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Abstract. The thermal convection of rotating fluids in spherical geometry is a classical problem with application
to many geophysical and astrophysical problems. The study of the transition to periodic solutions
from the steady conduction state of a rotating and self-gravitating fluid sphere, heated uniformly
from the inside, is discussed here. The continuation of double Hopf points is used to determine
the region of the parameter space in which the first bifurcation is to solutions independent of the
longitude (axisymmetric solutions). It is limited by three segments of curves separated by two
triple Hopf points. This type of so-called torsional solutions was recently found, and it is shown
here that they are the preferred solutions at the onset of convection for a wide range of fluids of
Prandtl numbers, Pr, extending from Pr = 0 to Pr ~ 0.9, which includes, for instance, liquid metals
and gases. Although the corresponding interval of Ekman numbers, E, narrows when Pr — 0, it
is shown that there is always a small gap of parameters, relevant to geophysics and astrophysics,
where the torsional solutions are preferred. The limits of the double Hopf curves when Pr — 0 follow
linear laws of the form E = ¢(m1, m2)Pr, ¢(m1,m2) being constant depending on the two azimuthal
wavenumbers, m1 and ma, of the eigenfunctions that define the double Hopf problem.
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1. Introduction. The combined action of rotation, and thermal and solutal convection
plays a fundamental role in the dynamics of the interiors and atmospheres of most planets
and stars, and in the generation of self-sustaining magnetic fields. Such effects are responsible
for a great variety of phenomena in a wide range of scales, for instance, for the mean zonal
flows observed in the atmospheres of the giant planets or the small-scale granulation observed
in the upper convective layer of the Sun. The differential rotation driven by the convection is
also responsible for the dipolar magnetic field measured in the Earth’s surface or for the small-
scale concentrations of the magnetic field, appearing as dark sunspots, due to the inhibition
of the convection in the photosphere of the Sun.

The study of the physics of these phenomena is complicated because of the scarcity of
observations and experimental measurements, and also because of the complexity and cost of
the numerical simulations. Moreover, each celestial body has its own peculiarities. Nowadays
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it is impossible to reach the parameters that quantify their properties, either in the numerical
simulations or in laboratory experiments, so there are a lot of basic open problems on geophys-
ical and astrophysical topics and on magnetohydrodynamics. They are usually approached
in several ways. Aside from the theoretical studies, the data achieved from the numerical
simulations, although using parameters far from the real values, together with those of the
direct observations supply the information needed to build reduced models such as amplitude
equations [22] or to apply data assimilation methods for the forecast of different events [36].

The computational cost of the direct numerical simulations is always very high due to
multiple factors that converge in each phenomenon, and to the extreme values of the param-
eters. The simplest system of partial differential equations (PDEs), governing the thermal
convection in rotating fluids, is given by the Boussinesq approximation of the mass, mo-
mentum, and energy equations, which consists in considering the dependence of the density
with the temperature only in the buoyancy term, and in keeping the rest of the physical
constants independent of the point. Even in this case, the nondimensional equations for a
full sphere depend on three parameters: E, Pr, and the Rayleigh, Ra, numbers. The first
is 1071 < E < 1077 in the celestial bodies, and the second is estimated to be Pr < 1. In
addition, in the case of spherical shells the radius ratio (inner over outer radius) of the shell
gives rise to a fourth parameter. In magnetohydrodynamics the induction equation must be
added to this system, introducing a new parameter, the magnetic Reynolds number, R,,, or
the magnetic Prandtl number, Pry,, depending of the nondimensional scales used. They also
have unreachable values, Ry, > 102 and Pry,, < 107°, in the simulations.

The extrapolation of the data supplied by the direct numerical simulations, computed
at the ranges of achievable parameters, gives valuable information on the mean values of
physical magnitudes such as energies, zonal flows, vorticities, time scales, etc. [9, 2, 24, 30].
The patterns of convection and magnetic fields are parameter dependent, and, at high Ra,
they often retain a remnant of the primary patterns from which they bifurcate, even in the
chaotic and turbulent states [19], so it is important to determine the range of parameters where
each pattern may appear, and where it is stable or not. The linear stability analysis of the
solutions of the equations of fluid mechanics is the most efficient way to do it and, in addition,
provides insight into the physical mechanisms leading to increasingly more complex flows. It
is one of the main tools in the field of hydrodynamic stability, which in most cases are those of
the dynamical systems. Invariant objects such as equilibria, periodic orbits, tori, and homo-
and heteroclinic orbits are found whenever it is possible, and their stability is studied. There
is a large volume of literature on the subject. We refer the reader to [8, 32, 33, 18, 54, 12]
just to mention a few remarkable books from the sixties to the present.

We focus in this article on the thermal convection of a pure fluid sphere rotating about a
fixed axis and with uniform internal heating. It is a simplified model of many celestial bodies or
part of their interiors, but which is rich enough to reproduce behaviors and patterns observed in
real situations. Numerical simulations and experimental studies trying to mimic full spherical
bodies are not as abundant as those in the case of spherical shells (see [7, 6, 56, 55, 10, 26, 22],
among many others). The topics analyzed go from the study of the stability of the trivial
conduction state to the simulation of fully turbulent flows, in some cases coupled with the
induction equation.

The conduction state, as will be seen later, depends only on the radial coordinate, and the
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study of its linear stability leads to a non-self-adjoint problem. The most common situation
is to have a Hopf bifurcation breaking the rotational invariance, i.e., the eigenfunctions have
longitudinal dependence but are still symmetric with respect to the equator. Under these
conditions the bifurcation leads generically to azimuthal rotating waves [27]. This case has
been studied extensively for spherical shells by using numerical methods or trying to formulate
asymptotic theories in several distinguished limits (see [44, 4, 7, 58, 59, 31, 5, 17, 1, 23, 41,
3, 42], among others). A new type of solutions, so-called torsional, was found numerically by
solving the stability problem for stress-free boundary conditions [49]. It was shown that at
low Pr and for ratios Pr/E =0O(10) the eigenfunctions at the first bifurcation are azimuthally
axisymmetric and antisymmetric with respect to the equator. This result was confirmed soon
by means of asymptotic methods [60]. The torsional linear solutions give rise to an oscillation
between both hemispheres. Following these linear stability analyses, the bifurcated branches
of solutions have also been computed [37, 53]. It was shown that the torsional flows also
produce a latitudinal kinetic energy wave propagating near and on the surface of the sphere.

In order to find the curves delimiting the region of first transitions to torsional solutions,
the continuation of Hopf and double Hopf points is used here. Continuation methods have
been used in fluid mechanics soon after the appearance of seminal works on the subject [38,
35]. Early examples of application, for instance, to the classical Taylor—-Couette problem,
using in some cases initial versions of the well-known package AUTO [15], can be found in
[40, 11, 14]. In particular, the work of Cliffe [11] included the continuation of saddle-node and
pitchfork bifurcation points, and even the detection of cusp points. Several review articles
and books describe the status and the history of the use of dynamical system techniques in
fluid mechanics, and how these methods can help to understand the transition to turbulence
(see [16, 34, 13, 51, 25] and the introduction of [43]). The continuation of codimension-one
bifurcations of equilibria for PDEs has been included in numerical packages such as LOCA [48],
and pde2path [57].

The goal of the present work is twofold: to lay out an algorithm for the computation
of double Hopf points in large-scale dissipative systems, and to determine the region of the
parameter space in which the first bifurcation from the conduction state is to solutions in-
dependent of the longitudinal coordinate, in order to find out its possible relevance in the
dynamics observed in planets and stars.

The layout of the paper is as follows: Section 2 describes the formulation of the thermal
convection problem, and the numerical techniques used to discretize it. In section 3 the
extended systems used to track the curves of Hopf and double Hopf points are presented.
Section 5 shows the bifurcation curves found, as well as the final region in parameter space in
which the first bifurcation from the conduction state is to axisymmetric torsional solutions.
Some final remarks and conclusions are stated in section 6. Appendix A contains details on
the numerical continuation techniques employed to track the curves of Hopf and double Hopf
points.

2. Mathematical model and numerical discretization. Let us consider the thermal con-
vection of a fluid sphere of radius r,, internally and uniformly heated, rotating about an axis
of symmetry of direction k (unitary) with constant angular velocity € = Qk, and subject
to radial gravity g = —~r, where v is a constant and r the position vector. This is the
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gravity field inside a spherical mass of uniform density. The momentum, mass, and energy
equations are written, using the Boussinesq approximation, in a frame of reference rotating
with angular velocity 2. Spherical coordinates, (7,0, ¢), with 6 measuring the colatitude and
@ the longitude, are used. In addition, the density in the Coriolis term is taken constant,
and the centrifugal force is neglected, since it is small compared to gravity in many celestial
bodies such as, for instance, in the major planets, i.e., 92/ < 1. The scales used to write
the dimensionless equations are 7, for the distance, v?/yar? for the temperature, and r2/v
for the time, v and a being the kinematic viscosity and the thermal expansion coefficient,
respectively. Therefore the nondimensional equations are

v+ (vV-V)v+2E 'k x v=—Vp+ Vv + Or,
V-v=0,
Pr(9;0 + (v-V)0) =V?*0 +Rar-v,

where v, p, and © =T — T are the velocity field, the modified pressure, and the temperature
perturbation from the conduction state, respectively. The latter is, in these nondimensional
units, v. = 0 and T.(r) = To— (Ra/2Pr)r?, with Ty an arbitrary temperature of reference. The
nondimensional parameters of the problem are the Rayleigh (Ra), Ekman (E), and Prandtl
(Pr) numbers, defined as

ByarS v

1%
2.1 Ra — E= 2 pr=YV
(2.1) & kv o2 T

where 8 = ¢/3kcp, ¢ is the (uniform) rate of heat generation per unit mass,  is the thermal
diffusivity, and ¢, is the specific heat at constant pressure. In the above system 2E 'k x v
is the Coriolis term; Ra r - v comes from writing the temperature equation around the basic
conduction state, i.e., it appears when T is substituted by 7" = T, 4+ O in its original equation
(Pr (0,T + (v - V)T) = V2T) to obtain that for ©. Moreover Or is the forcing term responsible
for the thermal instability. It depends on © after taking into account the dependence of the
density on 7" in the gravity term, and writing T'= T, + ©.

The divergence-free velocity field is then expressed in terms of toroidal, ¥, and poloidal,
®, potentials (see [8]) as

(2.2) v=Vx(Ur)+VxVx(Pr).

The equations for both potentials are obtained by taking the radial component of the curl
and double curl of the momentum equation. After rewriting also that of the temperature, the
final system, linearized around the basic state (¥, ®,©)=(0,0,0), is

(2.3) (0 — VH LT = 2E71 (0, ¥ — QO),
(2.4) (0 — V3L V2P = 2E71 (9, V2D + Q) — £90,
(2.5) (Pro, — V?) © = RaLy®.

The operators Lo and Q are defined by

Lo = —1*V?+0,(r?0,), Q=rcosOV?— (Ly+rd,)(cos0d, —r tsinfdy).
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Stress-free and perfect thermally conducting boundary conditions are assumed at r = 1,
which become

(2.6) 0-(V/r)=0, ®=0, 92®=0, and ©=0

in terms of the velocity potentials and the temperature perturbation.
To discretize the equations the functions X = (U, ®,©) are first expanded in spherical
harmonic series with a triangular truncation of maximal degree L, namely,

L l

(2'7) X(t,?“, 0, 90) :Z Z le(r’ t)}/lm(g’ QO),

=0 m=-1

with U, = W, o, " = W, e,"= @, and imposing ¥) = ®) = 0 to uniquely determine
the two scalar potentials. The spherical harmonics are normalized as

20+ 1 (1 —m)! ,
Y0, ) = 4 /;Mf’lm(cosﬂe’m@, [1>0, 0<m<l,

P/" being the associated Legendre functions of degree I and order m. Equations (2.3)—(2.5)
written for the complex coefficients become

-1

(2.8) QU = DY + (im¥}" — [Q®]).,

I(1+1)
—1

(2.9) oD@ = DIOT — O + 0+ (imD, @] + [QV]]"),
(2.10) 90" =Pr D0 + Pr (I + 1)Ra @},
with

2 I(1+1
(2.11) Dy =02 + =0, — ( J; ).

T T

The boundary conditions decouple for each degree and order, i.e.,

(2.12) o(UM/ry =0, ®"=0, 030" =0, and O =0

at r = 1. The square bracket [} indicates extracting the spherical harmonic coefficient of

degree [ and order m. The operator Q is

(2.13) (RSN = —( = 1)(L+ 1)e" Dy fi"y — 11+ 2)c11 Do [,
' l " 12 . m2 1/2
(214) Wlth Dl+ = ar =+ ;, and Cl = <4[2_1>
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To study the stability of (¥, ®,©) = 0 the eigenvalue problems

(2.15) AU = DU + l(l—lkl) [2E7! (im¥]* — [Q2]M)],

(2.16) AD;®I" = DI — OF + l(l-lu) [2E7! (imD, @) + [QV]M)],

(2.17) 2O = Pr!'D,0)" + Pr (1 + 1)Ra @)

must be solved for m = 0,1,..., X being the eigenvalue. The eigenproblems for negative m

have conjugated eigenvalues and eigenvectors of those for positive m. The case m = 0 is
special since it is real and eigenvalues come in conjugated pairs.

Since the operator Q only couples the spherical harmonic coefficients by their degree, [,
and not by their order, m (see (2.13)), a sequence of uncoupled eigenproblems are obtained
parameterized by the integer wavenumber m > 0. Due to the triangular truncation used (see
(2.7)), the number of coefficients involved in the eigenvalue problem corresponding to the
wavenumber m is 3(L —m+1) if m > 1, and 3L if m = 0, because ¥ = ®) = 0 and (2.17) for
@8 is not coupled to the rest and it is purely diffusive. Consequently it does not contribute
to the instability.

Collocation methods have been used for the discretization of the radial operators. They
were employed successfully by the authors in the case of spherical shells [23, 41, 21, 24, 20].
They are very efficient due to the possibility of using optimized matrix-matrix products to
evaluate the action of the operators in order to compute the nonlinear terms in the time
evolution codes of the full nonlinear equations. Moreover the simplicity of collocation methods
allows one to easily change the boundary conditions. In this way each radial operator in (2.15)—
(2.17) is substituted by a matrix approximating it, associated to a given radial mesh, which
in this work is of Gauss—Lobatto of NV + 1 points. The origin is included in the mesh, but the
equations are only written at the inner points of the radial interval. The value of ®]* and ©]"
at r = 1 is zero, and that of ¥} can be written in terms of the values at the inner points by
using the boundary condition 0, (¥}"/r) = 0. All the details can be found in [50]. A study of
different meshes and ways of eliminating spurious eigenvalues are described there.

Since the operator D; on the left-hand side of (2.16) is invertible, the eigenvalue problem
(2.15)—(2.17) for a given azimuthal wavenumber m can be written as a standard one,

(2.18) A (Ra, E, Pr)X,, = A X,

Xm = (U, P, Oy) being a vector of dimension 3(L —m +1)(N —1) if m # 0 (3L(N —1) if
m = 0) containing the values of the amplitudes of the potentials and the perturbation of the
temperature in spherical harmonics at the N — 1 inner collocation points.

The matrices A, are block-tridiagonal due to the structure of Q, with (L —m + 1) if
m # 0 (L if m = 0) rows of blocks of dimension 3(N — 1). They are real only for m = 0
and depend on the three nondimensional parameters. Since the problem is not self-adjoint
the matrices A,, are not symmetric and the instability of the conduction state is almost
always via a Hopf bifurcation. When the corresponding eigenfunction is no longer invariant
under azimuthal translations, the transition gives rise, generically, to waves traveling in this
direction [27]. This is the case when m. # 0, m. being the critical azimuthal wavenumber for
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which R(A) = 0. If m. > 0 and X\ = iw,, the negative frequencies give rise to positive drifting
velocities ¢ = —w./me, i.e., the waves drift in the prograde direction. It was shown in [49] that
if m. = 0, the bifurcation may break the reflection through the equator. The eigenfunction is
antisymmetric, and the bifurcating oscillations are symmetric cycles, i.e., advancing half the
period is equivalent to applying an equatorial reflection.

The initial leading spectra of A,, (defined as a set of eigenvalues of maximal real part)
required to find initial conditions for the continuation of Hopf and double Hopf curves are
computed by using shift-invert preconditioners. The eigenvalue problem A,,X,, = AX,, is
transformed into (A, — 0Z)"'X,, = uX,,, where o is a complex shift. The eigenvectors of
both problems are the same, and the eigenvalues are related by A = o + 1/u. Finding the
w’s of largest modulus is relatively easy using subspace iteration or Arnoldi algorithms [45].
The second option is employed here by means of the ARPACK package [39]. In this way the
eigenvalues of A, closest to o are found. A sequence of shifts of the form o = p + iw close to
the imaginary axis is examined, using the information of nearby calculations, to ensure that
no modes close to the critical are missed. The linear systems with matrix (A, —oT) are solved
by means of an adapted LU decomposition making use of its block-tridiagonal structure. To
avoid systems close to singular near the bifurcation points, when A = A, +iA; with A\, =~ 0, a
small real part p £ 0 is always included in the shift o.

The critical values of the parameters are found by applying a root-finding algorithm to
the equation A, = 0 with two of the parameters fixed (usually E and Pr). For any set of
parameters the truncation constants N and L have been taken to bound the errors in the
critical parameters and frequencies below 1%. In most of the computations in this article
N = 50 and L = 80. This gives a maximum dimension for the complex matrices A,, of
11760. As will be seen in the next section, nonlinear systems of twice this size have to be
solved. More detailed information on the methods used, and the results for wide intervals of
the nondimensional parameters and of the wavenumber, ranging from m = 0 to m = 60, can
be found in [49, 50].

3. Continuation of Hopf and double Hopf points. The curves of Hopf points of a given
m can be found by fixing one of the three parameters of the problem, increasing in small steps
a second one, and solving the equation A, = 0, with the first two parameters fixed, to find
the critical third. If, in addition, the above-mentioned strategy of finding the spectra using a
sequence of shifts is employed, the possibility of missing a bifurcation due to overtakings of
eigenvalues (real parts growing at different rates when the parameters are moved) is minimized.
Another way of tracing the curves is by fixing again one of the three parameters, and to apply
a continuation technique to the extended nonlinear system of equations (see [29, 28])

(3.1) (An(Ra, E,Pr) — iwI) X,, = 0,
(3.2) 1Xm]* =1,
(3.3) (R(Xm), S(Xim)) =0,

R(Xm) and I(X,,) being the real and imaginary parts of X,,, and (-,-) the Euclidean dot
product. The second and third equations are normalizing conditions which uniquely determine
the eigenvector X,,,. Assume, for instance, that Pr is fixed. Then if the dimension of A,, is
n, there are 2n + 2 equations (X, is complex) and 2n + 3 unknowns (X,,,w,Ra,E). This
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defines a curve of Hopf bifurcations. The continuation algorithm tracks the eigenfunction and
associate frequency starting at a given initial condition. If there are overtakings of eigenvalues,
the critical values of the parameters and frequency may not correspond to the first Hopf
bifurcation. Therefore postprocessing is needed to validate the calculations, computing the
leading spectra at the values of the parameters along the curve, but using the above strategy
of sweeping shifts. This also has to be done in the case of curves of double Hopf points. In
this latter case the extended system to track the simultaneous bifurcation to wavenumbers
m = mq and m = my is

(3.4) (Am, (Ra, E,Pr) —iw,Z) X, =0,
(3.5) (Am,(Ra, E,Pr) — iwsT) X, =0,
(3.6) | X, 1P =1,
(3.7) (R(Xom, ), $(Xmy)) = 0,
(3.8) | Xoms 1P =1,
(3.9) (R(Ximy), S(Xim,)) = 0.

Now, if the dimensions of A,,, and A,,, are n; and ng, respectively, there are 2n; + 2ny + 4
equations, and 2n; +2ns+5 unknowns (X, , Xim,, w1, w2, Ra, E, Pr). All three parameters are
obtained now during the continuation. It is clear from (3.4)—(3.9) that the minimal number
of parameters in a system in order to have curves of this type of codimension-two bifurcations
is three.

It must be said that the extended systems for Hopf and double Hopf points usually include
the equations determining the equilibria of which the bifurcations are studied [29]. There is no
need to add them in the present problem because the equilibrium is the trivial zero solution.
Other extended systems to follow Hopf points are available (see [28]). They are based in
reformulations of (3.1)—(3.3), or in using bialternate products. The latter method is not
useful for large-scale systems because it implies processing huge nonsparse matrices.

During the continuation process Newton’s method is used to solve the nonlinear systems.
Inside this outer loop there is a second one since iterative methods have been used to solve
the linear systems at each Newton step. Matrix-free methods are commonly used for this
purpose. GMRES [47] has been the choice in this work. This combination leads to one of the
possible Newton—Krylov methods. The name Krylov is associated to the use of linear solvers
based on Krylov subspaces, GMRES being just one of them. A generic continuation code to
track solutions of a nonlinear vector function requires subroutines to evaluate the function,
the action of the Jacobian of the function on a vector, and a preconditioning one. The
latter solves systems with a matrix approximating the Jacobian, enlarged with an additional
row coming from the additional constraint required to select a single solution, and with a
new column containing the derivatives of the function relative to the continuation parameter.
Reference [51] is a recent tutorial on these techniques applied to the continuation of different
invariant objects, not only equilibria. The theory corresponding to the case of the computation
of the curves of double Hopf points has been included in the appendix.

In the present problem the computation of the left-hand sides of (3.4)—(3.9) and the action
by their Jacobians is not difficult since the blocks of the matrices A, can be easily computed.



M133396-2ndproofs.pdf

CONTINUATION OF DOUBLE HOPF POINTS 9

4. Validation of the double Hopf points. After computing the double Hopf curves, one
must be sure that no other eigenvalues have crossed the imaginary axis, becoming the most
unstable. Therefore the stability analysis of the conduction state is studied for the values of
the parameters at each point of the double Hopf curves, and for several values of m including
those defining the double Hopf problem (m; and ms in (3.4)—(3.9)). The method based on a
sweep of complex shifts is used. A new Hopf bifurcation with m = mg indicates the presence of
a triple Hopf point. When this happens, the curves corresponding to the double Hopf problems
for mi—ms and mo—m3 must be computed because they can form part of the boundary for
the transition to m = my or m = ms. An example of this situation will be shown in the next
section.

5. Results. The first step to track the double Hopf curves is finding the initial conditions.
Figure 5.1(a) displays three curves of Hopf points given by (3.1)—(3.3) for m = 0 and m = 1.
There are two curves in the latter case corresponding to azimuthal waves traveling eastwards
or westwards relative to the frame of reference of the rotating sphere. This means that the
frequency w is negative and positive, respectively, as can be seen in Figure 5.1(b). The
equivalent terms prograde (p) and retrograde (r) are used in the figure. The interval of Pr
considered was based on the previous experience of the authors on the problem (see [49]).
The conduction state is stable to perturbations of any wavenumber in the region indicated
below the lower envelope of the Hopf curves of Figure 5.1(a). Their intersections are the
initial conditions for the continuation of the double Hopf loci. The parameters corresponding
to these points are given in Table 5.1. The first transition is then to axisymmetric solutions
(m =0)if 8.304 x 1073 < Pr < 12.22 x 10~3. By tracking the dependence of this interval with
E, the region in the parameter space Pr—E, for which the first bifurcation is to axisymmetric
solutions, can be determined.

The curves of Figure 5.1(a) are the intersections of the surfaces of Hopf points shown in
Figure 5.2(a) with the plane E = 1073, It contains, in addition, small segments of the double
Hopf curves around this value of E, and their projections onto the plane Ra = 4 x 103. The

10 ‘ ‘ ‘ | 16
3 I
(a) E—]O 14 (b) E=]0—3 m:lr
9 12+
. L 1o
S 8| 0 o 8¢ m=0
X m=1p ~
< 6
m=0 S
[a7 7 4t
2 L
6F m=Ir Stable region 0f  m=lp
6 8 0, 12 14 26 8 0, 12 14
Prx10 Prx10

Figure 5.1. (a) Curves of Hopf points for E = 1072 for m = 0 (green) and m = 1 (violet). (b) The fre-
quency, w, along the curves of Hopf points. The letters p and r mean prograde and retrograde drift, respectively.
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Table 5.1
Values of the parameters, wavenumbers, and frequencies at the initial double Hopf points.

E Pr Ra mi | me w1 w2
1072 | 0.8304 x 1072 | 6983 | 0 1 889.0 | 1500.7
1073 | 0.1222x 107! | 7971 | © 1 886.7 | —174.5
1073 | 0.1019 x 107 | 7935 | 1 1 | 1498.7 | —174.7

==
=

—
—

=

=

=

==

iz =
=

7=
=

\\\

-
A
AN

7

Ra x 1073

E x 104 Pr x 10°

1.6 ' Pr

Figure 5.2. (a) Surfaces of Hopf points corresponding to m = 0 (green), m = 1r (dark violet), and m = 1p
(light violet) in the three-dimensional parameter space, together with a small portion of the double Hopf curves
mOlp, mOlr (red), and mlplr (green). The latter have also been projected onto the plane Ra = 4 x 10°. The
conduction state is stable below the three surfaces. (b) Three-dimensional view of the full curves of double Hopf
points. The blue and magenta curves correspond to the loci of double Hopf points for m1 = 0 and ma = 2, and
for m1 =1 and ma = 2, respectively. (c) Detail indicating the position of the triple Hopf points.

red curves correspond to the intersections of the critical surfaces (maxy R(\) = 0) for m; =0,
and mg = 1 in the prograde and retrograde cases. They will be denoted by the symbols m01p
and mO1r. The green one is the intersection of m; = 1p and mo = 1r, denoted by ml1plr.
The full double Hopf loci are displayed in Figure 5.2(b), where it is shown that the curves
m01p and mO1r are in fact the same. At some point, indicated with a solid dot, the frequency
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curve m01, for m =0,1,2,3,4, as a function of Pr. (b) Same results but as a function of the two parameters
E and Pr. The horizontal surface is maxy R(A) = 0.

w changes sign on m01p, and the two curves merge there. The common curve will be denoted
by m01 from now on.

As explained in section 4 new Hopf bifurcations can occur along the double Hopf curves.
This holds at the two empty dots on mO01 (red curve), shown in Figure 5.2(b), and in the
detail of Figure 5.2(c). The meaning of the two other curves will be seen below. Figure 5.3
shows the real part of the rightmost eigenvalues of (2.15)—(2.17), for m from 0 to 4, along the
curve m01. The method of the sweep of shifts was used to obtain them. It can be seen that no
eigenvalue corresponding to m = 0 or m = 1 crosses the imaginary axis along the curve m01.
The corresponding straight lines in Figures 5.3(a) and (b) are always superposed and constant
to zero, indicating that the parameters correspond to critical values (®(\) = 0). Moreover,
the real part of all the eigenvalues corresponding to m = 3 and m = 4 is always negative
along m01. The same holds for m = 5, but this is not presented here. The case m = 2 is
different; maxy R(\) crosses zero at two points, corresponding to the triple Hopf points just
described. This was the method used to detect these codimension-three points. Two new
curves of double Hopf points emerge there. The line drawn in blue in Figures 5.2(b) and (c)
corresponds to m; = 0 and my = 2, denoted from now on by m02, and that in magenta to
m1 =1 and m = 2, and will be named m12. The latter self-intersects at the third empty dot
of Figures 5.2(b) and (c), which turns out to be on m1plr.

When any of the curves tends to (E,Pr) = (0,0) the critical Ra tends to infinity (see
Figure 5.2(b)). This limit is relevant in many astrophysical problems which have low E and
Pr. The interval of the Ra axis has been limited for clarity. The curves m02 and mlplr
are double in this representation. They seem to end abruptly, but the endpoints are turning
points. This can be seen in Figure 5.4. The frequencies w; and wo are plotted as functions of
Pr and E along the four double Hopf curves. They have been separated for clarity. The plots
for m01 and m12 are clear; there are two curves of frequencies. In Figure 5.4(b) there is only
one because the role played by w; and wy and the corresponding eigenfunctions interchanges
at the turning point, i.e., the curve is covered two times during the continuation. Finally,
in Figure 5.4(c) there are two curves of frequencies. The curve corresponding to m = 0 is
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Figure 5.4. Frequencies along the double Hopf curves. The corresponding curve is indicated with a label in
each plot.

symmetric with respect to the plane w = 0. Its turning point occurs at w = 0, and the curve
continues with the conjugated eigenvalue and eigenfunction. Remember that in this case the
eigenvalue problem is real. The second curve of frequencies, for m = 2, just turns back,
bouncing at the final point, and is covered two times, because if (X, , Xim,, w1, w2, Ra, E, Pr)
is a solution of (3.4)-(3.9) with m; = 0, then so is (X, , Xim,, W1, ws, Ra, E, Pr). This happens
every time the frequency corresponding to a real problem passes through zero.

Figure 5.5(a) shows the projection of the double Hopf curves of Figure 5.2(b) onto the
parameter space Pr—E. The same information about the triple Hopf points and the point
at which the frequency of the wavenumber m = 1 changes sign on m01 is contained in this
figure. From all the previous information it is now clear that the region in the Pr—E space in
which the first bifurcation is to axisymmetric solutions, when Ra is increased from the stable
zone, is limited by the curves m01 and m02. It has also been checked that the curve mlplr
is never below the critical surface of m = 0. The region has been plotted in Figure 5.5(c).
Figure 5.5(b) is the same as Figure 5.5(a) but in logarithmic scale to show the behavior close
to the origin. In the limit Pr — 0 the double Hopf curves follow linear laws of the form
E = ¢(m1, ma)Pr, ¢(mi,me) being a constant depending on the wavenumbers defining the
double Hopf problem. The values of ¢(mq,mg) for the two branches of the curve m01, m01p
and m01r (in red in Figure 5.5(b)), are ¢(0,1) = 0.0744 and 0.1326, respectively. They were
obtained by fitting the computed data in the interval 107 < Pr < 1073. This leaves, for
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Figure 5.5. (a) Projection onto the plane Pr-E of the curves of Figure 5.2. The black dot indicates the
point separating the m = 1 prograde waves from those retrograde. (b) Same plot as (a) in logarithmic scale to
show that for each value of Pr there is always an interval of E inside which the first bifurcation is to m = 0.
(¢) Final region inside which the first bifurcation is to azisymmetric solutions.

each value of Pr, an interval of E in which the first bifurcation is to m = 0. The rest of the
constants are c¢(1p, 1r) = 0.0971, ¢(0,2) = 0.0346, and c(1,2) = 0.0523.

Figure 5.5(c) is relevant because it shows the range of parameters that must be used in
nonlinear geophysical and astrophysical simulations to find oscillations of very high frequency,
such as those necessary for the generation of magnetic fields, or oscillations able to produce
strong zonal flows, such as those observed in the major planets. Although it can seem at
first sight that the interval of stability is very narrow, the same happens with any azimuthal
wave of any fixed azimuthal wavenumber m # 0. It is known that the nonlinear flows lose
the axisymmetry of the eigenfunctions [37], but they retain most of the kinetic energy in their
axisymmetric part (m = 0 modes). Although the analysis shown here does not determine the
stability of the nonlinear solutions, it has been checked, using a three-dimensional temporal
evolution code for a spherical shell of very small radius ratio and values of Pr and E contained
in the m = 0 region of Figure 5.5(c), that a nonperiodic torsional motion persists when Ra is
increased.

Figures 5.6 to 5.8 show the eigenfunctions at the triple Hopf point located at Pr = 0.9305,
E = 5.441 x 1072, and Ra = 1784. Figure 5.6 corresponds to m = 0. Four snapshots at
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Figure 5.6. Contour plots of the perturbation of the temperature and velocity field (arrows) on (a) the
spherical, (b) equatorial, and (c) meridional sections indicated by solid lines. (d), (e), and (f) show the same
projections as (a), (b), and (c), but for the contour plots of the kinetic energy. The spherical section is taken
at r = 0.5 for the perturbation of the temperature and r = 1 for the kinetic energy. The rows correspond, from
top to bottom, to timest =0, T'/4, T/2, and 3T /4, T being the period. The parameters are those of the triple
Hopf point located at Pr = 0.9305, E = 5.441 x 1072, and Ra = 1784. The azimuthal wavenumber is m = 0.

times t = 0, T'/4, T/2, and 3T/4, T being the period, are presented. The spatiotemporal
symmetry of the eigenfunction is quite obvious. Advancing half a period is equivalent to
applying a reflection through the equator followed by a change of sign of the perturbation
of the temperature, ©, and of the velocity field. In the first row, at ¢ = 0, the kinetic
energy concentrates near the center, and most of it corresponds to the meridional velocity,
the azimuthal one being small. At ¢ = T'/4 there is an important zonal (azimuthal) flow,
and the kinetic energy concentrates near the surface at mid latitudes. The other two rows
can be obtained by the above-mentioned reflection with respect to the equator. More details
of these axisymmetric eigenfunctions, and of the branches of torsional solutions emerging
at this type of Hopf bifurcation, can be seen in [50, 53]. The temporal evolution for the
other two eigenfunctions is much simpler; they are just rotating waves, so the patterns shown
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Figure 5.7. Same snapshots as in Figure 5.6 but for m = 1. The spherical section is taken at v = 0.55 for
O and r =1 for the kinetic energy.

Figure 5.8. Same as Figure 5.7 but for m = 2.

in Figures 5.7 and 5.8 just rotate as a rigid body around the vertical axis of the sphere.
Movies showing the behavior of each of these cycles at this triple Hopf point have been
included as supplementary material files: M133396_01.gif [local/web 9.74MB], M133396_02.gif
[local/web 11.2MB], M133396.03.gif [local/web 8.82MB], M133396_04.gif [local/web 9.25MB],
M133396_05.gif [local/web 12.4MB], and M133396_06.gif [local/web 10.4MB].

In order to understand how the double Hopf curves disappear at their turning points, and
to have a better view of the critical surfaces, the continuation of the Hopf points for m = 0, 1,2
was performed for several fixed values of Pr, indicated by vertical lines in Figure 5.9(a). In
all subsequent plots of Figures 5.9 and in Figures 5.10 and 5.11 the panels contain the critical
curves (left) and the associated frequencies (right) for the Pr indicated in their labels. The
intersections between curves of Hopf points, in each left plot, can be identified with the
intersections of the corresponding vertical line with the double Hopf curves in Figure 5.9(a).
The first three rows for Pr = 0.80, 0.85, and 1.00 show the disappearance of the interval of first
bifurcations to m = 0 due to the displacement downwards of the m = 2 curve. At Pr ~ 0.85
there is a triple Hopf point, which is the intersection of the two m = 1 branches with that
of m = 2. Between Pr = 0.85 and Pr = 1.00 the m = 2 curve passes over the double Hopf
points, which are intersections of the m = 0 and m = 1 curves, giving rise to the other two
triple Hopf bifurcations.

The two m = 1 curves for Pr = 0.80, 0.85, and 1.00 in Figure 5.9 are in fact the same, as
can be seen in Figures 5.10 and 5.11. They show how the self-intersection disappears between
Pr=1.15 and Pr = 1.17. It coincides with the final point of the green curve mlplr in Figure
5.9(a). This can be confirmed by looking at the plots of the frequencies. At Pr = 1.18 the
curve for m = 1 is already univaluated, without turning points. At approximately this value
of Pr the intersection of the curves m = 0 and m = 1 is double, indicating the turning point
of the double Hopf curve m01.
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Figure 5.9. (a) Same as Figure 5.5(a), including vertical lines indicating the Pr of the plots of the rest of
the panels of this figure, and of Figures 5.10 and 5.11. The remaining rows show curves of critical Ra (left) and
frequencies (right) versus E, corresponding to Hopf bifurcations for the wavenumbers m = 0,1,2. The values
of Pr are indicated in the labels.
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Fach curve of bifurcation to solutions with m = 0 is the envelope of two curves. The
cusp points in the left plots of the critical Ra of Figures 5.10 and 5.11 mark the change. In
the plots of the critical frequency, there is a positive frequency on the left part of the curves
and a zero frequency on the right. The latter corresponds to a pitchfork bifurcation (not to
a Hopf one, as in all the other cases). There is a curve of codimension-two Hopf-pitchfork
points passing through the intersections of the curves labeled m = 0 and m = 2 in the plots
of critical Ra at E ~ 9.2 x 1072. It has not been computed, since the pitchfork bifurcations
never occur as the leading instability, at least for the range of parameters explored here.

6. Final remarks. The first objective of this work was to determine the region of the
parameter space in which the first bifurcation is to solutions of azimuthal wavenumber m = 0,
and antisymmetric with respect to the equator, at least the region containing the interval pre-
viously obtained for low Ekman numbers [49]. The second goal was to display an algorithm for
the continuation of double Hopf points in large-scale dissipative systems of discretized PDEs.

The mentioned region is bounded by curves of double Hopf points corresponding to pairs
of wavenumbers (0,1) and (0,2). Their intersections correspond to codimension-three triple
Hopf points. These results are summarized in Figure 5.5(c). The Prandtl numbers of the
fluids of this figure include liquid metals of Pr < O(10~1!), which are relevant for astrophysical
and geophysical problems, but also gases of Pr = O(1), at low rotation rates and Rayleigh
numbers. Close to the origin, (Pr,E) ~ (0,0), Ra rises quickly along the double Hopf curves.
In addition, a detailed description of the way the boundary of the stability region is reached
has been given.

The torsional modes described here were found while exploring the linear stability of the
conduction state of a rotating fluid sphere. It would be interesting to explore in detail what
happens in a spherical shell, and how the bifurcation diagram changes with the radius ratio.
In this case the first bifurcation, or a bifurcation on the branch of periodic torsional flows
could be subcritical, giving rise to stable velocity fields of complex time dependence at very
low Ra. These fields are good candidates for the generation of strong magnetic fields such as
those found in [52].

The numerical methods used are based on the matrix-free continuation of the solutions
of adequate extended systems. This methodology is general and can be applied to any sta-
bility problem of systems governed by parabolic-elliptic PDEs. For instance, the regions of
transitions to the well-known rotating waves, with a fixed nonzero azimuthal wavenumber,
can also be determined with the same techniques. Although these methods are not new for
low-dimensional systems of ODEs, their application to PDEs is not common at all, and only a
few examples can be found in the literature, most of which are mentioned in the introduction.

Appendix A. Some details on the numerical methods used to track the curves of double
Hopf points are given here. The case of Hopf points is simpler and can be deduced from that of
the double Hopf bifurcations. The general framework of continuation methods for large-scale
systems is explained in [51]. A minimal part is reproduced here for completeness, adding what
is necessary for the particular systems arising in this article.

Consider a system of nonlinear equations depending on a parameter p,

(A1) H(y,p) =0, (y,p) €U CRE xR,
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for which one is interested in its solutions and their dependence on p. In our case the system is
that given by (3.4)—(3.9) with y = (X, , Xy, w1, w2, Ra, E), K = 2n; + 2ny + 4, and p = Pr.
It could be any of the other two parameters, Ra or E. Then Pr would be included in the
vector y. Since the bifurcation curves are parameterized by the arclength it is not important
which one is the distinguished parameter.

The curves, (y(s),p(s)), of solutions of (A.1), s being the arclength, are traced by us-
ing continuation methods. They consist in two stages: a predictor step, in which an initial
approximation to a new point on the curve (yo,po) is computed by extrapolation from the
previously obtained solutions, and a corrector step, in which the prediction is refined by New-
ton’s method. The most common continuation methods, parameter, local parameterization,
and pseudo-arclength, admit a unified formulation by adding to (A.1) an equation,

(A.2) h(y,p) =0,

to determine simultaneously unique y and p. If h(y,p) = p — po, the equation fixes the
parameter p, leading to parameter continuation, which is the easiest method, but fails at
turning points. If h(y,p) is one of the components of y or p, depending on which is growing
faster, the method is described as a local parameterization method. Finally, h(y,p) = h; (y —
x0) + hyp(p—po), where (yo, po) and (hy, hy) are the predictions of a new point and the tangent
to the curve of solutions, respectively, defines a pseudo-arclength method. In the two latter
cases the hyperplane h(y,p) = 0 will cut the curve transversely if the prediction is not far
from the previous point, and the algorithm allows passing folds. In any case the system that
determines a unique solution, (y,p) € REF! is

A= () ) =

Large-scale systems, H (y,p) = 0, are usually solved by inexact Newton methods. Instead
of solving the linear systems by means of direct algorithms, iterative methods are used. If the
linear solvers are based on Krylov subspaces (GMRES, BiCGStab, FOM, TFQMR, etc.; see,
for instance, [46]) they are also called Newton-Krylov methods. In inexact Newton methods,
a sequence of approximations are obtained, starting from the initial prediction (yo,po), with

(Yi+1, Pi+1) = (Yi, pi) + (Ayi, Api),
where (Ay;, Ay;) satisfies the linear system

@3) (Dth(%i, pi) DpH }Egmﬁ) (iz) _ <—_IZ(($:;@'))> 7

Y
which is solved iteratively. The term matriz-free method is used when the linear solver only
requires the user to provide matrix products. In our case the products have the form

(DyH(yi, pi) D,H (yz-,pi)> <5y) 7

h; hyp op
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with (0, 6p) T an arbitrary vector provided to the user by the linear solver. The linear solvers
are not, in general, convergent for arbitrary systems, especially in the case of equilibria of
discretizations of systems of parabolic PDEs. It is necessary, then, to use preconditioners to
improve the convergence. This means a matrix approximating that of (A.3), and such that it
is possible to solve systems with it in an efficient way. A common trick is to first approximate
the matrix of (A.3) by

DyH (y;,pi) 0
0 1)’

which is just changing a row and column, and then trying to precondition just Dy H (y;, p;).
The Jacobian on the left-hand side of (3.4)—(3.9) at y = (X, , Xy, w1, w2, Ra, E) has the

form
(A.4)
A, — i T 0 —iXpm, 0 OraAm, X, O5Am, X,
0 Amy —iws 0 —iXpmy OraAmsXms Ay Xm,
v 0 0 0 0 0
DyH{y,p) = VN, 0 0 0 0 0 7
0 VN; 0 0 0 0
0 VN, 0 0 0 0

where, for simplicity, the dependence of the matrices A,, and their derivatives on Ra, E,
and Pr, and the dependence of the gradients of the four normalizing conditions (3.6)—(3.9),
N;, on X,,, or X,,, is not made explicit. Matrix products to vectors of the form dy =
(0 Xm0 Xy, 0wi, dwa, 6Ra, dE) have to be computed during the linear solving by matrix-free
methods.

The preconditioning matrix used is

A, — (p+1iw)T 0 0000
0 Ay — (p+iw)Z 0 0 0 0
0 0 1000
(A-5) 0 0 0100]
0 0 0010
0 0 000 1

which differs from (A.4) in the last four rows and columns, and in the perturbation of the
frequencies wyg. The additional real part p is added, as stated before, to avoid singular or
close to singular systems when iwy, is a good approximation of an eigenvalue of A,,,. Since
the blocks of these matrices can be computed, the LU decomposition of the block-tridiagonal
matrices Ay,, — (p + iwg)Z is available, and solving systems with the matrix (A.5) is easy.
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