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Recent experiments of thermal convection in finite containers of intermediate and large aspect ratios 
have shown the presence of flows spanning the largest dimension of the container [R. Krishnamurti 
and L. N. Howard, Proc. Natl. Acad. Sci. 78, 1985 (1981); J. Fluid Mech. 170, 385 (1986)]. 
Large-scale flows of this kind computed from two-dimensional (2-D) numerical simulations are 
presented. The marginal stability curves for the bifurcations are computed in the range of aspect 
ratios L = 1 , . . . ,6 and for Prandtl number (+ = 10. The nonlinear dynamics of the bifurcated solution 
is explored for containers with aspect ratios L = 1,2,4. By increasing the Rayleigh number from 
criticality the system produces different sequences of symmetry breaking, Hopf-type bifurcations, 
which finally result in large scale flows, oscillatory net mass flux and chaos. The bifurcation 
involves different mode resonances with vertical and horizontal couplings, which are modeled using 
formal group theoretical techniques. 0 I995 American Institute of Physics. 

I. INTRODUCTION 

There is experimental evidence showing that thermal 
convection in a horizontal layer of fluid heated from below 
can show motions spanning the largest dimension of the 
container.’ The experiments were conducted in a large aspect 
ratio box, thus challenging the widespread confidence that 
flows in finite containers should scale as its transverse 
dimension-i.e., the length along the direction of the driving 
force. Because the experimental setting precluded any exter- 
nally imposed pressure head or shear stresses, it must be 
concluded that these large-scale motions were driven by a 
Reynolds stress tensor with nonzero horizontal average, r,, 
=v;v;. 

From the theoretical point of view, a finite container is 
an object that is difficult to handle. Most of the theory for 
flows in finite containers has been derived for boxes that are 
periodic in their longitudinal directions. This is a proper ide- 
alization for flows in large aspect ratio boxes. If the aspect 
ratio is large, the solutions obtained for a box with lateral 
boundaries are expected to show small deviations from solu- 
tions in periodic boxes. Lateral boundaries are only expected 
to introduce small-range perturbations, thus modulating the 
periodic solution at the far ends of the container. However, 
the large-scale flows mentioned before are challenging in this 
respect, and may change such a picture. Getting rid of the 
boundaries by assuming a horizontally periodic layer may 
even give rise to flows that cannot be traced back to solutions 
in a finite container, as is the case for flows with net hori- 
zontal mass flux. 

The goal of the present paper is to understand large-scale 
flows in two-dimensional, periodic containers, which we 
shall call, henceforth, periodic channels. Besides its obvious 
connections with the Benard problem, we believe this prob- 
lem to be important in its own right. Relevant experiments in 
this respect are those of convection in Hele-Shaw c.ells. One 
such experiment, performed in a container of aspect ratio 

L = 10, shows how convection cells can spontaneously tilt, 
which means that a shearing motion has been destabilized.2 
Such a flow arises because of a mean horizontal velocity 
field showing an antisymmetric profile, thus shearing the 
flow. We shall associate the tilting of these cells with the 
presence of a large-scale flow component. 

There is still another experiment of relevance in the 
present context. It is an experiment on thermal convection in 
a container of aspect ratio L = 32 filled with air (a= 1).3 As 
reported by the authors in a footnote, “Subsequent side 
views showed that roll-edge tilt angles up to plus/minus ten 
degrees can occur.” The tilting of the cells shows the pres- 
ence of a large-scale shear flow. In this experiment the tilting 
was periodic, thus showing periodic flow reversals, in con- 
trast with the steady tilting observed in the Hele-Shaw ex- 
periment described above. 

The first numerical simulations showing large-scale 
flows or shear flows, with both names being used as syn- 
onyms, were done for convection in a compressible fluid.4Y5 
These were open-type flows, driven only by a difference in 
temperature between top and bottom. Convection in very 
small aspect ratio containers resulted in very strong shears, 
but a shear-type flow was also obtained for some intermedi- 
ate aspect ratio containers. The flows were time dependent, 
but no flow reversal has been reported. In spite of the small 
number of cases run, the feeling was that large scale flows 
may or may not develop, depending on the aspect ratio of the 
periodic box. Recently, some two-dimensional (2-D) numeri- 
cal simulations of convection in a small aspect ratio con- 
tainer, L = 1, filled with a Boussinesq fluid have been done.6 
Motivation came from instabilities observed in plasma 
physics-in the edge of a tokamak, to be precise-where 
large-scale flows have also been observed, but no attempt to 
explore larger aspect ratio dynamics has been reported. 

There have been several recent attempts to model such 
large-scale flows. In two of them2T7 the nonlinear dynamics 
was explored by assuming modal truncations that provide a 
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plausible description for the tilting of the cells. Galerkin-type 
expansions were assumed, such that parity could spontane- 
ously break in both x and z coordinates, thus making provi- 
sions for r,,# 0. Both papers included only one horizontal 
mode, thus forcing a 1:l coupling in the horizontal direction. 
As a consequence, the coupling could drive a n =0 mode, 
the mean velocity field U, which bifurcates from the primary 
flow by breaking its parity. 

A different kind of mechanism that can trigger large- 
scale flows is that of resonance. Several models have been 
derived so far, either by using small amplitude expansions or 
group theoretical methods. If the horizontal length of the 
container is such that two or more solutions, each one with a 
different number of cells, fit inside the container, they can be 
nonlinearly coupled. The so-called 2:l resonance, which 
takes place between modes of horizontal wave numbers 
k= 1,2 was the first examined.879 These modes couple at 
cubic order as (2,1,1) and may give rise to a large-scale flow, 
provided that parity breaks down. More recently the reso- 
nances 1:3 and 1:2:3 have also been examined with similar 
results.” 

In the following, we shall examine three sets of ex- 
amples of convection in three 2-D periodic channels of small 
aspect ratio. In Sec. II we shall derive the equations and 
numerical techniques. In Sec. III we shall present the nu- 
merical results. In Sec. IV we shall derive an amplitude 
equation that fits the numerical results, and we shall discuss 
its dynamics. Finally, in Sec. V we shall conclude by sum- 
marizing some of the physical implications. 

II. EQUATIONS 

The purpose of the present paper is to deal with two- 
dimensional thermal convection in periodic channels under 
the most general conditions. In order to allow a net mass flux 
along the channel it is convenient to split the velocity sole- 
noidal field v between its mean and fluctuating components, 

v=U+v’, 

where U=[U(z,t),O], v’=(-a,x’,a,x’) and V’=$=O, 
with an overline meaning horizontal average over the peri- 
odic domain. With this choice we depart from the most usual 
formulation of the Benard problem by allowing a net mass 
flux, J f :;zU(z,t)dz. This is mandatory if a formulation in 
terms of the primitive variables is chosen, but streamfunction 
formulations are very popular, and the mean mass flux is 
often killed by assuming the streamfunction to be zero on top 
and bottom. The temperature will be split as 

T= l/2-z+T’. 

Equations for U, XI, and T’ can be obtained, respec- 
tively, from the horizontal average of the Navier-Stokes 
equations, the deviation of the vorticity equation from its 
horizontal average, and the heat equation. By writing them in 
nondimensional form, we get 

(14 

(lb) 

4x’,T’) (a,+ua,-V2)T’-a,X’+ a(x z) =o, > 04 

where w’ = -Q’,$, R is the Rayleigh number, c is the 
Prandtl number, time is scaled against the thermal diffusion 
time, and the equations are defined in the domain 
(x,z) E [O,L] X [ - l/2, + l/2]. The boundary conditions 
will be taken to be periodic in x and nonslip, perfectly con- 
ducting in z 

U=x’=a,x’=T’=O for z=+1/2. (2) 

A nondecaying mean velocity field U requires a nonzero 
mean Reynolds stress tensor r,,: = viva # 0, and that is 
equivalent to a,x’ a,,$ # 0. Whether such a condition will 
be fullfilled or not depends on the symmetries of the flow.” 
System (l), (2) is invariant against continuous translations, 
time shifts, and the following two finite symmetries: 

SI:(-VJ)--,(--x,w), (u,x’,T’)~(-U,-x’,T’), (3) 

S2:(x,z,t)+(-x,-z,t), (U,,y’,T’)+(-U,X’,-T’). 
(4) 

In periodic domains, besides continuous translations, fi- 
nite translations of an integer fraction of the wavelength are 
important. In particular, a translation of half a wavelength is 
a relevant transformation because its square, as well as that 
of St and S2, is the identity. Thus we introduce the finite 
translation 

S3:(X,Z,t)--t(X+n/2,Z,t), (U,x’,T’)+(U,x’,T’), 
(5) 

where A is the wavelength, which we shall assume to be 
equal to the length of the container, A = L. Translations of 
any smaller integer fraction of the wavelength have not been 
found to be of any relevance so far. 

The transformations {St ,S2 ,S,} together with their 
products define a commutative group of steady finite sym- 
metries for (l), (2). The square of every one of these trans- 
formations is the identity, and every transformation is its own 
inverse. However, stacked rolls are not stable solutions at the 
onset of convection. Therefore, solutions are not expected to 
be invariant against S, XS,, and the largest subgroup of 
symmetries that a solution can display is defined by the 
group of symmetries G:={Z,S,,S2XS3,SlXS2XS3}, 
where I is the identity. From this subgroup three different 
branches emerge, each one breaking two of these nontrivial 
symmetries, but still remaining invariant to thef product, the 
third symmetry. The first branch is that of solutions invariant 
against Sr, which from (3) gives U(z,t)= - U(z,t), thus 
implying U(z,t) = 0. The second branch is made of solutions 
invariant against S2 X S3. Then (4) implies U(z,t) 
= - U( -z,t), from which U is antisymmetric and the mean 
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mass flux is zero. The third branch is made of solutions 
invariant against {St XS,XS,}. Their fingerprint is a sym- 
metric mean velocity field U(z) = U( - z). 

Once solutions become time dependent, thus breaking 
time-shift invariance, a new finite symmetry may become of 
relevance if the solution is time periodic. By using arguments 
similar to those used to introduce (5), we shall define the 
finite symmetry 

&:(X,Z,r)+(X,Z,t+ T/2), (U,X’,T’)-+(U,X’,T’), 
(6) 

where 7 is the time period. 

A. Numerical method 

System (l), (2) was solved using a spectral method. The 
x dependence was expanded using a pseudospectral trigono- 
metric Fourier expansion and for the z dependence a 
Chebyshev-collocation method was used. Thus the following 
expansion was assumed for (U,x’,T’) 

M 
u(Zj yr)= C u,(f)K(2zj), 

m=O 
(74 

N/2 M 

X’(X,Zj,t)= C C X,,(t)eink"Fm(2Zj), n#O, 
n= -N/2 m=O 

m) 
N/2 M 

T'(X,Zj,t)=i C C T,,(t)einkxF~(2Zj)~ (7c) 
n= -N/2 m=O 

where ,;7,, are the Chebyshev polynomials of order m, and 
for the collocation we have taken the Gauss-Lobatto points 
2.zj=cos( rrj/M). The boundary conditions for the vorticity 
have been imposed using a technique discussed elsewhere,12 
and the solution has been advanced in time using an Adams- 
Bashforth scheme for the nonlinear terms, together with an 
implicit Euler scheme for the linear ones. As a standard reso- 
lution we have taken N X M = 24 X 24. 

III. NUMERICAL RESULTS 

In the present paper we shall examine a few solutions of 
(l), (2) leading to a nonzero mean velocity field. In an at- 
tempt to simplify the dynamics we have concentrated on 
mildly viscous fluids, (+ =lO. At the onset of convection 
each solution is invariant against the symmetry group G, 
therefore U = 0. But, by increasing the Rayleigh number, so- 
lutions belonging to different aspect ratios break different 
symmetries. We shall first examine in Sec. III A the marginal 
stability curves for these ruptures of symmetry and after- 
wards, in Sets. III B, III C, and III D, we shall examine the 
nonlinear dynamics for the three different families of solu- 
tions emerging from the bifurcation of a single pair of rolls. 

A. Marginal stability curves 

The linear operator is, by construction, invariant against 
the group G, thus meaning that it commutes with every one 
of its elements. As a consequence, the linear problem can be 
broken into a set of problems, each one involving only solu- 

2.5 lo5 

: 

\ ‘\ 

0.5 lo5 
‘\ \ 

‘\ -.... 
‘1. -A. --. . . . ..__ 

---.-.-- .----.-- . . . . . . _ .__.____._ _ _ _ 
I 

I 1 - I I , I I 

1 2 3 4 5 6 
L 

FIG. 1. Rayleigh number R versus aspect ratio L for different states of 
marginal stability. Every line corresponds to a Hopf bifurcation preserving a 
different symmetry. There are four different lines, each one corresponding to 
the four factors of the linear operator. (i) The dotted line designates a bifur- 
cation that preserves S,X S, . It breaks symmetry St, thus producing an 
antisymmetric, nonzero large scale velocity field. (ii) The dashed line des- 
ignates a rupture of symmetry that preserves symmetry Sr XS,XS, . It also 
breaks S, , thus still giving a nonzero large-scale velocity field, which is now 
symmetric. (iii) The dot-dashed line corresponds to a bifurcation that pre- 
serves symmetry S, but breaks the other two. The mean velocity field is 
zero. (iv) The solid line designates a Hopf bifurcation preserving all of the 
symmetries. 

tions that are invariant against a given element of symmetry. 
To be precise, the linear operator can be projected into every 
invariant subspace of G. These invariant subspaces overlap. 
It can be seen by inspection that their overlap is given by the 
set of solutions that are invariant against the full group of 
symmetries. As a consequence, the space of solutions splits 
into four subspaces: three of them invariant against one of 
each three nontrivial elements of G, and the fourth one in- 
variant against the full group. The implication is that the 
linear problem factorizes into four linear problems, each one 
acting on one of these invariant subspaces. Thus four differ- 
ent routes to instability are possible, three of which break 
two nontrivial symmetries at once. The fourth one preserves 
every spatial symmetry but, as will be shown below, it 
changes the shape of the cell. 

In Fig. 1 we have plotted the Rayleigh number as a 
function of the aspect ratio L for the marginal stability 
curves of a single pair of rolls. Every curve corresponds to a 
Hopf bifurcation, and the frequencies have been plotted as a 
function of the aspect ratios in Fig. 2. All these curves have 
been computed on the assumption that a single pair of rolls 
filled the whole domain, and every jump in frequency corre- 
sponds to a change in the eigenvalue crossing the real axis, 
either because a different symmetry becomes dominant, or 
simply because of a change in the number of nodes of the 
eigenvalue in either the vertical and the horizontal direction. 
For aspect ratios smaller than L = 1.75 the first instability 
that sets in preserves the S,XS, invariance. Therefore, sym- 
metry S, is broken and the bifurcated solution displays an 
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FIG. 2. Frequencies o versus aspect ratio L for different states of marginal 
stability. Every line corresponds to a Hopf bifurcation preserving a different 
symmetry. Lines have been plotted with the same criteria, as in Fig. 1. Every 
line has only been drawn for the set of L values plotted in Fig. 1. A change 
in the dominance results in a discontinuity in the Hopf frequency. 

antisymmetric nonzero mean velocity field. The correspond- 
ing marginal stability curve has been plotted in the figure as 
a dotted line. For larger values of the aspect ratio the domi- 
nant bifurcation is invariant against S, , thus showing a zero 
mean velocity field. However, a fairly obvious change in 
behavior happens at L ~3.5, as can be seen from the jump in 
frequency displayed in Fig. 2. For values of the aspect ratio 
1.75 <L < 3.5-dot-dashed line-the bifurcated solution 
preserves St and has broken the other two symmetries in G. 
In contrast, for L > 3.5-solid line-the eigenfunction is in- 
variant against the full symmetry group, thus sharing the 
same spatial symmetries as the unperturbed solution. There 
are in addition solutions displaying a symmetric profile for 
U, the bifurcation to which preserves only the symmetry 
S, X S,XS, , and the marginal stability curve has been plot- 
ted as a dashed line. These solutions have not been found 
dominant anywhere, as can be seen from Fig. 1. A descrip- 
tion of their geometry can be found elsewhere.13 

In Figs. 1 and 2 we have plotted the marginal stability 
curves for a single pair of rolls spanning the whole domain, 
but there are other possibilities. Let us notice that the domain 
can be filled with several pairs of rolls. An n-pairs solution in 
a domain of length L can be obtained by replicating n times 
a pair of rolls fitting a domain of length L/n. Therefore, Fig. 
1 can be improved by simply replicating its curves as many 
times as required. The new solutions will simply be clones. 
However, the replication brings solutions with a different 
number of rolls and different symmetries very close. The 
larger the aspect ratio, the larger the number of solutions for 
a fixed range of Rayleigh numbers, and the number of pos- 
sible hybrid solutions increases. Examples of such solutions, 
also called mixed modes, are well-known results from am- 
plitude type models.” Computations in progress show that 
for aspect ratios larger than L = 6, many of such hybrid so- 
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FIG. 3. Nusselt number versus Rayleigh number for periodic solutions in a 
box of aspect ratio L = 2. The Prandtl number is (T= 10. Diamonds (0 ) are 
steady, G-symmetric solutions. Circles (0) are periodic, S,-symmetric so- 
lutions. Triangles (A) are chaotic solutions with no symmetry. 

lutions arise close to the lowest marginal stability curve. We 
expect them to play an important role on the dynamics in 
large aspect ratio containers, but a systematic stability analy- 
sis in this domain has some technical intricacies, and we 
shall leave its discussion for a forthcoming paper. 

The previous discussion shows that only three different 
kinds of solutions can bifurcate from a single pair of rolls. 
We have taken as the prototypes to be examined the contain- 
ers of aspect ratios L = 1,2,4. In the following we shall ex- 
amine the hierarchy of bifurcations and subsequent dynamics 
that the system undergoes for each of these three aspect ra- 
tios. 

B. A hierarchy of nonlinear solutions: The case L=2 

We shall begin by showing solutions in a periodic box of 
aspect ratio L = 2, which corresponds to the wave number 
k= rr, for this value is very close to the critical wave number 
for convection between rigid boundaries. Figure 3 is a sum- 
mary of the cases run. By displaying the Nusselt number at 
z= l/2, N- 1: = - a$, as a function of the Rayleigh num- 
ber we show the three types of solutions found. Above criti- 
cality solutions (rhombs) are stationary and G symmetric. At 
R = 5.9 X 1 O4 the system shows a Hopf bifurcation with fre- 
quency w=378. These new solutions (full circles) break the 
symmetry S2 X S, and S, X S2 X S3 , but are still S r invariant. 
A sequence of such solutions, each one a quarter of a period 
apart has been displayed in Fig. 4. It corresponds to the case 
R = 8 X 104. The center of the cell bounces periodically 
against the walls and against the midplane, but preserves 
reflection symmetry. In addition, broken symmetries 
S,XS,XS, andS,XS, arereplacedbyS,XS,XS,XS, and 
S,XS, XS, invariance. The period for this solution is 
r =2.88X 10m2 corresponding to the frequency w=218. 

The dynamics of this wavy motion can be better under- 
stood from Fig. 5, where we have plotted the streamfunction 
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FIG. 4. Streamlines for a sequence of four snapshots a quarter of a period 
apart each. Aspect ratio L = 2, Rayleigh number R = 8 X lo4 and Prandtl 
number a=lO. Solutions are St and SaXSsXS, symmetric. The period is 
7=2.88X10e2 and the mean flow is zero, U=O. 

~‘(x,t;z=0.25) as a 3-D surface. The plot extends for an 
interval of four periods, and displays the dynamics of a 
standing wave. The straight line at x= 1 shows the absence 
of propagation. Further discussion on its physics will be de- 
layed until the next section. 

Around R= 1.9X 10’ there is a new bifurcation, now 
breaking the remaining S, symmetry. The bifurcating family 
of solutions has been plotted in Fig. 3 as triangles. They are 
chaotic, and this may explain the decrease in the Nusselt 
number as a result of their reduced coherence. Streamlines, 
x:=x1-J U dz, f or one such a solution, corresponding to 
R = 1.92X 105, have been plotted in Fig. 6. It can be seen 
from this figure that not every streamline is closed. There- 
fore, the mean mass flux is not zero, J t i$ U dz # 0. This 
result is consistent with the fact that the symmetry S,XS, 
had been previously broken. In Fig. 7 we have displayed the 
mean velocity profile U(z,t) at a fixed time. This profile is 
certainly not antisymmetric, and the linear momentum of the 

FIG. 5. A surface plot for the streamfunction x’(x,t;z=0.25) correspond- 
ing to the solution plotted in Fig. 4. The plot extends for an interval of four 
periods and displays the dynamics of a standing wave. 

flow is not conserved. It is transferred back and forth, from 
and to the wall, by shear stresses. 

A time sequence for U(t;z = 0.25) is displayed in Fig. 
8, showing the reversals of the mean velocity field. The Rey- 
nolds number for this velocity, defined as Re= U,,/a is 
Re-1, thus showing an important activity. The spectra for 
U(t,z=0.25) and J-?$$ U dz have been displayed in Figs. 
9 and 10, respectively. Both show the broadband spectra 
characteristic of chaotic solutions, but the two spectra show a 
very different structure. The transition to chaos has been ex- 
amined in detail, and takes place by destabilizing an incom- 
mensurate frequency. Thus the system reaches chaos through 
a quasiperiodic regime. The fundamental frequency of the 
unperturbed solution is 0,=672, and it bifurcates by giving 
rise to a new component of frequency w,=147. Frequencies 
have been measured for U. If measured for the Nusselt num- 
ber w2 does not change, but w, doubles its value. 

C. A hierarchy of nonlinear solutions: The case L = 1 

In Fig. 11, as a summary of solutions computed for the 
smaller aspect ratio container L = 1, we have plotted a Nus- 
selt versus Rayleigh numbers diagram-some preliminary 

Z 

I 1 
1. 

x-coordinate 

FIG. 6. Streamlines x  for a single snapshot of a chaotic solution. Aspect 
ratio is L =2, Rayleigh number is R= 1.92X lo5 and Prandtl number is 
cr=lO. There is an open streamline, thus showing a nonzero net mass flux, 
Jz:;;u dzf0. 
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0.25 

Z 

-0.25 

FIG. 7. Mean velocity field U as a function of depth for the chaotic solution 
displayed in Fig. 6. Aspect ratio is L=2, Rayleigh number is 
R = 1.92X 10’ and Prandtl number is CT== 10. 

results can be found elsewhere.‘” The flow is steady and G 
invariant up to Rayleigh numbers R = 1.15 X lo5 (rhombs) 
where it bifurcates to an oscillatory regime with nonzero 
mean velocity. This is a Hopf bifurcation with frequency 
w=216 and the solutions (full circles) break symmetries St 
and S, X S, X Ss as required for U# 0, but still preserve 
S,XS, invariance. An example of such a new solution can 
be found in Fig. 12, where we have plotted a sequence of 
snapshots for the streamlines at R = 2 X lo5 a quarter of a 
period apart each. The streamlines tilt back and forth at a 
period r =3.3X 10e2, corresponding to 0=190, as they 
shrink and expand at the same pace. The mean velocity field 
has been displayed in Fig. 13. It is antisymmetric, consistent 
with the solution being S,XS, invariant, and changes sign 

0. 1. 

time 

I 

2. 

FIG. 8. Mean velocity field U(z=O.25) as a function of time for the cha- 
otic solution displayed in Fig. 6. Aspect ratio is L = 2, Rayleigh number is 
R = 1.92X lOa and Prandtl number is CT= 10. 

R=192000 

150 300 
Frequency 

FIG. 9. Fourier spectrum for the mean velocity field U(z=O.25) of the 
chaotic solution displayed in Fig. 6. Frequency is measured in inverse time 
units, f= 0/27r. Aspect ratio is L = 2, Rayleigh number is R = 1.92X lo5 
and Prandtl number is o= 10. 

by a shrinking to zero and subsequent expansion. The Rey- 
nolds number is now Re=4, showing a great activity. As in 
the previous case, broken S, and S, XS,XS, symmetries 
have been turned into S, XS, and St XS, XSs XS, invari- 
antes. 

The dynamics of this solution can be better understood 
from Fig. 14, where we have plotted a 3-D surface for the 
streamline x(x, t;z = 0.25). At first sight it may be confusing 
to decide whether this is a standing wave or a traveling wave, 
as there is no permanent line of ridges, troughs, or nodes. 
The three-dimensional (3-D) surface clearly shows the ridges 

150 300 
Frequency 

PIG. 10. Fourier spectrum for the net mass flux J?i$ U dz in the chaotic 
solution displayed in Fig. 6. Frequency is measured in inverse time units, 
f= o/2*. Aspect ratio is L =2, Rayleigh number is R= 1.92 X 10’ and 
Prandtl number is a=lO. 
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FIG. 11. Nusselt number versus Rayleigh number for periodic solutions in a 
box of aspect ratio L = 1. The Prandtl number is a=lO. Diamonds (0) are 
steady, G-symmetric solutions. Squares (0) are periodic, SsXSs-symmetric 
solutions. Triangles (A) are chaotic solutions with no symmetry. 

0.25 

to drift in time back and forth, which might suggest that this 
a reversing traveling wave.15 However, the phase velocity 
does not change sign for all the x simultaneously, as it cor- 
responds to the example of reversing traveling waves. Re- 
flection symmetry is broken, but that is not enough to make 
a decision about the nature of the wave. We shall go into 
more detail in the next section. 

0.25 

Z 

At R = 2.05 X 1 O5 the system reaches a chaotic regime 
by breaking the remaining SZ XS, symmetry (triangles in 
Fig. 11). As a consequence the mean velocity field U is not 
antisymmetric anymore, some streamlines are open, and 
there is a nonzero mean mass flux. A snapshot of the stream- 
lines for the solution R= 2.2 X 10’ has been plotted in Fig. 
15, from which it can be realized that some streamlines do 
not close. In Fig. 16 we have plotted the mean velocity field 
at a fixed time for this solution. A slight asymmetry can be 
easily seen. As in the previous case, the transition to chaos 
takes place via a quasiperiodic regime. At R = 2.07 X lo5 
leading frequencies are w, =202 and w,=36.4 for the unper- 
turbed and bifurcated components, respectively, as computed 
from the U spectra. Some more detail on these spectra can be 
found elsewhere.i4 

-0.25 

0. 0.5 1. 

x-coordinate 

FIG. 12. Streamlines ,y for a sequence of four snapshots a quarter of a 
period apart each. Aspect ratio is L = 1, Rayleigh number is R = 2 X 1 05, 
Prandtl number u=lO. Solutions are S, XS4 and S,XS, symmetric. The 
period is 9=3.3X10-* and the mean flow is different from zero, Uf 0. 

D. A hierarchy of nonlinear solutions: The case L =4 

We have also examined solutions for the aspect ratio 
L = 4. At R = 2.3 X 1 O4 a pair of rolls shows a Hopf bifurca- 
tion preserving the full group of symmetries G. The fre- 
quency is w=180. One example of such a bifurcated family 
of solutions, that for R= 2.4X 104, has been displayed in 
Fig. 17. A sequence of four snapshots, a quarter of period 
apart each, shows how the streamlines preserve the full 
group of symmetries. The geometrical difference from the 
unperturbed roll pair is apparent. The streamlines in the two 
central snapshots show the presence of the first horizontal 
overtone as a set of four extrema at midheight. The solutions 

are Si invariant and the mean velocity field is zero. How- 
ever, as in the previous two cases examined, by increasing 
the Rayleigh number the solution becomes chaotic, and St 
invariance breaks down, thus resulting in a nonzero mean 
velocity field U. The corresponding mean mass flux becomes 
different from zero J U dzf 0. Chaos arises at 
R = 4.3 X 104. A short-time sequence for a chaotic solution 
at R = 4.5 X lo4 has been plotted in Fig. 18, where we have 
plotted U(z = 0.25, t) . In this figure we have marked the four 
equally separated instants of time at which we have taken the 
snapshots displayed in Fig. 19. We have been very careful to 
display a time interval well within the chaotic regime, and 
the solutions show the expected lack of symmetries. In con- 
trast with the two previous cases, this time the transition to 
chaos takes place via a period doubling bifurcation. A win- 
dow of period three has also been observed near the onset of 
chaos. 
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FIG. 13. Mean velocity field U as a function of depth for the sequence of 
four snapshots displayed in Fig. 12. Aspect ratio L = 1, Rayleigh number 
R=2X105 and Prandtl number a=lO. Solutions are StXS, and S,XS, 
symmetric. The period is 7=3.3X10-‘. 

IV. DISCUSSION 

In the previous section we examined 2-D convection in 
periodic channels of aspect ratios L = 1,2,4. When the Ray- 
leigh number was increased, the solutions evolved from the 
most symmetric state, the conduction state, to a state with no 
spatial symmetry. A mean velocity field with nonzero mass 
flux has been found in each case to be the result of this lack 
of spatial symmetry, and the final state has always been 
found to be chaotic in time. It is worth noticing that every 
one of these chaotic states displays some memory of previ- 
ous symmetries. Spatiotemporal symmetries may well be 
present, but no systematic attempt has yet been made at their 
description. 

The tilting of the cells described in Sec. III C for L = 1 is 
consistent with a double mode bifurcation with parity broken 
in the vertical direction of the kind described in,’ but the 
numerical work reported there does not support a Hopf bi- 

X 

PIG. 14. A  surface plot for the streamfunction x(x,t;z=0.25) plotted in 
Fig. 12. The plot extends for an interval of four periods. The contour level at 
midheight oscillates back and forth in time. 

furcation to Uf 0. Resonances can also result in tilted cells, 
mean flows and waves,8-10 but the stability of these flows is 
not yet completely settled. In addition, bifurcations are not of 
Hopf type. Both models will be reviewed in Sets. IV A and 
B, as they are so far the only ones giving a nonzero mean 
flow. In order to understand the dynamics of our 2-D numeri- 
cal simulation we shall proceed with a formal derivation.‘6*‘7 
The starting point will be the linear stability analysis done in 
Sec. III B. 

Z 

0. 0.5 
x-coordinate 

1. 

FIG. 15. Snapshot showing the streamlines at a fixed time for a solution 
with aspect ratio L = 1, Rayleigh number R = 2.2 X 10’ and Prandtl number 
CT= 10. The solution is chaotic and has broken every spatial symmetry. This 
solution shows a net mass flux. 
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FIG. 16. Mean velocity field U as a function of depth at a fixed time for the 
solution displayed in Fig. 15. Aspect ratio L= 1, Rayleigh number 
R=2.2X 10” and Prandtl number a=lO. The solution is chaotic and has 
broken every spatial symmetry. There is a net mass flux as a result of the 
slight asymmetry that can be seen in the figure. 

The equations that we shall derive are meant to model 
the dynamics of the physical system as observed from the 
numerical computations. Although the system will be de- 
rived by using a technique that, strictly speaking, is valid 
only in the asymptotic limit of small amplitude, it will prove 
to be extremely useful in order to understand the dynamics. 
In particular, we shall use the model as a diagnostic tool for 
our numerical results. The number of active degrees of free- 
dom is very small, and therefore the dynamics can be cross- 
checked with the numerical results. For simplicity we shall 
refer the whole discussion to the temperature field, T’, since 
this is a scalar field as opposed to the streamfunction, x’, 
which is a pseudoscalar-i.e., the sign reverses under reflec- 
tion of the coordinates system. The equations that we shall 
derive below could be obtained for both fields, but the for- 
mulation is simpler for the former than for the latter. 

A. Two modes with vertical coupling 

Let us begin by assuming for the temperature the follow- 
ing expansion, which generalizes the model derived by 
Howard and Krishnamurti? 

0.25 

z 

-0.25 

0.25 

0.25 

i 2 4 
X -coordinate 

FIG. 17. Streamlines x for a sequence of four snapshots a quarter of a period apart each. Aspect ratio is L = 4, Rayleigh number is R = 2.4 X 104, Prandtl 
number o= 10. Solutions are invariant against the full group of symmetries G. The set of four extrema at midheight in the two central snapshots identifies the 
activity of the two first overtones as coupled modes. The period is 7=3.4X IO-*, corresponding to o= 185 and the mean flow is zero, U= 0. 
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0.3 0.4 

FIG. 18. Time sequence for the mean velocity field U(z=0.25,t) of a 
chaotic solution. Aspect ratio is L =4, Rayleigh number is R=4.5X 104, 
Prandtl number a=lO. The mean velocity field does not show a defined 
parity and there is a net mass flux. Some indications about the spatial struc- 
ture can be obtained from Fig. 19, in which we have plotted the streamlines 
for four snapshots corresponding to the open circles 0. 

0.25 

Z 

-0.25 

(8) 

where Aj = pje”j, i= 1,2 are complex amplitudes, 
{C(z),S(z)} are the symmetric and antisymmetric vertical 
eigenfunctions for the linearized convection problem, with 
an overline denoting complex conjugates, and higher-order 
terms are nonlinearly generated, say, by a small-amplitude 
perturbation technique. 

Let us notice that we are dealing with a secondary bifur- 
cation, which may or may not be the unfolding of a multiple 
bifurcation at the conduction state-i.e., that by a convenient 
choice of the parameters the bifurcation can be traced back to 
the conduction state. Unpublished numerical results obtained 
by using a Galerkin-type model described elsewhere7 suggest 
that (8) might bifurcate from the conduction state in the limit 
of zero Prandtl number. But because the limit c =0 is a 
singular limit, this issue has not yet been systematically pur- 
sued. We shall assume (8) with no proof and proceed for- 
mally, with no explicit derivation of any coefficients in the 
amplitude equation. 

Amplitudes in (8) should obey a system of equations 
Aj=fj(A t ,Al), j = 1,2 where the {fj} are complex analytic 
functions. This system of equations has to be invariant 

Z 

-0.25 

i 3 4 
X -coc%dinate 

FIG. 19. Streamlines x for the four snapshots displayed as open circles 0 in Fig. 17. Aspect ratio is L =4, Rayleigh number is R = 4.5 X 104, Prandtl number 
(T= 10. Snapshots are taken at equal time intervals A=O.Ol. The solution has broken every spatial symmetry, but there is no indication of the cells being tilted 
in any way. The mean flow and the mass flux are both different from zero. 
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against continuous translations, as well as invariant against straightforward analysis similar to that done in Sec. IVA 
the group G. The action of these transformations on the am- shows that the solution {A r =A,, A,= 0) cannot display a 
plitudes is as follows. A translation will result in the action Hopf bifurcation. 

T((xo): Aje ikx,Ajeih+xo), j= 1,2, (9) 

from where 7 :Aj-‘Aj exp i&, with &=kxa. Therefore, 

T :(Pj ,tji)-(Pj Ttj+ 50) (10) 

while symmetries St and S,XSs result in the actions 

WA,,Ad+&&L (11) 

S?XS3:(A1,.42)-‘(A1,-A2). (12) 

The most general system invariant against transforma- 
tions (9)-(12) is 

A,=~,A,+~~A~A:+O(IA~~), (134 

A?=(Y2~1+~2A~~,A++(I~14), (13b) 

where CY~=CY~O+CY~~IA~~‘+~~ZIA~~~, c~ra>O, ~~tt<0 and ev- 
ery coefficient in (13) is real. 

C. A system displaying the full group of invariances 

Neither of the double mode bifurcations discussed above 
produces the Hopf bifurcation expected from our numerical 
results. The implication is that neither of these models de- 
scribes the marginal stability curves plotted in Fig. 1. A more 
systematic approach will begin by Fourier expanding T’ up 
to the order where every bifurcation breaking symmetry is 
allowed. Let us write 

T’ = (A ,eikx+A le-‘kx)C,(z) + (A2eikX+~2e-ikX)S,(z) 

+ (A3e2ikx+A,e-2ikx)C2(z) + (A4e2ikx 

+A4e-2’kx)S2(z) + * * - , (18) 

Let us assume that a steady solution {A 1 =A,, A, = 0) 
bifurcates from the conduction state. Then 
a,,+culllA,,12=0. The stability of this solution splits into 
two equations, one for each amplitude. If ~yrr<O as is the 
case, A ,-A o, and the equation for A 2 is 

i,=(a,o+a21~A0~2)A2+~2A$i2. (14) 

By taking A,=xi+ iyj in (14) with x and y real, it is fairly 
simple to prove that the eigenvalue problem is symmetric, 
the eigenvalues are real, and the bifurcation is always sta- 
tionary. Therefore, (13) cannot describe any of the bifurca- 
tions previously shown. As a complementary test, we have 
done explicit numerical computations by using a modal ex- 
pansion with nonslip boundaries,7 and the bifurcation has 
always been found to be steady. 

where {Cj(Z)} and {Sj(Z)}, i= 1,2 are even and odd func- 
tions, respectively, fulfilling the boundary conditions. 

The expansion (18) includes the three different compo- 
nents in (8) and (15) plus a fourth one, that of A 4, included 
for consistency. It will be shown below that this is the mini- 
mal set of amplitudes required to describe the four marginal 
stability curves in Fig. 1. The expectation, supported by the 
numerical computations, is that any other term that could be 
included in (18) can be nonlinearly generated. Guidance in 
this choice has been provided by inspection of the linear 
operator which, as mentioned in Sec. III A, can be factorized 
as a product of four different operators, three of them invari- 
ant against a nontrivial element of the symmetry group G, 
and the fourth invariant against the full group. 

The action of each symmetry can be derived as in the 
previous cases. It reads 

B. Two-mode resonance 

The second candidate known to destabilize mean flows 
is a two-mode resonance, i.e., a double bifurcation with hori- 
zontal coupling. We shall now assume for the expansion 

T’=(A,eikx+&e-‘kY)C(z)+(A2e2ikr 

+A2e-2ikx)C(z)+-*- (15) 

with {Aj=Pj exp ‘5j). From (15) a continuous translation 
results in the action 

T :(A1 ,A,)+(A, exp i6,A2 exp 2i6) (16) 

and the action of finite symmetries St and S,XS, is still 
given by (ll), (12). 

The most general system invariant against (ll), (12) and 
(16) can be written as 

A,=a,~,+p,A~~A++(I~16), (174 

A,=a,A2+PZA~A2+O(IA16), (1%) 

where “j = a,( IA r I 2, IA 2I 2). This system was first derived for 
the analysis of the 2:l resonance,’ and the reader should 
address the original paper for a thorough discussion. A 

In order to derive the dynamic equation, we shall begin 
by writing the fundamental translation invariants. They are 
{Uj=IAj12~j=1,...,4}, u>=A$i4, u6=A;/i4, u,=A,A,&, 
u; = AlA,, u; = AdA,, u; = A&, uz = A&, u; 
= A ,A 2A 4 and their complex conjugates {“j , j = 1,. . . ,7} and 
{ii*) j=l,..., 5}, where we have denoted with an asterisk 
the invariants changing sign against symmetry (21). Now, the 
most general system invariant against translations and the 
group G of discrete symmetries can be written as 

Al=alA1+PIA4A1+~1A3A2+~1*A2+PTA3A, 

+ Y:A4A2, (224 

/i2=a2A2+P2A4/i2+y2A&++;A1+P;Agi2 

+&44&, (22b) 

A3=~~3+P3A1A2+~3*A4+P3*A:+ y;A;, (224 

A4=~4A4+P4A:.+‘y4A~+a4*A3+P4*AIA2, (224 
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where the coefficients {“j , Pi, Yj, j= 1,...,4} are functions 
of the invariants, which are even against transformation (21). 
The coefficients {(Y; , pj* , ~7 , j= 1,...,4} are also func- 
tions of the invariants, but they are odd against transforma- 
tion (21). Therefore, the terms with a starred coefficient are 
at least fourth order in the amplitudes. Symmetry (19), which 
constrains the constant coefficients in the final expression of 
(22) to be real, has also to be imposed. 

System (22) accepts a steady, roll-type solution 
{A,=Ao, Aj=O, j=1,2,3}. The remaining linear problem 
for{Ar =A0 +A;,Aj =A,!, j=1,2,3}isbestwrittenasa 
function of the translation invariants {Uj = A$,, j= 1,2} 
and {Uj = A@& j = 3,4}. It splits into two separate systems. 
The first one is 

3,=u,~~+b,lA,1~v~+c1Uq+dllA~l~~~, (234 

ljq=u41A012~1+b41A014UI+~4~4+d41A014~4, Wb) 

and the second one 

U2=u2~2+b21A012U2+~2~3+d21A012U3, @+a) 

ri3=a31Ao12u2+b31Ao14U2+c~u~+~~~A~~4~~. (24b) 

Every coefficient is now a real constant. The splitting of the 
linear problem into (23) and (24) is a fairly obvious conse- 
quence of symmetry (21). 

The eigenvalue problems (23) and (24) can better be 
solved by using the definition Uj=xj + iyj . Subsequent sepa- 
ration of real and imaginary parts breaks every system into 
four independent linear problems for {xt,x,}, {yr ,y,}, 
{x2,x,} and {y2 ,ys}. Therefore, the characteristic equations 
factorize. As a result we get a set of four different character- 
istic equations 

(X2-AXrj+~j)=0, j= l,..., 4. (25) 

The lines Tj= 0 define the curves of marginal stability for 
Hopf bifurcations, and the frequencies are given by 
w2= Rj>O. The system may also display a stationary bifur- 
cation across the curves of marginal stability nj=O, if this 
condition is fulfilled anywhere. 

Therefore, because of the factorization, there exist four 
different families of eigenvalues for (23) and (24), each one 
associated with a different marginal stability curve: 
C1:={x1,x4; X,=X,=Yj=O}, C2:={yr,y4; Y2=Y3=Xj 
=O}, C3:={xz,x3; XI=X4=yj=O}, and C4:={yz,y3; 
y1=y4=xj=O}. By inspection of (19)-(21) it can be seen 
that C, preserves the full group G of symmetries, but C,, 
C3, or C, only preserve a single symmetry. The preserved 
symmetries are S, , S, X S,XS, and S, X S, , respectively. 

Now it is clear that the set of amplitudes (18) is minimal. 
All these amplitudes are required so as to span the four sub- 
spaces Cj . But in addition, the previous analysis shows that 
every one of these eigenmodes couples two different ampli- 
tudes, thus being a resonant solution. These resonances be- 
tween an unperturbed pair of rolls of wave number k and two 
modes of wave numbers k and 2k can be termed (1:1:2) 
resonances. If we had taken as the unperturbed solution n 
pairs of rolls, we would have obtained the resonance 
(n:n:2n), but solutions with n and m pairs can also reso- 
nate. This is the case, for instance, for a box with L =6, 

where either a single pair or a triple pair of rolls can fit. The 
previously discussed resonances are then (1:1:2) and (3:3:6), 
but they can still couple as a (1:2:3) resonance-see Fig. 1. A 
few examples of such a resonance have been found, and are 
currently under study. The presence of such additional reso- 
nances increases the number of marginal stability curves, 
which makes the dynamics very complicated. 

As mentioned before, the phase of the roll A, is a neutral 
mode for the linear solutions. Its post-bifurcation behavior 
can be obtained from the nonlinear terms in (22a). For sim- 
plicity in the presentation we shall split the problem into two 
parts. In the span of the eigenspaceA i = Ai = 0, we can write 
(22a) as 

+&&+O(lA15), (26) 

where the coefficients are functions of the invariants IAj12, 
j = 0,2,3. We have truncated the equation at fifth order in the 
amplitudes just to show the leading terms in the expansion, 
but the reader is to be aware that the truncation should be 
taken around a finite amplitude solution, and (26) is not a 
consistent truncation around this point. 

Because A,=q,, we Lcan now write A 1 = IA,lexp i&, 
and define ~:=A,A,-A,A,=2ilA,12&. Then, from (26), 

CP=(PIAO~-~- SHu3U2-&u2)+ 7??(7J2u3-fi2fid 

+ y(u;-fi;)+*- . (27) 

Therefore, it does not matter whether {u2,us} are both real 
or both imaginary, & = Cp= 0, and there will no traveling 
waves, i.e., rolls cannot drift. 

In the complementary eigenspace A; = A 4 = 0, we can 
write (22a) as 

A,=~,+PA4A,+yA~~4+O(IA15), (28) 

where the coefficients are functions of the invariants IA~I~, 
j=1,4. But now, A,=blolexpi$+Glllexpi51, and the 
spans of the two eigenspaces C, and C, require separate 
treatment. On C, the invariant ur is real, thus implying 6; 
= &, and A r = IA rlexp i&. Now, from (28), by using the 
definition +: =A ,A t -A ,A t = 2ilA Il2& together with the 
previous expressions for the amplitudes, we find for the 
phase velocity &= Cp= 0. Therefore, no propagation is pos- 
sible. 

On the span of C, the invariant ur is imaginary, thus 
implying 51=&,+7r/2 andA,=(IAal+ilA~I)expi&,. In ad- 
dition, u4 is also imaginary, thus A; = ilA;I exp 2i&,. By in- 
cluding both expressions in (28), we obtain for the real part 

~o=-(P+~~~Ao~~)IA~I-~~~Ao~IAI~+... , (29) 

where we have used the fact that the unperturbed solution of 
(28) is given by a=crO+alIAo12~~~~=0. 

The implication of (29) is that to # 0 and traveling waves 
are possible. The second member of (29) is a function of the 
amplitudes, which, if they destabilize as a Hopf bifurcation, 
result in an oscillating phase speed. Therefore, the bifurca- 
tion preserving S, X S, X S, , can destabilize reversing travel- 
ing waves.l” The phase to can be computed near the bifur- . . eating pomt by taking u4=u40 cos ot, from which 
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)A;I=A cos wt and (29) integrates to LJ~=$~ sin ot, with 
too = -A w - ’ (/? + 3 ylA ol 2), thus giving an oscillatory phase 
to the roll. 

We shall now write from (18) explicit expressions of T’ 
for each family of solutions. We could also write an expres- 
sion for x’ by noticing that a,~‘, like T’, is a scalar field, so 
that they both display the same functional structure. The 
St-invariant solutions can be written as 

T’ = [ ToCo(z) + T2 cos wtS,(z)]cos kx 

+T, cos(~t+8)C2(z)cos 2kx+... (30) 

which corresponds to a standing wave. And the 
S2 X S3-invariant solution reads 

T’= ToCo(z) ,4x+ T2 cos otSr(z)sin kx 

+T, cos(ot+4)C2(z)sin 2kx+*** (31) 

which is a standing wave on top of the steady roll. The 
structure of the solutions invariant against the full group G 
of symmetries can be written as 

T’=[ToCo(z)+T, cos otCl(z)]cos kx 

+T, cos(wt+ 6)S2(z)cos 2kx+ ..a (32) 

which is again a standing wave. Finally, the bifurcation of 
St X S, XS,-invariant solutions gives 

X sin[kx+ &i(t)] + T~S~(Z)COS of 

Xsin 2[kx+c0(t)]+.*. . (33) 

This is a traveling wave with an oscillatory phase velocity 
c= - k-‘,$00 sin wt, which is linear in the amplitude of the 
perturbation, as can be seen from (29). 

In order to validate the model, we have checked that the 
symmetries in (30)-(33) agree with the symmetries dis- 
played by the numerical solutions, i.e., in the expansions (7) 
for these solutions, the appropriate coefficients are zero. To 
be more precise, near the secondary bifurcation the numeri- 
cal results show that the dominant terms are the ones in the 
previous expressions, except for the roll mode, 
ToC,(z)cos kx, which models the primary flow and should 
include two or three non-negligible overtones. This is why 
(22) is a model and not an asymptotically valid system, in- 
deed. We have also carefully checked that the numerical re- 
sults support the standing waves (30)-(32). In what concerns 
the traveling waves (33), no numerical support can be pro- 
vided because this bifurcation has never been found to be 
dominant-see Fig. 1. 

V. CONCLUSIONS 

In the present paper we have shown that large-scale 
flows can be destabilized by resonant processes in many 
ways. We have examined the instability and dynamics of a 
single pair of rolls in a periodic domain. At onset the flow 
can break reflection symmetry S, by shearing the cross sec- 
tion of the roll, which results in a large-scale flow of anti- 
symmetric velocity profile, or through a deformation of the 
cross section, which gives rise to a symmetric velocity pro- 

file, though the latter case has never been found to be domi- 
nant. At larger Rayleigh numbers every symmetry breaks 
down, the solution becomes chaotic and a large-scale flow is 
destabilized. These regimes are associated with a net mass 
flux, and this is important because they can be killed or 
strongly distorted by forcing the net mass flux to be zero, a 
constraint that is often imposed in streamfunction formula- 
tions by the boundary conditions. 

We have computed the marginal stability curves and the 
sequence of symmetry breaking bifurcations for a pair of 
rolls in a periodic channel. The system always produces tem- 
poral chaos as a final stage, with the whole dynamics being 
confined to a low-dimensional manifold. For the Prandtl 
number value examined, the large-scale flow bifurcates by 
tilting the cross section of the cells only in small aspect ratio 
containers. If the aspect ratio is intermediate the large-scale 
flow bifurcates as a chaotic regime with no spatial symmetry. 
The Rayleigh numbers for such a bifurcation decrease with 
the aspect ratio. For containers of aspect ratio L ‘6, these 
flows destabilize for Rayleigh numbers R = 1.6 X 1 04, well 
within the experimental range. Whether such resonant pro- 
cesses will survive in 3-D experiments, where the back- 
ground is expected to be turbulent,’ is still a challenging 
question. 

We have concentrated our efforts on the simulation of 
convection in three small aspect ratio containers. If the dy- 
namics of a system made of n pairs of rolls could be ob- 
tained by replicating n times a system made of a pair of rolls, 
the three examples that we have examined in this paper 
would describe the dynamics of every system with Prandtl 
number values o 210. However, other resonances are ex- 
pected to play an important role, thus reducing the scope of 
the present results. The dynamics of a one pair of rolls sys- 
tem has also been examined by using a low-dimensional 
model derived by a formal theoretical group technique. It 
shows that every one of the bifurcations that we have found 
numerically is a Hopf bifurcation associated with a (1:1:2) 
resonance, thus explaining the failure of previous models to 
describe their dynamics. It also shows that neither of the 
dominant bifurcations can lead to traveling waves but, in 
contrast, traveling waves could well be destabilized for the 
solutions with a symmetric mean velocity profile. To be pre- 
cise, these are waves with an oscillatory phase, thus revers- 
ing periodically the sense of propagation. This oscillatory 
dynamics for roll patterns has been found elsewhere by using 
nonlinear phase dynamics.‘* Thus drifting rolls could be the 
outcome of plain convection in a convenient range of param- 
eters. Migration of rolls has been reported from experiments 
in low Prandtl number fluids.3 

The system described in this paper belongs to a family of 
problems that has received much attention in recent times. 
For many of these systems, breaking reflection symmetry S, 
is a sufficient condition to trigger traveling waves. This is the 
case, for instance, in compressible convection or 
magnetoconvection,” but as shown in Sec. III C, breaking 
reflexion symmetry may not be enough to destabilize travel- 
ing waves in 2-D systems. A similar conclusion was reached 
in Ref. 20. The Boussinesq system described in the present 
paper shows up-down symmetry, which is a requirement for 
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S,XS, invariance, and such invariance constrains the system 
as much as St does. This can be seen from (27), where the 
S, X S, symmetry imposes a constant value on the translation 
phase, thus precluding traveling waves. 

The geometry and dynamics obtained for the smaller as- 
pect ratio container L = 1 is consistent with some recent re- 
sults obtained elsewhere” for stress-free boundaries and 
small Prandtl number o = 1. There is a minor difference, 
however, because the bifurcation reported there is steady but 
followed by a tertiary bifurcation of Hopf type. Unfortu- 
nately, the terminology used by the author is misleading. For 
instance, what he calls a “linear stability diagram”-see his 
Fig. 5-should, in our terminology, be termed a Reynolds 
number versus Rayleigh number diagram, with the former 
being defined Re:=U,,/a. The amplitude U,, is not an 
externally imposed parameter and should not be used to de- 
scribe the stability of the flow. Difficulties come from his 
posing an initial value problem, which may not be the best 
strategy for exploring the dynamics of a flow with external 
forcing. 

Experiments are very scarce and somewhat challenging. 
The periodic tilting of the cells observed in the large aspect 
ratio experiment quoted above3 certainly stresses the confi- 
dence in our results, but the bifurcation reported for the 
aforementioned Hele-Shaw cell experiments2 is steady, even 
though the Prandtl numbers for theory and experiments are 
similar. The fact that the latter experiment was conducted in 
a container with different top and bottom boundaries, thus 
breaking up-down symmetry, does not help comparisons. 
But it is worthwhile to recall that in none of the numerical 
simulations of convection in compressible fluids, i.e., with 
broken up-down symmetry, a reversal of the mean flow was 
reported 4,5, thus showing that the bifurcations were not of 
Hopf type. If the system is not S2XS3 symmetric, only the 
reflection symmetry S, remains, and this constraint may not 
be enough to force the resonances driving our system. 
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