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The onset of convection in binary fluid mixtures in a rotating vertical cylinder is considered. 
Parameter values and boundary conditions relevant to experiments on 3He-411e mixtures with 
negative separation ratio are used. The eigenfunctions take the form of rigidly precessing spirals. 
The azimuthal wavenumber of the first unstable mode as the Rayleigh number increases is 
calculated as a function of the rotation rate and the separation ratio, as are the critical Rayleigh 
numbers and precession frequencies. Depending on the parameters the spirals may take the form of 
spatially extended body modes which fill the container, or of wall modes confined to its boundary. 
The former typically precess in the retrograde direction, while the latter are prograde. Under 
appropriate circumstances the binary system with a negative separation ratio becomes unstable for 
lower Rayleigh numbers than a pure tIuid. This property of the system is enhanced by the wall 
modes. Q 1995 American Institute of Physics. 

I. INTRODUCTION 

Recent experiments’-3 on convection in a pure fluid con- 
fined to a vertical cylinder heated from below and rotating 
uniformly about its axis have revealed several new features. 
The most interesting is that near onset convection takes the 
form of rigidly precessing spirals. These spirals are localized 
near the wall of the cylinder, and we call them wall modes. 
Numerical computations of critical Rayleigh numbers, pre- 
cession frequencies and azimuthal wavenumbers are in good 
agreement with the experimental values.4*5 In addition to de- 
scribing the wall modes the theory can also be used to obtain 
a different class of eigenfunctions called body modes. In 
contrast to the wall modes these modes fill the container and 
precess substantially more slowly. The wail modes are the 
preferred modes at larger rotation rates while the body 
modes dominate at low rotation rates. The competition be- 
tween these two types of modes is complex and is discussed 
in detail by Goldstein et a1.4S5 

The pure fluid problem is in one respect unsatisfactory. 
This is because rotation is required for the presence of over- 
stability; in the absence of rotation there are no oscillations. 
In contrast, in systems such as binary fluid mixtures with a 
sufficiently negative separation ratio, oscillations can take 
place even in a nonrotating cylinder. Consequently such a 
system is ideal for the study of the effects of slow rotation on 
such oscillations, and in particular the resulting rotational 
mode splitting. On the basis of abstract theory we know that 
when the rotation rate 0 vanishes convection in the weakly 
nonlinear regime can take the form of either standing waves 
or of travelling waves that propagate either clockwise or 
counterclockwise around the cylinder. The term standing 
waves (hereafter SW) is used here to indicate the absence of 
azimuthal propagation; an SW eigenfunction can take the 
form of a wave travelling radially outwards.” When the re- 
flection symmetry in vertical planes is broken by the rotation 

“‘E-mail: knobloch@physics.berkeley.edu 

SW are no longer possible; instead the initial instability takes 
the form of either clockwise or counterclockwise travelling 
waves (hereafter TW). The counterpart of the SW is now a 
modulated travelling wave (MW) that bifurcates in a second- 
ary bifurcation from the branch of either the clockwise or 
counterclockwise travelling waves.7 

The present paper is concerned with the onset of convec- 
tion in binary fluid mixtures with negative separation ratios 
in a uniformly rotating cylinder. We focus on the effects of 
rotation on the multiplicity of modes and the process of 
mode selection described for the nonrotating system by Mer- 
cader et aL6 The system displays a number of new features 
involving the transition from body modes to wall modes that 
are absent in the unbounded prob1em.s In addition we con- 
firm the presence of the destabilizing effect of a negative 
separation ratio, first predicted theoretically for an un- 
bounded system by Masudag and Pearlstein.” 

The paper is organized as follows. In Sec. II we formu- 
late the hydrodynamical equations and describe the tech- 
nique we use to solve them. ln Sec. III we describe the re- 
sults of our computations. Section IV describes the 
theoretical interpretation of these results, while their impli- 
cations are discussed in the final section. 

II. FORMULATION AND METHOD OF SOLUTION 

We consider Boussinesq binary fluid convection in a 
right circular cylinder of height h and radius I’h. The non- 
dimensional equations describing the onset of instability as 
the Rayleigh number R is increased are given by@ 

1 du 
rz+2.nxu=-Vp+R(@+S~)i+V2u, 

(lb) 

(14 

Phys. Fluids 7 (7), July 1995 1070-6631/95/7(7)/1553/15/$6.00 Q 1995 American Institute of Physics 1553 

Downloaded 13 Sep 2013 to 147.83.27.47. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



v -u= 0. ild) 
Here R is the rotation rate in units of the vertical viscous 
diffusion time, S is the separation ratio, T the Lewis number 
and (+ the Prandtl number. The quantities 0 and 2 denote, 
respectively, the temperature and concentration perturbations 
relative to their conduction profiles, while u= (u, u, w) is the 
velocity perturbation in cylindrical coordinates (r,$,z). In 
writing equations (1) we have assumed that the Froude num- 
ber I’hR2/g4 1 so that effective gravity continues to act 
vertically. We consider two types of boundary conditions, 

au au 'a@ as -=z=~=@=dz -dz=O on z=O,l, 
az iW 

a@ x2 u=----=dr=O on r=r 
aP (2b) 

and 

a@ aC UC@=---~0 on z=O,l, 
az a2 

a@ a2 
u=z=-g=O onr=lY. i3b) 

Both sets of boundary conditions describe a noslip no-flux 
boundary at r=r, with fixed temperature no-mass-flux 
boundary conditions at the top and bottom, which are stress- 
free in the former and no-slip in the latter. In the following 
we refer to these for short as stress-free and rigid. We em- 
phasize, however, that due to the no-mass+lux boundary 
conditions at top and bottom the stress-free problem is, like 
the rigid problem, non-separable. In the calculations reported 
below we solve the former using a Gale&in method in the 
vertical, and the latter using a Chebyshev collocation 
method. In both cases the collocation method is used in the 
radial direction.4Y” The formulation of the eigenvalue prob- 
lem is completed by imposing an appropriate regularity con- 
dition at Y=O.“,‘~ 

We seek solutions of the form f(r, 4,z,t) 
zz ~(r,Z)e’(m++“o, where F(r,z) depends on the chosen 
value of m. The (nonseparable) eigenvalue problem in (r,z) 
is solved for each m, and yields the critical Rayleigh number 
Rk”’ and the corresponding Hopf frequency ~5”“) for fixed 
values of T, or S and IT. Note that o$@<O for modes that 
travel counterclockwise, while oLm”‘>O for clockwise 
modes; the former will be referred to as prograde frequen- 
cies and the latter as retrograde. By minimizing Ryln) over m 
it is possible to identify the azimuthal wavenumber of the 
mode that first sets in. 

III. RESULTS 

Most of the results reported in the following are for a 
l? = 2.76. container and T= 0.0.67, 0=0.755, the parameter 
values appropriate to an ongoing experiment by Lucas and 
coworkers’3*r4 using 3He-4He mixtures at cryogenic tem- 
peratures. In Fig. 1 we show the results for (a) the, critical 
Rayleigh numbers Rio) and (b) the corresponding frequen- 
cies wi”’ as a function of the dimensionless rotation rate fi 
for several values of S and the boundary conditions (2a,b). 
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FIG. 1. (a) R:“‘(n) and (b) Oar’ for I’=2.76, r=0.067, cr=O.755 for 
different values of S and the boundary conditions (2a,b). In (a) the broken 
line represents the result for S= -0.05. 

Since the mode is axisymmetric it is a body mode and it does 
not precess, For small fl these oscillations are entirely due to 
doubly diffusive overstability; the Prandtl number is not 
small enough to produce axisymmetric oscillations domi- 
nated by a restoring force due to the Coriolis force. With 
increasing II the oscillations quickly take on the character of 
inertial oscillations. The jumps in ok” arise when one radial 
m = 0 mode supersedes another; only the lowest Rr’ mode is 
shown. Figure 2 shows Rim) and ,Lmm, as functions of s1 for 
S = - 0.25. In (a) the broken line shows the corresponding 
m=O result. Note that throughout nearly the whole range of 
n shown it is a nonaxisymmetric (i.e., precessing) mode that 
is the mode that first becomes unstable. As the rotation rate 
increases the critical Rayleigh numbers for the nonaxisym- 
metric modes increase with IZ but substantially more slowly 
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FIG. 2. (a) @“‘(CL) and (b) @“(Cl) for IY=2.76, r=O.O67, 0=0.755, 
S= - 0.25 and different values of the azimuthal wavenumber tn. In (a) the 
broken line represents the case m=O. Only the lowest mode is shown for 
each in. 

than for the axisymmetric mode. This is similar to the situa- 
tion that arises in a pure fluid,4 and indicates that the side- 
walls have a destabilizing effect. This effect is present be- 
cause the boundaries can support a new type of mode called 
a wall mode. In a pure fluid these wall modes are nonaxi- 
symmetric and typically precess counter to the direction of 
rotation of the cylinder with relatively high precession fre- 
quencies, in contrast to the body modes which precess more 
slowly.” In such a system the body modes are preferred at 
low rotation rates, but are superseded by the wall modes at 
larger $2. In the present system the modes for flC7.5 are all 
body modes, but due to the stabilizing concentration gradient 
(SCO) the oscillation frequency is relatively high. For larger 
rotation rates the problem begins to differ totally from the 
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(4 
0 too 200 300 4c 
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FIG. 3. Oscillation frequencies o, ‘“‘(a) for prograde (o,>O) and retro- 
grade (o,<O) modes with the same wavenumbers m and parameter values 
corresponding to those of Fig. 2. (a) OGmG2, (b) 36rn~5. 

corresponding pure fluid problem. The selected mode has a 
low prograde frequency instead of a large retrograde fre- 
quency. Moreover there is no mode selection with increasing 
Cl: the selected mode remains m = 6 even for very high s1. 
Examination of the structure of this mode indicates that this 
mode is nonetheless a wall mode. Its character is, however, 
entirely different from that of the wall modes in a pure fluid, 
as indicated by the constancy of the precession frequency 
with increasing a. In Sec. IV we indicate that just such 
prograde modes are to be expected if the Poincare equation 
for a rotating cylinder is generalized to include the effects of 
a stabilizing stratification. Here such a stratification develops 
in response to the applied destabilizing temperature gradient 
because S<O. In Fig. 3 we show the competition between 
different modes with the same azimuthal wavenumber m as 
s1 varies. For small s1 the lowest lying mode is alternately a 
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FIG. 4. (a) R:“‘(S) and (b) o:‘)(S) for r=2.76, ~=0.067, cr=O.755 and 
different values of a. 

prograde and retrograde body mode, although with increas- 
ing R there is a transition to a prograde wall mode. For 
m<5 this transition occurs at smaller Ck as pn increases 
while for ma5 the corresponding R increases again. As 
before there is no axisymmetric wall mode. 

In Fig. 4 we turn to the separation ratio dependence of 
the above results, and through that to another novel charac- 
teristic of the present system. The figure shows f?:‘)(S) and 
o”‘(S) for stress-free boundary conditions and several val- 
L& of 0. Observe that R:“(S) actually decreases with in- 
creasing ISI in a range of S, i.e., in this range increasing the 
stable stratification leads to a lowering of the threshold for 
instability. This phenomenon, first described for an un- 
bounded system by Masuda’ and Pearlstein” and explained 
by Acheson,l’ requires that CT< 1 < CTIT as well as a suffi- 

0:o m=z 

-20.0 j ,,,,,r,,,,,,,,,,,,,,~~- 
-0.35 -0.28 

4 
-0.21 -0.14 -0.07 0.00 

(4 Separation ratio 

FIG. 5. (a) RLmm)(S) and (b) o@‘)(.S) for I’=2.76, ~=0.067, a=0.755 and 
R, =500. (c) shows w!“‘(S) fofma2. Note the abrupt decrease of Rim) with 
increasing ISI and the corresponding transition to prograde modes. 

ciently high rotation rate, here approximately CI>250. In 
contrast w:“(S) remains monotonic. As in the rotating pure 
fluid problem the axisymmetric problem is the one that ap- 
proximates the theory for an unbounded layer the closest. 
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Figure 5 shows that the above results change dramatically 
due to the presence of the nonaxisymmetric wall modes. In 
particular for the dominant mode for our parameter values 
(m = 6 at S= - 0.25)) the destabilization is much more pro- 
nounced and takes place over a much larger interval in 5’. In 
fact the effect is even more striking for a nonaxisymmetric 
mode such as 112 = 2, even though this mode is never the first 
to go unstable. In Figs. 5(b), 5(c) we show graphically that 
the decrease in the stability of the system is due to the onset 
of the prograde wall modes. Such modes are of course absent 
in! the unbounded layer discussed in Ref. 8. Figure 6 demon- 
strates the effect of even weak rotation on the selection be- 
hveen prograde and retrograde modes. Recall that when 
J?,=O the prograde and retrograde modes with the same azi- 
muthal wavenumber are related by reflection symmetry and 
hence have the same frequencies and critical Rayleigh num- 
bers. However, this degeneracy is broken as soon as n#O. 
Fig. 6(b) shows that the retrograde mode (solid line) is pre 
ferred for small ] S[ , while the prograde mode (broken line) is 
selected for larger IS]. Note that the critical Rayleigh number 
for the prograde mode diverges at a finite S as [S] decreases; 
this is because a pure fluid can only support retrograde 
modes for this value of the Prandtl number (cf. Refs. 4,5). In 
contrast, the critical Rayleigh number for the retrograde 
mode decreases rapidly as IS] -+O as the frequency of the 
mode changes from being of the order of the buoyancy fre- 
quency to being comparable to the rotation frequency. In fact 
one recognizes in Fig. 6(b) an “unfolding” of the neutral 
stability curves for Hopf and steady state instabilities around 
the Takens-Bogdanov poinC5 the nearly vertical portions of 
the curves arising from what was the steady state curve when 
fi=O, while the other parts of the curves come from the 
rotational splitting of the Hopf curve [see Fig. 6(a)]. 

In Fig. 7 we present results for the rigid boundary con- 
ditions (3a,b) and parameter values appropriate to the experi- 
mental values of Lucas et ~1.‘~~‘~ Figure 7(a) shows R,(a) 
for lY=2.76, r=0.025, (r=O.547 and S= -9.1 X 10m5, while 
Figs. 7(b), 7(c) show the corresponding precession frequen- 
cies. Not surprisingly, these results are similar to those for a 
pure fluid. In Fig. 8 we show the corresponding results for 
r=2.76, ~0.067, a=0.755 and several values of S chosen 
to exhibit the type of behavior already seen with the stress- 
free boundaries. The details, such as the sequence of transi- 
tions with increasing R differ, however, as do the wavenum- 
bers selected at larger CI: for example for S= - 0.288 the 
m = 7 mode is selected for the rigid boundaries and m = 6 for 
the stress-free ones. This difference could be due to the dif- 
ferent boundary conditions used in these two calculations or 
to the slightly different parameter values. In Fig. 8(a) we also 
present the critical Rayleigh numbers for the axisymmetric 
modes (dashed lines) since these are the only modes that 
survive in the unbounded system. We see that for these 
modes the effect of increasing [s] (typically) raises the criti- 
cal Rayleigh number, regardless of the rotation rate. This is 
in contrast to the nonaxisymmetric wall modes for which 
increasing IS] reduces the critical Rayleigh number once the 
rotation is sufficiently high. This is in addition to the fact that 
for fixed S sufficiently large rotation rates also lower the 
critical Rayleigh number relative to that for the Asymmetric 
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modes. As already mentioned this effect is due to the pres- 
ence of the wall modes and occurs even in a pure fluid. In 
Fig. 9 we show the effect of rotation on the m=7 mode. At 
Q=O the prograde and retrograde modes have the same fre- 
quency, the buoyancy frequency. However, with increasing 
R the precession frequency of the retrograde mode increases 
while that of the prograde mode decreases. As a consequence 
the critical Rayleigh number for the prograde mode falls be- 
low that for the retrograde mode, and the prograde mode is 
selected [cf. Fig. 8(b)]. The dependence of these results on 
the separation ratio S is similar to that with the boundary 
conditions (2a,bj except that the rotation rate for which the 
destabilizing effect of the concentration gradient is first seen 
is increased, i.e., the rigid boundary conditions decrease the 
destabilizing effect of negative separation ratios. For ex- 
ample, when m = 0 we find that R:‘) increases monotonically 
with increasing ISI even for 0, = 500, in contrast to Fig. 4(a). 

In Fig. 10 we show a sequence of temperature eigen- 
functions !X@(I-,Z)~~(~@~‘) at Z= 4 and several different 
rotation rates corresponding to Fig. 8. The eigenfunctions are 
shown in the comoving frame as a function of r and 4 using 
two different representations. In each case the eigenfunction 
shown is the one that first loses stability at that rotation rate. 
Observe that the retrograde mode m= 8 at CL= 30 and the 
prograde mode m = 7 at CL = 34 have very similar structure, 
Nonetheless, because rotation favors retrograde motion while 
stabilizing stratification favors prograde motion the former 
mode appears to be rotation dominated and the latter strati- 
fication dominated. As with the stress-free boundary condi- 
tions the modes that are first unstable are nearly always wall 
modes, and they come in at Rayleigh numbers substantially 
lower than those required for the destabilization of an axi- 
symmetric body mode. In this respect the situation is quite 
similar to that occurring in a pure fluid. 
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A vertical section of the n = 30 and R = 34 eigenfunc- 
tions at fixed r (O<r<T) shows that the waves lead at 
midlevel with the points near z = 0,l trailing behind. More 
generally the eigenfunction curvature depends both on r and 
on the system parameters, and may even change sign with 
increasing r (O-<r<I’). This is because the eigenfunction 
can be written in the form 
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Insulating 

!X@(r,z)e i(m~+ot)=IO(r,z>lcos[m~+wt+cP(r,z)]. (4) 

In general a mode of this form propagates both in the azi- 
muthal and radial directions, and hence takes the form of a 
rigidly rotating spiral (cf. Fig. 10). The phase a’( r,z) differs 
for the different fields 8, Z%, u, v, w and it is these phase 
lags that are responsible for the propagation of the wave.‘6,‘7 
Similar behavior is present already in the two-dimensional 
plane layer as soon as realistic boundary conditions are im- 
posed at the top and bottom.‘* 
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IV. THEORETICAL INTERPREUATION 
0 

,,,,r,rll,llllllllr,llllllllr, 

Gtation Zte 
30 

In this section we discuss theoretically some of the prop- 
erties of the unstable modes that follow from straightforward 
considerations. We begin by considering the mode structure 
in an ideal but stratified fluid confined in a rotating cylinder. 
This analysis leads to a qualitative understanding of many of 

FIG. 7. (a) R,(n) and (b) w,(n) for r=2.76, r=O.O25, rr=O.547, 
S= -9.1X lo-’ and the boundary conditions (3a,b). Cc) shows a detail of 
(b). 
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FIG. 8. (a) R,(a) and (b) o,(fl) for r=2.76, ~=0.067, u=O.755, 
S=-0.288 and the boundary conditions (3a,b). (a) shows R,(0) for 
S= -0.07 and -0.01 as well (solid lines). Note the destabilizing effect of 
negative separation ratio at large Cl indicated by.the crossing of the solid 
lines. The broken lines show the corresponding results for the axisymmetric 
mode m = 0 in order to show (i) the destabilizing effect of rotation, and (ii) 
the (generally) stabilizing effect of negative separation ratio on this mode. 
(c) shows a detail of(b). For large rotation rates the prograde m=7 mode is 
selected. 
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FIG. 9. (a) R:‘)(a) and (b) wj”(fi) for r-2.76, ~=0.067, a=0.755 and 
S= -0.288, showing the effects of rotational mode splitting. The solid (bro- 
ken) line corresponds to retrograde (prograde) modes. 

the results obtained in Sec. III. We thep focus on understand- 
$ ing the destabilizing effect of negative separation ratios. Fi- 

r-rally we discuss, fol.lowing’9~“o a simplified model consisting 
of a rotating fluid-filled semi-infinite domain bounded by a 
straight boundary, and use this model to identify semi- 
analytically unstable modes in the form of.wall modes. 

A. The dissipationless problem 

We. begin by considering the dissipationless system. We 
suppose that there are two competing contributions to the 
density stratification, arising from, say, thermal and solutal 
stratification. These affect the density in opposite ways, but 
in the absence of dissipation no diffusive instabilities can 
take place. Consequently the dynamics of the system are 
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FIG. 10. The temperature eigenfunction @( r,4,z= 4) for the lirst unstable 
mode for r= 2.76, 7=0.067, rr=O.7.55, S= -0.288 and rigid boundary 

121 conditions. (a) s1= 1.5: m=Z, w, =-11.81, (b) 0=24: m=5, 
~~~)---13.29, (c) i2=26: m=3, oi3)=-14.43, (d) fi=30: m=8, 
cots)= 15.60, (e) fk=34: m=7, or’=-8.15. c 
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described by the overall density distribution which we take 
to be statically stable (density decreasing upwards). The 
overall density stratification is measuied by the Brunt- 
V%s& frequency N={ - (glpj (dpldz) }1’2 assumed to be 
real and positive. The natural time scale for the neutrally 
stable oscillations is then N-’ with velocities expressed in 
units of hN, where h is the height of the cylinder. The non- 
dimensional equations take the form 

a@ -===-=w 
at ) 

a8 
=z-=w’ 

i5bj 

(54 

v *‘u= 0, i-W 
where Nt= -gn (JT,l&), Ni= -gp (aS,ldz) and To 
and So are the (linear) temperature and concentration profiles 
in the basic state. Both To and So are assumed to decrease 
with height so that N$>O, Ni>O. We look for infinitesimal 
oscillations with dimensionless frequency w/N. The fre- 
quency w is an eigenvalue of the problem 

vp- 
4f12-N2 a$ 

-0 &-N” s- 

specified by the boundary conditions u.n=O on the bound- 
aries of the cylinder. Here N2=Ni-- N+ and n is the outward 
normal to the surface. These boundary conditions correspond 
to stress-free fixed temperature and concentration boundary 
conditions at the top and bottom, with stress-free no-flux 
boundary conditions on the sides. These boundary conditions 
are the only ones compatible with the absence of dissipation. 

Equation (6) with the above boundary conditions was 
analyzed in detail by Friedlander and Siegmann,” who 
pointed out that there are two distinct classes of modes, de- 
pending on whether the boundary value problem is elIiptic or 
hyperbolic. Modes of class I satisfy min(4a2,N2)<w” 
< max(4n”,N2), while those of class II satisfy O< 0’ 
< min(4flR”,N2). We do not consider the degenerate cases 
w2= min (4a2,N2) and w”-4cR2=N2. In either case the 
resulting eigenvalue problem is separable, and one may seek 
solutions of the form p(.r,$,z)=P(r)eim@cos nm, where 
P(r) satisfies 

1 d JP m2 J-412 

rr/“dr-r- 
T P- oz-NZ n’dP=O, n>O, (7) 

dP 2iIm 
P(O)=O, z=+ - P=O at r=r. 

WY 

For m = 0 the first condition is replaced by P’(O) = 0. It fol- 
lows that class I solutions are given by 

P(‘r)=J,JCYr/l?), (9) 

where 

$ZZ (~‘N~+4~~n’~~r~ 
? 77 Cl!-+/Z-QT-r2 (10) 

and “km (k= I,&...) are the roots of 
waJL( a) + 2CkmJ,(a) = 0 and are real. The corresponding 
eigenfunctions oscillate in r and are similar to those in a pure 
fluid except for the modified frequency range. In our termi- 
nology these modes are body modes. In contrast class II 
modes are given by 

(11) 
where 

(12) 

and am,, is now the root of wcuZk( CZ) + 2CImf,(a) =O. 
Friedlander and Siegmann show that solutions of this prob- 
lem correspond to internal waves that are confined to the 
wall of the cylinder (i.e., they are wall modes) and obtain the 
condition for such modes to exist. It is intuitively clear that 
this condition is equivalent to demanding that the rotation 
rate is sufficiently high, since no wall modes are present with 
no rotation. In addition they also show that modes of class II 
are always prograde, i.e., 0<0.~’ 

These results are in qualitative agreement with those pre- 
sented in Sec. III for the driven dissipative problem. In par- 
ticular we see that the dissipative modes identified above are 
natural analogues of the body and wall modes present in the 
ideal problem. The results of Friedlander and Siegmann 
show, moreover, that the class II modes are only present if 
both N>O, f2>0, and that their (prograde) precession fre- 
quency is @fi) if 2R<N, but is @N) if 2S1>N. This is 
again in qualitative agreement with our results for the dissi- 
pative case in which for sufficiently large dZ and fixed S the 
precession frequency of the critical wall modes was found to 
be both prograde and (essentially) independent of R. Once 
the precession frequencies of all nearby modes become inde- 
pendent of fi there is no further mode crossing with increas- 
ing a, and hence no further mode selection, as seen in Fig. 
8. Note that there are no type II modes when N=O; conse- 
quently the wall modes described by Goldstein et al.” are 
intrinsically dissipative, and such modes are also present in 
our calculations when [SI is sufficiently small. See also Ref. 
6. The body modes are either inertial (if 2R > N) or internal 
waves (if 2fi<N). 

B. Stable stratification as a catalyst for instability 

In this section we discuss the reason why the addition of 
bottom-heavy concentration can destabilize convection in a 
rotating layer. The explanation, suggested by Acheson,15 ig- 
nores the presence of boundaries and consequently applies in 
the first instance only to axisymmetric modes. However, the 
explanation takes account of the various diffusive processes 
present in the system and hence complements the discussion 
in the preceding section of the modes of an ideal fluid in a 
bounded container. 

The basic idea is as follows. Consider a (rotating) pure 
fluid undergoing overstable oscillations. A necessary condi- 
tion for the existence of such oscillations is that a< 1,’ al- 
though in an unbounded layer a more restrictive requirement 
can be obtained.“” Acheson observes that the temperature 
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difference between a parcel of fluid oscillating with dimen- 
sionless frequency o and its surroundings as it passes up- 

perature gradient, rather than being imposed externally. 
Since we are dealing with an unbounded layer it suffices to 

wards through its equilibrium position is consider equations (1) in two dimensions: 

dT op 
6T= -A - 

dz o”+pZ ’ 

where A is the oscillation amplitude, dTldz is the imposed 
(negativej temperature gradient and p is the square of the 
total wavenumber. For example, in a layer with idealized 
boundary conditions at top and bottom p = r’+ k2, where k 
is the horizontal wavenumber. Thus @>O provided ti> 0. 
An identical but negative temperature difference will be 
present on the downward path. These temperature changes 
are present because of a time lag between the velocity and 
temperature fields arising from thermal diffusion, and are 
necessary for the presence of overstability. From expression 
(13) it follows that ST is small if either w is small or if w is 
large. In the former case the oscillation frequency is so small 
that thermal diffusion keeps the parcel nearly in thermal 
equilibrium at all time, while in the latter case the frequency 
is so large that the parcel can exchange little heat with its 
surroundings during one oscillation. The largest ST arises in 
between, when w = p. Since the oscillation frequency is de- 
termined by the rotation rate sl the system may be operating 
in a regime for which ST is not near maximum, and hence 
the extraction of energy from the thermal gradient is not 
optimal. In this case it is possible to destabilize the system 
by adding bottom-heavy solute that shifts the oscillation’ fre- 
quency towards optimal. If the solute diffuses sIowly there 
will be no stabilizing effect due to solute diffusion into or out 
of the parcel during an oscillation. Thus the necessary con- 
dition for destabilization by a bottom-heavy gradient is 

r<cc 1. (14) 

In the remainder of this section we employ equations (1) 
with idealized boundary conditions at z = 0,l to substantiate 
this physical picture. 

In the system under consideration the bottom-heavy sol- 
ute concentration develops in response to the applied tem- 

$ V2g=R( g+S 2) -2Lt $+V4f+b, (15a) 

1 dv 
--x=2a $+v2n, 

subject to the boundary conditions 

~=f!$=$=@=,=o on z=O,l. 

Wb) 

(15c) 

(154 

Here + is the streamfunction. The properties of the resulting 
eigenvalue problem are described by the dispersion relation 

( i ;+P 

2 2 

(s+p)(s+7-jdg ;+p 
i i 

m2rr2 
f- p (s+p)(s+qJ)=O, (17) 

where s is the growth rate of the instability. Consequently the 
critical value of R at marginal stability (s= io, w # 0) is 
given by ..I 

2 4cl27T” 
-~~f(i+~+2~j+(i+7) k2 1 ; (18) 

the frequency o satisfies a quadratic equation for w2: 

$( ,+;+,i-$[% ( 1 T 
p (I-cr-d)-p” l+(T+~~+;I;(S+.12+7S+~S)+~(7+S+7S) 

\1 

II 

+4ar”p s(1+7j+~(l+s)7~(7+s+-Ts) +p4 s(l+~)+rz(l+s)+~(7+~+~~) =o. 
[ 1 I 1 

Equation (19) can have either one or two real solutions w, 
depending on whether a primarily inertial or a ‘primarily 
buoyancy oscillation is excited or both. As pointed out by 
Pearlstein” these two possibilities are of crucial importance 
since only in the latter case can a bottom-heavy solute cause 
an instability. One can check that in the case in which there 
are inertial oscillations (@cl) the condition (14) is necessary 

in order that equation (19) describes two modes of oscilla- 
tion. That this is the same condition as obtained by Pearlstein 
for rotating doubly diffusive convection comes as no sur- 
prise: with idealized boundary conditions equations (1) can 
be transformed by a linear transformation into those studied 
by Pearlstein, without changing cr or T.~ 

In order to check Acheson’s picture of the instability we 
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FIG. 11. The ratio o/p (broken line) and the critical Rayleigh number R, 
(solid line) as functions of S for an unbounded layer with idealized bound- 
ary conditions. The parameters are ~=0.067, U= 0.755, and SL = 500. 

plot in Fig. 11 w/p against S for Q-=0.067, o=O.755 and 
n=500. This plot is obtained by solving (19) for w and 
using the p which minimizes the critical Rayleigh number at 
each value of S. On the same plot we show the correspond- 
ing R,. One observes that the minimum in R, at 
S = - 0.114 occurs at o/p = 0.522. Evidently in the present 
problem the agreement with the suggested criterion o/p = 1 
is significantly worse than in the example computed by 
Pearlstein.t” 

Not surprisingly the above picture also works for axi- 
symmetric modes in a cylinder since these are approximated 
well by the modes of the unbounded system. For example, 
from Fig. 4 we see that for Sn. = 500 the minimum value of R 
occurs at S= - 0.12; the corresponding frequency is 
o= 79.8. Acheson’s criterion thus yields p = 79.8, and this is 
to be compared with the following estimate of an effective p 
in a cylinder of aspect ratio I? = 2.76: 
~=(ndr)~+s-‘= 139.4. Here n= 10 is the number of ze- 
ros in the m= 0 eigenfunction at S= - 0.12. Note that the 
ratio olp=O.57 is similar to that for the unbounded layer. 
More surprising, however, is the fact Acheson’s explanation 
also appears to work for the more dramatic destabilization 
invoiving the (nonaxisymmetric) wall modes. For example, 
Fig. 5 shows that when iI = 500 the minimum Rayleigh num- 
ber for the rn = 2 wall modes occurs at S = - 0.29 while the 
corresponding frequency is w (2J = - 3.50. If we replace p by 

r2i-m2--/‘, where / measures the inverse decay length of 
the wall mode in the direction away from the.wall, the cri- 
terion o/p = 1 yields $= 5.11. This result provides a reason- 
able estimate of the decay length of the computed eigenfunc- 
tion. Note that for these modes p <O (i.e., the modes are wall 
modes) and w<O (the modes precess in the prograde direc- 
tion). These properties are consistent with the physical re- 
quirement that 6T>O. 

C. Wall modes due to a straight boundary 

In this section we consider a simplified form of the linear 
eigenvalue problem in a cylinder. Specifically we consider 
oscillations in a semi-infinite domain { - ~0 <x < 0,O < z < 1) 
with a no-sIip boundary placed at x = 0 and free-slip bound- 
aries at z = 0,l. In addition we assume that the temperature 
and concentration are both maintained at constant values at 
the top and bottom. These boundaries have the advantage 
that they render the resulting eigenvalue problem separable. 
The resulting problem is much easier to study while retaining 
the essential physics of the problem, and enables us to check 
certain aspects of Acheson’s destabilization mechanism more 
easily than in the bounded domain. Consequently we seek 
solutions of this problem in the form of wall modes”*“’ with 
an emphasis on the destabilizing effect of negative separation 
ratios noted in Sec. III. For the wall modes all fields are 
assumed to vanish exponentially as x--r - ~0. We start with 
equations ( 1) and look for solutions of the form 
f(x,z)e i(mJ’fwt), where m is now a continuous wavenumber 
(m # 0). With the boundary conditions chosen the problem is 
separable in z and hence (~,u,w,O,~,p)=(U(x)cos~, 
v(x)cosmz, W(x) simz, O(x)sinnz, X(x)sin7iz, 
P(x)cosrzj, where 

z lJ=-DP+(D2-mm”-rr2)U+2fkV, (20a) 

z V=-imPf(D2-m2-~2)V-2611J, (20b) 

F W=rrP+R(@+SC)+(D2-mm2.-r2)W, WC) 

iw@=W+(D2-m2-rr2)@, (2Od) 

iw~=W+~(D2-m2-~‘)(~-@l), (204 

DlJfrrW= -imV. (2Of) 
Eliminating the various fields in favor of W one now obtains 

i 
(‘2_m2-n2-i,.,,) (D2.-m2-n2)-.4T2~2 W-R D2-pn2-w2-Lz 1 ( 

x(o?--m”)[(D’--m’-d)( I+S+E)-viw]W=O. (21) 
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FIG. 12. Wall modes in the separable straight-wall model as a function of the azimuthal wavenumber m  for ~=0.067, cr=O.755, S= -0.3 and different 
values of CL. (a) Retrograde modes, (b) prograde modes. 

subject to the boundary conditions 

U=V=W=D@=D2=0 on x=0 (22) 

and the requirement that the solutions vanish exponentially 
as x-+-m. 

To find such solutions we suppose that W(x) = exx with 
YIA>O. It follows that 

5 
W(X)= 2 AjeAjix, (23) 

j=I 

The corresponding expressions for the remaining fields are 
readily found from equations (20): 

where Xi~qj + m2 + yr2 and the qj are the roots of the quin- 
tic 

U(x)= -T;: Aj 
i 

2im!A ’ 

i=l hj-m- 2 hj- X;-m2- =2- iwla e+, 1 
(Za) 
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V(x) = - 77; Aj imf 
2i2Aj 

j-1 hT--m2 XT-m2-r2- iwlc+ 
eXiX 

(;5b) 

5 
D@(x)= -,zl AjAz~mz~~~~iw eAix, 1 

Wxl= - ij$, Aj 
xj[(l+7)(Xj2-m2-~‘)-iO] 

x(xj2-m2-7r2- id7)(A;--m2-7r2-iw) 

X eAjx. GW 

The five unknowns A, ,A* ,A3 ,A4 and A5 are determined by 
the five boundary conditions imposed at x=0. A nontrivial 
solution exists if and only if a certain 5 X 5 determinant van- 
ishes. This requirement yields a complex equation for the 
critical Rayleigh number R(m) and the corresponding fre- 
quency o(m) of the oscillations. Note that the limit n-0 is 
somewhat subtle since the dispersion relation then has a root 
q5= i&u+ @a’). Consequently one must suppose that 
As=@(n) before taking the limit 0+0. The resulting 
equations then reduce to those studied in Ref. 6. 

In Fig. 12 we show the precession frequencies and criti- 
cal Rayleigh numbers as functions of the azimuthal wave- 
number m for both retrograde modes (o> 0) and prograde 
modes (w<O) for r= 0.067, U= 0.755, S= - 0.3 and sev- 
eral values of the rotation rate 0,. From the figures one can 
see that for low R a retrograde mode is selected while for 
larger fi prograde modes are preferred. Note that since m is 
now a continuous variable the mode that is selected is the 
one corresponding to the minimum of the neutral stability 
curve R(m). 

Observe that the neutral stability curves extend over a 
limited range of m only. This range is narrow for small 0, 
but increases as 9 increases. Outside the ranges shown there 
are no solutions satisfying the requirement of exponential 
fall-off as x-+ -m, i.e., there are no solutions in the form of 
wall modes. The end points of the neutral stability curves are 
defined by the vanishing of one of the eigenvalues A, indi- 
cating a transition to a body mode (cf. Ref. 6). Fig. 13 shows 
more detailed results for ~=0.067, cr=O.755 and !J=500. 
As in Sec. III, among modes with a given m the retrograde 
modes are preferred for small ISI, but with increasing ISI 
prograde modes are selected. Note that no prograde modes 
are present for sufficiently small ISI. For these parameter 
values Fig. 14 shows that as ]SI increases the minimum of 
the neutral curves as a function of m decreases. The figure 
shows that the minimum for the retrograde mode with 
S= -0.03 lies above that for the prograde mode with 
S = - 0.3, although it is below the minimum for the retro- 
grade mode at this value of S. Recall that for S= -0.03 
there is no prograde mode at these parameter values. These 
results confirm the interpretation of these modes given in 
Sec. IV in terms of the class II modes of a stratified fluid in 
a rotating cylinder. 
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FIG. 13. As for Fig. 12 but showing (a) i7(“kQ and (b) o(“‘)(S) for 
m  = 1,2 when R= 500. Note that the prograde modes disappear at small 
ISI leaving only retrograde modes. 

The above results can also be used to check Acheson’s 
picture of the destabilizing effect of negative separation ra- 
tios. For example, Fig. 13 shows that for m =2 the critical 
Rayleigh number Ry) reaches a minimum at S= - 0.23. 
Acheson’s criterion wc2)lp= 1 now yields P=4.43 which 
compares well with the inverse length computed from the 
dispersion relation (24) using the corresponding 
4J2)= -5.77: 6=3.80. 

V. DISCUSSION AND CONCLUSION 

In this paper we have presented detailed results for the 
onset of convection in binary mixtures in a rotating circular 
cylinder. These results are interesting and important for sev- 
eral reasons. We have found the system can support wall 
modes, and it is the presence of this new mode of instability 
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FIG. 14. As for Fig. 13 but showing the wavenumber dependence of the 
retrograde (solid line) and prograde (broken line) modes for 
S= -0.3, -0.03. (a) R(m), and (b) o(m). Note that there is no prograde 
mode when S= - 0.03. 

that is responsible for the fact that the critical Rayleigh num- 
bers for the onset of nonaxisymmetric instability are in fact 
significantly lower than those for axisymmetric modes. This 
observation must be borne in mind when comparing experi- 
mental results with results based on calculations for an un- 
bounded layer (cf. Ref. 8). We have seen that while these 
approximate the results for axisymmetric modes in a finite 
aspect ratio cylinder, particularly when the aspect ratio is 
large, they can grossly overestimate the actual critical Ray- 
leigh number which typically corresponds to nonaxisymmet- 
ric modes. These effects are present even when the stabiliz- 
ing stratification is weak (ISI small) as is known from the 
pure fluid case. In binary fluids there is, however, an addi- 
tional effect which makes the reduction in the critical Ray- 

leigh number even more dramatic. This is the fact that the 
addition of an apparently stabilizing concentration gradient 
can in fact destabilize the system. This fact, first noted by 
Masuda’ and Pearlstein,” is particularly pronounced when 
wall modes are involved. We found that although these 
modes have an entirely different physical character the ex- 
planation for this unexpected behavior proposed by 
Acheson” in the context of body modes applies to the wall 
modes as well. We believe that this observation, together 
with the detailed results presented above, may remove some 
of the longstanding discrepancies between measured and pre- 
dicted critical Rayleigh numbers for this class of systems. As 
indicated by the analysis of the oscillation modes for a stably 
stratified ideal fluid in a rotating cylinder” the wall modes 
precess in the prograde direction and their precession speed 
is nearly independent of the rotation rate once this exceeds 
the buoyancy frequency. In contrast the wall modes in a pure 
fluid precess in the retrograde direction, while their fre- 
quency increases rapidly with the rotation rate. At cryogenic 
temperatures where visualization is difficult Nusselt number 
measurements usually provide the only information about the 
onset state. Regrettably since all steadily precessing states 
produce time-independent Nusselt numbers such measure- 
ments provide only limited data for comparison with theory. 
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