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Two-dimensional nonlinear thermal convection in a cylindrical annulus is numerically analyzed for
a Boussinesq fluid of low Prandtl number=0.025. For a fixed value of the radius ratig,

=0.3, different types of steady columnar patterns are found. The stability of these convection
patterns and the spatial interaction between them, which result in the formation of mixed modes, are
investigated by considering the full nonlinear set of Navier—Stokes equations. Special attention is
paid to the strong spatial interaction of the initially unstable modes with wavenumbe2sand

n=4, which leads, through global bifurcations, to multiple stable quasi-periodic states of the
system. A detailed picture of the nonlinear dynamics until temporal chaotic patterns set in is
presented and understood in terms of local and global symmetry-breaking bifurcations of the
0O(2)-symmetric system. €003 American Institute of Physic§DOI: 10.1063/1.1565335

I. INTRODUCTION Hopf bifurcation!! which gives rise to waves traveling in the
azimuthal direction. Rigorously, any approximation of the
The large-scale azimuthal motions in the atmospheres ahree-dimensional problem must keep the symmetries of the
major planets and in planetary fluid cores have in commororiginal one, otherwise the spatio-temporal dynamics can
the influence of the spherical geometry, which makes thehange from the first bifurcation. This is what happens if the
relative orientation of gravity and rotation vectors vary with two-dimensional annular geometry is taken for approximat-
latitude, and the strong effect of high Taylor numbers. Sincéng the azimuthal waves of a slow rotating annulus with
it is impossible to reproduce such convective systems in temo-slip top and bottom lids. By introducing the streamfunc-
restrial laboratory experiments, due to the presence of verttion formulation the rotation drops ddtand the equations
cal gravity and the difficulties of producing a radial gravity, can be written in the form of a two-dimensional Rayleigh—
these flows have given rise to studies of thermal convectioBenard problem without the midplane layer symmetry, i.e.,
in cylindrical annular geometries with radial inwards heatingthe problem recovers the reflection symmetry in vertical
and the radial gravity emulated by the centrifugal buoyancyplanes through the axis of rotation, and B€2) symmetry
The experimental resuftd showed that the constraint of forces a primary stationary bifurcation. An easy way of
large Taylor numbers causes the motion to remain nearlgchieving the SO(2) symmetry of the complete three-
two-dimensional, with departures from two-dimensionality dimensional problem in a@-independent problem is to con-
confined to narrow Ekman layers at the ends of the annulusider the quasi-geostrophic solutions of the fast rotating an-
Consequently, some subsequent theoretical and numericallus with slightly inclined top and bottom lidsin the
papers~’ are based on this fact and look for axial- resulting two-dimensional equations, tjfeterm breaks the
independent solutions in the narrow gap limit. OtAet8are  preceding reflection symmetry in vertical planes. As a result,
direct numerical simulations allowing the imposition of a the primary convective solutions are azimuthal drifting
radial constant inwards gravity changing the sign of the temwaves(thermal Rossby wav@swhich give rise to secondary
perature gradient. They can capture the same nonlinear dyonlinear patterns dominated by the Coriolis term and the
namics, because, except for the geometry and the definitiovortex stretching due to the topograpificeffect.
of the Rayleigh number, they obtain equivalent nondimen- In the fast rotation limit, it is easy to see, by comparison
sional equations. Considering a constant or a radial depemf Refs. 13, 14, and 9, that the,f) dependence and fre-
dent gravity vector does not affect the radial symmetries ofjuency of the waves is different depending on the type of top
the problem unless the narrow gap approximatignr+(1) is  and bottom lids. The linear stability analysis of the conduc-
made. In this case the problem may gain an additional midtion state of a rotating annulus with radial gravity, outwafds
plane symmetry depending on the curvature of the top andr internal heatinf and experimental no-slip boundary con-
bottom boundaries. ditions on the horizontal top and bottom lids, shows that, for
A three-dimensional rotating annulus, with either top andTaylor numbers Ta 1P, the convection is already nearly
bottom horizontal or inclined lids, is invariant under rota- two-dimensional, with departures from two-dimensionality
tions about the rotation axis, i.e., their symmetry group in theconfined to narrow Ekman layers at the ends of the annulus.
azimuthal direction iSO(2). A symmetry-breaking bifurca- With Ta>10P, for a fluid of 0=0.025 in an annulus of radius
tion of an axisymmetric statéike conduction must be a ratio =0.35 and aspect ratiB=1 (defined in Sec. )| the
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precession frequency, in viscous units, is smaller than boundary conditions at top and bottom or by including non-
=0.08, i.e., several orders of magnitude smaller than thaBoussinesq terms. With symmetric boundary conditions,
found for the thermal inertial waves of the slanted fidsd  the leading order resonant term in the 1:2 interaction is of
unlikely to be measurable in a laboratory experiment. Théhigher order than that in the 1:3 interactitt® In addition,
linear modes that first become unstable are determineboth values of the parameters allow us to compare the linear
physically by the balance among the terms of the linear sysprimary modes and critical parameters of convection for any
tem. For example, for small Prandtl numbers with slantedf the above-mentioned problems.
lids, the balance is mainly established between the large in- The type of bifurcation that a solution which has broken
ertial term and theB term, the buoyancy force playing a the rotation symmetry but keeps the reflection symmetry
secondary role. However, with horizontal lids, the precessiomnay undergo is known, but subsequent bifurcations remain
frequency tends to zero as the Taylor number tends to infindnclear. If the azimuthal structure of the flow is maintained,
ity, and the buoyancy force contributes at first order to theaccording to bifurcation theory,?® it can suffer four pos-
linear balance. Therefore, the physical nature of the primargible codimension one bifurcations depending on the param-
instability is basically inertial or thermal depending on theeéters of the system. The new solution can either keep the
geometry. reflection symmetry of the basic solution or break it. In the
Thermal steady columns are exact solutions of the fasfirst case, the bifurcation can be a saddle-node or a Hopf
rotating annulus with stress-free boundary conditions on thifurcation that gives rise to a standing wave without any
flat lids}?° In fact, they coincide with the two-dimensional spatial drift. In the second case, it can either be a pitchfork or
vortices of the plane geometry. In the no-slip case, the nua Hopf bifurcation, leading to traveling waves, which have a
merical result$* and also the asymptotic thedfyshow that  drift speed that increases with increasing the bifurcation pa-
the influence of the Ekman boundary layers decreases as tih@meter, or to direction reversing traveling wau@RTW)
aspect ratio increases. At leading order,RRa— CTY4g  that are vacillating waves, which alternatively drift back and
and 0=0, where Rg s the critical Rayleigh number when forth?! The parameters we have employed give way to the
B—o, i.e., it is the Rayleigh number of the thermal col- last kind of bifurcation. Obviously, by changing these param-
umns. The constar@ is independent of the Prandtl number. eters, the thermal columns could undergo any of the other
On the other hand, for large aspect ratios, the contour plotifurcations and a different dynamics than that described in
of the temperature or the velocity field, with both boundarythis paper would be observed.
conditions, only differ in the very narrow top and bottom The nonlinear dynamics of the two-dimensional columns
boundaries. Therefore, the primary convective flow almosglso provides a simple fluid dynamics system which is highly
recovers the reflection symmetry of the thermal columns. Irattractive from the point of view of bifurcation theory, be-
addition, the experimental results and the linear asymptoticause it is large enough to provide a rich spatio-temporal
analysi$ in fast rotating systems indicate that from low to dynamics induced by the reflection symmetry in vertical
moderate Rayleigh numbers the Ekman layers remain aplanes, but at the same time not as expensive in calculation
tached to the lids when the full nonlinear dynamics is develtime as a three-dimensional system. In this context, our re-
oped. Under these conditions, and taking into account thagults can be relevant to any problem that shares the same
the type of bifurcations of a solution depends on its symmesymmetries. This is the case of electroconvection in an an-
tries, the question is; up to what point is it possible to ap-nular suspended film, where radial driving forces are the ex-
proximate the nonlinear evolution of tlidmostthermal col-  perimental conditions. Unfortunately, it is not possible to es-
umns by az-independent problem? In order to answer thistablish a direct comparison because the experiniéfitare
question, we study numerically the influence of ®8¢2)  mainly carried out with a rotating inner electrode and, as in
symmetry on the convection driven by radial gravity andthe rotating annulus, the reflection symmetry of the system is
heating, specifically on the nonlinear dynamics of the two-broken.
dimensional thermal columns. A summary of the sequence of The paper is organized as follows. In Sec. Il we intro-
bifurcations and information about the symmetries of the soduce two different formulations of the problem and the nu-
lutions, up to the onset of preturbulent flows, are presentedmerical methods used to solve it. In Sec. Il we analyze the
This study has been focused om=0.025(mercury and  stability and interaction of the steady solutions that bifurcate
a radius ration=0.3. Metallic liquids are fluids of primary from the conduction state, which leads to the stabilization of
geophysical and magnetohydrodynamics interest. They aide flow and to global bifurcations. In Sec. IV the time-
difficult to handle in laboratory experiments, since their in-dependent behavior of the stable flows that coexist in a wide
ternal structures cannot be directly observed. Numerical ex-ange of Rayleigh numbers is studied. New complex flows
periments with low Prandtl number fluids furnish informa- are presented consisting of random switching between reflec-
tion that would be hard to obtain in laboratory conditions. Ontion symmetric quasi-periodic solutions, and gluing bifurca-
the other hand, with smatp, a dynamics dominated by the tions of tori, also induced by the reflection symmetry of the
spatial 1:2 resonance might be expectegriori. In effect,  system. Finally, Sec. V includes a summary of the results and
the analysis of a long-wave model for two-dimensional conthe main conclusions.
vection in a plane layer shows that the 1:2 resonance is
dominant when asymmetric boundary conditions arel- BASIC EQUATIONS
considered® In two-dimensional Rayleigh—Berd convec- We consider an annulus which is rotating about its axis
tion, the same effect can be achieved by considering differerdf symmetry with angular velocitf2. The gap width isd
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=r,—I;, wherer; andr, are the inner and outer radii, ahd  TABLE I. Comparison of the frequencies of a quasi-periodic solution at
is the height of the |ayer The geometric parameters of th§a= 20 000. VP and SF refer, respectively, to the velocity—pressure and the

. L . streamfunction codes.L andN are, respectively, the radial and azimuthal
problem are the radius ratig=r;/r, and the aspect ratio o<, utions.

B=L/d. The inner and outer side walls are maintained at

constant temperature$; and T,, respectively, withT; Code LLXN fy fa
>T,, and for the velocity field no-slip lateral boundary con- VP 30% 192 9.567 0.412
ditions VP 32x 256 9.567 0.412
VP 48x192 9.567 0.412
u=v=w=0 onr=r;,r,, () SF 32¢192 9.566 0.397
SF 32¢ 256 9.566 0.397
are taken.

As we have already mentioned in Sec. |, the present
study will focus on the nonlinear analysis of the These equations are solved numerically using two differ-
z-independent columnar solutions, which are exact solutionent continuation codes to find the steady solutions, and semi-
of the problem in the stress-free lids case. We write the twoimplicit backward differentiation formulas-extrapolation
dimensional Boussinesq Navier—Stokes, mass conservatiotime-stepping codes for the time-dependent solutions. We
and energy equations in the rotating frame of reference, andave used a time-splitting code, written in terms of the ve-
we consider a constant gravity across the convective lgyer, locity field, (u,v), and, to be sure that the solutions are not
which is also assumed to be radially inwards. We also asspurious, a streamfunction code, with checked integration
sume that Q?/g<1, a condition that can be accomplished, methods up to fourth order in time. The method to evaluate
for instance, in planetary cores. To nondimensionalize thdinear and nonlinear terms is different in each case. The vari-
equations we use the gap width, the temperature differencables are always expanded in terms of Chebyshev polynomi-
between the side boundaries and the thermal diffusion timels T,, and Fourier expansions. For the streamfunction for-
d?/k, wherek represents the thermal diffusivity. The prob- mulation they are
lem is formulated in terms of both the velocity—pressure and
the streamfunction formulation. In the latter case, we definea  f(x,t)= 2 a (D) T(x), (58
new pressure modified by the Coriolis term and we write the !
velocity field as

u=fe,+ VX(y&,), @) w(x.ﬁ,t)jEn Yin(HTI ()€, (5b)

wheref(r) is needed to guarantee the possible existence of )

an azimuthal mean flow, if the azimuthal average/¢f, 6) ®(X,9,t)=|2 Sn(HT(x)em’. (50

is imposed to be zero by the homogeneous boundary condi- "

tions. The equations fof, ¢, and the departure from the The radial coordinate isx=2r—4, with 6=(1+»)/(1
conductive state temperatui@, are —7), and the integersl(n) indicate the structure of the
functions in the radial and azimuthal directions, respectively.

(6—ah)f=P, Aw(lagw) , (39 The (_:(_Jefficientm, . Yin» @andéy, are related by the bou_nda_ry
r conditions. In the ¢,v) formulation, the mean flow is di-
o Ra rectly then=0 mode ofv.
(3,— oA A= 9,0+ (1—PI(4,A) Some proofs have been made to determine the numerical
r resolution needed in our calculations. A test of the depen-
1 1 dence of the frequencies of a quasi-periodic solution for Ra
+Af Faglp) —f(F%A ¢p), (3b) =20000 is presented in Table I. A tiny difference of 0.01%

in the main frequencyf, is found, but the difference in-

creases up to 4% for the small frequerfey when the time
, (30 integration method is changed. We believe that this is due to

the higher temporal order of the integrator used in the
WhereZ:&r(o?rJrllr). P, is the operator that averages in streamfunction formulation, which allows a better determi-
the azimuthal direction and is the determinant of the cor- nation of the small frequencies. Thus, for the solutions with
responding Jacobian matrix in cylindrical coordinates. TheRa>7000, 32192 radial by azimuthal points are used. In
nondimensional parameters that appear in the equations ageneral, for Rac7000, the steady columns and their stability

the Rayleigh and Prandtl numbers defined by are calculated with 24192 points. The bifurcations corre-
sponding to high Rayleigh numbers are transitions between
aATgd v time complex regimes that cannot be determined precisely
Re=——, o=-—. ; X : )

KV K with only time evolution codes. The exponential decay
géowth) of the solutions near a bifurcation point is too slow
and, in addition, different with the two time evolution orders
employed. Even with these difficulties we have found only
differences below a 0.5% in the determination of the transi-
f=¢=0,4=0=0 onr=r;,r,. (4)  tions at Ra>18000.

1 1
(at—A)G): - mﬁglﬂ‘*ﬂ](lﬂ,@)—f(?ﬁg@

The Taylor number does not appear in the equations becau
we are looking for columnar solutions.
The boundary conditions are now

Downloaded 12 Sep 2006 to 147.83.27.47. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 15, No. 5, May 2003 From stationary to complex time-dependent flows 1317

0.2r

0.1}

0.05;¢

1/2) 3 . . R
1%00 2000 2500 3000 3500 4000 4500
Rayleigh number

FIG. 1. (9) Bifurcation diagram showing branches of
columnar modes with wavenumbens=3, n=2, and
n=4 (N3, N2, andN4 branches, respectivelyThey
arise at RA=1799 (1), R€=1995(2), and Rd=2254
(3). (b)—(f) The contour plots of the temperature pertur-
bation showing the structure of the solutions in tt2
branch, corresponding to the poirts(Ra=2000), c
(Ra=2198),d (Ra=2500), e (Ra=2711), andf (Ra
=2875) in the diagram, respectively.

Throughout the paper, the Nusselt number, defined as eation diagram in agreement with the wavenumber pre-
measure of the radial heat transport by convection, has beeaticted by the linear stability analysis. For slightly larger Ray-

computed in the outer cylinder as leigh numbers, the conduction state is also unstable to modes
ny (2n with wavenumbers1=2 (at R§=1995) andn=4 (at R&
Nu=1+ —— 3,0(1,0,t)d6. (6) =2254). All these new nonaxisymmetric solutions break the
1=nJo rotation symmetryR,, of the basic state, but maintain the
reflection symmetryR, with respect to appropriate vertical
lll. STEADY STATE THERMAL COLUMNS planes 6= 60,, and the invariance undernZn-rotations,

In this section we describe the steady columnar patterngz’ﬂ”’ €.,

that bifurcate from the conduction state, and analyze their @ (x,0)=0(x,20,— 6), ¥(x,0)=— y(X,20,— 0),

stability and symmetries in order to understand the global (79

nonlinear dynamics described in Sec. IV. We will show the

importance of including the study of the unstable branches in @ (X, 0)=0(x,0+27/n), (X, 6)=h(x,0+2m/n).

order to fully capture the stable dynamics of the system. (7b)
Some preliminary results have already been  The discrete group of symmetry of the new solutions is

publishedt*?® but are included because they are closely reD,,. Bifurcations from the conduction state are symmetry-

lated with the new solutions presented in this paper. As a firshreaking steady-state bifurcations in which multiplicity two

step, we have carefully checked that the continuation andigenvalues cross the imaginary axis.

time-integration codes reproduce accurately the onset of con- While solutions along th&3 andN4 branches are pure

vection and agree for the nonlinear solutions. The diagram ofodes, in which only the basic wavenumbers and their har-

Fig. 1(a) shows the branches of columnar solutions with ba-monics are nonzero, tHg2 is a mixed-mode branch. There

sic azimuthal wavenumbera=3,2,4 (N3, N2 and N4  is a strong spatial interaction between the 2 andn=4

branches, respectivelyWe display X ,8,,6}, for a fixed modes(spatial 1:2 resonangewhich produces a change in

radial amplitudd, &;, being the conjugate of,,,. The axi- the structure of the solution along ttN2 branch. To illus-

symmetric conduction state becomes unstable to columnsate the physical nature of these solutions, the contour plots

with wavenumben=3 at Rz%=1799 (point 1 in the bifur-  of the perturbation of the temperature at different Rayleigh
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0.1} ’x" ,t’f
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Nzu,'\,, 127 .7
e e Bt
0.05} ,,; ‘,«:’,n"f"ulo FIG. 2. (a) Detail of the steady-state bifurcations on the
G-eato B N2 andN4 branches, which take place atRe2362
T (5), Rf=2478 (6), R4 =2509 (7), R§=2712 (8),
0.025} N2 e R&=2887.5 (9), and R4°=2888.9 (10) on the N2
branch and at R4=2851(11) and R3%=2888.9(10)
2, 31' on theN4 branch.(b), (c), (d) The contour plots of the

1%00 2000 2200 2400 2600 2800 3000 3200 3400
Rayleigh number

temperature perturbation showing the structure of the
solutions in theN21a, N21b andN21c branches, cor-
responding to pointb (Ra=3308),c (Ra=2649), and

d (Ra=3040) of the bifurcation diagram, respectively.

numbers are shown from Figs(bl—-1(f). As the Rayleigh n=3 column, are unstable. However, by extending further
number increases, the contribution of thee4 mode be- the N4 branch, a bifurcation that stabilizes the pure 4
comes more important, while the=2 contribution dimin-  solution by shedding a new unstable branch takes place at
ishes until vanishing. The initial two pairs of rolls become an Ra§2= 4779 (not shown in the figurgs Later bifurcations
n=4 solution. connected with this branch give rise to pairs of quasi-
A stability analysis of the mixed-mode solutions showsperiodic flows related by the reflection symmetry.
that there are several bifurcations in ti2 branch. The new
branches, which we have been able to follow with the con-
tinuation code, are included in Fig(&. Bifurcation points 5
(Rg=2362), 7 (RA=2509), and 8 (R&=2712) corre- |y, TIME-DEPENDENT SOLUTIONS
spond to subharmonic steady-state bifurcations. The solu-
tions in these new branches, which are displayed in Figs. In this section we will describe the nonlinear solutions
2(b)—2(d), still keep the reflection symmetry, but now there found by increasing the Rayleigh number, when the steady
is a contribution of all the wavenumbers. Their symmetrycolumns loose stability. The symmetry of the solutions is
group isZ,, generated by a reflection, defined as in &), analyzed in order to understand the influence of &)
through thefy~ /2 plane in the figures. The bifurcation symmetry at moderate Rayleigh numbers. First of all, the
identified in point 6 (R5= 2478) corresponds to a steady- sequence of local bifurcations and time-dependent solutions
state instability that keeps the wavenumber of the main sowith basic azimuthal wavenumber=3 are considered in
lution, n=2, but in which the mean flow becomes nonzero.Sec. IV A. Section IV B is devoted to the study of the time-
According to bifurcation theor§ a steady-state bifurcation dependent flows, which arise near the strong 1:2 spatial reso-
that breaks the reflection symmetry, keeping the discrete raaance. It will be seen that the=4 steady flow bifurcates to
tational invariance, would give rise to traveling waves witha DRTW, which in terms of the bifurcation theory is a sym-
zero phase speed at the bifurcation point. Nevertheless, weetric cycle. For these time-dependent solutions, the evolu-
have not followed this time-dependent branch which, in outtion by half a period in time is equivalent to acting by the
case, is unstable. Finally, two subsequent bifurcations veryeflection that is broken in the bifurcation. Via local transi-
close to each other occur at points 9 and 10. At the firstions that consecutively break all the symmetries of the pe-
(Re€=2887.5), one of the two positive eigenvalues of theriodic orbits, pairs of quasi-periodic solutions related through
solution is stabilized through a subharmonic steady-state bthe reflection symmetry in vertical planes are found. We will
furcation. At the second (I%?F 2888.9), the amplitude of call these solutionR-conjugate tori because by applying the
the n=2 mode vanishes. Th&l2 branch joins theN4  reflection symmetry to one of them, the other is obtained.
branch, and columns with wavenumber 2 cease to exist. Ultimately, global bifurcations of the quasi-periodic solu-
This is a bifurcation from thé&l4 branch, which occurs after tions restore the reflection symmetry in the sense that if the
a bifurcation in Rélz 2851 at which an eigenvalue with reflection symmetry is applied to the new solutidigsiasi-
multiplicity two gains stability. periodic or no}, at any instant of time, another point of the
All the above-described steady patterns, except for theame solution, at a different time, is obtaindg-i@variant
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2.0, umns after the secondary bifurcation. Close to the bifurcation
point, the pattern oscillates back and forth with a frequency
given by the imaginary part of the eigenvalue whose real part
L5 becomes zero. The oscillation in the azimuthal direction can
be appreciated in the shadowgraph of Fi¢g) 3which rep-
resents the evolution in timegy (axis) of the temperature and
its #-dependencex( axis). Clearly, the DRTW breaks the
reflection symmetry with respect to vertical planes between
the columns, but this periodic solution is a symmetric cycle,
i.e., has thes symmetry

O(x,0,1)=0(x,200— 0,t+T/2),

0.5

mean flow

- f(x,t)=—f(x,t+T/2),
(@ o0 . .
6 1 0 1 (X, 0,t)=—h(X,200— 6,1t +T/2),

or in terms of the velocity field,,v),
FIG. 3. Puren=3 direction reversing traveling wavéa) Shadowgraph
showing the evolution of the temperature perturbation in time at the radial ~ u(X, 6,t) =u(X,20y— 6,t+T/2),
midpoint of the annulus, for a solution corresponding te=800. (b) Four
snapshots showing the radial dependence of the azimuthal mean flow. v(X,0,t)=—v(X,20p— 0,t+T/2),

whereT is the period of the wave. It loses the spatial reflec-
solutions. Finally, for a complete description of the spatio- tion symmetry but gains this new spatio-temporal symmetry,
temporal dynamics, an additional branch of mixed solutionsand in this sense it can be said to maintaiD ainvariance.
is included in Sec. IV C. We will see later that th& symmetry is the clue for under-
To facilitate the reading of the paper, the results are sumstanding the dynamics of the system at higher Rayleigh num-
marized in a schematic bifurcation diagrdfig. 14) in the  bers. The new symmetry is also responsible for the period of

final discussion of the paper. the Nusselt number of the vacillating waves, defined6n

to be half that of the velocity field. According to the symme-
A. Nonlinear solutions with basic dominant try relation, the temperature maintains the sign by a reflec-
wavenumber n=3 tion and a half period shift in time. Then

The linear stability analysis of th®l3 branch of solu- 27 27

tions shows that there is a secondary Hopf bifurcation at f 3,0(1,0,t) d0=f 3,0(1,0,t+T/2) do.
4 . . . . 0

Ra;=4114, the imaginary part of the critical eigenvalues
being\,=*=23.5. It corresponds to point 4 of Fig(d. The  However, for the velocity field there is a change of sign in
nonlinear steady columns become unstable and they give rigke relation, and/(x, 6,t) #v(x, 0,t +T/2).
to DRTW, which keep the same basic azimuthal wavenumber The new symmetry-breaking bifurcation can also be
of the steadyn=3 columns. It is characterized by the ap- seen in Fig. &), which shows the dependence of the azi-
pearance of a mean flow in the azimuthal direction thaimuthal mean flow on the radial coordinate,in four time
breaks the reflection symmetry of the columns, but this soinstants, t=0,T/4,T/2,3T/4. After the bifurcation, the
lution preserves th&; invariance Z; being the cyclic group  #-independent mode af begins to contribute to the solution.
generated by the rotatioR, /3. As the area enclosed by each curve equals the instantaneous

Figure 3 shows the change in the structure of the colnet mass flow, it can be inferred from the plot that there

2.0

0.18
1.5 %0.16
%3_0 - FIG. 4. () Shadowgraph showing the evolution of the
E ’ temperature perturbation in timey @xis) at the radial

midpoint of the annulus for a solution corresponding to
Ra=12 300. (b) Time dependence of the temperature
showing the phase shift between the three points of the
annulus of coordinates L(2,0+2m7m/3), with m
=0,1,2 andL the number of radial points.

0.121

0.5

0.0
(a) o
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5 10 15 20 25 ~0.15 -0.05 0.05 0.15
(a) 0 Frequency

FIG. 5. Quasi-periodic solution at Rdl1 500 on the maim=3 branch.(a) Shadowgraph showing the evolution of the temperature perturbation in yime (
axig) in the radial midpoint of the annulugh) Fourier spectrum of the temporal series of the Nusselt number(c@rRbincaresection displaying an odd
versus an even azimuthal mode, in a fixed radial point.

exists an oscillatory mass transport in the azimuthal direcNeimark—Sacker bifurcation. In the shadowgraph of Fig.
tion. That is, the instantaneous net mass flow is nonzerd(a) one may see what this solution looks like. Its Poincare
though it vanishes when averaged in a whole period. Theection [Fig. 5c)] shows clearly that an invariant two-
value of the frequency grows as the Rayleigh number indimensional torus appears. The turning point is at Ra
creases. Just at the bifurcation point, for a Rayleigh number 11 425. From the Fourier spectrum of the time series of
Ral=4114, the frequency i§=3.74, while for a Rayleigh the Nusselt number, included in FiglB, it can be seen that
number Ra& 6500, the Fourier spectrum shows that the sothe new frequency in the system is very smijk=0.815, in
lution still remains periodic, the frequency of oscillation be- comparison with the value of the main orfg=7.26. It is
ing f=5.15. important to point out that, in this spectrum, the frequency,
Between Ra 6950 and Ra 7000 a tertiary spatial sub- 2 f,, appears as a main frequency because the quasi-periodic
harmonic bifurcation, which breaks the last spatial symmetrysolution bifurcates from a8 cycle, and the Rayleigh number
of the solutions, is identified in the system. The symmetrymust be increased further fér to become apparent. Thus,
breaking implies that the mod@s# 3 start to grow. We have near the bifurcation point, the main frequency of the Nusselt
carefully checked that at the tertiary bifurcation there is nonumber remains twice the main frequency of the velocity
new frequency appearing in the Fourier spectra of the timdield.
series after the transition, so the new solution remains peri- The quasi-periodic solution turns out to be stable in a
odic. This fact agrees with bifurcation theory, which estab-small interval of the control parameter. A moderate incre-
lishes that in a codimension one bifurcation of a symmetrignent in the Rayleigh number produces a great change in the
cycle only the multipliersu=1 andu=e*% of the associ- dynamics of the system, the solution being already chaotic
ated Poincarenap can appeaf.In our case the unit circle is for a Rayleigh number Ra12 000. This can be observed in
crossed by the real mu|tip|ier_ F|guréaﬁ_ is a shadowgraph Fig. 6, where the Fourier spectrum of the time series of the
of the temperature of the new periodic orbit very far from Nusselt number, at Ra13 000, is plotted. They clearly in-
transition, for Ra 12 300. It is plotted at a fixed radius, and dicate the appearance of a wide band of frequencies, now
clearly shows that, as a result, the spatial discrete rotationdcluding thef, frequency, in the solution. Temporal chaos is
invariance of the columns is broken, but the symm@rg  thus reached by a Ruelle-Takens via, after three time-
preserved. The new pattern of convection consists of three
oscillating columns like those in the DRTW, but with differ-
ent waveforms, amplitudes, and phases. The waveform is
nearly the same in two of them, but the third one clearly
differs from the others. Figure(d) shows that three angu-
larly equally spaced points, each in a column, which before
the bifurcation were oscillating in phase, begin to oscillate
out of phase. The phase shift increases with the Rayleigh
number more for one of the columns than for the other two,
which remain nearly in phase, and, in addition, the shape of
one of the columns changes substantially. These are the rea-
sons why in the shadowgraph it seems that they oscillate
with a different period. A similar cell pattern can be found

: N : : 7
when a fixed point bifurcates with trinedrBl; symmetry: ~ FIG. 6. Fourier spectrum of the temporal series of the Nusselt number. The
When Ra=12 330, the system undergoes a subcriticalsolution corresponds to Ral3 000 on the maim=3 branch.
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FIG. 7. For the purey=4 DRTW at Ra= 14 000, (a) contour plots of the ~ FIG. 8. For the quasi-periodic solution at Ra8 900, (&) contour plots of
perturbation of the temperaturéy) of the streamfunction, antt) Fourier ~ the perturbation of the temperatuf®) of the streamfunction, an@t) Fou-
spectrum of the temporal series of the Nusselt number. As innth@ rier spectrum of the temporal series of the Nusselt number. As im@
DRTW, the main frequency for the velocity field fs. guasi-periodic solution, the main frequency of the solutiofyis

dependent, but four symmetry-breaking, bifurcations. With'the points where the solutions are lost. The 4 DRTW

out any remaining symmetry the fifth one leads to chaos. Iy tions remain almost stable up to-R84 800, because the
will be seen that the aperlodlc solutions mallntaln the th_repsimple multiplier that first crosses the unit circle remains
columnar structure until they reach much higher Raylelgr\/ew close to 1.0.

numbers. For Ra>18 400, twobranches ofR-conjugate quasi-
. ) ) ) ) periodic solutions with dominant wavenumber 4 and sec-
B. Nonlinear solutions with basic dominant ond frequencyf,=0.83 (VP) at Ra=18500 have been de-
wavenumber n=4 . . . . N
tected independently, by changing the integration initial
We have seen in Sec. Il that ttNd branch is stabilized conditions. Becausé,<f,, it is easy to check that one of
at R%2= 4779 giving rise to steady columns of basic wave-them can be obtained by applying a reflection symmetry to
numbern=4, which have the same symmetry properties aghe other. In this case we have found that the reflection is
the steadyn=3 columns. Then=4 steady stable solutions through the 6y~ — 7/4 plane. These solutions are mixed
coexist with the DRTW of basic wavenumber=3 untii  modulated direction reversing traveling waveémixed-
Ra.~6897, where they undergo a Hopf bifurcation thatMDRTW), whose periodT, and maximum amplitude in-
keeps the spatial periodicity. Both the=3 andn=4 steady crease with Ra until Ra20 000, where they seem to satu-
solutions have the same symmetry properties, and the nerate. The comparison of the contour plots and Fourier spectra
pattern of convection is again a DRTW, like that of Fige)3  of the n=4 pure and mixed DRTW and those of the quasi-
but with four columns and a frequendy=5.46, confirmed periodic solution leads us to believe that this scenario is or-
also by the eigenvalues, = = 34.3 that cross the imaginary ganized by later bifurcations of the DRTW. See Fig&)+
axis, in the linear stability problem. From Ra6897, the 7(c) and Figs. 8)—8(c) as examples. On one hand, we have
new stablen=4 DRTW coexists with the periodic solutions checked that the contour plots of the variables at any instant
described in Sec. IV A until Ra10500. Preliminary calcu- of time are very similaexcept for the phase of the wave
lations of the stability of the periodic orbit, and also enor-and, on the other hand, that the main frequehgyf Fig.
mously long transients of the time-dependent codes, indicat®c) almost corresponds to a continuous increase of the fre-
that at this point there exists a pitchfork bifurcation of peri- quency of the DRTW, shown in Fig(@), due to the increase
odic orbits that, ultimately, give rise to branches of mixedof the Rayleigh number. To confirm this point with a time
DRTW. In spite of the symmetry-breaking, the contour plotsevolution code, we have taken as initial condition for a fixed
of all these waves are very similar because the amplitudes d?ayleigh number, where the solution is unstable, the preced-
the growingn=2 and aftem=1,3 modes are small. When ing solution before it stabilizes, and we have integrated the
the mixed DRTW bifurcates, we have not found any stableequations until only the dominam=4 modes and its har-
branch of new solutions locally connected with either themonics saturate, but the other modes are still negligible. Be-
mixed DRTW or the pure DRTW branches. We suspect thatause the transients are very long, we can calculate the fre-
high codimension bifurcations take place in the vicinity of quency of the unstable solutions we are following. For
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FIG. 9. (a) and(b) Poincaresections of twoR-conjugate tori and of the near homoclinic toroidal structure at Ra150, respectively, an@) detail of (b)
near the origin. An odd mode of the azimuthal component of the velocity vs an odd mode of the radial component of the velocity is represented, for a fixed
radial point.

example, at Ra 14000, 16500, and Ral8000 the fre- tial conditions, the solutions we found are rotated in an arbi-
quencies aré,=8.15, 8.81, and 9.25, respectively, while for trary phasgin the case of the figure, a small gne

the quasi-periodic stable solutions it f§=9.79 for Ra From Ra=20070, the dynamics is very complex. We
=18900. Both facts indicate that these branches are relatdthve found several stable quasi-periodic solutions of differ-
in some way with then=4 DRTW. Figure %9a) shows the ent periods and symmetries in a small region of the param-
Poincaresection of the above-mention&iconjugate tori at  eter space. In Figs. 18 and 1@b) we show a sample of the
Ra=20150. At the same Ra we have also foumdth the  type of flows found. They correspond to the time series of
two time evolution codesa solution whose Poincasection,  the Nusselt number and to the real part of thel mode of
which is represented in Fig.(19), is areflection-symmetric  the radial velocity, respectively, for different values of the
figure-eight homoclinic attractolWe plot odd modes of the  Rayjeigh number. The upper two are quasi-periodic solutions
components of the velocity field, so that the unstable DRTWys jifferent amplitude and radial component velocity sign,
cross the hyper-plane at the origin. At first sight, it would e those of Fig. 8a). The next is a chaotic solution, like
seem that the figure-eight structu.re appears in a 9'“"‘9 lF’ifurthat of Fig. 9b). After the random switches, the flow relami-
cation of the twoR-conjugate tori, but they coexist, main- narizes giving rise toR-invariant quasi-periodic solutions

taining their amplitude, until Ra20200, where the pair of whose long periods, in Fig. 10, quadruples that of a single of

quasi-periodic solutions dlsappears. we mclude_ n Fg a the R-conjugate torus. For Ra20 900 there is no doubt that
blow up of the return map of Fig.(B) near the origin. From ST . "
gt least one quasi-periodic orbit homoclinic to the puare

these figures it is clear that the system spends a lot of tim_4 DRTW is f 4 A b in the last but
near the DRTW and escapes very fast, jumping randomly IS Tormed. As can be seen in the 1ast but one row

from one side to the othdsee also Figs. 18) and 1@b)]. of Figs._ 1@a) and 1@b), then=1 azimuthal modéin fact all

The small difference that can be appreciated in the tori ofhen#4 modes$ vanishes during the long periods where the
Fig. 9a) is due to the rotational invariance of the system. Inflow behaves like the periodic unstable DRTW at the origin.
fact, there exists an infinite number Bfconjugate tori and This is an indication that the big-invariant torus nearly
also homoclinic attractors that only differ in the azimuthal intersects the origin. Furthermore, there are some signs that
orientation of the columns; so generically, with random ini- other pairs ofR-conjugate solutions glue to form homoclinic
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FIG. 12. Nusselt number as a function of the Rayleigh nhumber for steady
0.15 state and periodic solutions. The solid, dashed, and dotted lines correspond,

i ' ' F (b) respectively, to the basit=3, n=4, and the mixed stable solutions. For the
'Wmmm time-dependent solutions we have plotted the averaged period. The labels
-0.05 stand for: PS pure steady, PP pure periodic, MS mixed steady, MP mixed

-0.15 0.15
v A, W -0.15
WWWWMMM C. Nonlinear solutions on the mixed-mode branch

0.15 For a Rayleigh number Ra4850, we have found an-

| W ‘W B o "‘W W —0.15 other branch of mixed-mode steady stable columns, which is

o
=
D

|
e e
= =
7 5

Radial velocity (Re(n=1))

0.20 not connected with the conduction state. The existence of
020 MWWWM this branch is in agreement with a recent wbfkn which
30 40 50 60 70 80 two-dimensional non-Boussinesq convection is analyzed in
Time the case of a strong 1:2 spatial resonance. According to these

] ] authors, in a saddle node bifurcation point the solution
FIG. 10. Time series ofa) the Nusselt number an) the real part of the o1 qaq 19 exist. In our case, by decreasing the Ra below Ra
n=1 Fourier coefficient of the radial velocity at a fixed radial point. The ; . .
solutions from top to bottom correspond to R&9 000, Ra 20 000, Ra ~4850, there is a transition to the mam=3 branch of
=20 200, Ra20 500, Ra20 900, and R& 22 000. solutions. The structure of the new solution is shown in Fig.
11. As in the case of the mixed-mode brarié® of Fig. 1,
the solutions keep a spatial reflection symmetry, so their
roup of symmetry iZ,. The vertical plane of symmetry
rosses the temperature contour plot through the middle of
e big negative temperature vortex.

Between R& 6800 and Ra 7150, the system under-
goes a Hopf bifurcation that breaks the spatial reflection
symmetry,R, of the steady solutions, giving rise to a stable

mixed DRTW, which has a weak azimuthal mean flow. The
new solution is a symmetric cycle, then the main frequency
of the Fourier spectrum of the Nusselt number is again twice
that of the velocity fieldf,. At Ra=7150, its frequency is
f1=5.80, which is very similar to that found for the=4
DRTW. Figure 12 displays the dependence of this number,
averaged in time for the periodic solutions, on the Rayleigh
number. The solid and dashed lines correspond, respectively,
to the basicn=3, n=4 solutions found by increasing the
Rayleigh number. The dotted lines are the mixed stable so-
lutions that also coexist with the others. It is clear that the
convection is more efficient if the=3 column is selected,
while for the other two patterns it is very similar. After the
Hopf bifurcation, there is a significant decrease in the slope

= of the curves. This slowing down in the efficiency of the
FIG. 11. Contour plots of the mixed-mode steady colu@nof the pertur- rE::ldIal heat transpor_t IS Caus_ed by the_ appearance_ of the os-
bation of the temperature artti) of the streamfunction. The solution corre- Cillatory mass flow in the azimuthal direction that increases
sponds to Ra 5200. the kinetic energy of the flow. Therefore, the bigger the mean

guasi-periodic orbits, at almost the same value of the Ray9
leigh number. The last row of the same figure corresponds t

a quasi-periodic orbit whose period is double that of the

torus of Fig. 9a). All these tori behave like MDRTW.

If we try to follow the branch of quasi-periodic solutions
below Ra=18 250 by decreasing the Rayleigh number, the
system evolves to the chaotic solution with the above-
mentioned basic azimuthal wavenumimet 3.
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Frequency periodic solution on the mixed-mode branch at Ra
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flow the larger the decrease in the slope of the Nusselt numveals that the flow is still a two-tori. This fact, together with
ber. the long new periodgl, indicate that the system is crossing
The periodic orbit turns out to be stable in a very shorta region of phase locking in the parameter space. This solu-
range of Rayleigh numbers. At R&400, the system under- tion is stable at least up to Ral8 000 and when it becomes
goes a Neimark—Sacker bifurcation, giving rise to quasichaotic, a broadband of frequencies appears in the spectrum.
periodic solutions that are mixed-MDRTW. So, at a fixed
i_nstant, the conj[our plots of the quasi-periodic solut_ions look, DISCUSSION
like those of Fig. 11. The Fourier spectrum of Fig.(d3
corresponds to a solution at RZ450, the second frequency To clarify the scenario presented in the preceding sec-
beingf,=1.27. At Ra=15000 a solution with a small third tions, a self-explanatory sketch of the sequence of bifurca-
frequencyf,=0.13 is found. The peak of this frequency cantions leading to stable flows up to R&0 150 is plotted in
be seen in Fig. 1®) and, moreover, linearly combined with Fig. 14. As usual, dashed and solid lines refer to unstable and
other peaks. However, its Poincasection[Fig. 13c)] re-  stable solutions, respectively. The branches not leading to
stabilization(as far as our calculations revgalre cut near
the bifurcation point and only branches that are relevant to
the later global dynamics at higher Rayleigh numbers have
/CH”/AF’ been prolonged. Despite the complexity of the diagram, the
2 existence of other branches of stable solutions in this region
" of the parameter space cannot be ruled out. We hope to be
able to obtain detailed results about the stability of the peri-
odic orbits in the near future, and therefore clarify the con-
nection between the mixed DRTW branch, which reaches the
highest Rayleigh numbers, and the quasi-periodic solutions
of basic azimuthal wavenumber=4.
As far as the influence of the reflection symmetry is
concerned, we have found two types of nonlinear dynamics.
- The first one is not affected by the symmetries, and corre-

=

r sponds to the behavior of the main branches of solutions of
e b : < basic azimuthal wavenumber=3. The onset of temporal
QAU & . . . .
ST IS SR S & & chaotic dynamics takes place with the appearance of a third

¢ time-dependent bifurcation that introduces a new incommen-

FIG. 14. Sketch of the sequence of bifurcations found in the two-surate frequency. In spite of the existence of a pitchfork bi-
dimensional annular geometry. Any type of solutions are represented bfurcation of periodic orbits between the first periodic and the

lines. As usual, dashed for the unstable flows and solid for the stable, res i narindi ; ;
spectively. The labels stand for: PS pure steady, PP pure periodic, MS mixe uasl penodlc regimes, the sequence can be considered an

steady, MP mixed periodic, QP2 two-frequency quasi-periodic, and CH chae_x_ampIe Of_the Ruelle and Takens theory. This type of tran-
otic solutions. sition was first observed in a Taylor—Couette appafasd
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since then has been observed in numerous experiments tfres in phase space that generate the behavior of low Rey-
thermal convection in rectangular boxes and in other dytnholds number Kolmogorov flow, in a two-dimensional peri-
namical systems with different symmetries. It is an universabdic domain. Our results are in agreement with the existence
route to chaos, and experiments confirm that is independeitf a gluing bifurcation of limit cyclegfour in their casgthat
of the symmetry group of the system. Thus we must congenerate @ 4-invariant attractor. Gluing bifurcations are the
clude thatO(2) symmetry would not modify the temporal symmetry-increasing mechanism that probably generate an
dynamics of then=3 dominant thermal columns. In con- inverse period-doubling cascade leading to the chaotic attrac-
trast, the nonlinear dynamics of the solutions of dominantor at Ra=20 150. It is difficult to explore a large range of
wavenumbem=4 depends on the reflection symmetry, lo- the parameter space for quasi-periodic solutions in detail, but
cally for the steady and periodic solutions and globally forthis mechanism of period-doubling in Rayleigh=&ed con-
those quasi-periodic. The spatial interaction between theection has already been carefully described by Massaguer
modes with wavenumbera=2 and n=4 that we have et al for a subharmonic period-doubling cascade of peri-
found is an example of a spatial 1:2 resonance, in whictodic orbits. They found that the scenario was generated by a
modes with wavenumbersand 2 in the periodic direction sequence of gluing bifurcations between asymmetrical orbits,
interact nonlinearly. The 1:2 spatial resonance in systemwhich gave rise to symmetrical orbits of double period and,
with O(2) symmetry was first studied by several autifdr®.  subsequently, pitchfork bifurcations of the new periodic or-
Some aspects of the dynamics predicted by the normal forrhits return to the asymmetrical situation. It is important to
equations are reproduced here, although slightly modified bypotice that global bifurcations involving solutions related by
the initial existence of the stable=3 branch. The presence the symmetries of the problem require the real existence of
of wavenumber gaps in which no steady solutions with a&hese symmetries. It is not enough that a single solution re-
given wavenumber exist is a typical feature of this resocovers locally a symmetry under special circumstances.
nance. This is what happens in the range of Rayleigh numThus, in the three-dimensional problem, even if the boundary
bers 2889 Ra<4779, where then=2 solution disappears. layers remains laminar and attached to the lids of the annu-
The existence of traveling waves bifurcating from the mixedlus, and the fluid remains nearly two-dimensional because of
n=2,4 mode, which correspond to the bifurcation point atrotation, the dynamics of the almost=4 thermal columns
R&=2478 in our case, is also a characteristic of this resoshould be completely different to that described here.
nance. Moreover, in agreement with Ref. 17, the third stable  Finally, we would like to point out that although pure
mixed-mode branch disconnected from the conduction statsteady columns, forced by a radial temperature gradient, can-
completes our 1:2 standard resonant bifurcation diagrammot be experimentally observed on the Earth’'s surface, be-
The transition to turbulence through quasi-periodic states angause of vertical gravity, there are some®8ldnd new ex-
the phase locking phenomenon with three frequencies iperiments designed to be carried out in radial gravity
Rayleigh—Beaard convection have also been known for aconditions in a space station. The most recent of these is
long time3:32 but are not easy to observe in laboratory ex-currently being designed at the University of Colorgdee
periments. Our results confirm the existence of such regimelsttp://nimbus.colorado.edu/hart/science.htnin  order to
in natural thermal convection, but a detailed study of thestudy shear flow instabilities in a ferromagnetic Taylor—
transition to temporal chaotic flows from three-tori is outsideCouette apparatus, whose walls are maintained at different
the scope of this paper. In any case, we would like to pointemperatures. We trust that our results contribute to a general
out that we have also found thR and R,-symmetric  understanding of the influence of the radial gravity on con-
branches of solutions, but no hint that it could affect thevective systems with curvature.
complex global dynamics at higher Rayleigh numbers.
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