, while in case 1 Egs. (A1b) and (Alc) are of the
fourth and sixth order in r. And the boundary conditions on
surfaces r = const are very simple: ¥ = ¢ = D¢ = 0. Hence
in this case we do not need additional boundary conditions.
Finally, we can calculate the potentials 1, ¢ correspond-
ing to the basic Couette flow: v = (A7 + B /r)é&,, where 4
and B are constants such that v, =R, Q; on r=R,, v,
= Ry)y on r= R, By choosing e = (x, y,0) we obtain
¢ =0, ¢ = (A4 + B/r*)z In this case v is independent of z
but ¢ depends on it and is not periodic, and hence no solution
exists. In contrast, by taking e = (0,0,1) we obtain ¢ =0,
Y= — Ar*/2 — Blog(r), which does satisfy all require-
ments. The nonperiodic character of the potentials ¢, ¢ can
be circumvented in several ways. One possibility is to work
directly with nonperiodic ¢, ¢, but guaranteeing that v is
periodic. Another method is to take v = v, + V', where v, is
known and includes the nonperiodic part of ¢, ¢. In the
Couette flow, for example, we can take vy = (4r + B /r)é,
and then put v’ = VX (¢e) + VX VX (ge) with ¢, ¢ peri-
odic.

APPENDIX B: REDUCTION OF THE ORDER

We shall now obtain the reduction in the order of Eqs.
(14) for the Couette flow. Let us first study the potential .
We shall introduce the following average operator:

2T
P, F= Lf F(r,0,2,1)d. (B1)
2 (1]

Obvious properties of P, are
aaF=0:>PoF=E a9P0F=P939F=0,(B2)

where we have used the periodicity of F with respect to 8. Let
us now break 3 down into the form

Y=Pop+ (1—Po)p=P, ¥+ . (B3)
From Eq. (14a) and through application of P, and

(1 — P,) to it we obtain equations for P, ¥ and 1. By apply-
ing P, to (14a) we obtain

D, [(8, — vA)DP, ¢ — Py(85'b)] =0.
Equation (35b) can now be written as
(8, — vA)DP, ¢ — P, (8,6) =0 on r=R,. (BS5)

By integrating (B4) with respect to r and using (BS) we
obtain

(B4)

(8, — vA)DP, i) = P,(&,°b). (B6)
On the other hand,
VXYe, = — &,DP,yp + VX U8, (B7)

Now, as P, i always appears in the combination DP,, by
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introducing f= — DP, i we finally obtain
(8, — vA)f= — P,(&,b), (B8)

with which we have reduced the order of the equation by 2
for P, 1. For this we have used the integral condition (35b)
and the fact that P, 3 always appears in v derived with re-
spect to 7. We see that (B8) is nothing but the & component
of the Navier-Stokes equations projected by P,, and pres-
sure disappears.

The equation for # does not present any difficulty. It
gives

(8, —vA)A, = (1 — P,)é,VXb. (B9)

The reduction in the order of ¢ is more complicated,
however. As well as P, we also need the operator

A
P F= ',%J F(r0.z,t)dz, (B10)
0

which averages out F with respect to z. As before,
0,F=0= P,F=F, 4,P,F=P,d,F=0, (Bll)

where we have used the periodicity of F with respect to z.
The decomposition of ¢ will therefore be

=Py ¢+ P,(1-Po)p+ (1 —Py)(1—-P,)¢
=Py¢+P,(1—Py)¢+94, (B12)

where we have primarily extracted the average with respect
to 6, and then subsequently the average of the result with
respect to z. In order to obtain the corresponding equations
for the three terms of (B12) we proceed as before. A simple
calculation gives

D [(8, —vA)ADP, ¢ + P,(8,VXb)] =0,  (Bl3a)
(3, — vA)ADP, ¢ + Py (8,,¥Xb) =0 on r=R,,
(B13b)
VXVX(dé,) = — A, P,(1—Py)e,
— VX (DP, $8,) + VXVX(88,).
(B13c)

Then P, ¢ always appears in v in the form g = — DP, ¢; by
integrating (B13a) and using (B13b) we finally obtain

(3, — vA)Ag = P, (8,°VXb). (B14)
Thanks to the integral condition (35d) we have been able to
reduce the order by 2. We may observe that (B14) is no more
than the component & of the curl of the Navier-Stokes equa-
tions projected by P,. By applying P, (1 — P, ) to (14b) and
writing (35c) in terms of P, we obtain
A, [(3, —vA)A, P,(1 —Py)p— P, (1 —Py)é,b] =0.

(B15a)
r=R, R,.

(B15b)

By applying (1 — P,) to (B15b) we can integrate (B15a) to
obtain

0, —vA,)A, P, ¢ —P,(&,b) =0 on

(3, —vA,)h= —P,(1 — Py)é,h, (B16)

where we have called h = — A, P,(1 — P,)¢. The integral
condition (35c) has allowed us to reduce the order of the
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equation for P, (1 — P, )¢ by 4. We note that (B16) is the z
component of the Navier—Stokes equations applying
P,(1 — P,), and the pressure disappears. Finally, the equa-
tion for ¢ reads

(3, — vA)AA, = — (1 — Py)(1 — P,)&,-VXVXb.
(B17)
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